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Abstract— We consider packet scheduling for the downlink
in a wireless network, where each packet’s service preferences
are captured by a utility function that depends on the packet’s
delay. The goal is to schedule packet transmissions to maximize
the total utility. We examine a simple gradient-based schedul-
ing algorithm, the U̇R-rule, which is a type of generalized
cµ-rule (Gcµ) that takes into account both a user’s channel
condition and derived utility. We study the performance of
this scheduling rule for a draining problem. We formulate
a “large system” fluid model for this draining problem
where the number of packets increases while the packet-size
decreases to zero, and give a complete characterization of the
behavior of the U̇R scheduling rule in this limiting regime.
We then give an optimal control formulation for finding the
optimal scheduling policy for the fluid draining model. Using
Pontryagin’s minimum principle, we show that, when the user
rates are chosen from a TDM-type of capacity region, theU̇R
rule is in fact optimal in many cases. Finally, we consider
non-TDM capacity regions and show that here theU̇R rule is
optimal only in special cases.

I. I NTRODUCTION

Efficient scheduling algorithms are a key component for
providing high speed wireless data services. There has
been much interest in “channel-aware” scheduling algo-
rithms that exploit variations in channel quality across the
user population to improve performance (e.g., [1]–[7]). An
important consideration for such approaches is balancing
the over-all system performance with each user’s quality
of service (QoS) requirements. For example, in a time
division multiplexing (TDM) system that transmits to one
user at a time, the overall throughput is maximized by
always transmitting to the user with the best channel.
This can result in poor performance for users with poor
channel quality, especially when channel conditions vary
slowly with time. To address this, various “fair” scheduling
approaches have been considered, such as theproportional
fair algorithm for the CDMA 1xEV-DO system [8].

In this paper, we consider a utility-based framework,
where each packet’s value as a function of delay is indicated
by a utility function, which can vary across packets. The
scheduling policy attempts to maximize the total system
utility; in this way, the utility functions can be used to bal-
ance fairness and efficiency. We consider a simple gradient-
based scheduling policy, called thėUR scheduling rule [6],
[7]. Here U̇ represents a packet’s marginal utility, andR
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is the achievable rate. This policy makes myopic decisions
based only on the instantaneous parameter values, and so
requires no knowledge of the fading or traffic statistics.

We analyze the performance of thėUR policy for a
draining model, where an initial set of packets must be sent
and no new arrivals occur. For a limiting fluid version of
this model, we first characterize the performance of theU̇R
policy. We then formulate a continuous-time optimal control
problem for finding the scheduling policy that maximizes
the total utility. We show that in certain cases theU̇R
scheduler is optimal; the optimality depends in part on the
underlying physical layer capacity region. For a TDM type
of capacity region, thėUR rule is optimal for a broad class
of utility functions; for a general capacity region, thėUR
rule is optimal only in some special cases. This generalizes
our earlier work in [7], which showed the optimality for a
TDM region in the special case of quadratic utility functions
and uniform initial delays.

The U̇R policy is equivalent to thegeneralized cµ
(Gcµ) rule introduced in [10] for a single-server multi-class
queueing system with convex delay costs.1 In [10] theGcµ

rule is shown to be optimal in the heavy traffic regime.
In [11], this rule is also shown to be heavy traffic optimal
for a system with multiple flexible servers under “complete
resource sharing”. Here we do not consider the heavy traffic
regime, but instead analyze the performance and optimality
of this rule for the fluid model previously discussed. The
optimality of theGcµ rule for a different fluid “rush hour”
model has been studied in [12].

We allow the utility to be an arbitrary concave decreasing
function of delay. In the special case of quadratic utilities,
theU̇R rule is equivalent to the “MaxWeight” policies stud-
ied in [1], [2], [13]. These policies are stabilizing policies
in a variety of settings [1], [2]. Several other fair scheduling
approaches, such as the proportional fair rule, can be viewed
in terms gradient-based scheduling algorithms with utilities
that depend on each user’s average throughput [4], [5].

II. SYSTEM MODEL

We consider a basic model for downlink scheduling from
a single transmitter, e.g. a base station or access point. There
are K classes of packets, where each class corresponds to
packets intended for a specific user with the same utility.
For simplicity, we assume that all packets have fixed length
of L bits. We study a draining problem, where a group of
packets are present at timet = 0 and no new arrivals occur.
Each packet has a randomly chosen initial delay that reflects
the length of time the packet was waiting beforet = 0. Let

1A utility U that is a function of delay is equivalent to a delay cost of
−U .



Nk denote the number of classk packets present at time
t = 0. Forn = 1, . . . ,Nk, let Wn,k(0) denote the delay of the
nth classk packet att = 0.

When transmitting each packet, a transmission rateRn,k,
must be specified depending on the user’s channel quality
and the underlying physical layer implementation. To begin,
we consider a TDM system and assume that the channel to
each user is fixed over the time-period of interest.2 In this
setting, whenever a classk packet is scheduled, it will use
a fixed transmission rateRk. If the nth packet of classk is
transmitted at timet, the total delay incurred is

Dn,k = Wn,k(0)+ t +L/Rk,

where L/Rk is the transmission time of the packet. The
utility received by sending this packet is given byUk(Dn,k),
where for all k, Uk(·) is a decreasing concave function.
A scheduling policy is any rule for determining which
packet to transmit whenever the server becomes idle, given
the current delay of every waiting packet, and the utility
function and transmission rate for each class. Here, we
consider the following scheduling policy from [6], [7]:

U̇R scheduling rule: Schedule the head-of-line packet
from class k∗ such that

k∗ = argmax
k
|U̇k(Ŵk(t))|Rk, (1)

where Ŵk(t) denotes the head-of-line delay of class k
packets at time t. Ties may be broken arbitrarily.

This scheduling rule can be viewed as taking gradient
steps to maximize the average utility per packet, i.e.,

Uavg =
1
N

K

∑
k=1

Nk

∑
n=1

Uk(Dn,k), (2)

whereN = ∑k Nk.

A. Fluid limit

Following [7], we consider a fluid limit for the above
system, where the number of packetsN→∞ and the packet
length,L → 0, while keeping a fixed load ofNL bits. For
convenience, we normalizeNL = 1.3 We also keep a fixed
proportion of packets in each class, given bypk = Nk

N . With
this scaling, the time required to drain the system with any
work conserving scheduling rule is given by

Tf =
K

∑
k=1

NkL
Rk

=
K

∑
k=1

pk

Rk
. (3)

For each classk, we assume that the initial delays
{Wn,k(0)}n is a sequence ofi.i.d. random variables chosen
on the compact set[Dl

k,D
u
k], whereDl

i > 0 andDu
i < ∞ are

lower and upper bounds on the initial delay, respectively.
Let Gk(w) = Pr(Wn,k(0)≤w) be the cumulative distribution

2The time-invariant channel model will be more appropriate for low-tier
mobility applications such as fixed wireless access.

3There is no loss in generality in assuming that the productNL is
normalized to 1. A system withNL = c with c 6= 1 and rates{Rk}|Kk=1,
can be easily shown to behave equivalently to a system withNL = 1 and
rates{Rk/c}|Kk=1.

function (c.d.f.) for the initial delays of classk packets; we
assume this is strictly increasing on[Dl

k,D
u
k].

Let N N
k (t) denote the number of classk packets remain-

ing at timet in a system withN initial packets (for a given
scheduling policy), and let

f N
k (t) =

N N
k (t)
Nk

be the fraction of classi packets remaining at timet.
Following similar arguments as in [7], asN → ∞ with the
above scaling, for each classk, f N

k (t)→ fk(t) almost surely.
Let4 αk(t) =−pi ḟi(t)/Ri , so that,

fk(t) = 1−
∫ t

0

αk(τ)Rk

pk
dτ. (4)

The quantityαk(t) can be interpreted as the fraction of
resources devoted to classk packets at timet. It can be
shown thatαk(t) can take on any value in[0,1] and must
satisfy ∑K

k=1 αk(t) ≤ 1 for each timet. If αk(t) = 1, then
only classk packets are served. For a non-idling policy,
∑K

k=1 αk = 1, for all t ∈ [0,Tf ). At each timet, the scheduling
algorithm specifiesαk(t). Equivalently, for a TDM system,
we can view the scheduler as selecting ratesrk = αk(t)Rk

from the capacity region given byCTS=
{

r : ∑K
k=1

rk
Rk

= 1
}

.
This interpretation allows us to generalize this model to
other capacity regionsC , in which case the scheduling
policy specifies a rate vectorr(t) ∈ C at each timet.

Next, we turn to the packet delays in the limiting system.
Let DN

k (t) be the head-of-line delay of classk packets at
time t in a system withN initial packets. Assuming the
scheduling policy serves packets in a longest-delay-first
order. Then in the fluid system,DN

k (t) converges (almost
surely) to the deterministic functionDk(t), where

Dk(t) = Hk( fk(t))+ t. (5)

Here Hk( f ) = G−1
k ( f ) is the inverse of the classk initial

delay c.d.f., which denotes the maximum initial delay of the
remaining packets in the fluid system. Finally, the average
utility per packet in the fluid model is given by

Uavg =
K

∑
i=1

∫ Tf

0
αi(t)RiUi [Di(t)]dt.

III. L IMITING BEHAVIOR OF U̇R SCHEDULER

Next we characterize the limiting behavior of thėUR
scheduling rule (i.e., the behavior ofαk(t) for each class
k.) Let S(t) = {k : fk(t) > 0} be the set of non-empty
classes at timet. Define Mk(t) = |U̇k(Dk(t))|Rk to be the
decision metric used by the scheduler for each classk∈S(t).
Among classesk ∈ S(t), the U̇R scheduler transmits the
head-of-line packet of the class with the maximum value
of Mk(t). Therefore, theU̇R rule satisfies the following two
properties:

4This derivative can be shown to exist except possibly on a set of
measure zero. At the values oft where τi(t) is not differentiable, we
interpret this as the right derivative so thatrk(t) is right-continuous [14].



Property 1: If k /∈ S(t), thenαk(t) = 0.
Property 2: For k ∈ S(t), αk(t) = 0 if there exists j 6= k
such thatMk(t) < M j(t).

For k /∈ S(t), i.e., a class which is drained at timet, we
defineDk(t) = Dl

k + t, which is a natural extension of (5).
That is, the delay for classk formally continues to increase
after all classk packets have been drained. This does not
affect any scheduling decisions or performance, but will be
useful in optimal control formulation in Section IV.

From Properties 1 and 2 , it follows that under theU̇R
rule, if there exists a unique classk such thatMk(t) > M j(t)
for all j, then αk(t) = 1. This determines the behavior of
the scheduling rule except at those timest when multiple
classes simultaneously have the maximum value ofMk(t).
In these cases, the fluid scheduler splits its resources among
these classes. LetQ(t) be the set of non-empty classes that
have the maximum value ofMk, i.e.,

Q(t) = {k∈ S(t) : Mk(t)≥ M j(t) for all j ∈ S(t)}.
The following theorem quantifies how resources are shared
among these packets when|Q(t)| ≥ 2.

Theorem 1:For anyt < Tf with |Q(t)| ≥ 2, let{αk(t),k∈
Q(t)} be the solution to:

Ṁk(t) =−Ük [Dk(t)]
(
−αk(t)Rk

pk
Ḣk [ fk(t)]+1

)
Rk = K0(t),

(6)
whereK0(t) is chosen to satisfy

∑
k∈Q(t)

αk(t) = 1. (7)

If 0 < αk(t) < 1 for all k∈Q(t), then these are the resource
allocations under thėUR rule.

The proof of this follows from that fact thatαk(t) is
right-continuous. It can be shown that a unique solution
to (6) and (7) always exists. Whether or not this solution
satisfies 0< αk < 1 for all k∈ Q(t) depends on the choice
of Uk(D), Hk( f ) andRk. Given Hk( f ) andRk, we define a
set of utility functions{Uk(D)|k = 1, . . . ,K}, to be regular
if a feasible solution to (6) and (7) exists for allt where
|Q(t)| ≥ 2. For example, withK = 2, R1 > R2, and uniform
initial delays,U1(D) = U2(D) =−Dβ , can be shown to be
regular for β > 1. In what follows, we will assume that
{Uk(D)} is regular unless stated otherwise.

As an example, consider a system withK = 2 and p1 =
p2 = 1/2. Assume thatU1(D) = U2(D) = U(D), and that
the initial delays are uniformly distributed on[0,1], i.e., for
k = 1,2,

Gk(w) =

{
w 0≤ w≤ 1,

1 w≥ 1.
(8)

In this case, (5) becomesDk(t) = fk(t)+ t, and therefore

Ḋk(t) =−2αk(t)Rk +1,

with Dk(0) = 1 for k = 1,2. From Properties 1 and 2, the
fluid U̇R scheduler sets

α1(t) =

{
1 if |U̇(D1(t))|R1 > |U̇(D2(t))|R2 or f2(t) = 0,

0 if |U̇(D1(t))|R1 < |U̇(D2(t))|R2 or f1(t) = 0

and α2(t) = 1− α1(t). Also, from Theorem 1, we have
that for anyt such thatf1(t), f2(t) > 0 andU̇(D1(t))R1 =
U̇(D2(t))R2, theU̇R rule gives

α1(t) =
Ü(D1(t))R1−Ü(D2(t))R2 +Ü(D2(t))R2

2

Ü(D1(t))R2
1 +Ü(D2(t))R2

2

, (9)

andα2(t) = 1−α1(t).
Define t in

k = inf{t|αk(t) > 0} and tout
k = inf{t| fk(t) = 0}

to be the times the server starts to serve and drains all the
classk packets, respectively.

Corollary 1: If {Uk(D)} are regular, thentout
k = inf{t >

t in
k |αk(t) = 0}.
In other words, once the scheduler starts serving classk
packets, it continues to serve this class until all classk
packets are drained. This follows from Theorem 1, which
implies that once classk joins the active setQ(t), it remains
in Q(t) until time tout

k . The initiation and termination times
for every classk, {t in

k }K
k=1 and{tout

k }K
k=1, mark 2K events5.

Let t1 ≤ t2 ≤ ·· · ≤ t2K denote the ordered list of these
times, so that for eachj = 1, . . . ,2K, t j = t in

k or tout
k for

somek. At each timet, define theupper envelopeM̄(t) of
{Mk(t)}K

k=1 to be the value ofMk(t) for all usersk∈Q(t).
Notice thatt in

k andtout
k satisfyM̄(t in

k ) = |U̇k(Du
k +t in

k )|Rk and
M̄(tout

k ) = |U̇k(Dl
k + tout

k )|Rk.
So far, we have characterized thėUR rule given the

decision metrics{Mk(t)}K
k=1. Next, we determine how each

Mk(t) evolves with t. Recall thatQ(t) is the set of non-
empty classes receiving service at timet. Let Q̄(t) = S(t)−
Q(t) be the set of inactive classes, which still have packets
remaining to be transmitted at timet. The decision metrics
and the upper envelope can be computed via the following
iterative procedure:

1.) Set j = 1, t1 = 0.
2.) While t j < Tf do:

a.) For allk, calculate fk(t j) and Mk(t j) and update
S(t j),Q(t j) and Q̄(t j);

b.) Setαi(t j) = 0 for i /∈ S(t j);
c.) If Q(t) = {i}, set αi(t) = 1 andαk(t) = 0 for all

k /∈ Q(t) for t ∈ (t j , t j+1) .
else if |Q(t)| ≥ 2, calculateαk(t) for k∈Q(t) and
t ∈ (t j , t j+1) from Theorem 1;

d.) Evaluate M̄(t) from (6) for t ∈ (t j , t j+1), and
compute

t j+1 = min
[
inf

(
t : Mk(t) = M̄(t),k∈ Q̄(t)

)
,

inf (t : fi(t) = 0,∀i ∈ Q(t))] ;

e.) Set j = j +1 and goto 2.

The quantities in step (2.a) can be computed directly
from their definitions. In step (2.d), the two terms in the
minimum are the smallestt in

k > t j and the smallesttout
k > t j .

Given M̄(t), the system behavior is completely determined.
Namely, the event times{t j} are the intersections of̄M(t)

5It is possible that some of these events coincide. In that case, we can
order them arbitrarily.



with |U̇k(Du
k + t)|Rk or |U̇k(Dl

k+ t)|Rk, for k = 1, · · · ,K. The
evolution of the decision metrics and service allocations
between event times is given by Theorem 1.

Consider again the previous 2-class example with uni-
form initial delay distributions. In this case, lett̂ be the
solution to U̇(1+ (1− 2R1)t̂)R1 = U̇(1+ t̂)R2. Then step
(2.d) of the iteration implies that if̂t ≥ 1

2R1
, then tout

1 =
t in
2 = 1

2R1
, and so the scheduler sends all class 1 packets

before serving any class 2 packets. Otherwise, ift̂ < 1
2R1

,
thentout

1 > t in
2 = t̂ and the scheduler serves both class during

[t in
2 , tout

1 ), with α1(t) given by (9).

IV. OPTIMAL FLUID SCHEDULING POLICIES

We next consider finding optimal scheduling policies for
the fluid system. In particular, we give sufficient conditions
for the U̇R policy to be optimal. First, we focus on TDM
capacity regions, then we consider non-TDM regions.

A. TDM capacity regions

For simplicity, we consider a two-class system with a
TDM capacity region and transmission ratesR1 > R2. Each
classk = 1,2 has a decreasing, concave utility,Uk(D). We
again assume that the initial delay for classk packets is
distributed on the interval[Dl

k,D
u
k] according to the c.d.f.

Gk(w), with a well-defined inverseHk(x). Without loss of
generality, assume that|U̇1(D1(0))|R1 ≥ |U̇2(D2(0))|R2 so
that the scheduler always begins by serving class 1. Char-
acterizing a scheduling policy is equivalent to specifying
the functionsα1(t) andα2(t) for all t ∈ [0,Tf ). We want to
choose these to maximize the total utility derived; this can
be formulated as:

min
α1(t),α2(t)

∫ Tf

0

[
−

2

∑
k=1

αk(t)RkUk [Hk( fk(t))+ t]

]
dt (10)

subject to:ḟk(t) =−αk(t)
pk

Rk, k = 1,2, (11)

fk(0) = 1, k = 1,2 and f1(Tf ) = 0, (12)

α1(t)+α2(t) = 1, (13)

αk(t)≥ 0, k = 1,2. (14)

This can be viewed as a continuous-time optimal control
problem [15] with a fixed terminal timeTf , where the
state isf(t) = ( f1(t), f2(t)) andα(t) = (α1(t),α2(t)) is the
control variable. Here, (11) represents the system dynamics,
and (12) gives initial and final boundary conditions for
the state. The final state( f1(Tf ), f2(Tf )) is restricted to
be on the line f1(Tf ) = 0. Any admissible controlα(t)
also results inf2(Tf ) = 0. However, we do not explicitly
state this boundary condition. If we are givenf1(t), then
we can computef2(t) and in particular,f1(Tf ) = 0 implies
f2(Tf ) = 0. Hence the latter constraint is not independent.
Furthermore, we requireα(t) to be right-continuous.

If all the packets in classk are emptied at timêt < Tf ,
then for all t > t̂, we have thatαk(t) = 0 and fk(t) = 0. To
see that this must hold in the preceding formulation, note

that sincefk(t̂) = 0 and fk(Tf ) = 0, ḟk(t) = 0 for t̂ < t < Tf .
Also, from (11) and (14),αk(t) = 0 for t̂ < t < Tf .

The solution to this problem can be characterized using
the Pontryagin minimum principle [15]. We first define the
Hamiltonian for this problem, which is given by

H (f(t),α(t),q(t)) =−
2

∑
k=1

αk(t)Rk

[
U(Dk(t))+

qk(t)
pk

]
,

where q(t) = (q1(t),q2(t)) is the co-state or Lagrange
multiplier, andDk(t) = H( fk(t))+t. Let α∗(t) be an optimal
control andD∗(t) the corresponding optimal state trajectory.
According to the Pontryagin minimum principle, there
exists aq∗(t) that satisfies the co-state equations:

q̇∗(t) =−∇fH (f∗(t),α∗(t),q∗(t)), (15)

such that for all admissible controlsα(t),

H (f∗(t),α∗(t),q∗(t))≤H (f∗(t),α(t),q∗(t)). (16)

For this problem, the co-state equations (15) are:

q̇k(t) = αk(t)RkU̇k(Dk(t))Ḣk( fk(t)), k = 1,2.

Furthermore, the final state conditions dictate thatq2(Tf ) =
0 [16]. Let Ak(t) = Rk

[
Uk(Dk(t))+ qk(t)

pk

]
for k = 1,2. Then

the Hamiltonian can be written as

H (f(t),α(t),q(t)) =−A1(t)α1(t)−A2(t)α2(t),

which is linear inαk(t). To satisfy (16), it follows that

α
∗
1(t) =

{
1, if A1(t) > A2(t),
0, if A1(t) < A2(t),

(17)

and α∗
2(t) = 1− α∗

1(t). Let ∆(t) = A1(t)−A2(t), so that
the sign of∆(t) determines the optimal control at timet.
If ∆(t) = 0, then the problem issingular at time t. This
means that (16) alone does not specify the optimal control.
A singular interval[t1, t2] means that the problem is singular
for all t in [t1, t2], i.e., ∆(t) = 0 for all t ∈ [t1, t2].

Lemma 1:During any singular interval, the optimal con-
trol must satisfy (9).
Proof: Notice that

Ȧk(t) = Rk

[
U̇k(Dk(t))Ḋk(t)+

q̇k(t)
pk

]
= Rk

{
U̇k(Dk(t))

[
−Ḣk( fk(t))

αk(t)
pk

Rk +1

]
+

αk(t)
pk

RkU̇(Dk(t))Ḣk( fk(t))
}

= RkU̇k(Dk(t)), (18)

which does not depend onαk(t). Furthermore, for allt
in a singular interval, it must be thaṫ∆(t) = 0. Therefore,
Ȧ1(t) = Ȧ2(t), i.e., R1U̇(D1(t)) = R2U̇(D2(t)). This corre-
sponds to the choice ofα1(t) in (9). �

Notice that ∆(t) is continuous and differentiable since
both A1(t) and A2(t) are continuous and differentiable.
Lemma 1 implies that during any singular interval, the



optimal scheduling policy behaves like theU̇R rule. Recall
from Sect. III that theU̇R scheduler starts serving class 1
packets up tot in

2 , then serves both classes simultaneously for
t ∈ [t in

2 , tout
1 ) (where t in

2 may equaltout
1 ), and finally serves

the remaining class 2 packets untilt = Tf . To show that
the U̇R rule is optimal for allt ∈ [0,Tf ), we need to show
that i) ∆(t) is unique;ii ) ∆(t) > 0 for t ∈ [0, t̂ in

2 ), ∆(t) = 0
for t ∈ [t̂ in

2 ,min{t̂out
1 , t̂out

2 }), and∆(t) < 0 for t ∈ [t̂out
1 ,Tf ) (if

t̂out
1 < t̂out

2 ) or ∆(t) > 0 for t ∈ [t̂out
2 ,Tf ) (if t̂out

2 < t̂out
1 ); and

iii ) t in
2 = t̂ in

2 , tout
1 = t̂out

1 and tout
2 = t̂out

2 .
In the following, we assume thatU1(D) andU2(D) are

decreasing, strictly concave inD, and that they are regular
(see Sect. III) for the given delay distributions and rates. We
first show in Lemma 2 that for such utility functions, if∆(t)
is non-increasing on an interval where it is strictly positive,
then it must be strictly decreasing on this interval. Next,
in Lemma 3, we show that if∆(t) is non-increasing, then
the U̇R rule must be optimal. Finally, in Theorem 2, we
give a condition on the utility functions under which the
U̇R rule is optimal. The proofs are omitted due to space
considerations and can be found in [17].

Lemma 2:Assume that∆(t) > 0 for all t ∈ [a,b). If ∆(t)
is non-increasing, i.e.,̇∆(t) ≤ 0 for all t ∈ [a,b), then for
regular utility functions,∆̇(t) < 0 for all t ∈ [a,b).

Lemma 3:For regular utility functions, if∆̇(t) ≤ 0 for
all t ∈ [0,Tf ], then theU̇R rule is optimal.

Theorem 2:Assume that the utility functions satisfy
the following condition for allt0 > 0: If R1U̇1(D1(t0)) =
R2U̇1(D2(t0)), then for alls> 0,

i) R1U̇1

[
H1

(
f1(t0)− R1

p1
s
)

+ t0 +s
]

> R2U̇2(D2(t0)+s);
and ii) R1U̇1(D1(t0)+s)

< R2U̇2

[
H2

(
f2(t0)− R2

p2
s
)

+ t0 +s
]
.

Then theU̇R rule is optimal.
Recall, fk(t0) = Gk(Dk(t0)− t0) is the fraction of class

k packets remaining at timet0. The left-hand (right-hand)
side of conditioni) is the value ofM1(t0 + s) (M2(t0 + s))
if the scheduler serves only class 1 packets from timet0 to
t0+s. Conditionii ) is the analogous relation if the scheduler
serves only class 2 packets.

Corollary 2: With a uniform initial delay distribution,
U1(D) = U2(D) = U(D), and R1 > R2, then theU̇R rule
is optimal in the following cases:

(1) U(D) =−Dβ with β > 1.
(2) U(D) = 1−ekD wherek > 0 is a constant.
(3) U(D) is concave andR2 > 1.

B. General capacity regions
We next consider the optimality of thėUR rule for a more

general 2-user capacity regionC that is a compact, convex
and coordinate convex6 subset ofR2

+. For an arbitrary
capacity region, we defineδC to be the set of Pareto

6A set X ⊂ Rn
+ is said to becoordinate convexif x ∈X implies that

y ∈X for all y such that0≤ y ≤ x.

dominate rates, i.e.,r ∈ δC if and only if r ∈ C and there
is no otherr ′ ∈ C such thatr ′ ≥ r . (All vector inequalities
are component-wise.) We say thatC has a strictly convex
boundary if for any pairr , r ′ ∈ δC , αr +(1−α)r ′ 6∈ δC for
any α ∈ (0,1). One example of a capacity regionC with
a strictly convex boundary is the achievable rate region for
a Gaussian broadcast channel. A rate vectorr = (r1, r2) is
defined to be in theinterior of δC if r ∈ δC and r > 0.

With such a capacity region, thėUR scheduling policy
is defined to be a policy that selects a rate vectorr(t) =
(r1(t), r2(t)) at each timet such that

r(t) = argmax
r∈C

2

∑
k=1

|U̇k(Dk(t))|rk. (19)

Note that with the preceding assumptions, this optimization
problem always has a solutionr ∈ δC , and if C has a
strictly convex boundary, then the solution is unique. For
a given capacity region,C , at each timet, the solution to
(19) depends only on the ratioV(t) ≡ U̇1(D1(t))

U̇2(D2(t) . If C has
a strictly convex boundary, then given any pointr̂ in the
interior of δC there is a unique value of the ratioV(t) for
which r̂ is the solution to (19).

The corresponding optimal control problem is:

min
r1(t),r2(t)

∫ Tf

0

[
−

2

∑
k=1

rk(t)Uk [Hk( fk(t))+ t]

]
dt (20)

subject to: ḟk(t) =− rk(t)
pk

, k = 1,2,

fk(0) = 1,and fk(Tf ) = 0, ∀k = 1,2,

r(t) ∈ C

Here, the time to drain the system,Tf is in general not the
same for all non-idling scheduling policies. Therefore, this
is not a fixed-terminal time problem, rather, the terminal
state is specified.

The Hamiltonian is now given by

H (f(t), r(t),q(t)) =−A1(t)r1(t)−A2(t)r2(t),

where Ak(t) = Uk(Dk(t)) + qk(t)
pk

, and the co-state satisfies
q̇k(t) = rkU̇k(Dk(t))Ḣk( fk(t)). Therefore, the optimal con-
trol, r ∗(t), satisfies

r∗(t) = argmax
r∈C

(−A1(t)r1−A2(t)r2), (21)

for each timet. As for (19), this always has a solution in
δC , and if C has a strictly convex boundary, then (21) has
a unique solution; i.e. there are no singular intervals.

Proposition 1: If the capacity regionC has a strictly
convex boundary, and at timet = 0, the solution to (19)
is in the interior of δC , then a necessary condition for
the U̇R rule to be optimal is that there exists a constantK
such that theU̇R rule givesU̇1(D1(t)) = KU̇2(D2(t)), for
all t ∈ [0,Tf ].

At t = 0, the solution to (19) depends only on the utilities
through the ratioV(0) = U̇1(D1(0))

U̇2(D2(0)) . The assumption that the



solution to (19) is in the interior ofδC and thatδC is
strictly convex implies that there is only one value ofV(0)
that will give this solution. This proposition then says that
theU̇R rule is optimal if and only if theU̇R scheduler gives
V(t) = K for all t. This implies that theU̇R rate allocation
is fixed for all timet.

As an example, consider a system with uniform initial
delays on[0,1] for each class, andUk(Dk) = wkU(Dk), k =
1,2, whereU(D) is the same for both classes andwk is a
class dependent weight. In this case

U̇1(D1(0))
U̇2(D2(0))

=
w1U̇(1)
w2U̇(1)

=
w1

w2
,

so that at timet = 0, (19) corresponds to maximizing the
weighted sum rate (w1r1 + w2r2) for the two classes. If
the maximum weighted sum rate is achieved at an interior
point of δC, then according to Prop. 1, for thėUR rule
to be optimal, it must giveD1(t) and D2(t) that satisfy
U̇(D1(t)) = w1

w2
U̇(D2(t)) for all t. Since the utilities are

the same, this implies thatD1(t) = D2(t) for all t, and so
ḟ1(t) = ḟ2(t), or equivalently r1

p1
= r2

p2
, wherer1 and r2 are

the rates that maximize the weighted sum rate for the two
users. In other words, the liner1 = p1

p2
r2 must intersectδC

at the point that maximizes the weighted sum rate. For a
given capacity region and utility weights, this implies that
there is only one particular ratio ofp1 and p2 for which the
U̇R rule might be optimal, and this ratio must be “matched”
to the utility weights.

Proposition 1 provides a necessary condition for theU̇R
rule to be optimal. We have not shown sufficiency of these
conditions in general, but we can show them in some special
cases. For example, when the initial delays are uniform
and utilities are affine. The difficulty is that the problem is
not jointly convex in the control and state variables, which
precludes appealing to standard sufficiency results.

V. CONCLUSIONS

We have presented an analysis of a simple utility-based
scheduling rule for a downlink wireless data service, which
schedules packets with the largest product of marginal
utility and achievable rate. We studied the performance of
this scheduler for a fluid draining model where the utility
is a function of delay. Assigned to each packet are a ran-
domly chosen initial delay and rate. In this setting, we are
able to characterize how scheduling resources, or the total
service time, is split among the remaining packets as time
progresses. We can also explicitly compute performance
measures such as average utility and delay.

We next considered finding the optimal scheduling policy
for a two user systems, where the the objective is to
maximize the total utility per packet. This was formu-
lated as a continuous time optimal control problem. First
we considered the problem with a TDM capacity region.
Using Pontryagin’s minimum principle, we characterized
the optimal scheduling policy. Comparing the optimal and
U̇R schedulers shows that both behave exactly the same

whenever the service time is split between the two classes.
For a general utility function, the way in which the optimal
scheduler alternates service between the two classes may
differ from the U̇R rule. We specified conditions on the
utility function, which guarantee that this order is the same,
so that theU̇R rule is optimal. These conditions include
many utility functions of interest. Finally, we considered the
optimal scheduling policy for a non-TDM capacity region
with a strictly convex boundary. In that case, we showed
that much stronger conditions are needed for theU̇R rule
to be optimal.

In this work, we have not considered dynamically chang-
ing channels and retransmissions, which arise in mobile
wireless data systems. ThėUR rule can, in principle, be
modified to take these additional features into account.
Associated modeling and performance issues are topics for
further study.
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