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Abstract—We consider packet scheduling for the downlink is the achievable rate. This policy makes myopic decisions
in a wireless network, where each packet’s service preferences based 0n|y on the instantaneous parameter Va|uesy and so

are captured by a utility function that depends on the packet’s requires no knowledge of the fading or traffic statistics.
delay. The goal is to schedule packet transmissions to maximize Wi | th f f theR licy f

the total utility. We examine a simple gradient-based schedul- .e_ analyze the per or_m_a_nce 0 policy for a

ing algorithm, the UR-rule, which is a type of generalized draining model, where an initial set of packets must be sent

cu-rule (Geu) that takes into account both a user's channel and no new arrivals occur. For a limiting fluid version of
condition and derived utility. We study the performance of this model, we first characterize the performance ofulfe
this scheduling rule for a draining problem. We formulate  jicy \We then formulate a continuous-time optimal control

a “large system” fluid model for this draining problem - - . o
where the number of packets increases while the packet-size Problem for finding the scheduling policy that maximizes

decreases to zero, and give a complete characterization of the the total utility. We show that in certain cases th&R
behavior of the UR scheduling rule in this limiting regime.  scheduler is optimal; the optimality depends in part on the

We then give an optimal control for_mulat_io_n for finding t_he underlying physical layer capacity region. For a TDM type
optimal scheduling policy for the fluid draining model. Using ¢ capacity region, th&JR rule is optimal for a broad class

Pontryagin’s minimum principle, we show that, when the user f utility functi - f | it . thER
rates are chosen from a TDM-type of capacity region, th&JR of utiity tunctions; for a general capacity region,

rule is in fact optimal in many cases. Finally, we consider rule is o_ptimal Omy in some special cases. This g_eneralizes
non-TDM capacity regions and show that here theJR rule is  our earlier work in [7], which showed the optimality for a

optimal only in special cases. TDM region in the special case of quadratic utility functions
and uniform initial delays.

The UR policy is equivalent to thegeneralized g

Efficient scheduling algorithms are a key component fo(Gcu) rule introduced in [10] for a single-server multi-class
providing high speed wireless data services. There hagieueing system with convex delay costs. [10] the Geu
been much interest in “channel-aware” scheduling algaule is shown to be optimal in the heavy traffic regime.
rithms that exploit variations in channel quality across thén [11], this rule is also shown to be heavy traffic optimal
user population to improve performance (e.g., [1]-[7]). Arfor a system with multiple flexible servers under “complete
important consideration for such approaches is balancingsource sharing”. Here we do not consider the heavy traffic
the over-all system performance with each user's qualityegime, but instead analyze the performance and optimality
of service (QoS) requirements. For example, in a timef this rule for the fluid model previously discussed. The
division multiplexing (TDM) system that transmits to oneoptimality of theGcu rule for a different fluid “rush hour”
user at a time, the overall throughput is maximized bynodel has been studied in [12].
always transmitting to the user with the best channel. We allow the utility to be an arbitrary concave decreasing
This can result in poor performance for users with poofunction of delay. In the special case of quadratic utilities,
channel quality, especially when channel conditions varsheUR rule is equivalent to the “MaxWeight” policies stud-
slowly with time. To address this, various “fair” schedulingied in [1], [2], [13]. These policies are stabilizing policies
approaches have been considered, such aprdportional in a variety of settings [1], [2]. Several other fair scheduling
fair algorithm for the CDMA 1xEV-DO system [8]. approaches, such as the proportional fair rule, can be viewed

In this paper, we consider a utility-based frameworkin terms gradient-based scheduling algorithms with utilities
where each packet’s value as a function of delay is indicatédat depend on each user’s average throughput [4], [5].
by a utility function, which can vary across packets. The

. . 7 Il. SYSTEM MODEL
scheduling policy attempts to maximize the total system ) ) ) )
utility; in this way, the utility functions can be used to bal- e consider a basic model for downlink scheduling from

ance faimess and efficiency. We consider a simple gradierﬂ-smgle transmitter, e.g. a base station or access point. There

based scheduling policy, called theR scheduling rule [6], areK classes of packets, where each class corresponds to
[7]. Here U represents a packet's marginal utility, aRd packets intended for a specific user with the same utility.
’ For simplicity, we assume that all packets have fixed length
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Nx denote the number of clads packets present at time function (.d.f) for the initial delays of clask packets; we
t=0. Forn=1,...,Ng, let W, (0) denote the delay of the assume this is strictly increasing @L,DE}.
nth classk packet at = 0. Let 4 N(t) denote the number of clakpackets remain-

When transmitting each packet, a transmission Ratg  ing at timet in a system withN initial packets (for a given
must be specified depending on the user’'s channel quali$gheduling policy), and let
and the underlying physical layer implementation. To begin, AN()
we consider a TDM system and assume that the channel to i) = %=
each user is fixed over the time-period of intefest. this N
setting, whenever a clagspacket is scheduled, it will use be the fraction of class packets remaining at time.
a fixed transmission ratg. If the nth packet of clask is Following similar arguments as in [7], & — o with the
transmitted at time, the total delay incurred is above scaling, for each claksfy(t) — fi(t) almost surely.

Let* ax(t) = —pifi(t)/R;, so that,
Dn.k = Wn,k(o) +i+ L/Rkv

where L/R¢ is the transmission time of the packet. The
utility received by sending this packet is given Gy(Dn ),

fi(t) =1— /0 t ak(;)deT' @)

where for allk, Ug(-) is a decreasing concave function The quantity ox(t) can be interpreted as the fraction of
' 2K 9 ‘resources devoted to clagspackets at timd. It can be

A scheduling pqllcy is any rule for determmmg wh|c.h shown thatoy(t) can take on any value if0,1] and must

packet to transmit whenever the server becomes idle, given.. K ;

iy - satisfy 310, a(t) < 1 for each timet. If ox(t) = 1, then

the current delay of every waiting packet, and the utility - .

. e only classk packets are served. For a non-idling policy,
function and transmission rate for each class. Here,

K . .
. : . ; 1o =1, forallt € [0, Tf). At each time, the scheduling
consider the following scheduling policy from [6], [7]: k=1 e ’ .
UR scheduling rule: Schedule the head-of-line packetalgorlthm specifiesx(t). Equivalently, for a TDM system,

from class k such that we can view the sch_edult_ar as selecting rathesrock(t)Rk
from the capacity region given sfrs=<r: 3| & =

kK =arg nlaXUk(W((t))'Rk’ @) This interpretation allows us to generalize th?g model to
where Wi(t) denotes the head-of-line delay of class Kther capacity regions’, in which case the scheduling
packets at time t. Ties may be broken arbitrarily. policy specifies a rate vecto(t) € ¢’ at each tim.
This scheduling rule can be viewed as taking gradient Next, we turn to the packet delays in the limiting system.
steps to maximize the average utility per packet, i.e., L€t Di(t) be the head-of-line delay of classpackets at

time t in a system withN initial packets. Assuming the

Unor — = K & U(Dnk) @) scheduling policy serves packets in a longest-delay-first
TN k;n; KAk order. Then in the fluid systenD(t) converges (almost

surely) to the deterministic functiob(t), where
whereN = 3 Nk. V) k()

A. Fluid limit Dk(t) = Hk(fk(t)) +t. (5)

Following [7], we consider a fluid limit for the above Here Hc(f) = G *(f) is the inverse of the class initial
system, where the number of packBits» « and the packet delay c.d.f., which denotes the maximum initial delay of the
length, L — 0, while keeping a fixed load dfIL bits. For remaining packets in the fluid system. Finally, the average
convenience, we normalizdL = 1.3 We also kee'\P a fixed utility per packet in the fluid model is given by
proportion of packets in each class, givengyy= x¢. With K T
this scaling, the time required to drain the system with any Uavg = Zl/ o (t)RU; [Di (t)] dt.
work conserving scheduling rule is given by i=1/0

T KNl K 3 I1l. LIMITING BEHAVIOR OF UR SCHEDULER
f_kzl R« _kZle' ®) Next we characterize the limiting behavior of theR
scheduling rule (i.e., the behavior of(t) for each class
k) Let Sit) = {k: fg(t) > 0} be the set of non-empty
classes at time. Define M(t) = |Ux(Dk(t))|R¢ to be the
decision metric used by the scheduler for each dasS(t).
¥Among classek € S(t), the UR scheduler transmits the
head-of-line packet of the class with the maximum value
of M(t). Therefore, th&JR rule satisfies the following two

For each classk, we assume that the initial delays
{Whk(0)}n is @ sequence dfi.d. random variables chosen
on the compact s€D}, D], whereD! > 0 andD! < « are

lower and upper bounds on the initial delay, respectivel
Let G (w) = Pr(Wh x(0) < w) be the cumulative distribution

2The time-invariant channel model will be more appropriate for low-tie

mobility applications such as fixed wireless access. properties:
3There is no loss in generality in assuming that the prodittis
normalized to 1. A system withNL = ¢ with ¢ # 1 and rates{R¢}|X_;, 4This derivative can be shown to exist except possibly on a set of

can be easily shown to behave equivalently to a system Mitk=1 and  measure zero. At the values bfwhere 7;(t) is not differentiable, we
rates{R¢/c}|,. interpret this as the right derivative so th@ft) is right-continuous [14].



Property 1: If k¢ S(t), thenoy(t) =0. and ap(t) = 1— ay(t). Also, from Theorem 1, we have
Property 2: For k € S(t), ax(t) = 0 if there existsj #k that for anyt such thatfy(t), f2(t) > 0 andU (D (t))Ry =
such thatM(t) < M;j(t). U(Dz(t))Ry, theUR rule gives

Fork ¢ S(t), i.e., a class which is drained at tinewe , - .
define Di(t) = D} +t, which is a natural extension of (5). o (t) = U(Dl(t)_,)Rl_U(Dz(t),,)R2+U(Dz(t))R?
That is, the delay for classformally continues to increase U (D1(t))RE +U (D2(t))RS
after all classk packets have been drained. This does NQ{ng g, (t) = 1— oy (t).
affect any scheduling decisions or performance, but will be Definetli(” = inf{t|og(t) > O} andtoU = inf{t|fi(t) = O}

useful in optimal control formulation in Section IV. to be the times the server starts to serve and drains all the
From Properties 1 and 2 , it follows that under i& 555k packets, respectively.

rule, if there exists a unique claksuch thatM(t) > M;(t) Corollary 1: If {U(D)} are regular, themo" = inf{t >
for all j, thenay(t) = 1. This determines the behavior Oftli<n|ak(t) =0}.
the scheduling rule except at those timeshen multiple |, other words, once the scheduler starts serving diass
classes simultaneously have the maximum valudleft).  hackets, it continues to serve this class until all class
In these cases, the fluid scheduler splits its resources am kets are drained. This follows from Theorem 1. which
these classes. L&(t) be the set of non-empty classes thajyjies that once cladsjoins the active seD(t), it remains
have the maximum value dfl, i.e., in Q(t) until time t2. The initiation and termination times
Q(t) = {ke S(t) : M(t) > M;(t) for all j € S(t)}. for every class, {t} ; and {t"}_;, mark XK event8.
. . Let tl1 <t2 < ... <t denote the ordered list of these
The following theorem quantifies how resources are Shareﬁmes so that for each — 1 oKt — tin or toUt for
among these packets whe@(t) > 2. some'k At each timet de_ﬁné.tiﬁéau ’er gn\l/(elo $J/I£(t) of
Theorem 1:For anyt < T; with |Q(t)| > 2, let{ak(t),k e K ' bp P
Q(t)} be the solution to: {M(t) }i_, to be the value oM(t) for all usersk € Q(t).
. i ' _ Notice thatt® andt2"t satisfyM (t") = [Ux(D} +t")|R and
Mi(t) = —Uy [Dx(t)] (—%Hk[fk(t)] + 1) R = Kol(t), M(£2") = [Uk (D} + )R

©)

(6) So far, we have characterized theR rule given the
whereKp(t) is chosen to satisfy decision metrics{Mk(t)}Ezl. Next, we determine how each
al(t) = 1 % Mk(t) evolves witht.. .Recall t.hatQ(t_) is the set of non-
ke%(t) K ' empty classes receiving service at timéet Q(t) = S(t) —

Q(t) be the set of inactive classes, which still have packets
If 0 < oy (t) <1 forall ke Q(t), then these are the resource;emaining to be transmitted at timeThe decision metrics

allocations under th&/R rule. ~and the upper envelope can be computed via the following
The proof of this follows from that fact thatw(t) is jierative procedure:

right-continuous. It can be shown that a unique solutionl . 1
. . .~ 1) Setj=1,t*=0.

to (6) and (7) always exists. Whether or not this solutlonz) While ti = T+ do:
satisfies < ax < 1 for all k € Q(t) depends on the choice ™ F Ika I atef (] dMu(t] d und
of Ux(D), H(f) andR¢. Given H(f) and Ry, we define a a.) ojr a ,jca cu @tej k_(t ) and M(t!) and update
set of utility functions{Uy(D)|k=1,...,K}, to beregular St )7Q(jt ) andQ(t!); .
if a feasible solution to (6) and (7) exists for allwhere b) Setai(t!) =0 fori ¢ S(t!);
|Q(t)| > 2. For example, wittK = 2, R; > Ry, and uniform c) If Q) = {i}, setjai g'ﬂr)l: 1 and o(t) = 0 for all
initial delays,U;(D) = U,(D) = —D#, can be shown to be k|¢ Q_gt) for t>€2(t 7t| I) ' or k J
regular for B > 1. In what follows, we will assume that ese|j |%(§)| = ¢, calcu ateock(.t) orkeQ(t) an
{Uk(D)} is regular unless stated otherwise. g tEE (It ot I\%frorfn Theo6rer;1 1 —_— g

As an example, consider a system with=2 and p; = ) EvaluateM(t) from (6) for t € (t/,t'"7), an

p2 = 1/2. Assume that);(D) = U(D) = U (D), and that compute
tkhi Tglal delays are uniformly distributed d@,1], i.e., for U+ _ min finf (¢ My(t) = M(t) ke d(t)) ,
’ W 0<w<l, inf (t 2 fi(t) = 0,vi € Q)]
Gk (w) = i 8) o
1 w>1 e.) Setj=j+1 and goto 2.

In this case, (5) becomdBy(t) = fy(t) +t, and therefore ~ The quantities in step (2.a) can be computed directly
Dk(t) — 2a(tR+1 from their definitions. In step (2.d), the two terms in the
’ minimum are the smallegf' >t} and the smallesf" > t!.
with Dy(0) = 1 for k= 1,2. From Properties 1 and 2, the Given M(t), the system behavior is completely determined.
fluid UR scheduler sets Namely, the event time§t!} are the intersections d¥l(t)

1 if JU(D1(t))[Re > JU(D2(1))|Rp or fa(t)
0 if [U(DL(t)|Re < [U(D2(1))|Rs oF fa(t)

51t is possible that some of these events coincide. In that case, we can

o) = e the
order them arbitrarily.

=0
=0



with |Ux(Dy +1)|Rg or [Ux(D} +1)|Ry, fork=1,--- K. The  that sincefy(f) = 0 and fy(T;) =0, fy(t) = 0 for f <t < T,

evolution of the decision metrics and service allocationdlso, from (11) and (14)pk(t) =0 for f <t < T;.

between event times is given by Theorem 1. The solution to this problem can be characterized using
Consider again the previous 2-class example with unthe Pontryagin minimum principle [15]. We first define the

form initial delay distributions. In this case, Iétbe the Hamiltonian for this problem, which is given by

solution toU (1+ (1— 2Ry)f)Ry = U(1+f)R.. Then step

(2.d) of the iteration implies that if > 27%%1' then tU = (), a(t),q(t)) = — i o ()R [U(Dk(t))+q"(t)} 7
th = 27!1?1’ and so the scheduler sends all class 1 packets k=1 P
before serving any class 2 packets. Otherwisd,<f 5z, ~Wwhere q(t) = (qu(t),cz(t)) is the co-state or Lagrange
thent?" > ti" — f and the scheduler serves both class duringultiplier, andDy(t) = H(f(t)) +t. Leta"(t) be an optimal
[t t94), with a1 (t) given by (9). control _andD*(t) the correqundmg 9pt|mal state trajectory.
According to the Pontryagin minimum principle, there
IV. OPTIMAL FLUID SCHEDULING POLICIES exists ag*(t) that satisfies the co-state equations:
We next consider finding optimal scheduling policies for q*(t) = -2 (F (1), o (1), q* (1)), (15)

the fluid system. In particular, we give sufficient conditions o
for the UR policy to be optimal. First, we focus on TDM Such that for all admissible controis(t),

capacity regions, then we consider non-TDM regions. J(F5 (1), (1), g7 (1)) < Z2(F (), a(t), g7 (1)) (16)

A. TDM capacity regions For this problem, the co-state equations (15) are:
For simplicity, we consider a two-class system with a . . :

TDM capacity region and transmission rafs> R,. Each G(t) = ouc(t) Rk (D(t) Hie( (1)), k=1, 2.
classk=1,2 has a decreasing, concave utili(D). We  Furthermore, the final state conditions dictate tpdfl;) =
again assume that the initial delay for cldspackets is [16]. Let Ac(t) = Ry Uk(Dk(t))Jqui(t)] fork=1.2. Then
distributed on the intervalD}, D}] according to the c.d.f. the Hamiltonian can be written aspk '
Gk(w), with a well-defined inversély(x). Without loss of
generality, assume thaiUl(Dl(O))\Rl > |U2(D2(O))\R2 so H0(F(1),a(t),q(t)) = —Ar(t)aa(t) — Ax(t) op(t),
that t_h_e scheduler always b_eglljs by serving class 1'. C.h%\r/hich is linear inay(t). To satisfy (16), it follows that
acterizing a scheduling policy is equivalent to specifyindg
the functionsoy (t) and o (t) for all t € [0, T). We want to i 1, if Ar(t) > Ao(t),
choose these to maximize the total utility derived; this can op(t) = 0 it A (7)

: : 1(t) < Aa(t),
be formulated as:

and o (t) = 1— o (t). Let A(t) = Aq(t) — Ax(t), so that

Tt 2 . ; ; .
A / [_ > oul(t)RUk [Hi(fi(t)) +t] | dt (20) the sign ofA(t) determines the optimal control at tinte
0 K=1

oy (t),02(t) If A(t) =0, then the problem isingular at timet. This
) ) o (t) means that (16) alone does not specify the optimal control.
subject to:fy(t) = —?Rka k=12, (11) A singular intervallty, t;] means that the problem is singular
f(0) = 1, k= 1,2 andfy(T¢) = 0, (12) for all t in [tl,tz],_Le.,A(t) = 0 for_aII t € [t1,t2]. _
Lemma 1:During any singular interval, the optimal con-
ou(t) +o(t) =1, (13)  trol must satisfy (9).
o(t) >0, k=12 (14)  Proof: Notice that
This can be viewed as a continuous-time optimal control A 1) = R, [Uk(Dk(t))Dk(t)+ Qk(t)]
problem [15] with a fixed terminal timéel;, where the P
state isf(t) = (f1(t), f2(t)) and a(t) = (o4 (t), (1)) is the B : : o(t)
control variable. Here, (11) represents the system dynamics, = ReqUklD(®)) | —Hi(fi(t)) P Ret+1
and (12) gives initial and final boundary conditions for o) - - .
the state. The final statéf;(Tr), fo(T¢)) is restricted to +kakU(Dk(t))Hk(fk(t))}
be on the linefy(T;) = 0. Any admissible controkx(t :
1(T1) y ®) = RUk(Dk(t)), (18)

also results infy(Ts) = 0. However, we do not explicitly
state this boundary condition. If we are givéq(t), then which does not depend omy(t). Furthermore, for allt
we can compute(t) and in particular,f;(T) = 0 implies  in a singular interval, it must be thdi(t) = 0. Therefore,
f2(Tt) = 0. Hence the latter constraint is not independenf;(t) = Aa(t), i.e., RjU (D1 (t)) = RoU (D2 (t)). This corre-
Furthermore, we require(t) to be right-continuous. sponds to the choice af;(t) in (9). &

If all the packets in clask are emptied at timé < T, Notice thatA(t) is continuous and differentiable since
then for allt > f, we have thaty(t) =0 and fy(t) =0. To both Aq(t) and Ax(t) are continuous and differentiable.
see that this must hold in the preceding formulation, notteemma 1 implies that during any singular interval, the



optimal scheduling policy behaves like theR rule. Recall dominate rates, i.er,e §% if and only if r € ¢ and there
from Sect. Il that theUR scheduler starts serving class lis no otherr’ € ¢ such thatr’ > r. (All vector inequalities
packets up t(b‘zn, then serves both classes simultaneously fare component-wise.) We say théthas a strictly convex
t € [t t94) (wheretl may equaltf), and finally serves boundary if for any pair,r’ € 8%, ar +(1—a)r' ¢ 8§ for
the remaining class 2 packets urti= T;. To show that any o € (0,1). One example of a capacity regidgfi with
the UR rule is optimal for allt [0,Ts), we need to show a strictly convex boundary is the achievable rate region for
thati) A(t) is unique;ii) A(t) >0 fort € [0,"), A(t) =0 a Gaussian broadcast channel. A rate vecter(ry,rp) is
for t € [, min{fP¥ {941, andA(t) < 0 fort € [{?, T¢) (if  defined to be in thénterior of 8C if r € 5C andr > 0.
fout < £9U4 or A(t) > 0 for t € [f9U, Ty) (if £9Ut < PU); and With such a capacity region, tH¢R scheduling policy
i)t =N, 19Ut = fPU andtQut = U, is defined to be a policy that selects a rate vectoy =
In the following, we assume thai;(D) andUy(D) are  (ry(t),r2(t)) at each time such that
decreasing, strictly concave b, and that they are regular 5
(see Sect. Ill) for the given delay distributions and rates. We r(t) =arg maxz U (Dk (1)) k. (19)
first show in Lemma 2 that for such utility functions Aft) =]

is non-increasing on an interval where it is strictly positivengte that with the preceding assumptions, this optimization
then it must be strictly decreasing on this interval. NetirobIem always has a solutione 6%, and if ¢ has a
in Lemma 3, we show that i\(t) is non-increasing, then gyricyiy convex boundary, then the solution is unique. For

the UR rule must be optimal. Finally, in Theorem 2, we, given capacity regiori#, at each time, the solution to
give a condition on the utility functions under which the

) — Ui(Da(t)
UR rule is optimal. The proofs are omitted due to spacélg) depends only on the raté(t) It ¢ has

. T Up(Do(t)
considerations and can be found in [17]. a strictly convex boundary, then given any poinin the
Lemma 2:Assume thaf\(t) > O for allt € [a,b). If A(t)

interior of 8C there is a unique value of the ratig(t) for
is non-increasing, i.eA(t) <0 for all t € [a,b), then for

which f is the solution to (19).
regular utility functionsA(t) < 0 for all t € [a,b).

The corresponding optimal control problem is:

Lemma 3:For regular utility functions, ifA(t) < 0 for _ T 2

all t € [0,T¢], then theUR rule is optimal. i | /o — > n®Uk[Hi(fi(t)) +t] | dt - (20)
Theorem 2:Assume that the utility functions satisfy v k=1

the following condition for allty > 0: If RiU;(Dy(to)) = subject to: fi(t) = _rk(t)7 k=1,2,

RoU1(D2(tp)), then for alls> 0, Pk

_ fc(0) = 1L,andfy(Ts) =0, Yk=1,2,

. R

) RiU; [H.l (fl(tO) - ﬁs) +t0+3} rt)es
> RoUz(Da(to) +5); . : -

and i) RiUy(D1(to)+5S) Here, the time to_dr_am the syst_em, is i general not the _
<R, [Hz (fz(to) B %s) +to+s} ' same for all non-idling scheduling policies. Therefore, this

is not a fixed-terminal time problem, rather, the terminal

Then theUR rule is optimal. state is specified. _
Recall, fi(to) = Gy(Dk(to) —to) is the fraction of class ~ The Hamiltonian is now given by
k packets remaining at timg. The left-hand (right-hand) AE©),10),00) = —Ad)ra(t) — As()ra(t),

side of conditioni) is the value ofM1(tg+5) (M2(to+9))
if the scheduler serves only class 1 packets from tigrt®  where Ac(t) = Ux(Dk(t)) + q%@’ and the co-state satisfies
to+s. Conditionii) is the analogous relation if the schedulerg, (t) = r, Uy (Dy(t))Hk(fc(t)). Therefore, the optimal con-

serves only class 2 packets. trol, r*(t), satisfies
Corollary 2: With a uniform initial delay distribution, .
U1(D) = Uz(D) = U(D), and Ry > Ry, then theUR rule r*(t) = argmax—Au(t)rL — Az(t)rz), (21)

is optimal in the following cases:
(1) U(D)=-D# with B > 1.
(20 U(D)=1-¢€® wherek >0 is a constant.
(3) U(D) is concave andR, > 1.

for each timet. As for (19), this always has a solution in
0%, and if ¢ has a strictly convex boundary, then (21) has
a unique solution; i.e. there are no singular intervals.
) ) Proposition 1: If the capacity regions has a strictly
B. General capacity regions _ convex boundary, and at time= 0, the solution to (19)
We next consider the optimality of théR rule for a more s in the interior of §¢, then a necessary condition for
general 2-user capacity regiafi that is a compact, convex the UR rule to be optimal is that there exists a constént
and coordinate convéxsubset ofRZ. For an arbitrary sych that thdJR rule givesU; (D1 (t)) = KU(D3(t)), for
capacity region, we defind%¢” to be the set of Pareto all t ¢ [0, T;].

L , _ o At t =0, the solution to (19) depends only on the utilities
A set. 2" C R is said to becoordinate convexf x € 2 implies that

ye & for all y such thatd <y < x. through the ratio/(0) = 3258;283; The assumption that the




solution to (19) is in the interior 0% and thatéd% is whenever the service time is split between the two classes.
strictly convex implies that there is only one valueMf0)  For a general utility function, the way in which the optimal
that will give this solution. This proposition then says thascheduler alternates service between the two classes may
theURrule is optimal if and only if th&J R scheduler gives differ from the UR rule. We specified conditions on the
V(t) =K for all t. This implies that théJR rate allocation utility function, which guarantee that this order is the same,

is fixed for all timet. so that theUR rule is optimal. These conditions include
As an example, consider a system with uniform initiaimany utility functions of interest. Finally, we considered the
delays on[0,1] for each class, andx(Dx) =wU (Dg), k= optimal scheduling policy for a non-TDM capacity region
1,2, whereU (D) is the same for both classes amdis a with a strictly convex boundary. In that case, we showed
class dependent weight. In this case that much stronger conditions are needed for e rule

: : to be optimal.

U1(D1(0)) _ waU (1) _ ﬂ, In this work, we have not considered dynamically chang-

U2(D2(0))  waU(1)  we ing channels and retransmissions, which arise in mobile
so that at timet = 0, (19) corresponds to maximizing the wireless data systems. TH&R rule can, in principle, be
weighted sum ratewir; +weorp) for the two classes. If modified to take these additional features into account.
the maximum weighted sum rate is achieved at an interigkssociated modeling and performance issues are topics for
point of 8C, then according to Prop. 1, for tHeR rule further study.
to be optimal, it must giveD1(t) and Dz(t) that satisfy

U(D1(t)) = %U(Dz(t)) for all t. Since the utilities are

the same, this implies thﬂl(t) _ Dz(t) for all t, and so [1] L. Tassiulas and A. Ephremides, “Dynamic server allocation to parallel
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