
1

Wireless Scheduling with Hybrid ARQ
Jianwei Huang, Randall Berry, Michael L. Honig

Department of Electrical and Computer Engineering,
Northwestern University, Evanston IL 60208, USA

jianwei@northwestern.edu, {rberry, mh}@ece.northwestern.edu

Abstract— We consider channel-aware scheduling for wireless
downlink data transmission with hybrid ARQ. Quality of Service
requirements for each user are represented by a cost function,
which is an increasing function of queue length. The objective
is to find a scheduling rule that minimizes the average cost over
time. We consider two scenarios: (1) The cost functions are linear,
and packets arrive to the queues according to a Poisson process;
(2) The cost functions are increasing, convex and there are no
new arrivals (draining problem). In each case, we transform the
system model into a different model for stochastic scheduling
developed by Klimov. Applying Klimov’s results, we show that the
optimal schedulers for the transformed models in both scenarios
are specified by fixed priority rules. The inverse transformation
in each case gives the optimal scheduling policy for the original
problem. The priorities can be explicitly computed, and in the
first scenario are determined by simple closed-form expressions.
For the draining problem, we show that the optimal policy
never interrupts the retransmissions of a packet. We numerically
compare the performance of the optimal scheduling rule with
several heuristic rules, and show that a simple myopic scheduling
policy, called the U

′
R rule, achieves near-optimal performance

in specific cases.

I. INTRODUCTION

Scheduling in wireless networks has received considerable
attention as a means for efficiently providing high speed data
service to mobile users. A basic feature in wireless settings
is that the channel quality varies across the user population,
due to differences in path-loss, as well as fading effects. A
variety of such “channel aware” scheduling approaches have
been studied recently (e.g., [1]–[4]), and such approaches are
part of most recent wireless standards.

In this paper, we study scheduling in a wireless network,
taking into account packet retransmissions. Traditionally, the
retransmission is accomplished via a standard ARQ (automatic
repeat request) protocol, where, if a packet cannot be decoded
it is discarded and retransmitted again. Most of the prior work
on wireless scheduling either does not consider retransmis-
sions or considers this standard ARQ approach (e.g., [5]).
Here, we are interested in hybrid ARQ schemes [6], where
the receiver combines all transmissions of a packet to improve
the likelihood of decoding success. A variety of hybrid ARQ
techniques have been proposed and studied recently (e.g., see

This work was supported by the Northwestern-Motorola Center for Com-
munications, by NSF under grant CCR 9903055, and by CAREER award
CCR-0238382.

[7]–[9]). Techniques based on hybrid ARQ are an integral
part of many third generation wireless standards, such as the
GSM EDGE system. For our purposes, the key characteristic
of these approaches is that each transmission attempt increases
the probability of decoding success with an amount depending
on the users’ channel conditions.

A goal of any wireless scheduling scheme is to balance
the users’ Quality of Service (QoS) requirements. Here we
represent each user’s QoS requirements via a holding cost
that is an increasing function of the user’s queue length, and
attempt to schedule transmissions to minimize the overall cost.
Prior work on scheduling, which assumes a linear or quadratic
cost function that depends on the packet delay is presented
in [10]–[12]. For general cost functions, most authors have
focused on developing bounds or heuristic policies [11], [13],
[14], or show optimality only in the heavy traffic regime [12].
Here, we consider cost functions that depend on queue length
instead of packet delay. From Little’s Law, this cost function
reflects the average delay of the user’s packet with stationary
traffic.

We consider two scenarios: (a) linear cost functions with
Poisson packet arrivals (LPA scheduling problem), and (b)
draining problem (no new arrivals) with general increasing
convex costs (DC scheduling problem). By transforming both
problems into special cases of the classic Klimov scheduling
problem [15], we show that the optimal schedulers for the
transformed system in both scenarios are specified by fixed
priority rules. We can then map the priority rules back to get
the optimal scheduling policy for the original problem. These
priorities can be explicitly computed, and for the LPA problem,
are given by simple closed-form expressions.

For the DC problem, the priority indices can be iteratively
computed. We show that the optimal policy never interrupts
retransmissions of a packet. We also observe that the DC
problem can be formulated as a Markov Decision Process
(MDP), analogous to the formulation in [16], and show that the
priority increases with queue length. The performance of the
optimal scheduling rule is compared numerically with several
heuristic rules. A simple myopic scheduler, called the U ′R rule
[17], achieves near optimal performance for the cases shown.

II. SYSTEM MODEL

We consider downlink traffic from a base station to N
mobile users. As shown in Fig. 1, packets for each user arrive
at the base station according to independent random processes,
and are accumulated in N queues until they are served. The

2

base station transmits to one user at a time in slots of fixed
durations. In each slot, a scheduler decides which one of the
N Head of Line (HoL) packet to transmit.

SchedulerPSfrag replacements

A1(n)

A2(n)

AN (n)

x1(n)

x2(n)

xN (n)

rHoL
1 (n)

rHoL
2 (n)

rHoL
N (n)

Fig. 1. System Model

If a transmitted packet fails to decode, it stays at the HoL
and is immediately available for retransmission. This approxi-
mates the case when the feedback delay is small compared to
the packet transmission time [9]. Given that a packet for user i
has not been successfully decoded in ri transmission attempts,
let gi (ri) denote the probability of decoding failure for the
next transmission. This depends on the specific hybrid ARQ
scheme, and on user i’s channel conditions. We assume that
gi (·) is time-invariant, which is reasonable in a slow fading
environment. In any reasonable hybrid ARQ approach, gi (·)
is nonincreasing in the number of transmission attempts ri,
i.e., gi (ri) ≥ gi (r

′
i) for all ri ≤ r′i. We also assume that

there is a maximum number of transmission attempts rmaxi

for user i, and that gi(rmaxi) = 0. Note that the special case
gi (ri) = gi (0) for all ri models standard ARQ.

Let Ai (n) denote the arrivals for user i during the nth
slot, which is independent of the arrivals of other users.
Let S(n) =

(

rHoL
1 (n) , ..., rHoL

N (n) ;x1 (n) , ..., xN (n)
)

be
the state vector at the nth decision epoch (i.e., the start of
the nth time-slot), where rHoL

i (n) ∈ {0, 1, ..., rmaxi } is the
number of transmission attempts for the ith HoL packet, and
xi(n) ∈ {0, 1, ...} is the queue length for user i.

Given S (n), the scheduler must determine which HoL
packet should be transmitted in the nth slot. A scheduling
policy π is defined to be a mapping from each state vector
to an index in {0, 1, ..., N}. If π (S (n)) = i, the scheduler
transmits the HoL packet of queue i; if π (S (n)) = 0, the
scheduler idles and no packet is transmitted. Given a policy
π, the state S (n) evolves according to

rHoL
i (n+ 1) =

0, π (S (n)) = i and success
rHoL
i (n) + 1, π (S (n)) = i and failure
rHoL
i (n), π (S (n)) 6= i,

(1)
and

xi(n+ 1)

=

{

xi (n) +Ai (n)− 1, π (S (n)) = i and success
xi(n) +Ai(n), otherwise.

(2)

Here “success” and “failure” refer to the decoding outcome for
the given transmission. We restrict ourselves to the set of fea-
sible policies Π, which contains all nonidling, nonpreemptive,
nonanticipative, and stationary policies.1

Assume that a cost function Ui(xi(n), r
HoL
i (n)) is associ-

ated with each user i at the start of the nth slot. We assume that
Ui (x, y) is increasing and convex in x, and that Ui(0, 0) = 0,
i.e., there is no holding cost for an empty queue. Different
cost functions reflect different QoS requirements or priorities
for the users.

We consider two scenarios. In the LPA problem, to be
discussed in Section IV, packets arrive to the queues according
to independent Poisson processes with rates λi, i = 1, · · · , N .
The cost function for user i is linear, and is given by

Ui(xi (n) , r
HoL
i (n))

=

{

ci,0 (xi (n)− 1) + ci,rHoL
i

(n) , xi (n) > 0

0 , xi (n) = 0
, (3)

where ci,ri
is the holding cost rate (cost per unit time per

packet) for a packet of user i with ri transmission attempts. If
ri < r′i, then 0 ≤ ci,ri

≤ ci,r′
i

for all i, i.e., the holding cost
increases with the number of retransmissions. We wish to find
π ∈ Π that minimizes the long-term average expected cost

JLPA = lim
τ→∞

1

τ
Eπ

[

τ
∑

n=1

N
∑

i=1

Ui(xi(n), r
HoL
i (n))

]

. (4)

In Sect. V, we consider a draining problem with no new
arrivals (i.e., Ai (n) = 0 for all i and n). The cost function is
allowed to be an arbitrary increasing convex function of the
queue length, and independent of the number of transmission
attempts, i.e., Ui

(

xi (n) , r
HoL
i (n)

)

= Ui(xi(n)). We refer to
this as the Draining Convex (DC) problem. Given an initial
batch of packets (x1 (1) , ..., xN (1)), the goal is to find π ∈ Π,
which minimizes the total expected draining cost, i.e.,

JDC = Eπ

[

∞
∑

n=1

N
∑

i=1

Ui(xi(n))

]

. (5)

This can also be interpreted as a model for a system with batch
arrivals, where the inter-arrival time is long enough to finish
each batch before the arrival of a new batch.

III. KLIMOV MODEL

The Klimov model [15] has a single non-preemptive server,
which is allocated to the jobs in a network of K M/G/1
queues. Jobs arrive according to a Poisson process with
rate λ, and are assigned to queue m with probability pm,
where

∑K

m=1 pm = 1. The service time for a job at queue
m (m = 1, ..,K) has distribution function Bm(x), and finite
mean bm. After service completion at queue m, a job enters
queue j (j = 1, ...,K) with probability pmj , or leaves the sys-
tem with the probability 1−

∑K
j=1 pmj . The transition matrix

P = [pmj , 1 ≤ m, j ≤ K] is such that every job eventually
leaves the system, i.e., limn→∞ Pn = 0. For stability, the

1A policy is nonpreemptive if the transmission of a packet is not interrupted
by an arrival, and is nonanticipative if it does not account for future decoding
results or arrivals.

3

arrival rate should not exceed the processing capacity of the
system, i.e., λp(I − P)−1b < 1, where p = (p1, ..., pK) and
b = (b1, ..., bK)

′.
The objective is to find a feasible scheduling policy π that

minimizes a linear combination of the time-averaged number
of jobs at each queue,

JKM = lim
τ→∞

1

τ
Eπ

[
∫ τ

0

K
∑

m=1
cmxm(t)dt

]

, (6)

where xm (t) is the number of jobs in queue m at time t and
cm ≥ 0 is a (linear) holding cost rate for queue m.

The optimal scheduling policy is a fixed-priority rule [15].
This means that a time-invariant priority index can be cal-
culated for each queue, which is independent of the arrival
process and queue lengths. At each decision epoch, the server
serves a job from the nonempty queue with the highest priority.

The optimal priority indices can be calculated via an it-
erative algorithm [15], which starts from the set of queues
Ω = {1, 2, ...,K} and selects the lowest priority queue at each
iteration. Given a subset of queues M ⊂ Ω, the priority for
queue m ∈M is determined by C

(M)
m /T

(M)
m , where C(M)

m is
the equivalent holding cost rate, and T (M)

m is the average total
service time (not including waiting time) for a job in queue
m (i.e., until it exits from M). Since the service times are
independent, for each m ∈M ,

T (M)
m =

∑

j∈M

pmjT
(M)
j + bm. (7)

The optimal priority indices are computed by the following
Klimov algorithm:

1) Initialization: MK = Ω, C(MK)
m = cm for all m ∈

MK , k = K.
2) Find a queue αk with lowest priority, i.e.,

αk = argmin
m∈Mk

{

C
(Mk)
m

T
(Mk)
m

}

, (8)

with ties broken arbitrarily.
3) Mk−1 =Mk−{αk}
4) If Mk−1 = φ (null set), then stop. Otherwise, for each

m ∈Mk−1, compute

C(Mk−1)
m = T (Mk)

m

[

C
(Mk)
m

T
(Mk)
m

−
C
(Mk)
αk

T
(Mk)
αk

]

. (9)

Decrement k and go to step 2.
In this way, the queues are ordered in descending priorities,

α1 ≥ α2 ≥ · · · ≥ αK , where (α1, α2, ..., αK) is a permutation
of queue indices (1, 2, ...,K). The optimal policy π always
assigns the server to the nonempty queue αk with the smallest
index k. Moreover, this scheduler minimizes the total holding
cost for each busy period of the system, starting from any
initial state [18].

When discussing the DC problem, we consider a variation of
the Klimov model, which we call the Draining Klimov model.
In this case the goal is to find a policy, which minimizes the
total expected holding cost for a batch of packets initially in
the system with no new arrivals. The priority rule specified by
the Klimov algorithm is also optimal for the draining model,

since the scheduler minimizes the total holding cost of each
busy period. In other words, the draining problem can be
viewed as a special busy period with no further arrivals.

IV. THE LPA SCHEDULING PROBLEM

In this section we reformulate the LPA scheduling problem
as a special case of Klimov’s problem, which we refer as
the LPAK scheduling problem. We will show that the optimal
scheduling policy for the LPAK problem is also optimal for
the LPA problem.

A. LPAK Scheduling Problem
The LPAK problem is a relaxation of LPA with respect to

the service discipline. In LPA, there is one queue for each
user i, and the HoL packet in a queue has priority over all the
other packets in the queue. The LPAK problem is illustrated
in Fig. 2 for two users with rmax1 = 2 and rmax2 = 1.
There are rmaxi + 1 queues for each user i, and each queue
is labelled by (i, ri) for ri = 0, ..., rmaxi , where ri is the
number of transmission attempts for all packets in the queue.
There are a total of K =

∑N
i=1(r

max
i + 1) queues. For the

example in Fig. 2, K = 3 + 2 = 5. At each decision epoch,
the server decides which of the K HoL packets to serve.
Because of the additional queues in the LPAK problem, the
HoL packet corresponding to a particular user (in the original
LPA problem) does not necessarily have priority over the
user’s other packets. This relaxation makes LPAK a standard
Klimov problem. Subsequently, we will show that the optimal
scheduling rule for LPAK still gives priority to the user’s HoL
packet.

(1,0)

(1,1)

(1,2)

(2,0)

(2,1)

PSfrag replacements

λ1

λ2

1− g1(0)

g1(0)

1− g1(1)

g1(1)

1− g2(0)

g2(0)

1

1

Fig. 2. LPAK System Model

The total arrival process is Poisson with rate λ =
∑N

i=1 λi,
and each packet is assigned to queue (i, 0) with probability
pi,0 = λi/λ. The service time for each queue (i, ri) is deter-
ministic with bi,ri

= 1 time slot. The transition probabilities
among queues are determined by the probability of decoding
failure. That is, after a packet from queue (i, ri), ri < rmaxi ,
has been served, it enters queue (i, ri + 1) with probability
p(i,ri),(i,ri+1) = gi(ri), corresponding to a decoding failure,
or leaves the system with probability 1−gi(ri), corresponding
to a decoding success. After a packet from queue (i, rmaxi) has
been served, it leaves the system with probability 1. Thus

p(i,ri),(j,rj) =

{

gi (ri) , ri < rmaxi , (j, rj) = (i, ri + 1)
0 , otherwise.

(10)

4

For any set M ⊂ Ω = {1, · · · ,K} and (i, ri) ∈ M , the
average total service time is

T
(M)
i,ri

=
∑

(j,rj)∈M

p(i,ri),(j,rj)T
(M)
j,rj

+ 1. (11)

The holding cost rate of queue (i, ri) is c
i,ri

, and the
number of packets in queue (i, ri) at the nth decision epoch is
xi,ri

(n). The goal is to find a policy π ∈ Π, which minimizes
the time-averaged expected cost

JLPAK = lim
τ→∞

1

τ
Eπ

τ
∑

n=1

∑

(i,ri)∈Ω

ci,ri
xi,ri

(n)

 . (12)

B. Optimal Policies

For the LPAK scheduling problem, the optimal priority in-
dices can be calculated iteratively using the Klimov algorithm
in Sect. III. Consider this algorithm with the following rule
used to break any ties that occur in (8): when a tie occurs, set
αk to be the queue (i, ri) such that for all other queues (j, rj)
in the tie, j > i, or j = i and rj > ri.

Theorem 1: For the LPAK scheduling problem, the optimal
scheduling policy is a fixed priority rule in which the priorities,
α1, α2, · · · , αK , satisfy

cα1

T
(Ω)
α1

≥
cα2

T
(Ω)
α2

≥ · · · ≥
cαK

T
(Ω)
αK

. (13)

To derive the optimal LPA scheduler, let R =
(

rHoL
1 , rHoL

2 , ..., rHoL
N

)

denote the vector of retransmission
attempts for HoL packets across the N queues. Let Ti,rHoL

i

be the expected total service time for user i’s HoL packet (not
including any waiting time) until it exits the system, which is
given by

Ti,rHoL
i

= 1 +

rmax

i −1
∑

j=rHoL
i

j
∏

l=rHoL
i

gi(l). (14)

Corollary 1: For the LPA scheduling problem, the optimal
scheduling rule is to transmit the HoL packet with the highest
priority index ci,rHoL

i
/Ti,rHoL

i
among all nonempty queues.

Furthermore, the optimal policy is a monotonic threshold pol-
icy on the number of transmission attempts, i.e., if it is optimal
to transmit user i when R =

(

rHoL
1 , .., rHoL

i , .., rHoL
N

)

, then
it is optimal to transmit user i when rHoL

i is replaced by
r′HoL
i > rHoL

i .
The optimal LPA scheduling rule depends on the set of

holding cost rates ci,ri
, the number of transmission attempts

rHoL
i , and the probability of decoding success gi (·) (i.e., the

channel condition) across all users. A higher cost rate, more
transmission attempts or a better channel results in a higher
priority. Notice that scheduling decisions do not explicitly
depend on the arrival processes or queue lengths, although
the latter affect the holding costs.

Computing the priority indices via the Klimov algorithm
generally requires K iterations with computational complexity
O
(

K2
)

. For the LPA problem, due to the special structure of
the transition matrix, we can determine the priority indices
using (14) directly, with associated complexity O(K). This
may be suitable for on-line scheduling with time-varying
channel conditions.

We illustrate the optimal scheduling policy with some
numerical examples. Consider a system with N = 2 users,
and probability of decoding failure

gi (ri) =

{

ηi · 0.5
ri ; 0 ≤ ri < rmaxi

0 ; ri = rmaxi

, (15)

for i = 1, 2. That is, the initial probability of decoding failure
is ηi, and is reduced by a half with each retransmission until
ri = rmaxi . This type of exponentially decreasing gi (ri) is
motivated by numerical results in [8].

Fig. 3 shows the optimal scheduling policy as a function of
the number of transmission attempts for each user. Parameters
are (η1, rmax1) = (0.02, 5), (η2, rmax2) = (0.1, 5), c1,r1 = 1
(for all r1) and c2,r2 = 1.01 (for all r2). In this case, user 1
has the better channel, but has a slightly lower holding cost
than user 2. As stated in Corollary 1, the optimal scheduling
policy is a monotonic threshold policy on rHoL

i (i = 1, 2);
the threshold is shown by the solid line in Fig. 3. Comparing
this with the dash dotted line rHoL

1 = rHoL
2 = r, when r

is small (r ≤ 3), user 1 has priority because of the better
channel (smaller Ti,r). However, when r is large (r > 3), user
2 has priority. The reason is that gi (r) is very small, which
makes Ti,r very close to 1 for both users. Thus the difference
between the cost rates ci,r is the main factor in determining
the priority order.

0 1 2 3 4 5

0

1

2

3

4

5

Transmit User 1

Transmit User 2

PSfrag replacements

Transmission attempts of user 1 (rHoL
1)

Tr
an

sm
is

si
on

at
te

m
pt

s
of

us
er

2
(r

H
o
L

2
)

Fig. 3. The optimal scheduling policy as a function of transmission attempts
for two users (LPA problem). A dot (circle) means it is optimal to transmit
the HoL packet for user 1 (user 2).

Fig. 4 shows the optimal priority orders vs. the holding cost
rate of user 2. In this case, both users have the same channel
conditions (η1, rmax1) = (η2, r

max
2) = (0.05, 2). There are six

types of packets in the system, (i, ri), i = 1, 2, ri = 0, 1, 2,
and their priorities are ordered from 1 (highest) to 6 (lowest).
The holding cost rates for user 1 are c1,0 = 0.98, c1,1 = 1 and
c1,2 = 1.02. The holding cost rates for user 2 are c2,0 = c2,1 =
c2,2 , c2, which varies from 0.91 to 1.11. Fig. 4 shows that
the packet priorities increase with ri. This reflects the fact that
the HoL packet has priority over the other user’s packets. At
c2 = 0.91, user 1 has priority over user 2. Hence a new packet
arrival for user 1 has priority over a retransmission from user
2. Of course, as c2 increases, the priorities for user 2 increase
from lowest (4, 5, 6) to highest (1, 2, 3).

5

0.91 0.95 0.99 1.03 1.07 1.11

6

5

4

3

2

1

 L
o
w

e
r

←

P

ri
o
ri
ty

 →

 H
ig

h
e
r

(1,2)

(1,1)

(2,2)

(2,1)

(2,0)

(1,0)

PSfrag replacements c2

Fig. 4. Optimal priorities vs. holding cost rate c2 (LPAK problem).

V. THE DC SCHEDULING PROBLEM

For the DC problem, the cost function can be nonlinear,
which precludes a direct association with the Klimov model.
We circumvent this difficulty by again transforming the prob-
lem into a related Klimov problem with more queues. We refer
to the latter problem as the DCK (Draining Convex Klimov)
scheduling problem.

A. DCK Scheduling Problem

Let Ai be the number of user i’s packets initially in the
system in the DC model. Each queue in the DC model is
replaced by Ki = (rmaxi + 1)Ai queues in the DCK model.
Assume, for the DC model, that at time n user i’s queue length
is xi (n) > 0 with holding cost Ui (xi (n)), and the number
of transmission attempts of the HoL packet is rHoL

i (n). In
the DCK model, this corresponds to there being one packet in
the queue

(

i, rHoL
i (n) , xi (n)

)

with linear holding cost rate
ci,rHoL

i
(n),xi(n) = Ui (xi (n)), and no packets in any of the

other Ki − 1 queues corresponding to user i.
Let Ω denote the set of all K =

∑N
i=1Ki queues

in the DCK model. The service time for each queue
(i, ri, xi) ∈ Ω is still deterministic with bi,ri,xi

= 1. Sup-
pose that user i’s HoL packet is transmitted during slot n
(DC model). Then in the DCK model, the corresponding
packet in queue

(

i, rHoL
i (n) , xi (n)

)

either (a) enters queue
(

i, rHoL
i (n) + 1, xi (n)

)

with probability gi
(

rHoL
i (n)

)

(de-
coding fails), (b) enters queue (i, 0, xi (n)− 1) with probabil-
ity 1− gi

(

rHoL
i (n)

)

(decoding succeeds and xi (n) > 1), or
(c) leaves the system (ri = rmax). The transition probabilities
in the DCK model are therefore given by:

p(i,ri,xi),(j,rj ,xj)

=

gi (ri) , ri < rmaxi , (j, rj , xj) = (i, ri + 1, xi)
1− gi (ri) , xi > 1, (j, rj , xj) = (i, 0, xi − 1)
0 , otherwise.

(16)

The DCK scheduling problem is to find a scheduling policy
π ∈ Π that minimizes the total expected holding cost for

draining all the packets,

JDCK = Eπ

∞
∑

n=1

∑

(i,ri,xi)∈Ω

1i,ri,xi
(n)Ui (xi)

 . (17)

where

1i,ri,xi
(n) =

{

1, (i, ri, xi) is nonempty in slot n
0, (i, ri, xi) is empty in slot n .

(18)
The DCK problem is therefore a special case of Klimov’s

scheduling problem. Hence, we can apply the Klimov algo-
rithm to calculate the optimal priorities, which in turn solves
the DC problem. Unlike the LPA problem, for the DC problem
the priorities cannot be computed in closed-form. However, we
can characterize some basic properties of the optimal policy.

B. Properties of the Optimal Scheduler

As in Sect. IV-B, consider the Klimov algorithm with the
following rule to break any tie that occurs in (8): set αk =
(i, ri, xi) so that for all other queues (j, rj , xj) in the tie,
j > i.

Theorem 2: The optimal DCK scheduler assigns queue
(i, r′i, xi) higher priority than queue (i, ri, xi) for all i, xi,
and r′i > ri.

This leads to the following result:
Corollary 2: Once the optimal DC scheduler starts to trans-

mit a packet to user i, it continues to transmit the packet until
it is successfully decoded.

Note that Corollary 2 is not true for the LPA problem,
as shown in Fig. 4. The key difference here is that there
are no arrivals which can change the priority orders among
the users during a retransmission. Another difference is that
the DC optimal scheduler depends on the queue lengths in a
complicated way, which depends on the specific choice of cost
function.

C. Markov Decision Formulation

The DC problem can be formulated as an MDP. For two
users, the state space is S = {(r1, r2, x1, x2) |0 ≤ ri ≤
rmaxi , 0 ≤ xi ≤ Ai, i ∈ {1, 2}}, and the action space is
V = {v0, v1, v2}, where v0 represents idling (no packet in the
system), and vi, i = 1, 2, represents transmitting user i’s HoL
packet. This formulation can be used to prove the following
theorem.

Theorem 3: The optimal DC scheduling policy is a mono-
tonic threshold policy with respect to the queue lengths, i.e.,
if it is optimal to transmit to user i in state (r1, r2, x1, x2),
then it is optimal to transmit to user i in state (r1, r2, x′1, x

′
2)

for x′i > xi and x′j = xj (j 6= i).

VI. NUMERICAL RESULTS

In this section, we compare the optimal LPA and DC
scheduling policies with three simple policies, which select
the HoL packet of user i∗ as follows:
U ′R rule: i∗U ′R = argmax

1≤i≤N

U ′i (xi (n)) [1 − gi (ri(n))],

where U ′ (·) is the derivative of the cost function. This rule

6

takes into account both the user’s marginal cost and expected
transmission rate, which depends on gi (·) [17]. It can be
shown that this rule is optimal with standard ARQ without
packet combining.

Max U ′ rule: i∗MaxU ′ = argmax
1≤i≤N

U ′i (xi (n)). This rule

takes into account only the user’s marginal cost, and ignores
channel conditions and number of transmissions attempts. This
could model a situation where the scheduler has no channel
information available.

Max R rule: i∗MaxR = argmax
1≤i≤N

(1− gi (ri (n)). This rule

maximizes the expected transmission rate without regard to
relative costs.

Fig. 5 compares the optimal DC scheduling policy with the
preceding heuristic policies. Here we plot the cost per packet
vs. channel parameter η2. The cost functions are Ui (xi) =
xκi

i where κ1 = 1.05, and κ2 ∈ {1.08, 1.15}. The channel
parameters are (η1, rmax1) = (0.01, 2) and rmax2 = 4, i.e., user
1 has a better channel, but incurs less cost than user 2. The
initial queue lengths are A1 = A2 = 40. Results are shown
for both values of κ2.

0.05 0.1 0.2 0.4
50

55

60

65

70

75

 Better ← Channel state η2 → Worse

 C
o

st
 p

e
r

p
a

ck
e

t

U
n
o

Optimal
U’R
Max R
Max U’

Fig. 5. Comparison of the optimal and heuristic scheduling policies for the
DC problem (solid line: κ2 = 1.08, dash dotted line: κ2 = 1.15)

Fig. 5 shows that the U ′R rule performs quite close to
the optimal policy. The relative performance of the other
policies depend on the users’ cost functions. When the cost
functions are relatively close (e.g., κ1 = 1.05 and κ2 =
1.08), scheduling decisions are determined primarily by the
probability of decoding success. In this region the Max R rule
is nearly optimal (within 5%) and the Max U ′ rule performs
significantly worse (up to 10% higher cost). On the other
hand, when κ1 = 1.05 and κ2 = 1.15, scheduling decisions
are determined primarily by the difference between the cost
functions. In that case, the Max U ′ rule is nearly optimal,
and the Max R rule performs significantly worse (up to 18%
higher cost).

VII. CONCLUSIONS

We have considered channel-aware scheduling for wireless
downlink data transmission with hybrid ARQ. An optimal
scheduler minimizes the total average cost, where the cost

function assigned to each user depends on queue length and
the number of transmission times for the HoL packet. We
characterized the optimal scheduling policies in two situations
by transforming these problems so that they fit into the Klimov
framework. Namely, with linear cost functions and Poisson
arrival processes, the optimal scheduling policy for the trans-
formed problem is a fixed-priority policy. The priority indices
can be computed in closed-form, and increase with the number
of unsuccessful transmissions. A different transformation is
used for the draining problem with general increasing convex
cost functions. The optimal scheduling rule for the transformed
problem is again a fixed-priority policy, but the priorities must
be computed via Klimov’s iterative algorithm. In that case,
the priorities increase with queue length, and each packet
is transmitted continuously until it leaves the system. We
also compared the optimal scheduler with several heuristic
scheduling rules. Simulation results show that for the cases
shown, a simple myopic scheduling policy, the U ′R rule, is
near-optimal.

REFERENCES

[1] D. Tse, “Forward link multiuser diversity through proportional fair
scheduling,” Presentation at Bell Labs, August 1999.

[2] X. Liu, E. K. P. Chong, and N. B. Shroff, “Opportunistic transmission
scheduling with resource-sharing contraints in wireless networks,” IEEE
Journal on Selected Areas in Communications, vol. 19, no. 10, pp. 2053–
2064, Oct. 2001.

[3] M. Andrews, K. Kumaran, K. Ramanan, S. Stolyar, R. Vijayakumar,
and P. Whiting, “CDMA data QoS scheduling on the forward link with
variable channel conditions,” Bell Labs Technical Memorandum.

[4] R. Agrawal, A. Bedekar, R. La, and V. Subramanian, “A class and
channel-condition based weighted proprotionally fair scheduler,” in
Proc. of ITC 2001, Salvador, Brazil, Sept. 2001.

[5] S. Shakkottai and R. Srikant, “Scheduling real-time traffic with deadlines
over a wireless channel,” ACM/Baltzer Wireless Networks Journal,
vol. 8, no. 1, pp. 13–26, Jan. 2002.

[6] S. Lin and D. Costello, Error Control Coding - Fundamentals And
Applications. Prentice-Hall, 1983.

[7] A. Banerjee, D. Costello, and T. Fuja, “Diversity combining techniques
for bandwidth-efficient turbo ARQ systems,” in IEEE International
Symp. on Inform. Th., June 2001.

[8] V. Tripathi, E. Visotsky, R. Peterson, and M. Honig, “Reliability-based
type II hybrid ARQ schemes,” in ICC’03, Anchorage, Alaska, USA,
May 2003.

[9] G. Caire and D. Tuninetti, “The throughput of hybrid-ARQ protocols
for the gaussian collision channel,” IEEE Trans. on Inform. Th., vol. 47,
no. 5, pp. 20–25, July - Aug 2001.

[10] L. Kleinrock and R. P. Finkelstein, “Time dependent priority queues,”
Op. Res., vol. 15, pp. 104–116, 1967.

[11] A. Netterman and I. Adiri, “A dynamic priority queue with general
concave priority functions,” Op. Res., vol. 27, pp. 1088–1100, 1979.

[12] J. A. Van Mieghem, “Dynamic scheduling with convex delay costs: The
generalized cµ rule,” Ann. Appl. Prob., vol. 5, no. 3, pp. 809–833, 1995.

[13] U. Bagchi and R. Sullivan, “Dynamic, non-preemptive priority queues
with general, linearly increasing priority function,” Op. Res., vol. 33,
pp. 1278–1298, 1985.

[14] P. A. Franaszek and R. D. Nelson, “Properties of delay-cost scheduling
in time-sharing systems,” IBM Journal of Research and Development,
vol. 39, no. 3, pp. 295–314, 1995.

[15] G. P. Klimov, “Time-sharing service systems I,” Th. of Prob. and its
Appl., vol. 19, no. 3, pp. 558–576, 1974.

[16] E. Visotsky, V. Tripathi, and M. Honig, “Optimum ARQ design: A
dynamic programming approach,” in IEEE International Symp. on
Inform. Th., Yakohama, Japan, 2003.

[17] P. Liu, R. Berry, and M. Honig, “Delay-sensitive packet scheduling in
wireless networks,” in IEEE WCNC’03, New Orleans, LA, March 2003.

[18] P. Nain, P. Tsoucas, and J. Walrand, “Interchange arguments in stochastic
scheduling,” J. Appl. Prob., vol. 27, pp. 815–826, 1989.

