
 1

Modeling Buffer Occupancy for a TCP Connection 
 

 
Yishen Sun, C. C. Lee, Randall Berry and A. H. Haddad 

Department of Electrical and Computer Engineering, Northwestern University 
Evanston, IL 60208, U.S.A. 

Email: {yishen, cclee, rberry, ahaddad}@ece.northwestern.edu 
 
 

Abstract1 -- In this paper we analyze the buffer occupancy 
dynamics of a TCP connection for a single-hop system.  Our 
focus is on a single connection experiencing either no losses or 
one loss.   Due to the fact that the majority of TCP flows are 
very short, we consider the recovery and post recovery stage 
of a single loss during the slow-start phase.  Both TCP Reno 
and TCP Tahoe implementations are considered, and the 
results are compared.  The model provides some insights into 
the buffer dynamics statistics and TCP performance 
parameters.  The correctness of the analysis is justified 
through the OPNET simulation. 

I.  INTRODUCTION 

The dominant congestion control protocol used in the 
Internet today is the Transport Control Protocol (TCP).  A 
number of analytical models have been proposed in recent 
years to characterize TCP behavior in terms of latency and 
throughput (e.g., [1], [2], [3], [4]).  In this paper, we 
consider analytical and graphical models for the buffer 
occupancy in a router with TCP traffic.  A comprehensive 
understanding of the TCP-related buffer occupancy 
dynamics is essential for the router to deliver reliable per-
flow or per-subscriber Quality of Service (QoS) in an 
access network.  The efficient sizing and management of 
buffers should achieve a good balance between available 
resources and QoS requirements, such as the dropping ratio.  
Moreover, when fair queueing is used, the per-flow buffer 
occupancy will influence the average throughput 
experienced by each flow.  Since most TCP flows in the 
Internet are very short [5], they often spend their entire 
lifetime in TCP’s slow-start mode, without suffering any 
loss or with only a single loss.  Therefore, we consider the 
buffer dynamics with no losses or a single loss during the 
slow-start phase.  For simplicity, we focus on the buffer 
evolution at the router of a single-hop system with one 
connection.  Extensions to multiple hops and multiple TCP 
connections are topics of the future work. 

The rest of the paper is organized as follows.  Section II 
describes the network model and the assumptions made.  In 
Section III, we study the queue growth dynamics during the 
slow-start phase, the congestion avoidance phase and the 
saturation phase respectively, assuming no losses.  The 

                                                 
1 This work was supported by the Motorola Center for Communications at 
Northwestern University 

scenario in which the receiver deploys the delayed 
acknowledgement (ACK) scheme is discussed at the end of 
this section as well.  Section IV analyzes the impact of a 
single packet loss on the buffer occupancy.  The OPNET 
simulation results are given in Section V, and Section VI 
concludes the paper. 

II.  SINGLE HOP MODEL 

In the single-hop system we study here, the TCP source 
connects to the router through a link of capacity C1, and the 
router forwards packets to the destination through a link 
with bandwidth C2.  Note that C2 may represent the real 
link capacity, or its value may reflect the share of 
bandwidth allocated to a specific connection if some 
scheduling algorithm is implemented at the router for QoS 
considerations.  Let RTT1 denote the round-trip delay 
between the sender and the router, and RTT2 denote the 
round-trip delay between the router and the receiver.  Here, 
the corresponding propagation delays, processing delays 
and transmission delays are included in RTT1 and RTT2, but 
queueing delays will be treated separately.  We assume that 

C1 is much greater than C2, so the router buffer will be built 
up immediately by the bursty traffic arrivals.  The queue 
length we get under this assumption can be viewed as the 
worst case analysis, and it is the upper bound for other 
cases where the ratio between C1 and C2 is not very large.  
This is because of the fact that the larger the difference 
between C1 and C2, the faster the queue grows at the router. 

Similar to [1], [2], [3], [4], we assume that the sender 
transmits constant sized segments as fast as its congestion 
window allows and that the receiver advertises a consistent 
flow control window, Wmax, throughout the TCP session.  
The lifetime of a TCP session is divided into “rounds” as 
described in [2].  A round begins with the transmission of a 
window of packets and ends on the receipt of an ACK for 
one of these packets.  We assume that the time to transmit 
all the packets is much smaller than the duration of the 
round (≈ RTT1+RTT2) and that the duration of the round is 
independent of the window size.  We will use “packet” and 
“segment” interchangeably in this paper. 

In the following discussion, RTT1 is assumed to be 
negligible compared to RTT2.  Thus packets sent from the 
source can be viewed as arriving at the router buffer 



 2

immediately.  However, this assumption is for the 
convenience of explanation only, and the conclusion can be 
easily generalized to other values of RTT1 as long as the 
staring time of each round is shifted properly.  In addition, 
the models of Section III and IV are valid for the scenario 
when the destination acknowledges every packet received.  
Analysis can be done in a similar way for the system with 
no loss where the delayed ACK scheme is used at the end 
user, and the main results are included in Section III.E. 

III.  BUFFER OCCUPANCY ANALYSIS WITH NO LOSS 

Let L, Wk and B(t) denote the segment size, the 
congestion window size by the end of the kth round, and the 
router buffer occupancy, respectively.  Here B(t) and Wk are 
measured in units of segments, and a segment is counted in 
B(t) as long as it has not been completely served.  Also, let 
tk denote the starting time of the kth round, i.e., tk= (k-1) 
RTT2.  In this section we analyze the buffer dynamics 
during round k assuming no segments are lost. 

A.  The Slow-Start Phase 

If the session is in the slow-start phase, then Wk = 2k-1 in 
the kth round.  For k = 1, the buffer occupancy evolves as 
shown in Figure 1(a), i.e., B(t) = 1 for t∈[t1, t1+τ] and B(t) 
= 0 for the rest of the round, where τ = L /C2.  The buffer 
dynamics for k > 1 are depicted in Figure 1(b).  Notice that 
there are Wk-1 upward jumps in Figure 1(b), each of which 
corresponds to the arrival of an ACK from the previous 
round.  This is because the congestion window size 
increases by one for every ACK received during slow-start.  
This results in two packets being transmitted and joining 
the buffer.  However, one packet is also removed from the 
buffer.  The maximum buffer occupancy of round k is Wk-1 

+1.  Note that we are assuming here the destination sends 
an ACK immediately after every segment is received.  The 
delayed ACK scheme can be modeled in a similar approach 
as shown in Section III.E. 

B. The Congestion Avoidance Phase 

If the session is in the congestion avoidance phase, then 
Wk = Wk-1+1 in the kth round.  The resulting buffer 
dynamics are shown in Figure 1(c).  Since the congestion 
window size increases by one after each round instead of 
each ACK, the packets’ arrival to the router buffer is less 
bursty during congestion avoidance compared to slow-start.  
The maximum buffer occupancy of a round is 2. 

C. The Saturation Phase 

If the session is in the saturation phase, then in the kth 
round Wk= Wmax.  The buffer dynamics are shown in Figure 
1(d).  The maximum buffer occupancy of a round is 1.  

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

D. Buffer Dynamics Statistics 

The analysis above provides some insights into the 
buffer dynamics statistics in terms of rounds, and TCP 
performance parameters of a finite size file transfer can be 
derived as well. 

Two statistics of general interest are the maximum buffer 
occupancy which determines the worst case delay, and the 
average buffer occupancy which affects the average waiting 
time at the router. 

Let BM(k) and Bav(k) denote the maximum and the 
average buffer level of the kth round,  respectively.  Assume 
the congestion threshold ssthresh is known.  Here BM(k), 
Bav(k) and ssthresh are all measured in units of segments.  
Based on the model derived and assumed that Wmax is large 
enough, BM(k) and Bav(k) can be expressed as follows: 









+>
+=+−

≤+
= −

−

.12

;112

;12

)(

0

0
1

0
2

0

kk if ,

kk if ,ssthresh

kk if ,

kB k

k

M
 (1) 

where   1)(log20 += ssthreshk . 

 

 

t1 t1+τ t 

B(t) 

1 

t2 

 
(a) k = 1 

 

tk tk+τ t 

B(t) 

2 

Wk-1 +1 

4 

3 

tk+(Wk-1 -1)τ tk+Wk τ tk+1  
(b) k > 1, Slow-start 

 

tk+Wkτ tk tk+τ t 

B(t) 

1 

tk+1 

2 

 
(c) k > 1, Congestion Avoidance 

 

tk tk+τ t 

B(t) 

1 

tk+1 tk+Wmax τ 
 

(d) Saturation 

Figure 1  Router Buffer Occupancy during Round k with No Losses 



 3

( ) ( )
( )

( )







+>⋅+−
+=⋅

≤⋅+
=

−

.1/)2(

;1/

;/12

)(

00

00

0

22

0 kk if ,RTTkk

kk if ,RTTB

kk if ,RTT

kB
k

k

av

τ
τ

τ
 (2) 

where 
( ) ( )ssthreshkBkBkBB k

MMM −+++−+= 02)1()1(1)1( 0000
. 

Figure 2 shows the values of BM(k) and Bav(k) as 
functions of the round index k.  The congestion window 
size of round k, Wk, is also included in the figure for the 
comparison purpose.  Since the default value of ssthresh is 
65536 bytes in many systems and the typical TCP segment 
size is 1460bytes, 44 (≈ 65535/1460) is chosen as the value 
of ssthresh for this plot.  In addition, the ratio of RTT to τ is 
set to 25, so that BM(k) and Bav(k) can fit into the figure 
properly.  The value of RTT/τ will not matter as long as the 
assumption that “the time to transmit all the packets is 
much smaller than the duration of the round” is satisfied. 

0 2 4 6 8 10 12
0

5

10

15

20

25

30

35

40

45

50

round k

va
lu

e
 (

se
gm

e
nt

s)

max buffer
avg buffer
cwnd

 

Figure 2    Maximum and Average Buffer Occupancy Per Round 

Note that when ssthresh = 44, k0 = 6.  This implies that 
the switch from slow-start to congestion avoidance takes 
place in round 7.  It can be seen from Figure 2 that the 
maximum and the average buffer occupancy of the previous 
seven rounds are higher than other rounds, while the 
congestion window size is relatively small, which means 
fewer packets are delivered.  These parameters justify the 
fact that the traffic arrival during slow-start is more busty 
than in the congestion avoidance phase. 

Equation (1) and (2) can be utilized further to get other 
results, for example, to calculate the maximum and average 
buffer occupancy during the lifetime of a finite-size file 
transfer. 

E. Delayed ACK Scheme 

In the previous analysis, we assumed the receiver 
acknowledges every packet it receives.  Another widely 
deployed option for the destination user is to implement the 
delayed ACK scheme.  With delayed ACKs, the receiver 

sends one ACK for every two packets that it receives or if 
the delayed ACK timer expires.  With this modification, the 
increase speed of the congestion window is slowed down. 

The router buffer occupancy of a TCP connection with 
delayed ACKs can be modeled following a similar 
approach.  However, the analysis is complicated by the 
existence of the ACK timer.  Some basic results are 
obtained with the assumption that a round is long enough 
so that no ACK acknowledges two packets from different 
rounds. 

The congestion window size by the end of the kth round, 
Wk, is the sequence characterized by 










>+

>






+

=

=

−

−
−

avoidance. congestion in  and  1k ,W

start;- slowin  and  1k ,
W

W

1;k ,

W

k

k
kk

1
2

1

2

1
1

  

The maximum buffer occupancy of the kth round, BM(k), 
equals 1, 2, 3, 3 and 3, respectively for the first five rounds.  
For k>5,  














 −−
+=

avoidance. congstion in if ,

start;- slowin if ,
kB

kB
M

M

3
2

7)1(3
3

)(  

IV.  BUFFER OCCUPANCY ANALYSIS WITH A SINGLE LOSS 

In this section, we investigate how a single segment loss 
impacts the buffer occupancy at the router.  Since the 
packets arrival of the slow-start phase is more busty than 
that of the congestion avoidance phase, we will focus on 
the segment loss occurred in slow-start. 

Suppose the i th packet of the kth round is lost.  To 
simplify our discussion, we assume that i is an even number, 
i=2j  and j<Wk-1.  This assumption can be generalized, and 
the analysis for odd number i or for j= Wk-1 case can be 
done using the same approach.  The buffer occupancy 
dynamics will be slightly different without the above 
assumption, but the key properties mentioned at the end of 
the section are preserved. 

After a packet is lost, a sequence of events takes place at 
the sender to recover from the detected loss through TCP’s 
fast retransmit and/or fast recovery algorithm [6].  We 
name this period the “recovery stage”.  After the successful 
retransmission of the lost segment, the TCP source enters 
the congestion avoidance or slow-start phase; we call this 
the “post-recovery stage”. 

In Section IV.A we assume the sender is using a 
congestion control algorithm from the TCP Reno family, 
which is currently the most widely implemented TCP 
version.  The results for the Tahoe version are included in 
Section IV.B.  Section IV.C compares the conclusions of 
both versions. 

A. Reno 
TCP Reno implements both fast retransmit and fast 

recovery algorithm. 



 4

The outline of the important events during the recovery 
stage is listed in Table 1, where W(t) and ssthresh is the 
congestion window size and the slow-start threshold at time 
t (measured in segments), and En is the notation for Event n. 

E1: T= tk+(j-1)τ.  The (2j)th segment of this round is 
lost.  B(t)=j, W(t)= Wk-1+j, ssthresh= default value; 

E2: T= tk+1+(2j-2)τ.  The sender receives the first ACK 
which asks for the lost packet.  B(t)=2j, 
W(t)=Wk+(2j-1); 

E3: T= tk+1+(2j)τ.  The third duplicate ACK is received 
by the source, and the lost packet is retransmitted.  
B(t)=2j-2.  Adjust W(t) from Wk+(2j-1) to Wk-1 

+(j+2), and ssthresh from the default value to Wk-1 

+(j-1); 
E4: tk+1+(2j)τ < t < t k+1+(Wk-1)τ  or  tk+2 < t < t k+2+(3j-

1-Wk-1 )τ.  The size of the segments in flight is 
bigger than W(t).  No new packets are released.  
The source keeps receiving duplicate ACKs and 
increasing W(t) by 1 at every incoming ACK.  B(t) 
decreases to 0 gradually; 

E5: tk+2+(3j-1-Wk-1)τ ≤  t < tk+2+(4j-2)τ.  The size of the 
segments in flight is equal to W(t).  The sender 
releases one new packet for every duplicate ACK 
received, and W(t) is increased by 1 as well.  
B(t)=1;    

E6: T= tk+2+(4j-2)τ.  The ACK of the successful 
retransmission arrives at the source, which 
acknowledges all intermediate segments and ends 
the fast retransmit and fast recovery algorithm.  
W(t)=Wk+(2j-1)=ssthresh, so the sender enters the 
congestion avoidance phase.  B(t)=1; 

E7: T= tk+2+(Wk-1+3j-2)τ.  W(t)=ssthresh=Wk+(2j-1).  
The post recovery stage begins. 

Table 1  Event List of the Recovery Stage for Reno 

Notice that the time intervals specified for E4 and E5 in 
Table 1 are valid assuming that j>(Wk-1+1)/3.  If j≤ (Wk-1 

+1)/3, the time range of E4 should be changed to tk+1+(2j)τ 
< t < t k+1+(Wk-1 +3j-2)τ, and the time range of E5 should be 
changed to tk+1+(Wk-1 +3j-2)τ ≤ t < tk+1+(Wk -1)τ  or  tk+2 < 
t < tk+2+(4j-2 )τ. 

Figure 3(a) plots the queue growth during the recovery 
stage after the packet loss for j>(Wk-1+1)/3.  Figure 3(b) is 
for j≤ (Wk-1 +1)/3.  Figure 3 is attached at the very end of 
this paper. 

The post-recovery stage starts from the moment s1= tk+3 

+(3j-1-Wk-1)τ for j>(Wk-1+1)/3 or s1 = tk+2+ (Wk-1 +3j-2)τ 
for j≤ (Wk-1 +1)/3.  The sender is in congestion avoidance 
phase from the beginning of the post recovery stage.  The 
buffer occupancy of the first round of this stage is shown in 
Figure 4(a) and (b) for both cases respectively.  The buffer 
dynamics in the following rounds are very similar to the 

first round with the difference that the span of ∆t, as 
marked in the figure, is increased by τ after each round. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
An interesting observation is that when the segment loss 

occurs, the buffer occupancy is j segments, while during the 
entire recovery and post recovery stage, B(t) never exceeds 
the maximum of Wk-1 and 2j.  Since this is also true for the 
Tahoe implementation, it is summarized as the following 
proposition.  The verification for Tahoe scenario can be 
found in Section IV.B.  The potential application of this 
property is outlined in Section IV.C. 

Proposition 1: If a connection experiences a single 
segment loss during the slow-start phase, the maximum 
buffer occupancy after the loss will be no greater than 
either twice the buffer level when loss occurs or twice the 
maximum buffer occupancy before the loss. 

B. Tahoe 

TCP Tahoe implements the fast retransmit algorithm, but 
no fast recovery scheme.  Therefore the queue growth of 
the recovery stage before t= tk+1+(2j)τ, the time when the 
packet loss is detected, is the same as Reno, which implies 
that Event 1 to 3 in Table 1 also apply to Tahoe scenario.  
However, because of the lack of the fast recovery 
mechanism, no new packet is released from the sender after 
detecting the packet loss until the ACK of the retransmitted 
packet has returned successfully at t= tk+2+(4j-2)τ.  The 
buffer is emptied gradually during that interval. 

The post recovery stage starts from s2= tk+2+(4j-2)τ, and 
the buffer growth begins from the second round of the 
slow-start phase as specified in Section III.A.  If we 
renumber the beginning round of the post recovery stage as 
round 2, then the buffer occupancy of round k is shown in 
Figure 5(a).  Round k is of particular interest because the 
sender switches from slow-start to congestion avoidance 
during this period of time, and it is the round where the 
buffer level reaches its maximum of the post recovery stage.  
Notice that as long as the buffer occupancy hits j, which is 

 

∆t = (Wk-1+j -2)τ 
t 

B(t) 

1 

s2 

2 

s1 +(Wk-1+j) τ s1 

(a) Post Recovery stage, Reno,  j > (Wk-1+1)/3 

 

∆t = (4j-3) τ 

s2 -(Wk-1 –j-1) τ s1+(Wk-1 –3j+1)τ t 

B(t) 

1 
s2 

2 
s2 -(Wk-1+ 3j-2)τ 

s1 

 
(b) Post Recovery stage, Reno,  j≤  (Wk-1 +1)/3 

Figure 4    Buffer Occupancy of the First Round of the Post 
Recovery Stage for the sender implementing TCP Reno 



 5

the buffer level when the previous loss occurred, the sender 
enters the congestion avoidance phase, and the queue never 
exceeds j thereafter.  The buffer occupancy of round k+1 of 
the post recovery stage is shown in Figure 5(b).  The queue 
dynamics in the following rounds are very similar to the 
(k+1) round with the difference that the span of ∆t, as 
marked in the figure, is increased by τ after each round. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
It is easy to verify that during the recovery stage the 

maximum queue length of the system with the Tahoe 
sender is no greater than that with the Reno user.  Together 
with the fact that the maximum buffer level of the post 
recovery stage is j for Tahoe, it is obvious that the 
proposition 1 stated at the end of Section IV.A also holds 
for the TCP Tahoe family. 

C. Comparison of Reno and Tahoe 

The different behavior of Tahoe vs. Reno is reflected in 
the buffer occupancy change after the lost packet is 
detected.  The main discrepancy shows in two aspects. 

In the recovery stage, no new packet is released from the 
sender in the Tahoe scenario after detecting the packet loss 
until the ACK of the retransmitted packet has returned 
successfully at t= tk+2+(4j-2)τ, while according to the fast 
recovery algorithm, (Wk-1+j-1) packets are transmitted 
during that interval for the Reno case. 

In the post recovery stage the sender using Tahoe starts 
from the slow-start phase and increases gradually into the 
congestion avoidance phase.  However, the Reno user 
enters the congestion avoidance phase directly from the 
beginning of the stage, so more packets are sent and the 
traffic arrival is less bursty. 

A quantitative example is given in Figure 6 to compare 
the maximum buffer occupancy and the number of packets 
sent in each round of both versions.  In this example we 
assume the 14th packet of the 5th round is lost.  Round 0 

refers to the time interval between t=tk+1+(2j)τ and t= 
tk+2+(Wk-1+3j-2)τ, and the numbering of the round follows 
the definition of the new round in Section IV.A for the 
Reno post recovery stage.  From the graph it can be seen 
that Reno is more capable of sending more packets at a 
lower buffer level than Tahoe. 

0 2 4 6 8 10
0

5

10

15

20

25

round k

nu
m

b
er

 o
f p

ac
ke

ts

Reno:   # pkts sent
Tahoe: # pk ts sent
Reno:   max buffer
Tahoe: max buf fer

 
Figure 6    Comparison of Reno and Tahoe performance after a packet loss 

Despite the fast recovery algorithm difference between 
TCP Reno and Tahoe, we also find from the above analysis 
that the buffer dynamics in both versions have several 
features in common.  During the post recovery stage, B(t) 
exhibits a non-bursty self-repetitive pattern.  More 
importantly, as stated in the proposition 1, the buffer 
occupancy never exceeds the maximum of Wk-1 and 2j, 
where Wk-1 +2 is twice the maximum buffer level of 
previous rounds, and 2j is twice the buffer size when the 
loss occurs.  This holds for both the recovery stage and the 
post recovery stage.  If j satisfies Wk-2+1 < j < Wk-1, then it 
is always true that 2j > Wk-1.  Notice that Wk-2+1 is the 
maximum queue length of all previous (k-1) rounds, this 
property implies a potential queue management scheme: 
choose a virtual buffer limit j such that Wk-2+1 < j < Wk-1, 
and mark or drop the first packet which reaches this level, 
with no further marking or dropping.  Then during the 
following transmission, the actual queue length is bounded 
by 2j.  If j is no greater than the half of the real buffer limit, 
then overflow can be avoided if marking packets in this 
way. 

V.  SIMULATION  

An OPNET simulation model has been set up to verify 
the buffer occupancy model we proposed.  The system 
structure is the same as the single-hop system described in 
Section II, with C1 using T3 link, C2 using DS1 link, and 
RTT2 is approximately 0.5sec.  The simulation results are 
very consistent with our queue length growth model.  As an 
example, Figure 7 shows the evolution of the router buffer 
when the connection experiences a single loss and the 
sender implements TCP Tahoe.  It can be seen clearly from 

 

sk sk+τ t 

B(t) 

2 

j 

sk+(j-1)τ sk+Wk-1τ 

sk+1 

sk+(Wk-1+j )τ 

(a) Post Recovery Stage, Tahoe, round k 

 

(Wk-1 - j+2) τ ∆t = (2j-2) τ t 

B(t) 

1 

sk+2 

2 

sk+1 

 
(b) Post Recovery Stage, Tahoe, round (k+1) 

Figure 5    Buffer Occupancy of the Post Recovery Stage for the 
sender implementing TCP Tahoe 



 6

the statistics that the post recovery stage contains both 
slow-start phase and congestion avoidance phase. 

 
 
 
 
 
 
 
 
 
 
 
 

VI.  CONCLUSION AND DISCUSSION 

In this paper we analyze the buffer occupancy dynamics 
of a one-hop system.  Our focus is on a single connection 
experiencing one loss or no losses.  Based on the model we 
proposed, some buffer dynamics statistics are studied and 
the results may provide some insights into the TCP 
performance parameters of a finite size file transfer, such as 
average buffer occupancy and the idling time during the 
entire connection.  This information may help addressing 
the buffer sizing issue at the edge router as well.  It can be 
seen from the model that the active time ratio of a session is 
related to the allocated bandwidth share C2, which suggests 

the interaction between the number of active flows, the total 
number of flows and the scheduling algorithm.  Another 
observation is that under certain constraints the maximum 
buffer occupancy during the recovery and the post recovery 
stage is bounded by twice the buffer size when the loss 
occurs.  A generic queue management scheme might be 
able to exploit this to prevent buffer overflow if we either 
mark or drop a segment when the buffer is half full.  
Modeling buffer occupancy for multiple connections is a 
topic for future work.     

REFERENCES 
[1] N. Cardwell, S. Savage and T. Anderson, “Modeling TCP latency,” 

Proceedings of IEEE INFOCOM, Tel Aviv, Israel, March 2000. 
[2] J. Padhye, V. Firoiu, D. Towsley and J. Kurose, “Modeling TCP 

Reno performance: A simple model and its empirical validation,” 
IEEE/ACM Trans. on Networking, vol. 8, no. 2, pp. 133-145, April 
2000. 

[3] B. Sikdar, S. Kalyanaraman and K. S. Vastola, “TCP Reno with 
Random losses: Latency, Throughput and Sensitivity Analysis,” 
Proceedings of IEEE IPCCC, Phoenix, AZ, April 2001. 

[4] B. Sikdar, S. Kalyanaraman and K. S. Vastola, “Analytic Models for 
the Latency and Steady-State Throughput of TCP Tahoe, Reno and 
SACK,” IEEE/ACM Trans. on Networking, vol. 11, no. 6, pp. 959-
971, December 2003  

[5] K. Thompson, G. J. Miller, and R. Wilder, “Wild-area Internet 
Traffic Patterns and Characteristics,” IEEE Network, 11(6), 
November 1997 

[6] W. R. Stevens, “TCP/IP illustrated volume 1,” Addison Wesley, 
1994. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

tk+2+(4j-2)τ tk+(j-1) τ t 

B(t) 

2 

Wk-1  

2j 

j 

tk+1+(4j-2)τ 

1

tk+1 tk+1+(2j-2) τ tk+2+(3j-1-Wk-1)τ tk+(Wk-1)τ 

(a) Recovery stage, Reno,  j > (Wk-1+1)/3 

 

tk+2+(4j-2)τ tk+(j-1) τ t

B(t) 

2 

Wk-1  

2j 

j 

tk+1+(4j-2)τ 

1 

tk+1 tk+1+(2j-2) τ 

tk+1+(Wk-1+3j-2)τ 

tk+1+(Wk-1)τ 

tk+2 

tk+(Wk-1)τ 
 

(b) Recovery stage, Reno,  j ≤  (Wk-1 +1)/3 

Figure 3    Buffer Occupancy of the Recovery Stage for the sender implementing TCP Reno 

0

20000

40000

60000

80000

100000

120000

140000

0 50 100 150 200

time index

bu
ffe

r 
(b

its
)

 
Figure 7  Buffer Occupancy  for a Connection with Single Loss, Tahoe 


