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Abstract— We consider scheduling and resource allocation for as a promising option for broadband wireless networks due
the downlink of a OFDM-based wireless network. During each in part to its ability for combating intersymbol interfen
time-slot the scheduling and resource allocation problem involves in frequency selective channels and for avoiding interfeee

selecting a subset of users for transmission, determining the heduled b igning diff t sub . t
assignment of available subcarriers to selected users, and for among scheduled users Dy assigning diiierent subcarmers

each subcarrier determining the transmission power and the different users. OFDM is utilized in a number of emerging
coding and modulation scheme used. We address this in thewireless data systems such as IEEE 802.16 (WiMAX). This
context of a utility-based scheduling and resource allocation paper addresses gradient-based scheduling and resolarce al
scheme presented in earlier papers. Scheduling and resource cqtinn for the downlink in a single OFDM cell. In this setting

allocation is determined by solving an optimization problem, . . L .
which is convex for a reasonable model of the feasible rates.'! addition to determining which users are scheduled, the al

By exploiting the structure of this problem, we give optimal and location of physical layer resources including the trarssion
sub-optimal algorithms for its solution. We provide simulation power and the assignment of tones to users must be specified.

results comparing different algorithms and parameter settings. In prior work [13], we considered gradient-based schegulin
and resource allocation when code division multiple access
(CDMA) was used to multiplex users within a time-slot,
Channel-aware scheduling and resource allocation has Bg-in CDMA 1xEVDV. In the CDMA case, the physical
come an essential component for high-speed wireless dgiger resources are the number of spreading codes assigned
systems. In these systems, the active users and the adocafh each user and the transmission power; allocating these
of physical layer resources among them are dynamicalicording to a gradient-based policy requires maximizirey t
adapted based on the users’ current channel conditions g@dghted sum rate across all users in each time-slot, where
quality of service (QoS) requirements. Many of the schewyli the weights dynamically vary based on the gradient of the
algorithms considered can be viewed as “gradient-baseg{stem utility. When the users’ SINR and rate per code
algorithms, which select the transmission rate vector thgfe related via the Shannon capacity formula, the resulting
maximizes the projection onto the gradient of the systemzoplem is a tractable convex optimization problem, emapli
total utility [2]. The utility is a function of each usersthe development of low complexity near-optimal algorithms
throughput and is used to quantify fairness and other Q@@ the characterization of key properties of the solutitere,
considerations. Several such gradient-based policies been e follow a similar approach for an OFDM-based system;
studied for time-division multiplexed (TDM) systems, suchhe main difference being that we have more degrees of
as the the “proportional fair rule” [3]-[5], first proposedrf freedom (i.e., the subcarriers) to allocate resourcessacro
CDMA 1xEVDO, which is based on a logarithmic utility\yhich increases the complexity of the optimization prohlem
function. In [6], a larger class of utility functions is cadered \we also allow for different subchannelization techniquies,
that allows efficiency and fairness to be traded-off. Gelims@ \yhich the resource allocation must be specified in terms of
cp-policies [7]-[9], such as a Max Weight policy [10]-[12],groups of subcarriers or symbols. Such techniques allow for
[14], can also be viewed as a type of gradient-based poligiading off the granularity of resource allocation with the
where the utility is a function of a user's queue-size or @ielagyerhead requirements for channel measurement and fdedbac
In TDM systems, the scheduling and resource allocation as i [13], within each time-slot the gradient-based schedu
decision is simply which user to schedule in a time-slot ang policy requires maximizing the weighted sum throughput
what modulation and coding scheme to use for the schedulggsy the set of feasible rates. Here, the set of feasibles rate
user. In many recent systems, users may be further muléglexjepends on what subchannelization is used, the currenbehan
within a time-slot using another technique. In particulagiate information, and the resource allocation decisitvs.
Orthogonal Frequency Division Multiplexing (OFDM) is seenyiso allow constraints on the maximum SINR or rate per
subcarrier, which can model a limitation on the available

I. INTRODUCTION
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modulation order. When the rate per sub-carrier is given vii@r example, one class of utility functions given in [6] is
the Shannon capacity formula and users are allowed to time- .
p y &(Wi,t)aa (07 S ]-7 o 7& 07 (2)

share each sub-carrier, again this becomes a tractablexonv U(Wis) = { (%1 (W) ~0
optimization problent. A special case of this problem for I8\ at), @ =5,

a fixed set of weights and no constraints on the SINR p#herea < 1 is a fairness parameter amglis a QoS weight.
carrier was considered in [15]; there a suboptimal algorithIn this case, (1) becomes

with constant power per sub-carrier was given and shown a1

in simulations to have little performance loss. Here, wet firs rtren%()it) - ci(Wie)™ ™ i (3)
consider a dual formulation for this problem, which enables . . ) ]

us characterize some structural properties and leads to bbfith €qual class weights, setting= 1 results in a scheduling
optimal and reduced complexity sub-optimal algorithms. W€ that maximizes the total throughput during each slot. F
also present simulation results in a system where the sthedu= 0> this results in the proportional fair rule.

ing weights are dynamically adjusted according to a gradien More generally, the utility can depend on other parameters
based scheduling rule. for each user such as the queue size or the delay of the head-

In related work, in addition to [15], a number of othePf-line packet, as in the “Max Weight” policies mentioned in

formulations for downlink OFDM resource allocation havdh€ introduction. In general, we consider the problem of
be;e_n _studied including [15]—[21]. In [16], [19] the_goal i t max Wi, ()
minimize the total transmit power given target bit rates for TeE€R(er) ’

each user. In [19], the target bit-rates are determined byw%ere wi, > 0 is a time-varying weight assigned to the

fair queueing algorithm, which does not take into accousat tr%th user at timer. In the above examoles these weidhts are
users’ channel conditions. In [18], [20], [21], the focusois ' P 9

maximizing the sum-rate aiven a required minimum bit rat%iven by the gradient of the utility; however, other methods
or user- [%] also considegr]s maximiz?n the sum-rate. ouith " generating these weights are also possible. We note that
P - . g T $4) must be re-solved at each scheduling instant because of
any minimum bit-rate target. [17], [18], [20] also conside

. I changes in both the channel state and the weights (e.g., the
suboptimal heuristics that use a constant power per sufecar radient of the utility)
Finally, in [22], the capacity region of a downlink broad'casg Y)-
channel with frequency-selective fading using a TDM scherme OFDM capacity regions

is given; the feasible rate region we consider, without any gqying (4) depends on the state dependent capacity region
maximum _SINR constraints, can be viewed as a special €3%e).3 We focus on a model appropriate for downlink OFDM

of this region. systems; similar models have been considered in [15], [22].

Il. PROBLEM FORMULATION In ;his 'modeI,R(e) is zarsmetlfrizeq byfthe allocation of ]

. . . . subcarriers to users and the allocation of power across sub-

we cop&der the d(_)wnl!nk .O.f a glngle cell ! an OFDM, - rriers. In a traditional OFDM system, at most one user may

SVS‘ef” W'th.K users. Time is divided into TDM time-slots thatbe assigned to any subcarrier. Here, as in [16], [19], we make
contain an mteggr nhumber of OFDM sympols. In.e.ach Mg simplifying assumption that multiple users can share on
slot, the scheduling and resource allocation decision @n ne using some orthogonalization technique (e.g. via TDM)

viewed as selecting a rate vector= (T}f’ oo rr) fromthe oo stice, if a scheduling interval contained multiple TINE
current feasible rate regioR(e;) C R, wheree; indicates

based sche_:duling framework in [2], [6].' In this frameworkand the required signaling overhead would increase. Given a
r: € R(e;) is selected that has the maximum projection on

. - . Qolution to this problem, we can obtain a feasible solution
the gradient of a system utility functiowU (W), where allowing only one user per tone by applying an appropriate

K projection. For the simulations in Section 1V, we chooseyonl
UW,)=> Ui(Wis), one user per tone.
i=1 Let V' = {1,..., N} denote the set of subcarriers. For each
andU;(W;,) is an increasing concave utility function of usepubcarrierj and useri, let e;; denote the received signal to

Ly

i's average throughputy; ,, up to timet. In other words, the interference plus noise ratio (SINR) per unit power. We deno

scheduling and resource allocation decision is the saiutio the power allocated to uséron subchannej by p;; and the
fraction of that subchannel allocated to usdry z;;. These

T : . .
 hax )VU(Wt> Te= | max Ui(Wig)rie- (1) must satisfy a total power constrairX;,  p;; < P, and for
e T all subcarriersj, 3, z;; < 1, i.e., the total fraction of each
2We focus on systems that do not use superposition coding aneéssive sub-carrier allocated must be no greater than one. For a give

interference cancellation within a sub-carrier. While suechniques are allocation, useri’s feasible rate on subcarrigr is given by

necessary for achieving the multiuser capacity of a broaddznnel [22],
they are generally considered too complex for practicalesyst 3To simplify notation we have suppressed the time-dependence.



ri; = x;;Blog(1l+ m) This corresponds to the Shannorinterleaved to form subchannels; and (3) random channel-
capacity of a Gaussian noise channel with bandwidthB ization, where tones are randomly assigned to subchannels.
and received SINIM 4 Without loss of generality we setIn IEEE 802.16d/e, interleaved channelization is prinyaril

B =1.The ach|evable rate region is then used; the optional “band AMC mode” allows for adjacent
channelization. Randomized channelization can modetByst
R(e) = {T L= aijlog (1 4 pijeij) ’ that employ frequency hopping as in Flarion’s Flash OFDM
7 Tij system. Under adjacent channelization, if the adjacenb-cha
®) nels lie approximately within a coherence band, then this
Zp” <P, Zx” <1Vj, (z.p) € X} enables the resource allocation to better exploit frequenc
ij i diversity. Using interleaved or random channelizationuess

the variance in the channel gains across subchannels for eac
user. One advantage to this is that when the variance is,small
the user can simply feedback a single value that will be rep-
} resentative of each subchannel, further reducing the medjui
(6) overhead. Another advantage of random channelization is in
Here we have also included a maximum SINR constraint of managing other cell interference.
on tonej for useri. For example, this can model a constraint
on the maximum rate per tone due to a limitation on the
available modulation order. From (4) and (5), the scheduling and resource allocation
In the above model, the channel state- {¢;;}, which we Problem can be stated as:
assume is known by the scheduler for all users and tones. In p”e”
a frequency division duplex (FDD) system, this knowledge . ™max V(z,p) Z%wa log (1 + )

where

X;:{(x,p)zozogxijgl,ogpijngm’
61‘3‘

IIl. OPTIMAL AND SUBOPTIMAL ALGORITHMS

Tij,pij €EX
can be acquired by having the base station transmit pilot @)
signals, from which the users estimate their channel gaids a subject to: Zpu < P, and Zazu <1,VjeWN,
feed this back to the base station. In a time division duplex i.j i

(TDD) system, these gains can also be acquired by havigere x is given in (6).

the users transmit uplink pilots; the base station can then

exploit reciprocity to measure the channel gains. In botfesa A- Optimal Dual Solution

this feedback would need to be done within the channel'sWe first solve this problem using duality methods. It can be

coherence time. shown that (7) is convex and Slater’s condition holds, seethe
In a system with many tones and users, providing pilots no duality gap and the optimal solution is characterized b

and/or feedback per tone can require excessive overhead. @ Karush-Khun-Tucker conditions [1].

approach for reducing this overhead is by formsndpchannels ~ Consider the Lagrangian given by

that are disjoint sets of tones. Feedback and resourceatitioc Dise

is then done at the granularity of these subchannels. Theeabd.(z, p, A, p) : Z w; Z x;;log (1 + 5 ”)

model can be adapted to this setting, by viewixigas the set i Tij
of subchannels and;; as the effective SINR per unit power
for user: within the jth subchannel. In other words, assuming Zp” + Z“J Z Tij |-

%

that & tones are bundled into subchanrele;; is chosen so
that the rate for usef in this subchannel is approximatelyOptimizing overp givenz, g and A yield:s8
kaijlog(1 + B2=2). For our simulations, we set;; to be . wee n
the average of the SINR per unit power of all the tones in a pij =2 {(l}\” - 1) A Sij] : (8)
subchannef. €ij

Subchannels can be formed in various ways; in our sirpubstituting this intal(z, p, A, ), we have
ulations, we consider the following three approaches: (1) Lz, p*,\, p)
adjacent channelization, where adjacent tones are graofed
a sub-channel; (2) interleaved channelization, wherestame = me wih (A wieij, sij) = pj) + Z“J’ AP,

17 J

“4As in [13], to better model the achievable rates in a practyatem we Here, as in [13],

can re-normalize;; by ve;;, wherey € [0, 1] represents the system’s “gap”

from capacity. 0, T > Y,

5Here and in the fqllowing we use boldfaced symbqls to denatevéittor h(:c Y, z) = % —1—1log %, 1+ <z <y, (9)
of all the corresponding values across users/tonesaeig.the vector of all lo (1 + z) B /I
Tij ’s. &) y? 1+z7

SUsing the concavity of the logarithm, it can be seen that thjsen-bounds
the average rate that can be achieved in a subchannel. Thegavete can "When every channel is identical, the resource allocatioblpro becomes
be lower bounded by using the geometric mean of the SINRs ofottestin -~ equivalent to the CDMA problem in [13].
a subchannel. 8The notation(z)* = max(z,0) andz A y = min(z,y).



wherez >0, y >0 andz > 0. For a given), let A; := {i : ¢ = argmax; p;;(A)}. From
Optimizing L(x, p*, A\, u) overx we get the corresponding the previous analysis it follows that the set of althat solve

dual function (11) are those that satisfy the following properties:
L(\, p) == L(z",p", A, ) i) Fori ¢ A;, zi; = 0.
_ ‘ N+ ‘ i) If [A;| =1, thenz;; =1 fori € A;.
=2 (wih (vwiegsig) =)™+ 3 i+ AP e T e for alli € Ay, my € [0,1] and

ij J
Si here i duali it foll hat minimizi 2ica, Tig =1
thl.nce t e)r\e 'Sd no .u%'ty 9ap, t!t CI) ovvlst.t att mlr;lml\z/:lngln case iji ), we must break ties to determine the allocation for
fo:lsovs\;ersimizlznr plrt) cﬁgurz 22 ir?r[) 1';]?0 Z%golr%rglisoh Eh|)s sIFi? that sub-carrier. We refer to an allocation satisfyiig(ifi) as
considering the optimaji, we have: an extreme pomf additionally z,; € {0,1} for all i and j;
L 31-F I > such an allocation can be represented by a funcfiod” —
emma 3.1:For all A > 0, M, where M is the set of users, so thdt;j) indicates the
L(A\) :=min L(\, u) = AP + Z/‘;()‘)’ user allocated channg| i.e. z;; = 1. To satisfy {)-(iii), it
nz0 4 must be thatf(j) € A; for all j. Let B = {j : |A;| = 1}
and B¢ = N\ B. For each;j € B, there are no ties, and so
f(4) can take on only one value. For each subchagirelB¢,
H(A) = max wih (A, wieg, si7) - (10) thgre arg.A;| users we can allocate the subchannel to, and so
nf(g) can take|.A;| values. It follows that the total number of

J

where for allj, the minimizing value ofu; is

The proof of this follows from a similar argument as i e ints | A
[13], and by noting thaf (A, i) is a separable function gi. € Ee he poInts EHJ'.GB“ | .JLZ P ition 3.1 and id
Note that (10) requires a sort of all the users according ¢o th ach extreme point satisfies Proposition 3.1 and so provides

metrics u;; := w;h(\, wse;5, s;5) for each sub-channel a subgradient for.()). Let

As in [13], L(\) can be shown to be a convex function)of wey; 1
hence it can be minimized using an iterated one dimensional Dij 1= {(Tj - 1) A 5ij:| o
search, like the Golden Section method. At the minimizing Y
value \*, L(\*) gives the optimal solution to (7). Given an extreme poin{f, from (8), the resulting power

allocation to subchannel is given byp;; = p;; for i = f(j)
andp;; = 0fori # f(j). Hence the corresponding subgradient
Next we turn to finding optimal values of the primald(f) is given by

variables(x, p). For a given\ > 0, let
d(f) =P =3 bryi = D Brns-
JjeEB jeBe

B. Optimal primal variables with time-sharing

(x*,p*) :=arg max L (xz,p,\,pu"(N\), (11)
(z,p)eX

which can be solved using the same procedure as in deriviafoosing different extreme points only effects the lasmter
the dual function. Given that = )\*, it follows from duality on the right. It follows that the maximum subgradientZaf))
theory, that if the correspondinge*, p*) are primal feasible corresponds to the extreme point given by
and satisfy complimentary slackness, then they are optimal
primal values. However, in (10) there can be multiple users f0) = argiénj{l)ﬁij, vj. (12)
in a given subchannel whose metrigg; are tied at the !
maximum value. In this case, it can be shown that there will hékewise, the minimum subgradient is given by
multiple primal values that satisfy (11), not all of which yna
be feasible. Thus, breaking these ties to settle on a specific f(j) = arg max pij, vj. (13)
primal solution is necessary to find the optimal solution. A eAw)
key point to note is that when ties occur at a given’.(\) is  Lemma 3.2:There exists a primal optimal solution where
not differentiable at thah. However, sincel.()) is a convex g s given by time-sharing between the extreme points in (12)
function, subgradients exists. and (13) withA = \*, andp is given by (8).
Definition 3.1: A scalard € R is asubgradientof L(\) at  Note that this lemma implies that there is always an optimal
A if 3 3 3 primal solution for which at most two users time-share any
L(A) > L(X\) + Q/\ - /\) d, YA>0. tone. Moreover, each tone that is time-shared is sharecein th
For an arbitrary), a solution to (11) that also satisfiessame proportion. The optimal time-sharing factor can badou
oA (1 =232 w;) = 0and ) z;; < 1 forall j, can by simply finding a convex combination of the subgradients
be used to find a sub-gradient 6f)\). corresponding to (12) and (13) that is equal to zero.
Proposition 3.1:Let (&,p) be a solution to (11) for The above steps give us an algorithm for finding the optimal
a given X that satisfies) .2;; < 1 for all j and solution to (7). Namely, first use a one-dimension search
2o (A) (=32, &;) = 0. ThenP — 37, p;; is a sub- to find the optimalA* that minimizesL()). Next find the
gradient of L(\) at A. corresponding optimal primal solution as in Lemma 3.2.



C. Single user per tone Algorithm 1 Search Algorithm for Optimah

: , . 1) Initialization:k = 0, G = 0, G5/ = 0 andGy /. = 0.
Next we consider the case where we restrict our final alloca-5y ;. _ . 11

tion to allow only one user to transmit on each subchannel. Ingy | ot (i (k),j (k)Y =y (k).
this case, we can still find the optimat. If there are no ties 4 if 2 (k) :’O then
as discussed above, then the optimal solution will onlyvallo '

one user/tone. If there are ties, then a reasonable heusgt Grw = Grw + Ti(k)j (k) Wi(k)»
simply choose one extreme point allocation. In our simartti G _G 1
we choose the extreme point that corresponds to the subgradi 1/e = G1je + eitrih)
ent with the smallest non-negative value; i.e. the extrenistp therwi
f, forwhich>_ ..\ Dy is closest taP, without exceeding othenmise,
it. Other mechanisms for choosing a extreme point could also Gae = Goje + Si(k)j(k)7
be used. €i(k)j(k)

For a given extreme point, the total power constraint using Grw = Grw — Ti(k)j(k)Wi(k)>
the powersps;); will be over-shot or under-shot (unless this 1

L . - . P Gije = Grje — .
point is optimal). In this case we consider re-optimizing th €i(k)i (k)
power allocation for a given fixed tone allocatian i.e. we

stop. Otherwise, go to step (6).
max V(n,p) st me <P (14) 6) If A(k) <a(k)andX(k) > a(k+ 1), stop. Otherwise,
p:(p,@)eX > go to step(2).

Let L, (\) be the dual function for this problem. Given that
A = argminy>o Lg()), the optimal power allocation to (14) o Single sort suboptimal algorithm
is given by (8) withA = X\ and the given tone allocation. The
following lemma gives an alternative characterization tfoe
correctA.

Lemma 3.3:A given X is the solution to the dual problem
miny>o Ly (A) if and only if

The optimal sub-carrier allocation is determined by assign
ing each tongj to the user with the largest metrig;(A*) on
that tone (breaking any ties as discussed above). Thisresqui
iterating to find the optimal Lagrange multiplier. We give
a sub-optimal algorithm that is based instead doing a single

S awily, (V) sort of the users on each tone according to a different metric
A= = Lbiaide Ad A , (15) Here, we consider using the metrig R,;, where R;; is the
i Zz‘,j e,_i,-lyu (A) + Zz‘,j e,_Uan () rate that uset could achieve on this channel under a constant

power allocation, i.e.,
1+si; 1+si,

1,4 is the indicator function. Rij =log[l + (i A (€1 P/N))].

This lemma provides an algorithm for ﬁndidg which we The tone is allocated to the user with the largest metridy wit
describe next. First check if the power constraint is visdat ties broken arbitrarily. After the tone allocation is madiee
when all users use maximum power on the allocated ton@ptimal power allocation is done as in the optimal algorithm
i.e.if E(m,)p;j = i_73u > P. If this is not true, the problem This metric was motivateq in part the prior' work in [15],
is solved. If this is tjrue, we need to search for [17], [18], [20] where a uniform power allocation was shown

Let a be a vector of lengtl2 N containing the values of g? be negr!y ;)hptir:al. Sg_me other suboptimal algorithms are
z;;w;e;; and % for all (4,7) such thatz;; = 1, sorted IScussed in the Appendix.
in descending order. Define two additional vecterand y IV. SIMULATION STUDY
such that for anys = 1,...,2N,

WhereWZ‘j = —wijwiew,l’ijwieij), y” = |:0, —w”wie”), and

In this section we report some simulation results for the
algorithm which finds the optimal* and then chooses a tone-

4 Y ] .
2(k)=1, if a(k) =+ T sy for some (i, ) , allocation with one user per tone as described in Section Il
o TiW; €4 C. We also consider the sub-optimal algorithm described in
(k) = {i,j}, if a(k) = x;wse;; or =22 : - - -
Yy =nJs, - taieiy O e Section 11I-D. We simulate a single cell with/ = 40 users.

The channel gaing;; are the product of a fixed location-
The complete\ search algorithm is given in Algorithm 1.based term for each useand a frequency-selective fast fading
The basic idea is to start from the largestand calculate the term. The location-based components were picked using an
right-hand side of (15). If it is less than the current valde empirically obtained distribution for many users in a large
A, decrease\ and recalculate, until a fixed-point is found. Itsystem. The fast-fading term was generated using a block-
can be shown that the algorithm will stop in at m@af steps fading model based upon the Doppler frequency (for the block
with A (k) = A length in time) and a standard reference mobile delay-sprea



TABLE | User Throughput CDF
0.5

a=

SIMULATION RESULTS FOR DIFFERENT CHOICES Ok (64 SUBCHANNELS, 4y " T IO D

ADJACENT SUBCHANNELIZATION, NO PER USERSINR CONSTRAINTS). - 4

[ o [ Algorithm | Utility [ Log U [ Rate(kbps)] Num. ] |
05[] FULL 1236 | 12.58 497.8 5.40

0.5 | MO-wR 1234 | 12.56 498.3 5.17 1

0 FULL 12.69 | 12.69 396.8 5.75 1
0 | MO-wR | 12.68 | 12.68 393.0 5.47

1 FULL 716955 | 8.04 719.3 3.04 — o 1

1 | MO-wR | 716955 | 8.04 719.3 3.04 TTTGoweNL ||

MO-wR
model (for variation in frequency). For a user’s fast-fafin T

Throughput in Kbps

term, each multi-path component was held fixed Zatsec
and an independent value was generated for the next block,
corresponding to 250MHz Doppler frequency. The delay-
spread waslusec. The user's channel conditions averaged
over the applicable channelization scheme are fed backeto th
scheduler for all the channels. R
We considered a system bandwidth iHz correspond- -------------- ’
ing to 512 OFDM carriers/tones. The symbol duration wa
100usec with a cyclic prefix of 10usec. This roughly corre- :
sponds ta20 OFDM symbols per fading block. The resource o7 f ]
allocation is done once per fading block. All the results ai os 1
averaged over the la000 OFDM symbols out of60000
OFDM symbols (i.e.,3000 fading blocks), at this time the
system has reached a stationary operation point. All users w

Fig. 1. Empirical CDF of users’ throughputs far= 0.5.

infinitely back-logged. We assigned each user a throughp o3 7
based utility with the form given iii2); for a given simulation 0z 1
all the users have identical QoS weiglits = 1) and fairness ol —ao 1
parameterg«). G‘ ‘ ‘ | | | iy
The first set of simulations we consider are for a syste ° PO ks 0

where the tones are grouped iritb subchannels with adjacent
subchannelization, i.e. adjacent sets8fones are grouped
into subchannels. We initially assume that there are no pefig. 2. Empirical CDF of users’ throughputs for different wes$ ofcv.
user SINR constraints (i.es;; = co). Table | shows results
for both the algorithm with the optimal* (FULL) and the
suboptimal algorithm (MQsR) for different choices of the Since ana close tol emphasizes total throughput more than
utility parametera. The column “utility” gives the average fairness, the distributions get more spread outvdscreases.
utility per user for each algorithm. The column labeled “log Next we consider the effect of different channelization
U” shows the log utility per user; this gives some indicatioschemes. Table Il shows the performance of the two algosithm
of the “fairness” of the resulting allocation (fer = 0 this for the adjacent (Adj.), randomized (Ran.), and Interleave
is the same as the utility.). The column labeled “Rate” i@nt.) channelization schemes described in Section Il-Ae T
the average throughput per user, and the final column is th&rameters here are the same as in Table I, wite 0.5.
average number of users scheduled. We note that for edamin, MO«wR performs nearly the same as FULL and in
choice of«, the two algorithms perform nearly the same fothe interleaved case even achieves a slightly higheryutiibr
each of these metrics; whem = 1 (maximum throughput) both algorithms, the random channelization results in towe
they have identical performance. In Figure 1, we plot thetility than the adjacent, and the interleaved results irloweer
throughput CDF for both algorithms, as well as two othautility. This is likely due to the decreased frequency dbigr
sub-optimal algorithms forx = 0.5. Both FULL and MOwR  with each scheme. Indeed, for the channel model used here,
have nearly identical CDF’s; under the other algorithms the the interleaved case all subchannels can be shown to be
CDF is more spread out, indicating a higher variance in theentical, which explains why both schemes only schedute on
users’ rates. user.

In Figure 2, concentrating on the FULL algorithm, we Finally, we consider the effect of varying the number of
compare the effects of different's on the throughput CDF. tones per subchannel and the effect of a per user SINR



TABLE I
SIMULATION RESULTS OF DIFFERENT CHANNELIZATION SCHEMEY64
SUBCHANNELS, NO PER USERSINR CONSTRAINTS a = 0.5).

[ Chan. | Algorithm [ Utility | Log U | Rate (kbps)] Num. |

Adj. FULL 1236 | 12.58 497.8 5.40
Adj. MO-wR | 1234 | 12.56 4983 5.17
Ran. FULL 1171 | 12.42 465.2 1.08 [
Ran. | MO-wR | 1167 | 12.40 165.5 3.64
Int. FULL 1136 | 12.32 4471 1 [2]
Int. MO-wR | 1142 | 12.33 455.2 1
[3]
TABLE IlI
SIMULATION RESULTS(oc = 0.5, 32 SUBCHANNELS, ADJACENT [4]
SUBCHANNELIZATION, NO PER USERSINR CONSTRAINTS).
[ Algorithm [ Utility | Log U | Rate (kbps)] Num | [5]
FULL 1234 | 1257 496.6 5.22 |
MO-wR | 1232 | 12.56 4972 5.02 | [6]
[7]

constraint. Table Il shows the case where the OFDM tone@]
are grouped int®2 subchannels instead 6fl as in Table |

(i.e. 16 tones/subchannel). Comparing to the 64 subchannel
case, both algorithms achieve slightly less utility; ageiis ]
can be explained by a slight decrease in the frequency di-
versity. As long as there is enough diversity, our simulatio [10]
suggest that the overall performance is not very sensitive t
the number of subchannels. Table IV shows the performangg,
of the algorithms when each user can only transmit at a
maximum SINR of6.5dB on each subchanntlHere, the
performance gaps between the FULL algorithm and M®-
slightly increases compared with Table | (M@R achieves
96.6% of the maximum utility, as opposed 10.8% as in
Table I).

(12]

(13]

V. CONCLUSIONS

We considered scheduling and resource allocation for tHé!
downlink of OFDM systems. Using a gradient-based schedul-
ing framework, we formulated an optimal scheduling anids]
resource allocation problem, which was shown to be a convex
problem. Using a dual formulation, we characterized the
optimal solution, and used this to develop optimal and sul3$]
optimal algorithms. The algorithms can be applied across

SINR constraints. We presented simulation results showing
that a sub-optimal algorithm, in which users are sorted once
per tone based on a uniform power allocation, performs yearl
the same as under the optimal algorithm.
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APPENDIX I
OTHER SUB-OPTIMAL ALGORITHMS [ Algorithm T Utility [ Log Utility | Rate (kbps)] User Scheduled

In this appendix we provide several other sub-optimal FULL 1236 12.58 497.8 5.40
algorithms. As in the algorithm in Section 111-D, each of siee | GOLDEN-1 | 1146 12.03 596.5 4.26
. ; e . _GOLDEN-4 | 1218 12.45 537.8 4.83
algorithms can be V|ewe_d as determining some metric o_f €AW EIGHTED-T | 1161 2.0 5967 135
user/tone and then assigning the tone to the user with [N®@EIGHTED-4 | 1236 12.58 497.6 5.37
largest metric. After the tone assignment, the optimal powe MO-we 1108 11.80 629.5 4.29
allocation is performed across tones (power could also be MO®E 1234 | 1256 498.3 5.17

uniformly allocated).

1) Suboptimal without Full Iteration:The first class of
algorithms we consider is based on attempting to estimate th . Based orm(S\l), we then perform a second update)of
optimal Lagrange mulitplie* as in the optimal algorithm. A2, using Algorithm 1. Again we update one the boundary
Recall this requires an iterative search to minimizg\); for points of [Amin, Amax] based on the subgradient &%.
these sub-optimal algorithms, we estimate this by onlyappl 2y single sort with other metricsA second class of sub-
a limited number of iterations for a given search teCh”'qUSpUmal algorithms involves sorting the users as in Sedfien

then use the metrip,; = w;h(\, w;e;;, si;) to determine the conS|dered is using;

tone assignment. We have considered the following two kearc
techniques for generating new values)of A. Performance Comparison
a) Golden section search method? In this case, we  Table V shows simulation results for 5 different suboptimal
use the golden search method for minimizing the convedgorithms along with the FULL and M@-R algorithms.
function L(\) (e.g. [1]). This method keeps track of an intervalhe settings are the same as those in Table I. The algorithm
containing the optimal\ starting from the initial interval GOLDEN- is based on using the golden section search with
[Amin, Amax] = [0, max; ;) e;w;;]. At each iteration, one of at mostz iterations. Likewise, WEIGHTED: is based on
the boundary points on the interval is updated by comparinging the subgradient-weighted search method with at most
the value ofL(\) at two points in the interior of the interval iterations'® The algorithm MOwe uses a single sort with the
and the value at the boundary points. This can be done:ife;; metric. It can be seen that the WEIGHTED-4 algorithm
such as way that only one new value bf)\) needs to be performs closest to the FULL algorithm, while all other
constructed in each iteration. No subgradient informai®n algorithms perform slightly worse than the M@R algorithm.
needed during the iterations. Similar trends were observed for other system parameters.
b) Subgradient-weighted search method@his search
method uses the subgradients bf\) to guide the search.
Starting from interval [Amin, Amax] = [0, max(; ;) e;wi;]
each iteration consists of two steps updates:
o First calculate the subgradients of the two boundary
points, saysb,,i, and sby.,.1* Then calculate

€ij.

>\min |3bmax| + /\max |5bmin‘
|Sbmin| + |Sbmax|

The rational behind16) is the following: if the sub-
gradient|sbyi,| is much smaller thamsb,,.x|, then it is
reasonable to believe that the optimal value\aé much
closer to\,;, than to\ ... Next, find12
(96(5\1)710@1)) =arg max L (w7p,X1,u*(5\1))~

(z,p)EX

A= (16)

Update one the boundary points [0f,in, Amax] based on
the subgradient value? — 3= ; . pi; (A!).

10In the simulation results for the FULL algorithm, this searebhnique

was also used.
1In case of ties, pick any subgradient in the tie. If any boupgmint has

both negative and positive subgradients, then it is thenggitvalue of\. 13Note that a single iteration of the WEIGHTED algorithm regsirtwo
12pgain, if ties exist, just pick any of them. updates of\, compared with one update of with the GOLDEN algorithm.



