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Abstract— We consider scheduling and resource allocation for
the downlink of a OFDM-based wireless network. During each
time-slot the scheduling and resource allocation problem involves
selecting a subset of users for transmission, determining the
assignment of available subcarriers to selected users, and for
each subcarrier determining the transmission power and the
coding and modulation scheme used. We address this in the
context of a utility-based scheduling and resource allocation
scheme presented in earlier papers. Scheduling and resource
allocation is determined by solving an optimization problem,
which is convex for a reasonable model of the feasible rates.
By exploiting the structure of this problem, we give optimal and
sub-optimal algorithms for its solution. We provide simulation
results comparing different algorithms and parameter settings.

I. I NTRODUCTION

Channel-aware scheduling and resource allocation has be-
come an essential component for high-speed wireless data
systems. In these systems, the active users and the allocation
of physical layer resources among them are dynamically
adapted based on the users’ current channel conditions and
quality of service (QoS) requirements. Many of the scheduling
algorithms considered can be viewed as “gradient-based”
algorithms, which select the transmission rate vector that
maximizes the projection onto the gradient of the system’s
total utility [2]. The utility is a function of each user’s
throughput and is used to quantify fairness and other QoS
considerations. Several such gradient-based policies have been
studied for time-division multiplexed (TDM) systems, such
as the the “proportional fair rule” [3]–[5], first proposed for
CDMA 1xEVDO, which is based on a logarithmic utility
function. In [6], a larger class of utility functions is considered
that allows efficiency and fairness to be traded-off. Generalized
cµ-policies [7]–[9], such as a Max Weight policy [10]–[12],
[14], can also be viewed as a type of gradient-based policy,
where the utility is a function of a user’s queue-size or delay.

In TDM systems, the scheduling and resource allocation
decision is simply which user to schedule in a time-slot and
what modulation and coding scheme to use for the scheduled
user. In many recent systems, users may be further multiplexed
within a time-slot using another technique. In particular,
Orthogonal Frequency Division Multiplexing (OFDM) is seen
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as a promising option for broadband wireless networks due
in part to its ability for combating intersymbol interference
in frequency selective channels and for avoiding interference
among scheduled users by assigning different subcarriers to
different users.1 OFDM is utilized in a number of emerging
wireless data systems such as IEEE 802.16 (WiMAX). This
paper addresses gradient-based scheduling and resource allo-
cation for the downlink in a single OFDM cell. In this setting,
in addition to determining which users are scheduled, the al-
location of physical layer resources including the transmission
power and the assignment of tones to users must be specified.

In prior work [13], we considered gradient-based scheduling
and resource allocation when code division multiple access
(CDMA) was used to multiplex users within a time-slot,
as in CDMA 1xEVDV. In the CDMA case, the physical
layer resources are the number of spreading codes assigned
to each user and the transmission power; allocating these
according to a gradient-based policy requires maximizing the
weighted sum rate across all users in each time-slot, where
the weights dynamically vary based on the gradient of the
system utility. When the users’ SINR and rate per code
are related via the Shannon capacity formula, the resulting
problem is a tractable convex optimization problem, enabling
the development of low complexity near-optimal algorithms
and the characterization of key properties of the solution.Here,
we follow a similar approach for an OFDM-based system;
the main difference being that we have more degrees of
freedom (i.e., the subcarriers) to allocate resources across,
which increases the complexity of the optimization problem.
We also allow for different subchannelization techniques,in
which the resource allocation must be specified in terms of
groups of subcarriers or symbols. Such techniques allow for
trading off the granularity of resource allocation with the
overhead requirements for channel measurement and feedback.

As in [13], within each time-slot the gradient-based schedul-
ing policy requires maximizing the weighted sum throughput
over the set of feasible rates. Here, the set of feasible rates
depends on what subchannelization is used, the current channel
state information, and the resource allocation decisions.We
also allow constraints on the maximum SINR or rate per
subcarrier, which can model a limitation on the available

1In the following we use the terms tone and subcarrier synonymously.



modulation order. When the rate per sub-carrier is given via
the Shannon capacity formula and users are allowed to time-
share each sub-carrier, again this becomes a tractable convex
optimization problem.2 A special case of this problem for
a fixed set of weights and no constraints on the SINR per
carrier was considered in [15]; there a suboptimal algorithm
with constant power per sub-carrier was given and shown
in simulations to have little performance loss. Here, we first
consider a dual formulation for this problem, which enables
us characterize some structural properties and leads to both
optimal and reduced complexity sub-optimal algorithms. We
also present simulation results in a system where the schedul-
ing weights are dynamically adjusted according to a gradient-
based scheduling rule.

In related work, in addition to [15], a number of other
formulations for downlink OFDM resource allocation have
been studied including [16]–[21]. In [16], [19] the goal is to
minimize the total transmit power given target bit rates for
each user. In [19], the target bit-rates are determined by a
fair queueing algorithm, which does not take into account the
users’ channel conditions. In [18], [20], [21], the focus ison
maximizing the sum-rate given a required minimum bit rate
per user; [17] also considers maximizing the sum-rate, without
any minimum bit-rate target. [17], [18], [20] also consider
suboptimal heuristics that use a constant power per sub-carrier.
Finally, in [22], the capacity region of a downlink broadcast
channel with frequency-selective fading using a TDM scheme
is given; the feasible rate region we consider, without any
maximum SINR constraints, can be viewed as a special case
of this region.

II. PROBLEM FORMULATION

We consider the downlink of a single cell in an OFDM
system withK users. Time is divided into TDM time-slots that
contain an integer number of OFDM symbols. In each time-
slot, the scheduling and resource allocation decision can be
viewed as selecting a rate vectorrt = (r1,t, . . . , rK,t) from the
current feasible rate regionR(et) ⊂ R

K
+ , whereet indicates

the time-varying channel state information available at the
scheduler. This decision is made according to the gradient-
based scheduling framework in [2], [6]. In this framework,
rt ∈ R(et) is selected that has the maximum projection onto
the gradient of a system utility function∇U(W t), where

U(W t) =

K
∑

i=1

Ui(Wi,t),

andUi(Wi,t) is an increasing concave utility function of user
i’s average throughput,Wi,t, up to timet. In other words, the
scheduling and resource allocation decision is the solution to

max
rt∈R(et)

∇U(W t)
T · rt = max

rt∈R(et)

∑

i

U̇i(Wi,t)ri,t. (1)

2We focus on systems that do not use superposition coding and successive
interference cancellation within a sub-carrier. While suchtechniques are
necessary for achieving the multiuser capacity of a broadcast channel [22],
they are generally considered too complex for practical systems.

For example, one class of utility functions given in [6] is

Ui(Wi,t) =

{

ci

α (Wi,t)
α, α ≤ 1, α 6= 0,

ci log(Wi,t), α = 0,
(2)

whereα ≤ 1 is a fairness parameter andci is a QoS weight.
In this case, (1) becomes

max
rt∈R(et)

∑

i

ci(Wi,t)
α−1ri,t. (3)

With equal class weights, settingα = 1 results in a scheduling
rule that maximizes the total throughput during each slot. For
α = 0, this results in the proportional fair rule.

More generally, the utility can depend on other parameters
for each user such as the queue size or the delay of the head-
of-line packet, as in the “Max Weight” policies mentioned in
the introduction. In general, we consider the problem of

max
rt∈R(et)

∑

i

wi,tri,t, (4)

where wi,t ≥ 0 is a time-varying weight assigned to the
ith user at timet. In the above examples these weights are
given by the gradient of the utility; however, other methods
for generating these weights are also possible. We note that
(4) must be re-solved at each scheduling instant because of
changes in both the channel state and the weights (e.g., the
gradient of the utility).

A. OFDM capacity regions

Solving (4) depends on the state dependent capacity region
R(e).3 We focus on a model appropriate for downlink OFDM
systems; similar models have been considered in [15], [22].
In this model,R(e) is parameterized by the allocation of
subcarriers to users and the allocation of power across sub-
carriers. In a traditional OFDM system, at most one user may
be assigned to any subcarrier. Here, as in [16], [19], we make
the simplifying assumption that multiple users can share one
tone using some orthogonalization technique (e.g. via TDM).
In practice, if a scheduling interval contained multiple OFDM
symbols, we could implement such time-sharing by giving a
fraction of the symbols to each user; of course, each user
would be constrained to use an integer number of symbols
and the required signaling overhead would increase. Given a
solution to this problem, we can obtain a feasible solution
allowing only one user per tone by applying an appropriate
projection. For the simulations in Section IV, we choose only
one user per tone.

Let N = {1, . . . , N} denote the set of subcarriers. For each
subcarrierj and useri, let eij denote the received signal to
interference plus noise ratio (SINR) per unit power. We denote
the power allocated to useri on subchannelj by pij and the
fraction of that subchannel allocated to useri by xij . These
must satisfy a total power constraint,

∑

i,j pij ≤ P, and for
all subcarriersj,

∑

i xij ≤ 1, i.e., the total fraction of each
sub-carrier allocated must be no greater than one. For a given
allocation, useri’s feasible rate on subcarrierj is given by

3To simplify notation we have suppressed the time-dependence.



rij = xijB log(1 +
pijeij

xij
). This corresponds to the Shannon

capacity of a Gaussian noise channel with bandwidthxijB
and received SINRpijeij

xij
.4 Without loss of generality we set

B = 1. The achievable rate region is then

R(e) =

{

r : ri =
∑

j

xij log

(

1 +
pijeij

xij

)

,

∑

ij

pij ≤ P,
∑

i

xij ≤ 1 ∀ j, (x,p) ∈ X

}

,

(5)

where5

X :=

{

(x,p) ≥ 0 : 0 ≤ xij ≤ 1, 0 ≤ pij ≤
xijsij

eij
∀i, j

}

.

(6)
Here we have also included a maximum SINR constraint ofsij

on tonej for useri. For example, this can model a constraint
on the maximum rate per tone due to a limitation on the
available modulation order.

In the above model, the channel statee = {eij}, which we
assume is known by the scheduler for all users and tones. In
a frequency division duplex (FDD) system, this knowledge
can be acquired by having the base station transmit pilot
signals, from which the users estimate their channel gains and
feed this back to the base station. In a time division duplex
(TDD) system, these gains can also be acquired by having
the users transmit uplink pilots; the base station can then
exploit reciprocity to measure the channel gains. In both cases,
this feedback would need to be done within the channel’s
coherence time.

In a system with many tones and users, providing pilots
and/or feedback per tone can require excessive overhead. One
approach for reducing this overhead is by formingsubchannels
that are disjoint sets of tones. Feedback and resource allocation
is then done at the granularity of these subchannels. The above
model can be adapted to this setting, by viewingN as the set
of subchannels andeij as the effective SINR per unit power
for useri within thejth subchannel. In other words, assuming
that k tones are bundled into subchannelj, eij is chosen so
that the rate for useri in this subchannel is approximately
kxij log(1 +

pijeij

xij
). For our simulations, we seteij to be

the average of the SINR per unit power of all the tones in a
subchannel.6

Subchannels can be formed in various ways; in our sim-
ulations, we consider the following three approaches: (1)
adjacent channelization, where adjacent tones are groupedinto
a sub-channel; (2) interleaved channelization, where tones are

4As in [13], to better model the achievable rates in a practicalsystem we
can re-normalizeeij by γeij , whereγ ∈ [0, 1] represents the system’s “gap”
from capacity.

5Here and in the following we use boldfaced symbols to denote the vector
of all the corresponding values across users/tones, e.g.x is the vector of all
xij ’s.

6Using the concavity of the logarithm, it can be seen that this upper-bounds
the average rate that can be achieved in a subchannel. The average rate can
be lower bounded by using the geometric mean of the SINRs of the tones in
a subchannel.

interleaved to form subchannels; and (3) random channel-
ization, where tones are randomly assigned to subchannels.
In IEEE 802.16d/e, interleaved channelization is primarily
used; the optional “band AMC mode” allows for adjacent
channelization. Randomized channelization can model systems
that employ frequency hopping as in Flarion’s Flash OFDM
system. Under adjacent channelization, if the adjacent chan-
nels lie approximately within a coherence band, then this
enables the resource allocation to better exploit frequency
diversity. Using interleaved or random channelization reduces
the variance in the channel gains across subchannels for each
user. One advantage to this is that when the variance is small,
the user can simply feedback a singleeij value that will be rep-
resentative of each subchannel, further reducing the required
overhead.7 Another advantage of random channelization is in
managing other cell interference.

III. O PTIMAL AND SUBOPTIMAL ALGORITHMS

From (4) and (5), the scheduling and resource allocation
problem can be stated as:

max
xij ,pij∈X

V (x,p) :=
∑

i

wi

∑

j

xij log

(

1 +
pijeij

xij

)

subject to:
∑

i,j

pij ≤ P, and
∑

i

xij ≤ 1, ∀j ∈ N ,
(7)

whereX is given in (6).

A. Optimal Dual Solution

We first solve this problem using duality methods. It can be
shown that (7) is convex and Slater’s condition holds, so there
is no duality gap and the optimal solution is characterized by
the Karush-Khun-Tucker conditions [1].

Consider the Lagrangian given by

L(x,p, λ,µ) :=
∑

i

wi

∑

j

xij log

(

1 +
pijeij

xij

)

+ λ

(

P −
∑

i,j

pij

)

+
∑

j

µj

(

1 −
∑

i

xij

)

.

Optimizing overp given x, µ andλ yields8

p∗ij =
xij

eij

[

(wieij

λ
− 1

)+

∧ sij

]

. (8)

Substituting this intoL(x,p, λ,µ), we have

L(x,p∗, λ,µ)

=
∑

ij

xij (wih (λ,wieij , sij) − µj) +
∑

j

µj + λP,

Here, as in [13],

h(x, y, z) =







0, x ≥ y,
x
y − 1 − log x

y , y
1+z ≤ x < y,

log(1 + z) − x
y z, x < y

1+z ,
(9)

7When every channel is identical, the resource allocation problem becomes
equivalent to the CDMA problem in [13].

8The notation(x)+ = max(x, 0) andx ∧ y = min(x, y).



wherex ≥ 0, y > 0 andz ≥ 0.
OptimizingL(x,p∗, λ,µ) overx we get the corresponding

dual function

L(λ,µ) := L(x∗,p∗, λ,µ)

=
∑

ij

(wih (λ,wieij , sij) − µj)
+

+
∑

j

µj + λP.

Since there is no duality gap, it follows that minimizing
this over λ and µ yields an optimal solution to (7). We
follow a similar procedure as in [13] to accomplish this. First
considering the optimalµ, we have:

Lemma 3.1:For all λ ≥ 0,

L(λ) := min
µ≥0

L(λ,µ) = λP +
∑

j

µ∗
j (λ),

where for allj, the minimizing value ofµj is

µ∗
j (λ) = max

i
wih (λ,wieij , sij) . (10)

The proof of this follows from a similar argument as in
[13], and by noting thatL(λ,µ) is a separable function ofµ.
Note that (10) requires a sort of all the users according to the
metricsµij := wih(λ,wieij , sij) for each sub-channelj.

As in [13], L(λ) can be shown to be a convex function ofλ;
hence it can be minimized using an iterated one dimensional
search, like the Golden Section method. At the minimizing
valueλ∗, L(λ∗) gives the optimal solution to (7).

B. Optimal primal variables with time-sharing

Next we turn to finding optimal values of the primal
variables(x,p). For a givenλ ≥ 0, let

(x∗,p∗) := arg max
(x,p)∈X

L (x,p, λ,µ∗(λ)) , (11)

which can be solved using the same procedure as in deriving
the dual function. Given thatλ = λ∗, it follows from duality
theory, that if the corresponding(x∗,p∗) are primal feasible
and satisfy complimentary slackness, then they are optimal
primal values. However, in (10) there can be multiple users
in a given subchannel whose metricsµij are tied at the
maximum value. In this case, it can be shown that there will be
multiple primal values that satisfy (11), not all of which may
be feasible. Thus, breaking these ties to settle on a specific
primal solution is necessary to find the optimal solution. A
key point to note is that when ties occur at a givenλ, L(λ) is
not differentiable at thatλ. However, sinceL(λ) is a convex
function, subgradients exists.

Definition 3.1: A scalard ∈ ℜ is a subgradientof L(λ) at
λ if

L(λ̃) ≥ L(λ) +
(

λ̃ − λ
)

d, ∀λ̃ ≥ 0.

For an arbitraryλ, a solution to (11) that also satisfies
∑

j µ∗
j (λ) (1 −

∑

i xij) = 0 and
∑

i xij ≤ 1 for all j, can
be used to find a sub-gradient ofL(λ).

Proposition 3.1:Let (x̂, p̂) be a solution to (11) for
a given λ that satisfies

∑

i x̂ij ≤ 1 for all j and
∑

j µ∗
j (λ) (1 −

∑

i x̂ij) = 0. Then P −
∑

ij p̂ij is a sub-
gradient ofL(λ) at λ.

For a givenλ, let Aj := {i : i = arg maxi µij(λ)}. From
the previous analysis it follows that the set of allx that solve
(11) are those that satisfy the following properties:

i) For i 6∈ Aj , xij = 0.
ii ) If |Aj | = 1, thenxij = 1 for i ∈ Aj .

iii ) If |Aj | > 1, then for all i ∈ Aj , xij ∈ [0, 1] and
∑

i∈Aj
xij = 1.

In case (iii ), we must break ties to determine the allocation for
that sub-carrier. We refer to an allocation satisfying (i)-(iii ) as
an extreme pointif additionally xij ∈ {0, 1} for all i and j;
such an allocation can be represented by a functionf : N →
M, whereM is the set of users, so thatf(j) indicates the
user allocated channelj, i.e. xf(j)j = 1. To satisfy (i)-(iii ), it
must be thatf(j) ∈ Aj for all j. Let B = {j : |Aj | = 1}
andBc = N \ B. For eachj ∈ B, there are no ties, and so
f(j) can take on only one value. For each subchannelj ∈ Bc,
there are|Aj | users we can allocate the subchannel to, and so
f(j) can take|Aj | values. It follows that the total number of
extreme points is

∏

j∈Bc |Aj |.
Each extreme point satisfies Proposition 3.1 and so provides

a subgradient forL(λ). Let

p̃ij :=

[

(wieij

λ
− 1

)+

∧ sij

]

1

eij
.

Given an extreme pointf , from (8), the resulting power
allocation to subchannelj is given bypij = p̃ij for i = f(j)
andpij = 0 for i 6= f(j). Hence the corresponding subgradient
d(f) is given by

d(f) = P −
∑

j∈B

p̃f(j)j −
∑

j∈Bc

p̃f(j)j .

Choosing different extreme points only effects the last term
on the right. It follows that the maximum subgradient ofL(λ)
corresponds to the extreme point given by

f(j) = arg min
i∈A(j)

p̃ij , ∀j. (12)

Likewise, the minimum subgradient is given by

f(j) = arg max
i∈A(j)

p̃ij , ∀j. (13)

Lemma 3.2:There exists a primal optimal solution where
x is given by time-sharing between the extreme points in (12)
and (13) withλ = λ∗, andp is given by (8).

Note that this lemma implies that there is always an optimal
primal solution for which at most two users time-share any
tone. Moreover, each tone that is time-shared is shared in the
same proportion. The optimal time-sharing factor can be found
by simply finding a convex combination of the subgradients
corresponding to (12) and (13) that is equal to zero.

The above steps give us an algorithm for finding the optimal
solution to (7). Namely, first use a one-dimension search
to find the optimalλ∗ that minimizesL(λ). Next find the
corresponding optimal primal solution as in Lemma 3.2.



C. Single user per tone

Next we consider the case where we restrict our final alloca-
tion to allow only one user to transmit on each subchannel. In
this case, we can still find the optimalλ∗. If there are no ties
as discussed above, then the optimal solution will only allow
one user/tone. If there are ties, then a reasonable heuristic is to
simply choose one extreme point allocation. In our simulations
we choose the extreme point that corresponds to the subgradi-
ent with the smallest non-negative value; i.e. the extreme point
f , for which

∑

jinN p̃f(j)j is closest toP , without exceeding
it. Other mechanisms for choosing a extreme point could also
be used.

For a given extreme point, the total power constraint using
the powersp̃f(j)j will be over-shot or under-shot (unless this
point is optimal). In this case we consider re-optimizing the
power allocation for a given fixed tone allocationx, i.e. we
want to solve

max
p:(p,x)∈X

V (n,p) s.t.
∑

ij

pij ≤ P (14)

Let Lx(λ) be the dual function for this problem. Given that
λ̃ = arg minλ≥0 Lx(λ), the optimal power allocation to (14)
is given by (8) withλ = λ̃ and the given tone allocation. The
following lemma gives an alternative characterization forthe
correctλ.

Lemma 3.3:A given λ is the solution to the dual problem
minλ≥0 Lx (λ) if and only if

λ =

∑

i,j xijwi1Wij
(λ)

P −
∑

i,j
sij

eij
1Yij

(λ) +
∑

i,j
1

eij
1Wij

(λ)
, (15)

whereWij =
[

xijwieij

1+sij
, xijwieij

)

, Yij =
[

0,
xijwieij

1+sij

)

, and
1{·} is the indicator function.

This lemma provides an algorithm for finding̃λ, which we
describe next. First check if the power constraint is violated
when all users use maximum power on the allocated tones,
i.e. if

∑

(i,j) p∗ij =
xij

eij
sij > P . If this is not true, the problem

is solved. If this is true, we need to search forλ̃.
Let a be a vector of length2N containing the values of

xijwieij and xijwieij

1+sij
for all (i, j) such thatxij = 1, sorted

in descending order. Define two additional vectorsz and y

such that for anyk = 1, ..., 2N ,

z (k) = 1, if a (k) =
xijwieij

1 + sij
for some (i, j) ,

y (k) = {i, j} , if a (k) = xijwieij or
xijwieij

1 + sij
.

The completeλ search algorithm is given in Algorithm 1.
The basic idea is to start from the largestλ, and calculate the
right-hand side of (15). If it is less than the current value of
λ, decreaseλ and recalculate, until a fixed-point is found. It
can be shown that the algorithm will stop in at most2N steps
with λ (k) = λ̃.

Algorithm 1 Search Algorithm for Optimalλ
1) Initialization:k = 0, Gxw = 0, Gs/e = 0 andG1/e = 0.
2) k = k + 1.
3) Let {i (k) , j (k)} = y (k).
4) if z (k) = 0, then

Gxw = Gxw + xi(k)j(k)wi(k),

G1/e = G1/e +
1

ei(k)j(k)
,

otherwise,

Gs/e = Gs/e +
si(k)j(k)

ei(k)j(k)
,

Gxw = Gxw − xi(k)j(k)wi(k),

G1/e = G1/e −
1

ei(k)j(k)
.

5) Let λ (k) = Gxw/
(

P − Gs/e + G1/e

)

. If k = 2N,
stop. Otherwise, go to step (6).

6) If λ (k) ≤ a (k) andλ (k) ≥ a (k + 1) , stop. Otherwise,
go to step(2).

D. Single sort suboptimal algorithm

The optimal sub-carrier allocation is determined by assign-
ing each tonej to the user with the largest metricµ∗

j (λ
∗) on

that tone (breaking any ties as discussed above). This requires
iterating to find the optimal Lagrange multiplierλ∗. We give
a sub-optimal algorithm that is based instead doing a single
sort of the users on each tone according to a different metric.
Here, we consider using the metricwiR̄ij , whereR̄ij is the
rate that useri could achieve on this channel under a constant
power allocation, i.e.,

R̄ij = log[1 + (sij ∧ (eijP/N))].

The tone is allocated to the user with the largest metric, with
ties broken arbitrarily. After the tone allocation is made,the
optimal power allocation is done as in the optimal algorithm.
This metric was motivated in part the prior work in [15],
[17], [18], [20] where a uniform power allocation was shown
to be nearly optimal. Some other suboptimal algorithms are
discussed in the Appendix.

IV. SIMULATION STUDY

In this section we report some simulation results for the
algorithm which finds the optimalλ∗ and then chooses a tone-
allocation with one user per tone as described in Section III-
C. We also consider the sub-optimal algorithm described in
Section III-D. We simulate a single cell withM = 40 users.
The channel gainseij are the product of a fixed location-
based term for each useri and a frequency-selective fast fading
term. The location-based components were picked using an
empirically obtained distribution for many users in a large
system. The fast-fading term was generated using a block-
fading model based upon the Doppler frequency (for the block-
length in time) and a standard reference mobile delay-spread



TABLE I

SIMULATION RESULTS FOR DIFFERENT CHOICES OFα (64 SUBCHANNELS,

ADJACENT SUBCHANNELIZATION, NO PER USERSINR CONSTRAINTS).

α Algorithm Utility Log U Rate(kbps) Num.

0.5 FULL 1236 12.58 497.8 5.40
0.5 MO-wR̄ 1234 12.56 498.3 5.17

0 FULL 12.69 12.69 396.8 5.75
0 MO-wR̄ 12.68 12.68 393.0 5.47

1 FULL 716955 8.04 719.3 3.04
1 MO-wR̄ 716955 8.04 719.3 3.04

model (for variation in frequency). For a user’s fast-fading
term, each multi-path component was held fixed for2msec
and an independent value was generated for the next block,
corresponding to a250MHz Doppler frequency. The delay-
spread was1µsec. The user’s channel conditions averaged
over the applicable channelization scheme are fed back to the
scheduler for all the channels.

We considered a system bandwidth of5MHz correspond-
ing to 512 OFDM carriers/tones. The symbol duration was
100µsec with a cyclic prefix of10µsec. This roughly corre-
sponds to20 OFDM symbols per fading block. The resource
allocation is done once per fading block. All the results are
averaged over the last2000 OFDM symbols out of60000
OFDM symbols (i.e.,3000 fading blocks), at this time the
system has reached a stationary operation point. All users were
infinitely back-logged. We assigned each user a throughput-
based utility with the form given in(2); for a given simulation
all the users have identical QoS weights(ci = 1) and fairness
parameters(α).

The first set of simulations we consider are for a system
where the tones are grouped into64 subchannels with adjacent
subchannelization, i.e. adjacent sets of8 tones are grouped
into subchannels. We initially assume that there are no per
user SINR constraints (i.e.,sij = ∞). Table I shows results
for both the algorithm with the optimalλ∗ (FULL) and the
suboptimal algorithm (MO-wR̄) for different choices of the
utility parameterα. The column “utility” gives the average
utility per user for each algorithm. The column labeled “log
U” shows the log utility per user; this gives some indication
of the “fairness” of the resulting allocation (forα = 0 this
is the same as the utility.). The column labeled “Rate” is
the average throughput per user, and the final column is the
average number of users scheduled. We note that for each
choice ofα, the two algorithms perform nearly the same for
each of these metrics; whenα = 1 (maximum throughput)
they have identical performance. In Figure 1, we plot the
throughput CDF for both algorithms, as well as two other
sub-optimal algorithms forα = 0.5. Both FULL and MO-wR̄
have nearly identical CDF’s; under the other algorithms the
CDF is more spread out, indicating a higher variance in the
users’ rates.

In Figure 2, concentrating on the FULL algorithm, we
compare the effects of differentα’s on the throughput CDF.
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Fig. 1. Empirical CDF of users’ throughputs forα = 0.5.
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Fig. 2. Empirical CDF of users’ throughputs for different values ofα.

Since anα close to1 emphasizes total throughput more than
fairness, the distributions get more spread out asα increases.

Next we consider the effect of different channelization
schemes. Table II shows the performance of the two algorithms
for the adjacent (Adj.), randomized (Ran.), and Interleaved
(Int.) channelization schemes described in Section II-A. The
parameters here are the same as in Table I, withα = 0.5.
Again, MO-wR̄ performs nearly the same as FULL and in
the interleaved case even achieves a slightly higher utility. For
both algorithms, the random channelization results in lower
utility than the adjacent, and the interleaved results in yet lower
utility. This is likely due to the decreased frequency diversity
with each scheme. Indeed, for the channel model used here,
in the interleaved case all subchannels can be shown to be
identical, which explains why both schemes only schedule one
user.

Finally, we consider the effect of varying the number of
tones per subchannel and the effect of a per user SINR



TABLE II

SIMULATION RESULTS OF DIFFERENT CHANNELIZATION SCHEMES(64

SUBCHANNELS, NO PER USERSINR CONSTRAINTS, α = 0.5).

Chan. Algorithm Utility Log U Rate (kbps) Num.

Adj. FULL 1236 12.58 497.8 5.40
Adj. MO-wR̄ 1234 12.56 498.3 5.17

Ran. FULL 1171 12.42 465.2 4.08
Ran. MO-wR̄ 1167 12.40 465.5 3.64

Int. FULL 1136 12.32 447.1 1
Int. MO-wR̄ 1142 12.33 455.2 1

TABLE III

SIMULATION RESULTS (α = 0.5, 32 SUBCHANNELS, ADJACENT

SUBCHANNELIZATION, NO PER USERSINR CONSTRAINTS).

Algorithm Utility Log U Rate (kbps) Num

FULL 1234 12.57 496.6 5.22
MO-wR̄ 1232 12.56 497.2 5.02

constraint. Table III shows the case where the OFDM tones
are grouped into32 subchannels instead of64 as in Table I
(i.e. 16 tones/subchannel). Comparing to the 64 subchannel
case, both algorithms achieve slightly less utility; againthis
can be explained by a slight decrease in the frequency di-
versity. As long as there is enough diversity, our simulations
suggest that the overall performance is not very sensitive to
the number of subchannels. Table IV shows the performance
of the algorithms when each user can only transmit at a
maximum SINR of6.5dB on each subchannel.9 Here, the
performance gaps between the FULL algorithm and MO-wR̄
slightly increases compared with Table I (MO-wR̄ achieves
96.6% of the maximum utility, as opposed to99.8% as in
Table I).

V. CONCLUSIONS

We considered scheduling and resource allocation for the
downlink of OFDM systems. Using a gradient-based schedul-
ing framework, we formulated an optimal scheduling and
resource allocation problem, which was shown to be a convex
problem. Using a dual formulation, we characterized the
optimal solution, and used this to develop optimal and sub-
optimal algorithms. The algorithms can be applied across
different channelization schemes and accommodate per user

9This choice is motivated by the IEEE 802.16e standard, in which the
maximum rate/tone is achieved with 64-QAM modulation and 5/6 code rate.

TABLE IV

SIMULATION RESULTS (α = 0.5, 64 SUBCHANNELS, ADJACENT

SUBCHANNELIZATION, MAXIMUM SINR EQUAL TO 6.5DB).

Algorithm Utility Log Utility Rate (kbps) User Scheduled

FULL 1137 12.60 349.8 5.94
MO-wR̄ 1098 12.50 333.3 5.21

SINR constraints. We presented simulation results showing
that a sub-optimal algorithm, in which users are sorted once
per tone based on a uniform power allocation, performs nearly
the same as under the optimal algorithm.
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APPENDIX I
OTHER SUB-OPTIMAL ALGORITHMS

In this appendix we provide several other sub-optimal
algorithms. As in the algorithm in Section III-D, each of these
algorithms can be viewed as determining some metric of each
user/tone and then assigning the tone to the user with the
largest metric. After the tone assignment, the optimal power
allocation is performed across tones (power could also be
uniformly allocated).

1) Suboptimal without Full Iteration:The first class of
algorithms we consider is based on attempting to estimate the
optimal Lagrange mulitplierλ∗ as in the optimal algorithm.
Recall this requires an iterative search to minimizeL(λ); for
these sub-optimal algorithms, we estimate this by only apply
a limited number of iterations for a given search technique.
Let λ̂ be the value ofλ obtained after these iterations. We
then use the metricµij = wih(λ̂, wieij , sij) to determine the
tone assignment. We have considered the following two search
techniques for generating new values ofλ:

a) Golden section search method:10 In this case, we
use the golden search method for minimizing the convex
functionL(λ) (e.g. [1]). This method keeps track of an interval
containing the optimalλ starting from the initial interval
[λmin, λmax] =

[

0,max(i,j) eiwij

]

. At each iteration, one of
the boundary points on the interval is updated by comparing
the value ofL(λ) at two points in the interior of the interval
and the value at the boundary points. This can be done in
such as way that only one new value ofL(λ) needs to be
constructed in each iteration. No subgradient informationis
needed during the iterations.

b) Subgradient-weighted search method:This search
method uses the subgradients ofL(λ) to guide the search.
Starting from interval[λmin, λmax] =

[

0,max(i,j) eiwij

]

,
each iteration consists of two steps updates:

• First calculate the subgradients of the two boundary
points, saysbmin andsbmax.

11 Then calculate

λ̃1 =
λmin |sbmax| + λmax |sbmin|

|sbmin| + |sbmax|
. (16)

The rational behind(16) is the following: if the sub-
gradient|sbmin| is much smaller than|sbmax|, then it is
reasonable to believe that the optimal value ofλ is much
closer toλmin than toλmax. Next, find 12

(

x(λ̃1),p(λ̃1)
)

= arg max
(x,p)∈X

L
(

x,p, λ̃1,µ∗(λ̃1)
)

.

Update one the boundary points of[λmin, λmax] based on
the subgradient value,P −

∑

(i,j) pij(λ̃
1).

10In the simulation results for the FULL algorithm, this search technique
was also used.

11In case of ties, pick any subgradient in the tie. If any boundary point has
both negative and positive subgradients, then it is the optimal value ofλ.

12Again, if ties exist, just pick any of them.

TABLE V

SIMULATION RESULTS (α = 0.5, 64 SUBCHANNELS, ADJACENT

SUBCHANNELIZATION, NO PER USERSINR CONSTRAINTS)

Algorithm Utility Log Utility Rate (kbps) User Scheduled

FULL 1236 12.58 497.8 5.40
GOLDEN-1 1146 12.03 596.5 4.26
GOLDEN-4 1218 12.45 537.8 4.83

WEIGHTED-1 1161 12.09 596.7 4.35
WEIGHTED-4 1236 12.58 497.6 5.37

MO-we 1108 11.80 629.5 4.29
MO-wR̄ 1234 12.56 498.3 5.17

• Based onx(λ̃1), we then perform a second update ofλ,
λ̃2, using Algorithm 1. Again we update one the boundary
points of [λmin, λmax] based on the subgradient ofλ̃2.

2) Single sort with other metrics:A second class of sub-
optimal algorithms involves sorting the users as in SectionIII-
D, but using a different metric. One other example we have
considered is usingwieij .

A. Performance Comparison

Table V shows simulation results for 5 different suboptimal
algorithms along with the FULL and MO-wR̄ algorithms.
The settings are the same as those in Table I. The algorithm
GOLDEN-x is based on using the golden section search with
at most x iterations. Likewise, WEIGHTED-x is based on
using the subgradient-weighted search method with at mostx
iterations.13 The algorithm MO-we uses a single sort with the
wieij metric. It can be seen that the WEIGHTED-4 algorithm
performs closest to the FULL algorithm, while all other
algorithms perform slightly worse than the MO-wR̄ algorithm.
Similar trends were observed for other system parameters.

13Note that a single iteration of the WEIGHTED algorithm requires two
updates ofλ, compared with one update ofλ with the GOLDEN algorithm.


