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Abstract

A model for downlink wireless scheduling is studied, which takes into account both user channel

conditions and retransmissions with packet combining (Hybrid ARQ). Quality of Service requirements

for each user are represented by a cost function, which is an increasing function of queue length.
The objective is to find a scheduling rule that minimizes the average cost over time. We consider two

scenarios: (1) The cost functions are linear, and packets arrive to the queues according to a Poisson
process; (2) The cost functions are increasing, convex and there are no new arrivals (draining problem). In

each case, we transform the system model into a different model that fits into a framework for stochastic
scheduling developed by Klimov. Applying Klimov’s results, we show that the optimal schedulers for

the transformed models in both scenarios are specified by fixed priority rules. Applying the inverse

transformation in each case gives the optimal scheduling policy for the original problem. The priorities
can be explicitly computed, and in the first scenario, are given by simple closed-form expressions. For

the draining problem, we show that the optimal policy never interrupts the retransmissions of a packet.
We also show that a simple myopic scheduling policy, called the U

′
R rule, performs very close to

the optimal scheduling policy in specific cases. We present numerical examples, which compare the
performance of the optimal scheduling rule with several heuristic rules.

Index Terms

Stochastic Scheduling, Hybrid ARQ

I. INTRODUCTION

Scheduling in wireless networks has received considerable attention as a means for providing

high speed data services to mobile users. A basic feature in wireless settings is that the channel
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quality varies across the user population due to differences in path-loss, as well as fading effects.

Knowledge of each user’s channel quality can be exploited when making scheduling decisions. A

variety of such “channel aware” scheduling approaches have been studied recently (e.g., [1]–[6]),

and have been incorporated into recent wireless standards.

In this paper, we study scheduling in a wireless network taking into account packet retransmis-

sions. Link layer retransmissions are essential for providing reliability over error prone wireless

links. Traditionally, this is accomplished via a standard ARQ (automatic repeat request) protocol,

where, if a packet cannot be decoded it is discarded and retransmitted again. Most of the prior

work on wireless scheduling either does not consider retransmissions or considers this standard

ARQ approach (e.g., [7]). Here, we are interested in hybrid ARQ schemes [8], where the receiver

combines all transmissions of a packet to improve the likelihood of decoding success. A variety

of hybrid ARQ techniques have been proposed including diversity combining [9], other “code

combining” techniques [10], and incremental redundancy, based on code puncturing [11]. Some

recent work in this area includes [12]–[15]. Techniques based on hybrid ARQ are an integral part

of many recent wireless standards, such as the GSM EDGE system [16]. For our purposes, the

key characteristic of these approaches is that each transmission attempt increases the probability

of decoding success. The dependance of the probability of decoding success on the number of

transmission attempts will vary among the users, depending on their channel conditions. We

develop scheduling rules that take this into account.

A goal of any wireless scheduling scheme is to balance the users’ Quality of Service (QoS)

requirements. Here we represent each user’s QoS requirements via a holding cost that is an

increasing function of the user’s queue length (or equivalently, a “utility” function that is

decreasing with the queue length). Our goal is to schedule transmissions to minimize the overall

cost. Varying each user’s cost function enables the system to trade off fairness for throughput,

and provides a general framework for scheduling heterogeneous traffic requests. Prior work on

scheduling, which assumes a linear or quadratic cost function that depends on the packet delay,

is presented in [17]–[20]. Arbitrary increasing delay cost functions have been studied in [19]–

[23]. For general cost functions, most authors have focused on developing bounds or heuristic

policies. However, in [22], [23], a generalized cµ rule is shown to be optimal for general convex

delay cost in the heavy traffic regime. Here, we consider cost functions that depend on the queue

length, instead of the delay of the individual packet. From Little’s Law [24], this cost function
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reflects the average delay of the user’s packet with stationary traffic.

We assume a slow fading environment, which highlights the tradeoff between scheduling

efficiency and fairness. This tradeoff can be controlled by the choice of cost function. We

remark that our analysis also applies to a fast fading environment in which the sequence of

channel states for each user, indexed by scheduling slots, is i.i.d., and scheduler decisions are

based on the first-order distribution of channel states. (Of course, this channel model is only

reasonable when the channel appears ergodic over the time-scale of scheduling.)

Given a set of user cost functions and Poisson packet arrivals, determination of the optimal

scheduler with hybrid ARQ can be formulated as a Markov decision process and solved via

dynamic programming. In general, the solution is complicated and provides little guidance for

designing a practical scheduler. To gain insight, we therefore consider two special scenarios of

practical interest: (i) linear cost functions with Poisson packet arrivals (linear Poisson arrival

(LPA) scheduling problem), and (ii) general nonlinear increasing convex costs with no new

arrivals (draining convex (DC) scheduling problem). In both cases our goal is to schedule

transmissions to minimize the average cost per packet. Linear cost functions can take into account

relative priorities by assigning different weights to the different queues.1 (If the weights are the

same, then the performance metric becomes total throughput.) Nonlinear cost functions include

linear cost functions with a cost that is independent of the number of retransmissions as a special

case, and can capture different types of delay requirements such as deadlines.

We show that both scheduling problems can be transformed into special cases of a classic

scheduling problem solved by Klimov [25]. As a consequence, the optimal schedulers for the

transformed system in both scenarios are specified by fixed priority rules. We can then map

the priority rules back to get the optimal scheduling policy for the original problem. These

priorities can be explicitly computed, and for the LPA problem, are given by simple closed-form

expressions. Casting the DC problem into the Klimov framework requires a more complicated

transformation. Applying Klimov’s results gives an iterative algorithm for computing the priority

indices. We show that the optimal policy never interrupts retransmissions of a packet in order

to transmit another packet. We also formulate the DC problem as a Markov decision process,

1In our case, linear cost implies a weighted combination of queue length and number of retransmissions for the Head of Line

packet.
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and show that the priority increases with queue length.

Finally, we consider a simple myopic scheduling policy called the U ′R rule, which takes both

the channel condition and cost function into consideration [26]. We give scenarios for which

the U ′R rule performs close to the optimal policy. We also give a numerical comparison of the

performance of the optimal rule with other heuristic policies.

The rest of the paper is organized as follows. In Sect. II we describe the system model, and

we briefly review the Klimov scheduling model [25] in Sect. III. Solutions to the LPA and

DC problems are presented in Sects. IV and V, respectively. Sect. VI presents some numerical

examples, and conclusions are presented in Sect. VII.

II. SYSTEM MODEL

We consider a set of N mobile users served by a single base station or access point. Our focus

is on downlink traffic (from the base station to the users). As shown in Fig. 1, packets for each

user arrive at the base station according to independent random processes, and are accumulated

in N queues until they are served. The base station transmits to one user at a time in slots of

fixed durations. In each slot, a scheduler decides which packet to transmit. We assume that the

scheduler is restricted to choosing a Head of Line (HoL) packet from one of the queues.

Scheduler

PSfrag replacements
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A2(n)

AN(n)

x1(n)

x2(n)

xN (n)

rHoL
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rHoL
2 (n)

rHoL
N (n)

Fig. 1. System Model

When the receiver is unable to decode a transmission successfully, the packet stays at the HoL,

and is retransmitted until it is decoded successfully. We ignore feedback delay, i.e., the packet

becomes immediately available for retransmission after decoding failure [14]. This approximates
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the case when the feedback delay is small compared to the transmission time of a packet. Given

that a packet for user i has not been successfully decoded in ri transmission attempts, let gi (ri)

denote the probability of decoding failure for the next transmission. This depends on the specific

hybrid ARQ scheme, and on user i’s channel conditions. We assume that gi (·) is time-invariant.

This is reasonable in a slow fading environment, where each user’s channel is constant over

the time-scale of interest. An empirical method to estimate gi (·) in this case is presented in

[12]. We remark that a time-invariant gi (·) also applies to the fast fading situation in which the

sequence of channel states over slots for each user is i.i.d. In that case, gi (·) is averaged over

the first-order channel distribution.

We also assume that gi (·) is nonincreasing in the number of transmission attempts ri, i.e.,

gi (ri) ≥ gi (r
′
i) for all ri ≤ r′i. This will be satisfied by any reasonable hybrid ARQ approach.

To simplify our analysis, we assume that there is a maximum number of transmission attempts

rmax
i for user i, and that gi(r

max
i ) = 0, i.e., a packet is always successfully decoded after rmax

i +1

transmissions2. Note that the special case gi (ri) = gi (0) for all ri models standard ARQ.

Let Ai (n) denote the arrivals for user i during the nth slot, which is independent of the arrivals

for the other users. Let S(n) =
(

rHoL
1 (n) , ..., rHoL

N (n) ; x1 (n) , ..., xN (n)
)

be the state vector at

the nth decision epoch (i.e., the start of the nth time-slot), where rHoL
i (n) ∈ {0, 1, ..., rmax

i } is

the number of transmission attempts for the ith HoL packet, and xi(n) ∈ {0, 1, ...} is the queue

length for user i.

Given S (n), the scheduler must determine which HoL packet should be transmitted in the

nth slot. A scheduling policy π is defined to be a mapping from each state vector to an index in

{0, 1, ..., N}. If π (S (n)) = i, the scheduler transmits the HoL packet of queue i; if π (S (n)) =

0, the scheduler idles and no packet is transmitted. Given a policy π, the state S (n) evolves

according to

rHoL
i (n + 1) =























0, π (S (n)) = i and success

rHoL
i (n) + 1, π (S (n)) = i and failure

rHoL
i (n), π (S (n)) 6= i,

(1)

2Equivalently, after the last transmission attempt the packet is dropped; the cost function can be modified to reflect a penalty

for this occurrence.
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and

xi(n + 1) =











xi (n) + Ai (n) − 1, π (S (n)) = i and success

xi(n) + Ai(n), otherwise.
(2)

Here “success” and “failure” refer to the decoding outcome for the given transmission. We

restrict ourselves to the set of feasible policies Π, which contains all nonidling, nonpreemptive,

nonanticipative, and stationary policies.3

Each user i has cost function Ui(xi(n), rHoL
i (n)) associated with the start of the nth slot. This

cost function is increasing and convex in xi(n), i.e., for x1 > x2, Ui (x1, y) > Ui (x2, y) , and
∂Ui(x,y)

∂x
|x=x1

> ∂Ui(x,y)
∂x

|x=x2
(assuming Ui(xi(n), rHoL

i (n)) is differentiable at xi(n) = x1 and

xi(n) = x2). We assume that Ui(0, 0) = 0, i.e., there is no holding cost for an empty queue.

Different cost functions reflect different QoS requirements or priorities for the users.

We consider two scenarios. In the LPA problem, to be discussed in Section IV, packets arrive

to the queues according to independent Poisson processes with rates λi, i = 1, · · · , N . The cost

function for user i is linear 4, and is given by

Ui(xi (n) , rHoL
i (n)) =







ci,0 (xi (n) − 1) + ci,rHoL
i (n) , xi (n) > 0

0 , xi (n) = 0
, (3)

where ci,ri
is the holding cost rate (cost per unit time per packet) for a packet of user i with ri

transmission attempts. For all i

0 ≤ ci,ri
≤ ci,r′

i
, ri < r′i, (4)

which means the more transmission attempts, the higher the holding cost. The LPA problem is

to find π ∈ Π that minimizes the long-term average expected cost

JLPA = lim
τ→∞

1

τ
Eπ

[

τ
∑

n=1

N
∑

i=1

Ui(xi(n), rHoL
i (n))

]

. (5)

In the second scenario, discussed in Sect. V, we consider a draining problem with no new

arrivals (i.e., Ai (n) = 0 for all i and n). In this case we allow the cost to be an arbitrary

increasing convex function of the queue length, and independent of the number of transmission

3A policy is nonpreemptive if the transmission of a packet is not interrupted by an arrival, and is nonanticipative if it does

not account for future decoding results or arrivals.

4More precisely, this is a linear affine cost function, because of the additive constant associated with the HoL packet.
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attempts, i.e., Ui

(

xi (n) , rHoL
i (n)

)

= Ui(xi(n)). We refer to this as the Draining Convex (DC)

problem. Given an initial batch of packets (x1 (1) , ..., xN (1)), the goal is to find π ∈ Π, which

minimizes the total expected draining cost, i.e.,

JDC = Eπ

[

∞
∑

n=1

N
∑

i=1

Ui(xi(n))

]

. (6)

This can also be interpreted as a model for a system with correlated batch arrivals [27], where

the inter-arrival time is long enough to finish each batch before the arrival of a new batch. (An

example application is simultaneous downloads to multiple users.)

The need to track the number of transmission attempts of every HoL packet complicates the

scheduling. Our analysis is based on the Klimov model [25], described next.

III. KLIMOV MODEL

The Klimov model [25] has a single non-preemptive server, which is allocated to the jobs in

a network of K M/G/1 queues. Jobs arrive according to a Poisson process with rate λ, and

are assigned to queue m with probability pm, where
∑K

m=1 pm = 1. The service time for a job

at queue m (m = 1, .., K) has distribution function Bm(x), and finite mean bm. After service

completion at queue m, a job enters queue j (j = 1, ..., K) with probability pmj , or leaves

the system with the probability 1 −
∑K

j=1 pmj . The transition matrix P = [pmj, 1 ≤ m, j ≤ K]

is such that every job eventually leaves the system, i.e., limn→∞ P n = 0. The arrival rate is

assumed to not exceed the processing capacity of the system, i.e., λp(I − P )−1b < 1, where

p = (p1, ..., pK) and b = (b1, ..., bK)′ 5.

The objective is to find a feasible scheduling policy π that minimizes a linear combination of

the time-averaged number of jobs at each queue,

JKM = lim
τ→∞

1

τ
Eπ

[
∫ τ

0

K
∑

m=1

cmxm(t)dt

]

, (7)

where xm (t) is the number of jobs in queue m at time t and cm ≥ 0 is a (linear) holding cost

rate for queue m.

The optimal scheduling policy is a fixed-priority rule [25]. This means that a time-invariant

priority index can be calculated for each queue, which is independent of the arrival process and

5( � )′ denotes the transpose of � .
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queue lengths. At each decision epoch, the server serves a job from the nonempty queue with

the highest priority.

The optimal priority indices can be calculated via an iterative algorithm [25], which starts

from the set of queues Ω = {1, 2, ..., K} and selects the lowest priority queue at each iteration.

Given a subset of queues M ⊂ Ω, the priority for queue m ∈ M is determined by C
(M)
m /T

(M)
m ,

where C
(M)
m is the equivalent holding cost rate, and T

(M)
m is the average total service time (not

including waiting time) for a job in queue m (i.e., until it exits from M ). Since the service times

are independent, for each m ∈ M ,

T (M)
m =

∑

j∈M

pmjT
(M)
j + bm. (8)

The optimal priority indices are computed by the following Klimov algorithm:

1) Initialization: MK = Ω, C
(MK)
m = cm for all m ∈ MK , k = K.

2) Find a queue αk with lowest priority, i.e.,

αk = arg min
m∈Mk

{

C
(Mk)
m

T
(Mk)
m

}

, (9)

with ties broken arbitrarily.

3) Mk−1 = Mk−{αk}

4) If Mk−1 = φ (null set), then stop. Otherwise, for each m ∈ Mk−1, compute

C(Mk−1)
m = T (Mk)

m

[

C
(Mk)
m

T
(Mk)
m

−
C

(Mk)
αk

T
(Mk)
αk

]

. (10)

Decrement k and go to step 2.

In this way, the queues are ordered in descending priorities, α1 ≥ α2 ≥ · · · ≥ αK , where

(α1, α2, ..., αK) is a permutation of queue indices (1, 2, ..., K). The optimal policy π always

assigns the server to the nonempty queue αk with the smallest index k. Moreover, this scheduler

minimizes the total holding cost for each busy period of the system, starting from any initial

state [28].

When discussing the DC problem, we consider a variation of the Klimov model, which we

call the Draining Klimov model. In this case the goal is to find a policy, which minimizes the

total expected holding cost for a batch of packets initially in the system with no new arrivals.

The priority rule specified by the Klimov algorithm is also optimal for the draining model, since

the scheduler minimizes the total holding cost of each busy period. In other words, the draining

problem can be viewed as a special busy period with no further arrivals.
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IV. THE LPA SCHEDULING PROBLEM

In this section we reformulate the LPA scheduling problem as a special case of Klimov’s

problem, which we refer as the LPAK scheduling problem. We will show that the optimal

scheduling policy for the LPAK problem is also optimal for the LPA problem.

A. LPAK Scheduling Problem

The LPAK problem is a relaxation of LPA with respect to the service discipline. In LPA,

there is one queue for each user i, and the HoL packet in a queue has priority over all the other

packets in the queue. The LPAK problem is illustrated in Fig. 2 for two users with rmax
1 = 2

and rmax
2 = 1. There are rmax

i + 1 queues for each user i, and each queue is labelled by (i, ri)

for ri = 0, ..., rmax
i , where ri is the number of transmission attempts for all packets in the queue.

There are a total of K =
∑N

i=1(r
max
i + 1) queues. For the example in Fig. 2, K = 3 + 2 = 5.

At each decision epoch, the server decides which of the K HoL packets to serve. Because of

the additional queues in the LPAK problem, the HoL packet corresponding to a particular user

(in the original LPA problem) does not necessarily have priority over the user’s other packets.

This relaxation makes LPAK a standard Klimov problem. Subsequently, we will show that the

optimal scheduling rule for LPAK still gives priority to the user’s HoL packet.

(1,0)

(1,1)

(1,2)

(2,0)

(2,1)

PSfrag replacements

λ1

λ2

1 − g1(0)

g1(0)
1 − g1(1)

g1(1)

1 − g2(0)

g2(0)

1

1

Fig. 2. LPAK System Model

The arrival process is Poisson with rate λ =
∑N

i=1 λi, and each packet is assigned to queue

(i, 0) with probability pi,0 = λi/λ. The service time for each queue (i, ri) is deterministic with

bi,ri
= 1 time slot. The transition probabilities among queues are determined by the probability
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of decoding failure. That is, after a packet from queue (i, ri), ri < rmax
i , has been served, it enters

queue (i, ri + 1) with probability p(i,ri),(i,ri+1) = gi(ri), corresponding to a decoding failure, or

leaves the system with probability 1−gi(ri), corresponding to a decoding success. After a packet

from queue (i, rmax
i ) has been served, it leaves the system with probability 1. Thus

p(i,ri),(j,rj) =







gi (ri) , ri < rmax
i , (j, rj) = (i, ri + 1)

0 , otherwise
(11)

For any set M ⊂ Ω = {1, · · · , K} and (i, ri) ∈ M , the average total service time is

T
(M)
i,ri

=
∑

(j,rj)∈M

p(i,ri),(j,rj)T
(M)
j,rj

+ 1. (12)

The holding cost rate of queue (i, ri) is c
i,ri

, and the number of packets in queue (i, ri) at

the nth decision epoch is xi,ri
(n). The goal is to find a policy π ∈ Π, which minimizes the

time-averaged expected cost

JLPAK = lim
τ→∞

1

τ
Eπ





τ
∑

n=1

∑

(i,ri)∈Ω

ci,ri
xi,ri

(n)



 . (13)

B. Optimal Policies for the LPAK and the LPA Scheduling Problems

For the LPAK scheduling problem, the optimal priority indices can be calculated iteratively

using the Klimov algorithm in Sect. II. Consider this algorithm with the following rule used to

break any ties that occur in (9): when a tie occurs, set αk to be the queue (i, ri) such that for

all other queues (j, rj) in the tie, j > i, or j = i and rj > ri.

Lemma 1: Let Mk, k = 1, 2, ..., K, be the sets generated by applying the Klimov algorithm

to the LPAK problem with the preceding tie-breaking rule. For each k = 1, ..., K and for all

(i, ri) ∈ Mk the following properties hold:

(a) (i, r′i) ∈ Mk, for all r′i > ri.

(b) T
(Mk)
i,ri

= 1 +
∑rmax

i −1
j=ri

j
∏

l=ri

gi(l) = T
(Ω)
i,ri

.

(c) T
(Mk)
i,r′i

≤ T
(Mk)
i,ri

for all r′i > ri.

(d) αk = arg min
(i,ri)∈Mk

ci,ri

T
(Ω)
i,ri

.

Property (a) shows that each set Mk is a “threshold set”, i.e., for each user i there is a threshold

r∗i such that (i, r′i) ∈ Mk if and only if r′i ≥ r∗i . Property (b) shows that T
(Ω)
i,ri

only depends on

gi(r
′
i) for r′i ≥ ri, and therefore only depends on the presence of queues (i, r ′

i), r′i ≥ ri, in the
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set Mk. Thus T
(Mk)
i,ri

= T
(Ω)
i,ri

for every k and every (i, ri) ∈ Mk, i.e., the service times are fixed

for each iteration. Property (c) states that the service times T
(Mk)
i,ri

are non-increasing in ri. This

follows directly from (b). Property (d) states that the optimal priority order can be calculated

directly without any iterations. From (b), the equivalent holding cost in (10) can be written as

C
(Mk)
i,ri

= ci,ri
− T

(Ω)
i,ri

K
∑

l=k+1

C
(Ml)
αl

T
(Ml)
αl

. (14)

From this we have that
C

(Mk)
i,ri

T
(Mk)
i,ri

=
ci,ri

T
(Ω)
i,ri

−

K
∑

l=k+1

C
(Ml)
αl

T
(Ml)
αl

(15)

and (d) follows. A detailed proof is omitted.

Theorem 1: For the LPAK scheduling problem, the optimal scheduling policy is a fixed

priority rule in which the priorities, α1, α2, · · · , αK , satisfy

cα1

T
(Ω)
α1

≥
cα2

T
(Ω)
α2

≥ · · · ≥
cαK

T
(Ω)
αK

. (16)

This follows from the main theorem in [25] and Lemma 1.

To derive the optimal LPA scheduler, let R =
(

rHoL
1 , rHoL

2 , ..., rHoL
N

)

denote the vector of

retransmission attempts for HoL packets across the N queues. Let Ti,rHoL
i

be the expected total

service time for user i’s HoL packet (not including any waiting time) until it exits the system,

which is given by

Ti,rHoL
i

= 1 +

rmax

i −1
∑

j=rHoL
i

j
∏

l=rHoL
i

gi(l). (17)

Corollary 1: For the LPA scheduling problem, the optimal scheduling rule is to transmit

the HoL packet with the highest priority index ci,rHoL
i

/Ti,rHoL
i

among all nonempty queues.

Furthermore, the optimal policy is a monotonic threshold policy on the number of transmission

attempts, i.e., if it is optimal to transmit user i when R =
(

rHoL
1 , .., rHoL

i , .., rHoL
N

)

, then it is

optimal to transmit user i when rHoL
i is replaced by r′HoL

i > rHoL
i .

Proof: See the Appendix.

The optimal LPA scheduling rule depends on the set of holding cost rates ci,ri
, the number

of transmission attempts rHoL
i , and the probability of decoding success gi (·) (i.e., the channel

condition) across all users. A higher cost rate, more transmission attempts or a better channel

results in a higher priority. Notice that scheduling decisions do not explicitly depend on the

arrival processes or queue lengths, although the latter affect the holding costs.
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Computing the priority indices via the Klimov algorithm generally requires K iterations with

computational complexity of O (K2). For the LPA problem, due to the special structure of the

transition matrix and the deterministic service times, we obtain simple closed-form formulas for

the priority indices with associated complexity O(K). This may be suitable for on-line scheduling

with time-varying channel conditions.

We illustrate the optimal scheduling policy with some numerical examples. Consider a system

with N = 2 users, and probability of decoding failure

gi (ri) =







ηi · 0.5
ri ; 0 ≤ ri < rmax

i

0 ; ri = rmax
i

, (18)

for i = 1, 2. That is, the initial probability of decoding failure is ηi, and is reduced by a half with

each retransmission until ri = rmax
i . This type of exponentially decreasing gi (ri) is motivated

by numerical results in [12].

Fig. 3 shows the optimal scheduling policy as a function of the number of transmission

attempts for each user. Parameters are (η1, r
max
1 ) = (0.02, 5), (η2, r

max
2 ) = (0.1, 5), c1,r1

= 1

(for all r1) and c2,r2
= 1.01 (for all r2). In this case, user 1 has the better channel, but has a

slightly lower holding cost than user 2. As stated in Corollary 1, the optimal scheduling policy

is a monotonic threshold policy on rHoL
i (i = 1, 2); the threshold is shown by the solid line in

Fig. 3. Comparing this with the dash dotted line rHoL
1 = rHoL

2 = r, when r is small (r ≤ 3), user

1 has priority because of the better channel (smaller Ti,r). However, when r is large (r > 3),

user 2 has priority. The reason is that gi (r) is very small, which makes Ti,r very close to 1 for

both users. Thus the difference between the cost rates ci,r is the main factor in determining the

priority order.

Fig. 4 shows the optimal priority orders vs. the holding cost rate of user 2. In this case, both

users have the same channel conditions (η1, r
max
1 ) = (η2, r

max
2 ) = (0.05, 2). There are six types

of packets in the system, (i, ri), i = 1, 2, ri = 0, 1, 2, and their priorities are ordered from 1

(highest) to 6 (lowest). The holding cost rates for user 1 are c1,0 = 0.98, c1,1 = 1 and c1,2 = 1.02.

The holding cost rates for user 2 are c2,0 = c2,1 = c2,2 , c2, which varies from 0.91 to 1.11.

Fig. 4 shows that the packet priorities increase with ri. This reflects the fact that the HoL packet

has priority over the other user’s packets. At c2 = 0.91, user 1 has priority over user 2. Hence

a new packet arrival for user 1 has priority over a retransmission from user 2. Of course, as c2

increases, the priorities for user 2 increase from lowest (4, 5, 6) to highest (1, 2, 3).
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Fig. 3. The optimal scheduling policy as a function of the transmission attempts for two users in the LPA problem. A dot

(circle) means it is optimal to transmit the HoL packet for user 1 (user 2).

V. THE DC SCHEDULING PROBLEM

For the DC problem, the cost function can be nonlinear, which precludes a direct association

with the Klimov model. We circumvent this difficulty by again transforming the problem into a

related Klimov problem with more queues. We refer to the latter problem as the DCK (Draining

Convex Klimov) scheduling problem. Applying the Klimov algorithm, we show that it is not

optimal to interrupt the retransmission of a packet. We then formulate the DC problem with

two users as a Markov Decision Process (MDP), and show that the optimal scheduling rule is

a monotonic threshold policy on the queue lengths.

A. DCK Scheduling Problem

We construct a mapping between the DC and DCK models. Let Ai be the number of user i’s

packets initially in the system in the DC model. Each queue in the DC model is replaced by

Ki = (rmax
i + 1)Ai queues in the DCK model. Assume, for the DC model, that at time n user i’s

queue length is xi (n) > 0 with holding cost Ui (xi (n)), and the number of transmission attempts

of the HoL packet is rHoL
i (n). In the DCK model, this corresponds to there being one packet

in the queue
(

i, rHoL
i (n) , xi (n)

)

with linear holding cost rate ci,rHoL
i (n),xi(n) = Ui (xi (n)), and

13
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no packets in any of the other Ki − 1 queues corresponding to user i.

Let Ω denote the set of all K =
∑N

i=1 Ki queues in the DCK model. The service time for

each queue (i, ri, xi) ∈ Ω is still deterministic with bi,ri,xi
= 1. Suppose that user i’s HoL

packet is transmitted during slot n (DC model). Then in the DCK model, the correspond-

ing packet in queue
(

i, rHoL
i (n) , xi (n)

)

either (i) enters queue
(

i, rHoL
i (n) + 1, xi (n)

)

with

probability gi

(

rHoL
i (n)

)

(decoding fails), (ii) enters queue (i, 0, xi (n) − 1) with probability

1 − gi

(

rHoL
i (n)

)

(decoding succeeds and xi (n) > 1), or (iii) leaves the system (ri = rmax).

The transition probabilities in the DCK model are therefore given by:

p(i,ri,xi),(j,rj ,xj) =



















gi (ri) , ri < rmax
i , (j, rj, xj) = (i, ri + 1, xi)

1 − gi (ri) , xi > 1, (j, rj, xj) = (i, 0, xi − 1)

0 , otherwise

(19)

For any set M ⊂ Ω and queue (i, ri, xi) ∈ M, the average total service time is

T
(M)
i,ri,xi

=
∑

(j,rj ,xj)∈M

p(i,ri,xi),(j,rj ,xj)T
(M)
j,rj ,xj

+ 1. (20)

The DCK scheduling problem is to find a scheduling policy π ∈ Π that minimizes the total

expected holding cost for draining all the packets, i.e.,

JDCK = Eπ





∞
∑

n=1

∑

(i,ri,xi)∈Ω

1i,ri,xi
(n) Ui (xi)



 . (21)
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where

1i,ri,xi
(n) =







1, (i, ri, xi) is nonempty in slot n

0, (i, ri, xi) is empty in slot n
. (22)

The DCK problem is therefore a special case of Klimov’s scheduling problem. Hence, we

can apply the Klimov algorithm to calculate the optimal priorities, which in turn solves the DC

problem.

Unlike the LPA problem, for the DC problem the priorities cannot be computed in closed-form.

However, we can characterize some basic properties of the optimal policy.

B. Properties of the Optimal Scheduler

As in Sect. IV-B, consider the Klimov algorithm with the following rule to break any tie that

occurs in (9): set αk = (i, ri, xi) so that for all other queues (j, rj, xj) in the tie, j > i.

Lemma 2: Let Mk, k = 1, ..., K, be the sets generated by applying the Klimov algorithm to

the DCK problem with the preceding tie-breaking rule. For each k, for all (i, ri, xi) ∈ Mk, and

for all r′i > ri, the following properties hold:

(a) (i, r′i, xi) ∈ Mk.

(b) T
(Mk)
i,r′

i
,xi

≤ T
(Mk)
i,ri,xi

.

(c) C
(Mk)
i,r′i,xi

≥ C
(Mk)
i,ri,xi

.

Property (a) shows that each set Mk is a “threshold set”, i.e., for each user i and queue

length xi there is a threshold r∗i such that (i, r′i, xi) ∈ Mk if and only if r′i ≥ r∗i . Although

there is no direct relationship between T
(Mk)
i,ri,xi

and T
(Ω)
i,ri,xi

as in the LPAK problem, (b) states that

T
(Mk)
i,ri,xi

is still nonincreasing in ri. Property (c) states that the equivalent holding cost rate C
(Mk)
i,ri,xi

is nondecreasing in ri. This follows from the monotonicity and convexity of Ui (·). A detailed

proof is omitted.

Theorem 2: The optimal DCK scheduler assigns queue (i, r′i, xi) higher priority than queue

(i, ri, xi) for all i, xi, and r′i > ri.

Proof: Suppose queue (i, ri, xi) has a higher priority than that for queue (i, r′i, xi) where

r′i > ri. Then there exist a k such that (i, ri, xi) ∈ Mk but (i, r′i, xi) /∈ Mk, which contradicts

property (a) of Lemma 2.

Corollary 2: Once the optimal DC scheduler starts to transmit a packet to user i, it continues

to transmit the packet until it is successfully decoded.
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Proof: Assume that at time n, the DC scheduler transmits a new packet to user i with

queue length xi (n). In the DCK problem this corresponds to queue (i, 0, xi (n)) having the

highest priority among all nonempty queues. If decoding fails, the packet leaves (i, 0, xi (n))

and enters (i, 1, xi (n)) at time (n + 1). According to Theorem 2, (i, 1, xi (n)) has higher priority

than (i, 0, xi (n)). Since the priorities of all other packets in the DCK problem remain unchanged,

(i, 1, xi (n)) must have the highest priority at time (n + 1). Iterating this argument, user i has the

highest priority until the corresponding DCK “packet” enters (i, 0, xi (n) − 1) (or if xi(n) = 1,

the packet leaves the system). This corresponds to transmitting the HoL packet for user i until

it is successfully decoded.

Note that Corollary 2 is not true for the LPA problem, as shown in Fig. 4. The key difference

here is that there are no arrivals which can change the priority orders among the users during

a retransmission. Another difference is that the DC optimal scheduler depends on the queue

lengths in a complicated way, which depends on the specific choice of cost function.

C. Markov Decision Formulation

In this section, we formulate the DC problem as an MDP. To simplify the discussion, we

consider only 2 users. The system state space is S = {(r1, r2, x1, x2) |0 ≤ ri ≤ rmax
i , 0 ≤ xi ≤

Ai, i ∈ {1, 2}}. The action space is V = {v0, v1, v2}, where v0 represents idling (if there is no

packet in the system), and vi represents transmitting the HoL packet of user i, i = 1, 2.

The scheduling problem can be formulated as a stochastic shortest path problem over an

infinite time horizon [29]. Let J (r1, r2, x1, x2) denote the optimal cost-to-go starting from

state (r1, r2, x1, x2). This must satisfy the Bellman’s equation [29], which gives the following

conditions:

1) If x1 = x2 = 0, then J(0, 0, 0, 0) = 0.

2) If x1 > 0 and x2 = 0, then

J(r1, 0, x1, 0) = U1(x1) + [1 − g1(r1)]J (0, 0, x1 − 1, 0) + g1(r1)J (min(r1 + 1, rmax
1 ), 0, x1, 0) .

3) If x1 = 0 and x2 > 0, then

J(0, r2, 0, x2) = U2(x2) + [1 − g2(r2)]J (0, 0, 0, x2 − 1) + g2(r2)J (0, min(r2 + 1, rmax
2 ), 0, x2) .
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4) If x1 > 0 and x2 > 0, then

J(r1, r2, x1, x2) = U1(x1) + U2(x2) + min{[1 − g1(r1)]J(0, r2, x1 − 1, x2)

+ g1(r1)J(min(r1 + 1, rmax
1 ), r2, x1, x2), [1 − g2(r2)]J(r1, 0, x1, x2 − 1)

+ g2(r2)J(r1, min(r2 + 1, rmax
2 ), x1, x2)}.

Note that it is never possible for xi = 0 and ri > 0.

Lemma 3: The optimal cost-to-go has the following property:

[1 − g2(r2)]J(r1, 0, x1, x2 − 1) + g2(r2)J(r1, min(r2 + 1, rmax
2 ), x1, x2)

− [1 − g1(r1)]J(0, r2, x1 − 1, x2) − g1(r1)J(min(r1 + 1, rmax
1 ), r2, x1, x2)

is nondecreasing in x1 and x2, respectively, for x1 > 0 and x2 > 0.

This can be proved using induction combined with value iteration [29]. We omit the details.

Theorem 3: The optimal DC scheduling policy is a monotonic threshold policy with respect

to the queue lengths, i.e., if it is optimal to transmit to user i in state (r1, r2, x1, x2), then it is

optimal to transmit to user i in state (r1, r2, x
′
1, x

′
2) for x′

i > xi and x′
j = xj (j 6= i).

This follows from Lemma 3. We omit the detailed proof.

Fig. 5 shows the optimal policy for two users, calculated via value iteration [29], and illustrates

the monotonicity property in Theorem 3. Both users have the same cost functions U1 (x) =

U2 (x) = x1.1, and the initial queue lengths are A1 = A2 = 10. The channel parameters are

(η1, r
max
1 ) = (0.04, 3) and (η2, r

max
2 ) = (0.1, 3). Since user 1 has a better channel than user 2, in

most cases user 1 has higher priority than user 2.

Although here we only consider a two-user system, we have observed that the property stated

in Theorem 3 applies to the M(> 2)-user systems simulated in our numerical studies.

VI. NUMERICAL RESULTS

In this section, we compare the optimal LPA and DC scheduling policies with three simple

policies, which select the HoL packet of user i∗ as follows:

• U ′R rule: i∗U ′R = arg max
1≤i≤N

U ′
i (xi (n)) [1 − gi (ri(n))], where U ′ (·) is the derivative of the

cost function6. This rule takes into account both the user’s marginal cost and expected

6For the LPA problem, where Ui (·) is given by (3), we set U ′

i (·) = ci,rHoL

i

; This represents the decrement of cost by

successfully transmitting and decoding of the HoL packet.
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Fig. 5. The optimal scheduling policy as a function of the queue lengths for two users in the DC problem. A dot (circle)

means it is optimal to transmit the HoL packet for user 1 (user 2).

transmission rate, which depends on gi (·) [26].

• Max U ′ rule: i∗MaxU ′ = arg max
1≤i≤N

U ′
i (xi (n)). This rule takes into account only the user’s

marginal cost, and ignores channel conditions and number of transmissions attempts. This

could model a situation where the scheduler has no channel information available.

• Max R rule: i∗MaxR = arg max
1≤i≤N

(1−gi (ri (n)). This rule maximizes the expected transmis-

sion rate without regard to relative costs.

Fig. 6 shows total average cost for the preceding policies, applied to the LPA problem, as a

function of user 2’s cost rate c2,r2
, c2 (for each r2). Here the cost rate for user 1 is c1,r1

= 1

for each r1. The channel parameters are (η1, r
max
1 ) = (0.01, 3) and (η2, r

max
2 ) = (0.4, 3), so that

user 1 has a better channel than user 2.

In Fig. 6, the U ′R rule performs nearly the same as the optimal rule. When c2 is small (close

to c1), scheduling decisions are determined primarily by the difference in channel conditions. In

this region, the Max R rule is nearly optimal, and the Max U ′ rule performs significantly worse

(up to 20% higher cost). When c2 is large, scheduling decisions are determined primarily by the

difference in holding cost rates. In this region, the Max U ′ rule is nearly optimal, while the Max

R rule performs significantly worse (up to 15% higher cost).
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Fig. 6. Comparison of the optimal and heuristic scheduling policies in the LPA problem

To understand why the U ′R rule performs well, consider standard ARQ, which is a special

case of our problem with gi (ri) = gi (0) for all ri and rmax
i = ∞. In this case

ci,rHoL
i

Ti,rHoL
i

=
ci,rHoL

i

1 +
∑rmax

i −1

j=rHoL
i

j
∏

l=rHoL
i

gi(l)

=
ci,rHoL

i
∑∞

l=0 (gi (0))l

= ci,rHoL
i

(1 − gi (0)) = ci,rHoL
i

(1 − gi

(

rHoL
i

)

). (23)

Hence, according to Corollary 1, the optimal rule is exactly the U ′R rule. For hybrid ARQ, this

is no longer true in general, but Fig. 6 shows that the difference in performance is negligible.

Fig. 7 compares the optimal DC scheduling policy with the preceding heuristic policies. In this

case, we plot the cost per packet vs. channel parameter η2. The cost functions are Ui (xi) = xκi

i

where κ1 = 1.05, and κ2 ∈ {1.08, 1.15}. The channel parameters are (η1, r
max
1 ) = (0.01, 2) and

rmax
2 = 4, i.e., user 1 has a better channel, but incurs less cost than user 2. The initial queue

lengths are A1 = A2 = 40. Results are shown for both values of κ2.

Fig. 7 shows that the U ′R rule performs quite close to the optimal policy. The relative

performance of the other policies depend on the users’ cost functions. When the cost functions are

relatively close (e.g., κ1 = 1.05 and κ2 = 1.08), scheduling decisions are determined primarily

by the probability of decoding success. In this region the Max R rule is nearly optimal (within

5%) and the Max U ′ rule performs significantly worse (up to 10% higher cost). On the other
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hand, when κ1 = 1.05 and κ2 = 1.15, scheduling decisions are determined primarily by the

difference between the cost functions. In that case, the Max U ′ rule is nearly optimal, and the

Max R rule performs significantly worse (up to 18% higher cost).

VII. CONCLUSIONS

We have considered channel-aware scheduling for wireless downlink data transmission with

hybrid ARQ. An optimal scheduler minimizes the total average cost, where the cost function

assigned to each user depends on queue length and the number of transmission times for the

HoL packet. We characterized the optimal scheduling policies in two situations by transforming

these problems so that they fit into the Klimov framework. Namely, with linear cost functions

and Poisson arrival processes, the optimal scheduling policy for the transformed problem is a

fixed-priority policy. The priority indices can be computed in closed-form, and increase with

the number of unsuccessful transmissions. A different transformation is used for the draining

problem with general increasing convex cost functions. The optimal scheduling rule for the

transformed problem is again a fixed-priority policy, but the priorities must be computed via

Klimov’s iterative algorithm. In that case, the priorities increase with queue length, and each

packet is transmitted continuously until it leaves the system.
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We also compared the optimal scheduler with a simpler myopic scheduling policy, the U ′R

rule, and showed that it is optimal without packet combining (standard ARQ). Through simula-

tion, we found that the U ′R rule performs very close to the optimal scheduler.

Our results assume that the scheduler knows the probability of a successful transmission.

This is reasonable in slow fading environments, where the channel is predictable over successive

retransmissions, and in fast fading environments where the channel statistics are stationary during

and across transmissions. Further work is needed to extend these types of results to more general

models of time-varying channels.

APPENDIX I

PROOF OF COROLLARY 1

In LPAK, for queues (i, ri) and (i, r′i) with ri < r′i, by property (c) of Lemma 1 and (4),

ci,ri
/T

(Ω)
i,ri

≤ ci,r′i
/T

(Ω)
i,r′i

. From Theorem 1, a packet in (i, r′i) has priority over a packet in (i, ri),

i.e., the priority of a packet is increasing with the number of transmission attempts. Thus there

can be at most one packet with ri > 0 for each user i, and this packet has priority over all the

user’s other packets. This packet corresponds to the HoL packet in the LPA problem. Therefore,

the optimal scheduling rule for LPAK is also optimal for LPA.

From Theorem 1, the queue with the highest ratio ci,ri
/T

(Ω)
i,ri

has the highest priority. By

definition, Ti,rHoL
i

= T
(Ω)

i,rHoL
i

, and so the HoL packet with the largest value of ci,rHoL
i

/Ti,rHoL
i

among all the nonempty queues has the highest priority.

Let ∆
(

rHoL
i

)

= ci,rHoL
i

/Ti,rHoL
i

. If rHoL
i is replaced by r′HoL

i > rHoL
i , then ∆

(

r′HoL
i

)

≥

∆
(

rHoL
i

)

, whereas ∆
(

rHoL
j

)

stays the same for all j 6= i. Hence ∆
(

r′HoL
i

)

≥ ∆
(

rHoL
j

)

for all

j 6= i, i.e., i has priority.
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