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Abstract— In this paper, we develop medium access control
protocols to enable users in a wireless network to opportunisti-
cally transmit when they have favorable channel conditions, with-
out requiring a centralized scheduler. We consider approaches
that use splitting algorithms to resolve collisions over a sequence
of mini-slots, and determine the user with the best channel. First,
we present a basic algorithm for a system with i.i.d. block fading
and a fixed number of backlogged users. We give an analysis of
the throughput of this system and show that the average number
of mini-slots required to find the user with the best channel is
less than 2.5 independent of the number of users or the fading
distribution. We then extend this algorithm to a channel with
memory and also develop a reservation based scheme that offers
improved performance as the channel memory increases. Finally
we consider a model with random arrivals and propose a modified
algorithm for this case. Simulation results are given to illustrate
the performance in each of these settings.

I. INTRODUCTION

Recently, “opportunistic scheduling” approaches have re-
ceived much attention as a means for exploiting the “multiuser
diversity” inherent in a wireless setting (e.g., [5–9]). These
approaches attempt to schedule transmissions during periods
when a user’s channel is “good” and hence can support a larger
transmission rate. This has a theoretical basis in work such as
[2], which shows that to maximize the ergodic capacity of a
multiple-access fading channel, only a single user with the best
channel state should transmit at any time. Such approaches
have been integrated into many recent standards, such as
Qualcomm’s High Data Rate (HDR) system (1xEV-DO) [4].

In this work, as in [2], we consider an uplink (multiple
access) model where a group of mobile users are commu-
nicating to a single receiver at base station or access point.
The approach in [2] requires a centralized scheduler with
knowledge of each user’s channel gain. This requires the
scheduler to acquire estimates of each users’ channel state
before making the scheduling decision; the overhead and delay
incurred in doing this may limit the system’s performance,
particularly if the number of active users is large or the
channels change rapidly. For example, suppose that each user
transmits an orthogonal signal (e.g. via TDMA), which the
base station uses to estimate their channel. As shown in the
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top portion of Fig. 1, the time it takes to measure all the
users’ channels will grow linearly with the number of users.
When the number of the users is large or the channel changes
fast, the time required to measure each channel and feedback
the scheduling decision may exceed the coherence time of
the channel, which will degrade the resulting performance.1

On the other hand, consider the distributed approach shown
in the lower part of Fig. 1. Here, the base station broadcasts
a pilot signal to all users, and each user measures its own
channel using this pilot signal (here we are assuming that the
up and downlink channels are symmetric, as in a time division
duplex (TDD) system).2 This approach only requires one-half
a round trip time and scales as the number of users increases.
Moreover, for a model with random arrivals, the centralized
scheduling scheme requires the base station to know when a
new user arrives and when an existing user leaves each time
in order to make the right decision. While with a distributed
scheduling approach, users can adapt themselves to changing
traffic patterns.

In this work, we consider distributed approaches, where
each user has knowledge of its own channel conditions, but
no knowledge of the other users’ channels. The transmission
decisions are individually made by each user based on their
local channel information. In prior work [3], we have shown
that multi-user diversity can still be exploited in a distributed
setting by using a simple variation of the slotted Aloha random
access protocol, called channel-aware Aloha. In this approach,
as in Aloha, users randomly transmit packets, but now the
transmission probabilities are based on the user’s channel
statistics. This is related to the decentralized power control
approach presented in [10] and the “opportunistic Aloha”
protocol studied in [11], [12]. For an all backlogged model, the
throughput using the channel-aware Aloha approach increases
at the same rate as the optimal centralized scheme which
transmits to the best user at any time. Asymptotically the ratio

1If users use a different approach, such as CDMA, to transmit the pilot
signals, we still need to ensure enough degrees of freedom are available to
support the number of users. Therefore similar scaling problems still exist.

2Also, this model is more appropriate when the channel variation is
determined primarily by multi-path fading and shadowing effects, and not by
interference from other users. For example, this will be the case in a wireless
LAN with a single access point or a cellular system with a sufficiently large
re-use factor.
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Fig. 1. Time scale of centralized and distributed channel measurement

of these two approaches is equal to 1
e . In other words, the only

penalty incurred due to distributed channel knowledge is due
to the contention inherent in the Aloha protocol. In this paper,
we consider a distributed splitting algorithm to reduce this
contention. A splitting algorithm is an approach that divides
the users involved in a collision into several subsets using
some tree-like mechanism [1], [13]. Only the user or users
in one of the subsets will transmit at the next time slot so
that the probability of collision is reduced. Some recent work
on splitting algorithms for wireless channels can be found in
[15], [16]. The splitting algorithm in this paper differs from
traditional splitting approaches in that the goal is not just to
resolve a collision but to find the user with the best channel
gain out of all backlogged users. By doing this, we show that
the throughput is improved and approaches the optimal value
as the channel’s coherence time increases. We also show that
with random arrivals, a splitting approach can improve the
delay and stability over the channel aware Aloha approach
studied in [3].

The rest of the paper is organized as follows. First, a split-
ting algorithm is developed for a block fading channel, where
the round-trip delay between each transmitter and receiver
is less than the channel’s coherence-time and all users are
backlogged. In Sect. III, we analyze the performance of this
algorithm and give upper and lower bounds on the resulting
throughput. Next, in Sect. IV, we consider a more realistic
channel model where the channel gain changes between each
time-slot according to a Markov chain model. For this case, a
modified version of the splitting algorithm is introduced and
simulation results are given to illustrate the effect of channel
memory on the system’s performance. This modified splitting
algorithm is extended to a reservation scheme similar to the
RTS/CTS (request to send/clear to send) handshake used in
IEEE 802.11. For sufficiently slow fading, this is shown to
improve the overall performance. Finally, in Sect. VI, we study
a model with random arrivals and a channel with memory. A
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Fig. 2. A time-slot made up of several mini-slots.

further modification to the splitting algorithm is presented.
Compared to the Aloha approach from [3]; this algorithm
is shown to significantly reduce the average delay when the
channel is slowly fading.

II. SPLITTING ALGORITHM

We consider a model of the uplink in a wireless network
with n users all transmitting to a common receiver. The
channel between each user and the receiver is modeled as
a time-slotted, block-fading channel; if only the ith user
transmits in a given time-slot, the received signal, yi(t) is
given by

yi(t) =
√

Hixi(t) + z(t),

where xi(t) is the transmitted signal, Hi is the fading channel
gain, and z(t) is additive white Gaussian noise. Each user has
a short-term power constraint that requires the transmission
power to be less than Pm during each time-slot.3 Hence, if
only the ith user transmits using this power, the received power
level is given by Pr = HiPm. The resulting transmission rate
is a function of Pr. The channel gain is assumed to be fixed
during each time-slot and to randomly vary between time-
slots. Initially we model the gains of each user at each time
as independent (both across users and time) and identically
distributed (i.i.d.) random variables with a continuous proba-
bility density fH(h) on [0,∞). We assume that at the start
of each time-slot, each transmitter has knowledge of its own
channel gain during the slot, but not the gain of any of the other
transmitters. For example, this knowledge could be gained by
having the receiver broadcast a pilot signal at the start of each
slot as shown in Fig. 1.

Assume the time-scale over which the channel varies is
larger than the round-trip time between each transmitter and
the receiver. As shown in Fig. 2, at the beginning of each
slot, we consider using several mini-slots with length β to
communicate with the base station and find the best user.
Here β is equal to the round-trip time required for a user
to transmit a small reservation packet and detect if a collision
occurs. Let Tc denote the length of one time slot within which
a user’s channel is stable, i.e. this is less than the coherence
time of the channel. We begin by considering an idealized
model where each time-slot contains K of these mini-slots
(i.e., Tc = Kβ), and there are n backlogged users in the

3Much of the following can also be extended to the case where users have
a long-term average power constraint as in [3].



system that always have packets available to send. We assume
that n is known by each user.4 Given these assumptions we
describe the splitting algorithm first, and then analyze its
performance in the following section. We then proceed to
relax these assumptions and provide extensions of this basic
algorithm for more realistic channel models and a system with
random arrivals.

The purpose of the splitting algorithm is to determine two
thresholds, Hl and Hh for each mini-slot, such that at each
time only users whose channel gains, h, that satisfy Hl <
h < Hh are allowed to transmit. At the end of each mini-slot,
each user receives a (0, 1, e) feedback, indicating if the mini-
slot was idle (0), contained a successful transmission (1), or
contained a collision (e). We denote the received feedback
by m. If m = 1, this means that only the user with the best
channel gain transmitted in the mini-slot. In this case, that
user will continue to transmit through the remainder of the
time slot. If m = 0 or m = e then the users will adjust
their thresholds and repeat the algorithm until either a success
occurs or the time-slot ends. The exact manner in which this
is done is given by the following pseudo-code. Here k is the
number of mini-slots used so far, and Hll is largest value of
Hl used in a prior mini-slot such that it is known that there are
some users with channel gains greater than Hll. An example
of these quantities is shown in Figure 3.

Basic Splitting algorithm:

initialize: Hl = F−1
H ( 1

n ), Hh = ∞ and Hll = 0
while m �= 1 and k ≤ K do

m = (0,1,e) feedback from last slot.
if m = e then

Hll = Hl; Hl = split(Hl,Hh);
else if m = 0 then

Hh = Hl;
if Hll �= 0 then

Hl = split(Hll,Hh);
else

Hl = lower(Hl)
end if

end if
k = k+1

end while

Here, FH(h) = Pr(H > h) denotes the complimentary
cumulative distribution function of the channel gains. At the
start of a time-slot, the thresholds are initialized to Hl =
F−1

H ( 1
n ), and Hh = ∞, so that the probability that one user’s

channel gain is above Hl is 1/n. This choice minimizes the
probability of a collision in the first mini-slot. At any time,
if a collision occurs (m = e), the range Hl < h < Hh is
split into two parts (denoted by the function “split”); users in
the upper part will transmit in the next mini-slot. If an idle
mini-slot occurs (m = 0), there are two possibilities: One, as
shown in Figure 3 is that there has been a collision before, i.e.
Hll �= 0. This means that the best channel gain lies between

4In practice n would need to be estimated. This could be done, for example,
using a pseudo-Bayesian algorithm [1].
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Fig. 3. Example of a split range: Hll is largest value of Hl used in the prior
mini-slots such that there are some users above Hll. Hl < H < Hh is the
transmission range.

Hll < h < Hl. In this case we again split Hll < h < Hl into
two parts; the new transmission range will be the upper part.
The other possibility is that there has never been a collision
before, i.e. Hll = 0. This means all the users’ channel gains are
all below Hl, therefore the threshold Hl is lowered (denoted
by the function “lower”).

When a collision occurs, the most likely scenario is that
two users were involved in this collision [1]. If exactly two
users are involved, to maximize the probability of a success
in the next mini-slot, the new range should be chosen so that
each user transmits with probability 0.5. Therefore, the new
splitting threshold, Ht, should be chosen so that

Prob(H > Ht|H ∈ [Hl,Hh]) = 0.5.

Based on this observation, we define the function
split(Hl,Hh) as follows:

split(Hl,Hh) = F−1
H

(
FH(Hl) + FH(Hh)

2

)
,

Given that two users are involved in the collision, this can be
shown to have the desired properties.

If a mini-slot is idle and there have been no other collisions,
then the threshold is lowered using the function lower(Hl).
Given n backlogged users all with channel gains less than Hl,
we chose this function to maximize the probability of a success
in the next mini-slot. Assume the probability that the channel
gain is above the current threshold is pk. After lowering the
threshold, the probability that channel gain is above the new
threshold is p. Then the probability of a success in the next
slot, given an idle feedback is received in the current slot, is
given by

Q(p) =
n(p − pk)(1 − p)n−1

(1 − pk)n
. (1)

Let p∗k+1 be the value of p that maximizes Q(p). Setting
d
dpQ(p) = 0, we have

p∗k+1 = pk +
1
n
− pk

n
. (2)

Therefore, given pk = FH(Hl), the desired function is

lower(Hl)

=

{
F−1

H

(
FH(Hl)(1 − 1

n ) + 1/n
)

Hl > 0,

0 otherwise.

(3)

This completely describes the splitting algorithm. In the next
section we present an analysis of its performance.



III. THROUGHPUT ANALYSIS OF THE SPLITTING

ALGORITHM

We denote the throughput of a system with n users using
the splitting algorithm by ss(n). Compared to a centralized
scheduler as in ( [2]), the loss in throughput with the splitting
algorithm will be the number of mini-slots required to find
the user with the best channel. In other words, if each time-
slot has a length of Tc seconds, then the throughput ratio of
the splitting algorithm to the optimal centralized scheduler is
given by

ss(n)
sct(n) = 1 − mβ

Tc
,

where m is the average number of mini-slots used per time-
slot to find the user who has the best channel gain. Clearly, as
n increases, m should increase, yielding a poorer performance
for the splitting algorithm. However, it can be shown that
though m is increasing, it is bounded, and in the limit of
many users, on average only a small number of mini-slots
are needed to find the user with the best channel gain. This
problem is related to the problem of “partitioning a sample
with binary type questions” studied in [14].5 In this problem,
one tries to find the maximum of a sample by asking binary
questions. For example, suppose there are n people in a room,
and the goal is to find the one who is the oldest by asking
’yes/no’ questions such as “is your age greater than 30”.
The number of questions required to find the oldest is the
same as the number of mini-slots required to find the user
with the best channel in our problem. In [14], it is shown
that the average number of questions required converges to
2.4278 as the sample size increases to infinity. However, in
[14], the number of people who answer ’yes’ to each question
is known, but in our setting, the number of users involved
in a collision is unknown. Therefore the number of questions
required in [14] provides a lower bound to the number of mini-
slots required provided that β

Tc
→ 0. Hence, as n → ∞ and

β
Tc

→ 0, the expected number of mini-slots must be greater
than 2.4278. Next we will upper-bound the average number
mini-slots required by the splitting algorithm. First, given that
k users are involved in a collision, the following lemma gives
upper and lower bounds on the number of mini-slots required
to resolve that collision.

Lemma 1: Let EXk denote the expected number of mini-
slots required to resolve a collision with k users involved. This
quantity satisfies

log2(k) ≤ EXk ≤ log2(k) + 1,

for all k.
Proof: See Appendix I.

Before a collision occurs, some mini-slots may be required
in order to find a non-idle range. In other words, we have to
take into account the number of times the lower(Hl) function
is called at the start of the algorithm.

5The relationship of this problem to multiple access issues was also noted
in [18].

To simplify our analysis, we modify the lower algorithm
according to the following definition:

ˆlower(Hl) =

{
F−1

H (FH(Hl) + 1/n) , Hl > 0,

0, otherwise.
(4)

Initially the lower threshold is set so that the probability
each user’s channel gain is greater than the threshold is 1

n .
Lowering the threshold l ≤ n times using this rule results
in the (unconditional) probability of a user having a channel
gain greater than the new threshold being l

n . After lowering
the threshold n times, we have Hl = 0 and hence there is
no need to further lower it. This way of setting the threshold
is not optimal (in terms of maximizing the probability of a
successful transmission). However, note that from (1) and (2),
the probabilities p∗k corresponding to using lower(Hl) in (2)
satisfy:

p∗k+1 = pk(1 − 1
n

) +
1
n

.

Thus, starting with p0 = 1
n , then

p∗1 =
2
n
− 1

n2
=

2
n

+ O(1/n2).

Iteratively, it follows that p∗k = k
n + O(1/n2). When using

ˆlower(Hl), the corresponding probabilities are p̂k = k
n . There-

fore, limn→∞
p∗

k

pk
= 1. Also,

Q(p∗k+1) =
(1 − pk − 1

n + pk

n )n−1

(1 − pk)n−1
,

and using that p∗k = k
n + O(1/n2), we have

lim
n→∞

Q(p∗)
Q(p̂)

= 1.

In other words, ˆlower(Hl) is asymptotically optimal as n →
∞.

The number of mini-slots required by using ˆlower(Hl) is
an upper bound for the algorithm using lower(Hl) in previous
section. Using this modified algorithm, we have the following
upper bound on the average number of mini-slots required to
find the best user.

Proposition 1: The average number of mini-slots required,
m(n), satisfies

m(n) < 2.5070.
Proof: See Appendix II.

This bound is independent of the actual fading distribution
(assuming a continuous density) and holds for any value of
K (the number of mini-slots per time-slot). Also, note that
this upper bound is quite close to the lower bound of 2.4278
discussed above; however this lower bound is only valid when
K → ∞. For finite K, the algorithm will stop after K mini-
slots even if a success is not achieved, which is different from
the assumption in [14].

From Prop. 1, it follows that the throughput ratio of the
splitting algorithm to the centralized scheme is lower bounded
by

lim
n→∞

ss(n)
sct(n)

> 1 − 2.5070β

Tc
.



Obviously, the throughput depends on the ratio of β/Tc. If
the round-trip time is much smaller than the coherence time,
β/Tc will approach 0 and the throughput will approach that
obtained by the centralized scheduler.

Next, suppose that the base station is able to detect the
number of users involved in a collision, k. In this case the
problem becomes identical to that in [14], and the new range
after a collision can be chosen so that each user involved in
the collision transmits with probability 1/k to maximize the
probability of success. The new threshold Ht satisfies:

FH(Hh) − FH(Ht) =
1
k

(FH(Hh) − FH(Hl)) .

The function split(Hl,Hh) is changed to

splitk(Hl,Hh) =

F−1
H

(
FH(Hl)

k
+ (1 − 1

k
)FH(Hh)

)
.

We motivated the above splitting algorithms by attempting
to maximize the probability of a successful transmission in
each time-slot given the information available prior to that slot.
Another reasonable criterion would be to minimize the average
number of mini-slots required for a success. This approach
is also discussed in [14]; however, the difference between
the average number of mini-slots under these two criteria
is very small. Moreover, using the criterion of maximizing
the probability of success in each time-slot results in a much
simpler algorithm to analyze; so we focus on this case here.

Simulation results for a Rayleigh fading channel with K =
40 mini-slots per time-slot is shown in Figure 4. This figure
shows the average number of mini-slots required per time-slot
as a function of the number of users in the system. Two sets of
results are shown. Let k denote the number of users involved
in a collision. The curve labeled ’without knowledge of k’ is
the number of mini-slots required using the splitting algorithm
we described in Sec. II. The other curve is the number of mini-
slots required for the above modified splitting algorithm based
on having knowledge of k. Both curves are upper bounded by
the bound of 2.5070 given by Prop. 1. We can see there is little
difference between the two curves. In other words, knowing
the number of users involved a collision does not improve
the throughput much. The asymptotic lower bound of 2.4278
is also shown; note that since K < ∞, this bound does not
strictly apply here.

IV. CHANNEL WITH MEMORY AND ADAPTIVE SPLITTING

ALGORITHM

In the previous sections, we assumed that each user’s
channel was independent from one time-slot to another and
that the channels stayed fixed for each mini-slot within a time-
slot. In this section, we consider a more realistic continuously
changing channel. We model the channel as having short-
length time-slots, where each user’s channel changes slowly
from one slot to the other and stays the same during a slot.
Specifically, each channel will change independently in next
slot with probability r, and stay the same with probability
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Fig. 4. The average number of mini-slots versus the number of users, with
and without knowledge of k (the number of users involved in each collision)

1 − r. The parameter r will be small when the length of the
time slot is small which indicates a large memory; r becomes
larger with a longer time slot and indicates a channel that
changes faster. Note the length of the time slot has to be
less than the coherence time. For simplicity, we consider this
idealized channel model with memory; similar results can be
shown for more realistic Markov channel models, such as the
models in [17] or a first order Gauss-Markov model. In this
Markov channel model, instead of transmitting requests first
then transmitting data after a successful request, we assume
that data packets are transmitted directly in each slot, i.e.,
there are no mini-slots. If collision happens, the packet gets
retransmitted.

First consider using the basic channel-aware Aloha protocol
from [3], in which there is fixed threshold and users whose
channel gains are above the threshold will transmit in each
slot. Here the threshold will not change according to the
feedback of the previous slots. In [3], we have shown that for
the backlogged model, channel memory has no effect on the
total throughput and the throughput ratio of the channel-aware
Aloha to the optimal centralized scheme remains 1

e regardless
of the channel memory.

However, by utilizing the feedback information, channel
memory can be used to further improve the throughput. To
illustrate this, we first present an adaptive splitting algorithm,
which is a variation of the splitting algorithm from Section II.
In Section V we discuss a reservation scheme that also takes
advantage of increased channel memory. The adaptive splitting
algorithm is specified as follows:

initialize: Hl = F−1
H ( 1

n ), Hh = ∞ and Hll = 0
m = (0,1,e) feedback from last slot.
if m = e then

Hll = Hl; Hl = split(Hl,Hh);
else if m = 0 then

Hh = Hl;
if Hll �= 0 then

if Hl �= Hll then



Hl = Hll

else
Hh = ∞ and Hll = 0

end if
else

Hl = lower(Hl)
end if

else if m = 1 then
Transmit a packet

end if

The functions split(Hl,Hh) and lower(Hl,Hh) are the same
as in the original splitting algorithm from Section II.

Because the channel is now changing from slot to slot, the
(1,0,e) feedback from the previous slot may not truly indicate
the channel states during the current slot. For example, in an
interval (Hl,Hh) in which previously a collision occurred,
there may now be no users due to changes in the channel
gains. Therefore the splitting algorithm introduced in previous
section can not be applied directly. The splitting algorithm
is modified as follows: if m = 0, and Hll = Hl, then it is
known that the users’ channels have changed and the current
range is no longer meaningful. In this case, the algorithm is
reinitialized and the splitting starts over again. As a result,
the efficiency of the splitting is lowered, i.e. more slots on
average are required than in the original splitting algorithm to
have a success. This is reasonable because the original splitting
algorithm is designed for a more idealized channel model.

Simulation results for this algorithm are shown in Figure 5.
This figure shows the ratio of the throughput of the adaptive
splitting algorithm to that of the optimal centralized scheduler
versus the number of users, once again for a Rayleigh fading
channel. We can see when r is small, i.e. the channel’s
memory is long, the adaptive splitting algorithm has a higher
throughput. When the memory decreases, the throughput also
decreases, and when r > 0.5, the throughput ratio is less than
1/e, i.e. less than the throughput of the channel-aware Aloha
protocol. The reason is when channel changes fast, the feed-
back information is not as reliable as when channel changes
slowly. Therefore when channel becomes memoryless, the
channel-aware Aloha protocol is more suitable. Also as noted
previously, if short-length slots are used, the channel memory
will be larger and a higher throughput can be achieved, but,
of course, additional overhead will be incurred. This can also
be viewed as the result of more frequent feedback. Note that
the length of a slot must be greater than the round-trip time.

V. RESERVATION SCHEME

When channel has memory, once a user succeeds in one
slot, it is reasonable to let the same user continue to transmit
in the following slots until its channel becomes bad. We
next introduce a reservation scheme based on the adaptive
splitting algorithm for this situation. This reservation protocol
is illustrated in Figures 6, 7 and 8. In Figure 6, it is shown
that the base station has two states: the “contention” state,
when all users request to reserve the channel and the “data”
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Fig. 6. State transition for the base station

state, when one of the users is transmitting data. Figure 7
shows three states which each user may be in. Besides the
contention and data states, there is also an idle state; this
corresponds to when the user’s channel gain is below the
threshold or some other user has reserved the channel. Similar
to the CSMA-CA technique in IEEE 802.11, this scheme is
based on a RTS (Request To Send) and CTS (Clear To Send)
handshake. As shown in Figure 8, at the beginning of each
slot, the base station transmits a pilot, from which the users
measure their channels. According to the adaptive splitting
algorithm, those users whose channel gains fall within the
current range will transmit RTS packets to the base station.
The adaptive splitting algorithm keeps running until the base
station receives a collision-free RTS. Then the base station
sends out the CTS signal. This CTS signal acts as an inhibiting
signal to other users. After the CTS signal is sent out, the
data state begins and all other users enter an idle state.
Both RTS and CTS contain the requesting user’s ID. At the
beginning of the data state, the transmitting user will transmit
the current range from the adaptive splitting algorithm to the
base station. The base station will then monitor the user’s
channel until the transmitting user’s channel drops out of the
current range (Hl,Hh). At this time, the base station will
transmit a release signal to all other users. This release signal
releases the other user’s inhibition and the contention state
begins again. Fundamentally, there is a trade-off: on one hand,
using reservations reduces overhead; on the other hand, users
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with a better channel may have no chance to transmit when
some other user reserves the channel. This trade-off can be
managed by adapting the thresholds out of which the data
state stops and anther contention period begins. For example,
one modification to reduce the overhead and to keep the data
state longer is to let the user continue transmitting until its
channel gain H < Hl, instead of dropping out of the range
(Hl,Hh). However, our simulation results show this has a
worse performance, because as mentioned before, users with
a better channel have no chance to transmit when another user
is transmitting. Other designs based on these ideas are a topic
of future research..

Simulation results for this reservation algorithm is shown in
Figure 9. The dotted lines are the ratio of throughput of the
adaptive splitting algorithm (without reservation) to that of a
centralized scheduler; these are the same as in Figure 5. The
solid lines represents the throughput ratio of the reservation
scheme under the same conditions. We can see that the use
of reservation improves the throughput for r ≤ 0.5. When
channel becomes memoryless, the performance advantage of
the reservation scheme decreases. As in previous section, in a
memoryless channel, the channel aware Aloha approach is a
more suitable scheme.

VI. RANDOM ARRIVALS IN CHANNEL WITH MEMORY

Next, we consider a model with Poisson arrivals and the
same Markov channel model as in previous sections.

First, we consider the channel-aware Aloha approach in
this setting. In [3], we have shown that the channel-aware
Aloha protocol performs well with random arrivals in a mem-
oryless channel, assuming that users can accurately estimate
the number of backlogged users. It is stable for any total
arrival rate λ for an infinite user model, and the total delay
decreases for a fixed total arrival rate as the number of users
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Fig. 9. Ratio of the throughput of the reservation scheme to the centralized
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channel memories.

in the network increases. This is accomplished by exploiting
the increased multiuser diversity present with more users.
However, in a channel with memory, the transmission of the
packets becomes more bursty and hence the queuing delay
becomes larger. Figure 10 shows simulation results for the
channel-aware Aloha protocol under different values of the
memory parameter r. For each choice of r, the average delay
versus the number of users is shown. These simulations are
for an infinite user model where packets arrive according to a
Poisson process with a total arrival rate of 0.5 packets/second.
Each packet has a length of L = 1000 bits. The transmission
rate of a packet is given by R = W log(1 + PmHl

N0W ), where
the bandwidth W = 1KHz, the product of the transmission
power and the average channel gain PmE(H) = 1, and the
Gaussian noise power is N0W = 1. Once again the channel
gain experience Rayleigh fading. We assume that the length
of the time-slot can be adjusted according to the different
transmission rate, as in [3]. It can be seen from Fig. 10
that when r is large, i.e. when there is less memory, the
delay decreases as the number of users increases; when r
is small, i.e. the memory is large, the delay increases with
the number of users. Similar results are shown in Figure 11;
this shows the average delay versus the channel memory for
different numbers of users, again assuming a total arrival rate
of 0.5 packets/second. It can be seen from both Figure 10 and
Figure 11 that the delay increases as r decreases.

When the users’ channel has memory, the probability that
a collision occurs given the previous feedback is a collision
is high in the Aloha approach. Therefore, to improve per-
formance, we consider a variation of the adaptive splitting
algorithm. Similar to the adaptive splitting algorithm in section
IV, the threshold used in the next slot is adjusted according to
the feedback of the current slot. Now we only adjust the lower
threshold Hl and let all users whose channel gains are above
Hl transmit. Because of the dynamics of the system (i.e. both
new arrivals may occur and the channels may change), it is
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hard to estimate the upper threshold Hh. The complexity of
this adjusting algorithm with only adjusting Hl is low and our
simulation results show that it results in better performance
than using the pure Aloha approach. We still assume that the
number of backlogged users in the current slot n is known, as
well as the number in the last slot n−1. The modified splitting
algorithm is given by the following:

initialize: Hl = F−1
H ( 1

n )
m = (0,1,e) feedback from last slot.
if m = e then

if n > n−1 then
Hl = F−1

H ( 1
n )

else
Hl = split(Hl);

end if
else if m = 0 then
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Fig. 12. Average delay vs. the channel memory for different number of users
in a Rayleigh fading channel.

if n < n−1 then
Hl = F−1

H ( 1
n )

else
Hl = lower(Hl)

end if
else if m = 1 then

Transmit a packet
end if

In this case

split(Hl) = F−1
H

(
FH(Hl)

2

)
.

As mentioned before, only the lower threshold Hl is adjusted
and the range is split by increasing Hl, so that the probability
that the channel gain is above the new Hl is half of the
probability that the channel gain is above the original Hl.
The function lower(Hl) is the same as before. Because users
arrive randomly, when a collision happens, there could be
two reasons. One reason is that there are new arrivals; in
other words, the number of backlogged users in the system
increases. In this case, the threshold is adjusted according to
the change of the users as what we did for the channel-aware
Aloha model. The other reason is that more than one user’s
channel gain stays above Hl. In this case, the new threshold
is adjusted to the value of split(Hl). Similarly, when an idle
feedback is received, the reason could be that some users
departed, or it could be that all users’ channel gains stayed
below Hl. In the later case the new threshold value is adjusted
to lower(Hl).

Figures. 12 and 13 show the performance of the modified
splitting algorithm compared to the channel-aware Aloha.
Once again this is for a Rayleigh fading channel with the same
parameters as before. Figure 12 shows delay versus memory
for different number of users. It can be seen from Figure 12
that the adaptive algorithm lowers the delay when memory is
large, i.e. r is small. Also notice that for small r, the delay in
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Fig. 13. Average delay vs. the number of users for different values of channel
memory, r in a Rayleigh fading channel.

the channel-aware Aloha approach becomes much larger when
the number of users increases, while for the splitting algorithm,
the delay stays relatively constant as the number of users
grows. Figure 13 shows delay versus the number of users for
different values of channel memory. The adaptive algorithm
reduces the delay significantly for large memories, especially
when the number of users is large. These simulations suggest
that using the modified splitting algorithm to solve collisions
for a channel with memory is effective and a higher throughput
is achieved with the same delay constraint.

VII. CONCLUSION

In this paper, we presented several medium access control
algorithms based on splitting for distributed opportunistic
transmission in a wireless network. We provided a throughput
analysis of basic splitting algorithm in a simplified setting
and showed that when the number of mini-slots is large
the throughput can approach that achieved by a centralized
system. An adaptive splitting algorithm and an reservation
scheme are proposed for a channel model with memory and
simulation results are given that show improved performance
in slow fading environment. For a model with random arrivals,
a modified splitting algorithm is applied and performance
improvement is shown by simulations. There are many issues
that still need to be addressed in future research, such as the
study of asymmetric models and the consideration of fairness
issues.

APPENDIX I
PROOF OF THE LEMMA.1

Proof: First, we show that EXn ≤ log2(n) + 1. E(Xn)
can be written as

EXn = (.5)n

[((
n

0

)
+
(

n

n

))
(EXn + 1) +

(
n

1

)
1

+
(

n

2

)
(EX2 + 1) + ... +

(
n

n − 1

)
(EXn−1 + 1)

]
,

(5)

where (.5)n
(
n
i

)
is the probability that after one split there are

still i users with channel gains in the upper part of the interval.
Therefore, we still need EXi mini-slots on average to find the
best user after the first splitting. Notice when there is no one
in the upper part, it means there are n users in the lower part,
therefore we will continue to split the lower part.

After simplification, (5) becomes

0.5n

(
n−1∑
k=2

(
n

k

)
EXk

)
+ 1 = (1 − 0.5n−1)EXn. (6)

We then use induction to complete the proof. Initially,
EX0 = EX1 = 0 , EX2 = 2, EX3 = 7

3 and EX4 = 8
3 ,

therefore EXk ≤ log2(k) + 1 holds for all 0 ≤ k ≤ 4.
Assuming EXk ≤ log2(k) + 1, for all k ≤ n − 1 and n > 4,
we prove EXn ≤ log2(n)+1. Using the induction hypothesis
in (6), we have

0.5n

(
n−1∑
k=2

(
n

k

)
(log2(k) + 1)

)
+ 1

≥ (1 − 0.5n−1)EXn.

(7)

Let

c =
n−1∑
k=2

(
n

k

)
(0.5)n = 1 − 2(0.5)n − n(0.5)n.

Using Jenson’s inequality, for all n > 1, we have
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.

Substituting this into (7) yields

(1 − 0.5n−1)EXn ≤ log2

(n

2

)
+

n−1∑
k=2

(
n

k

)
(0.5)n + 1

≤ log2(n) + 1 − 2
2n

− n

2n
.

(8)

To complete the induction step, we need to show that

log2(n) + 1 − 2
2n − n

2n

1 − 0.5n−1
< log2(n) + 1. (9)

This is equivalent to log2(n) < n
2 , which is true for all n > 4.

Therefore, EXn < log2(n) + 1 as desired.
Next we prove that Xn > log2(n). Assume Zk is the

number of users left in the next mini-slot after splitting k
times, thus Xn = inf{k : Zk = 1|Z0 = n}. Note that given



........... ......

0 1/n 2/n 3/n 4/n HF  (h)

Fig. 14. An example of the splitting sequence with i = 4 and k = 3. The
line corresponds to the value of the complementary distribution FH(h).

Zk, Zk+1 is independent of Zi, for 0 < i < k. Therefore,
given Zk, the expected value of Zk+1 is given by

E{Zk+1|Zk = z} =
z∑

k=1

(
z

k

)
k(.5)z + z(.5)z. (10)

It follows that

E{Zk+1|Zk = z} >

z∑
k=1

k

(
z

k

)
(.5)z, (11)

and so E{Zk+1|Zk = z} > z
2 .

Because Z0 = n, E{Z1|Z0 = n} > n/2, and iterating we
have,

E{ZXn
|Z0 = n} > n/(2Xn).

Again using Jenson’s inequality, we find
n

2E{Xn} < E
{ n

2Xn

}
< E{ZXn

} = 1. (12)

Therefore E{Xn} > log2(n), as desired.

APPENDIX II
PROOF OF PROPOSITION 1

Proof: To simplify our analysis, we assume the function
ˆlower(Hl) defined in (4) is used in the algorithm. To upper

bound the average number of mini-slots required, m(n), we
first make the pessimistic assumption that there an infinite
number of mini-slots in a time-slot. With this assumption,
m(n) satisfies

m(n) =
n∑

i=1

n∑
k=1

(
n

k

)(
1
n

)k (
1 − i

n

)n−k

(EXk + i) .

(13)

Here,
(
n
k

)
( 1

n )k(1 − i
n )n−k is the probability that the first

non-idle slot occurs in the ith mini-slot and k ≥ 1 users are
involved. Notice k = 1 corresponds to a success and k > 1
corresponds to a collision. Figure 14 shows an example with
i = 4 and k = 3, i.e. the 4th mini-slot is non-idle and 3
users are involved in a collision. It can be seen that there are
k users’ whose channel gains are within the corresponding
range F−1

H ( i−1
n ) and F−1

H ( i
n ), and all others’ gains are less

than F−1
H ( i

n ). Let EXk denote the expected number of mini-
slots required to resolve a collision with k users involved, and
define EX1 = 0. Lemma 1 gives bounds on EXk. Using this
lemma we have

m(n) ≤
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n
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Here the last term corresponds to the case where only k = 1
user is in the first non-idle mini-slot. Since,
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,

we have
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(14)

We show that the right-hand side of this expression is bounded
by 2.5070 as n → ∞. First we show that for any ε > 0, there
exists an N large enough, so that for any n > N ,

n∑
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1
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n
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+
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(15)

This is equivalent to showing that the right-hand side of 14
converges as n → ∞.

Note that since limn→∞(1 − i
n )n−1 = e−i, then

n∑
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n
)n−1i <

n∑
i=1

Me−ii,

for some constant M > 1. Therefore limn→∞
∑n

i=1(1 −
i
n )n−1i converges, and thus for a large enough N , the second
term on the left-hand side of (15) satisfies

n∑
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2
. (16)

Next we show that the first term on the left-hand side of
(14) can also be made arbitrarily small by choosing a large
enough N . Let m1(n) denote this term and let α ∈ (0.5, 1)
be a constant such that αn is an integer and αn > N . Then
we have
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Next, since (1 − i
n )n−k) < 1, and log(k) < k,

m1(n) <

n∑
i=N

αn∑
k=N

1
k!

(1 − i

n
)(1−α)n(i + log(k) + 1)

+
n∑

i=N

n∑
k=αn

1
(αn)!

(i + k + 1).

For large enough N , (1 − i
n )(1−α)n < Me−(1−α)i for any

constant M > 1. Thus, for N large enough,
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The last step follows because limn→∞
∑

k=1..n log(k)/k! and
limn→∞

∑
k=1..n 1/k! converge.

Combining the above results we have that for N large
enough,
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The rest of the sum in (14) satisfies

lim
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And so, we have m(n) < 2.5070 as desired.
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