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Abstract—We give a model for cooperative communication in
a parallel relay network that includes the stochastic arrival of
packets and queueing. For this model we provide a throughput

optimal network control policy which stabilizes the network @
for any arrival rate in its stability region. This policy is a @ @
generalization of maximum differential backpressure policies :

which takes into account the potential cooperative gains in the
network.

I. INTRODUCTION

In recent years, motivated chiefly by wireless network-
ing applications, there has been interest in models which
jointly address “network layer” issues such as the random

generation of traffic, delay, and buffer occupancy, along Wi{p]etwork. In the next section, we describe such a model based

traditional “physical layer” issues such as modulation, codin n the parallel Gaussmn. relay channel ,StUd'ed_ n [51. .[6]' For
and channel modeling. In [1], [2], models for multiacces is model we characterize the network’s stability region and
and broadcast channels taking into account both queuem}jeha thr%“?“?”t ;)pur;al getvsfrk control pohcy. ICorgpar?rd
dynamics as well as information-theoretic capacity regioﬁgt € mp_es in [1], 2], [ ] [4]. a new pote_ntla_ tra e-0l
have been considered. For these models, the netstatklity cMerges: in order to exp_I0|t cooperative gains, |nformat|9n
regionis characterized:; this is the set of arrival rates for whichs © Pe shent along mulnpli.rouhtes, this 'E turn temporarily
all gueues can be stabilized by a feasible rate and power alloffigreases the congestion within the network.

tion policy. Furthermore, simpléhroughput optimakesource
allocation policies are specified, which stabilize the system

for any arrival rates in the stability region, without requiring  consider a simple network with cooperative communication
any a priori knowledge of the arrival statistics. Results usingg shown in Figure 1. This network consists of four nodes
similar techniques have been shown in [3], [4] for othey, _ (1 9 3 4} Traffic originates at nodes 1, 2, and 3, and
(non-information theoretic) physical layer models, where joifke destination of all traffic in the network is node At
power/rate allocation and routing are performed for multi-hope physical layer, we model this as a modified version of
transmission. _ a Gaussian parallel relay network [5], [6]. Each nade V

A feature of all the above models is that each packet followg,s an average power constraiit Node 1 communicates
a single route from the source to the destination. In particulgfith nodes 2 and 3 over a Gaussian broadcast channel with
this does not incorporate the potential gains from varioygngwidth 1. If X, (¢) is the transmitted signal by node
cooperative relayingtechniques (e.g. [5], [6], [7], [8], [9], then the received signal at node-= 2,3, is given by
[10]). With such techniques, multiple nodes may cooperate

in relaying a packet, essentially forming a distributed antenna Y(t) = \/hTin (t) + Zi(t), (1)
array. Cooperative communication has mainly been addressed

from the physical layer viewpoint, i.e. by studying the achiewhere Z;(¢) is a white Gaussian noise process with noise
able rates or diversity gains of given cooperative schemekensity Ny/2 and hy; is the channel gain between node 1
A goal of this paper is to study a model of cooperativandi.! Nodes2 and 3 the communicate to nodé over a2-
communication which incorporates ttstochastic arrival of user Gaussian multiaccess channel, also with bandwikth

traffic and queueing dynamicst the various nodes in the

INote all channel gains are fixed and known at the transmitters and
1This research was supported in part by NSF under grants CCR-0313386eivers. Hence, using cooperative transmissions for diversity gains as in
and CCR-0313183, and by ARO under grant DAAD19-03-1-0229. [9] is not relevant.

Fig. 1. A four node parallel relay network model.

Il. NETWORK MODEL



The received signal at nodkis given by and 3 are included in thdirect traffic By assumption, all
cooperative traffic is received at both nodes 2 and 3. Hence,
Yi(t) =Y VhiaXi(t) + Za(t), for all ¢, Use(t) = Us.(t), and so we will denote both of these
i=2,3 quantities byU..(t). Let U (¢t) = (U1 (¢), U.(t), Uaq(t), Usa(t))
where Z,(t) is a white Gaussian noise process with noigdenote the joint queue state at timeWe consider the case
density N, /2. All noise processes are mutually independedthere givenU (1) at timet, a network controller specifies a
and independent of the channel inputs. For convenience, allocationR(t) = (Rf, Ri,, Ris, R{, R4, RY,), where

normalize both the bandwidth and the noise powdf: = Ry, is the rate of direct traffic between nodeand j, Rf is
1, NgW = 1. We define ssymmetric networko be one where the rate node 1 sends cooperative traffic to nodes 2 and 3, and

Biy = his = 1 and hoy = hay = 1. RS is the rate node& and 3 cooperatively forward traffic to

To simplify our discussion, we assume that at any tirfldode 4. At times, it will be more convenient to denote the
the network is either operating in the multi-access mode 6PMPonents of(t) as (R1(t), Ra(t),. .., Rs(t)), where for

— pd
the broadcast mode, i.e., Ky(t) > 0 then Xy(t) = 0 €Xamplefs = R, .
and X;3(¢) = 0, and likewise if X(£) > 0 or X3(t) > 0 The rate allocation chosen for timtanust respect the half-

then X, (t) = 0. From the point of view of node8 and 3, duplex co_nstraint described abov_e and given that the network
this enforces aalf-duplexing constrain{9], [10], i.e. these (_)pgrates in the broao!cast or m_ultlacc_ess mode, t_he rates must
nodes cannot transmit and receive simultaneously. This!i§ in the corresponding capacity regidniVe describe these
considered a realistic constraint in practical systems. HoweveRPacity regions next. First consider the broadcast mode and
we note that our assumption also prohibits schedules whifffhout loss of generality assume thab < /1;. LetCpc be
do not violate the half-duplexing constraint, such as nodetrie_capamty region of t_he two-user Gaussian broadcast channel
transmitting to node 2, while node 3 transmits to node 4. Alsgefined by (1). Then it follows that the ratef, Ri,, Rf;)
as in [5], we do not consider direct transmissions from nodeust satisfy(R{, + Rf, R{;) € Cpc. Let the cooperative
to node 4. This is reasonable when the distance between thR@dcast regiorCopc be the set of all such allowable
nodes in large. Both of the above-mentioned possibilities coulff: £i12, Efs)- For @ symmetric networkhgs = hi3) Cope
in principle be included in our model at the expense of mo,r@d_uces to the set of non-negative rates that lie in the simplex
complicated notation. defined by ,

Cooperation in this network is achieved by having nodes 2
and 3 cooperate to relay information from n)(/)de 1 t% node 4. ZRi < log(1+P). (2)
We assume that this is accomplished by having both nodes use ) ) )
adecode and forwardtrategy. Namely, they will both receive N the multiaccess mode, if nodes 2 and 3 only send direct
and decode the same packet from node 1; eventually, they Wiffic (75 = 0), then the transmission raté&y,, 1zg,) must
simultaneously transmit this packet to node 4 by coherenti§ in the corresponding multiaccess capacity regibnac
beamforming the received signal at node 4. For example, irffis is the set of non-negative rates that satisfy

i=1

symmetric network, if node 2 and 3 cooperatively transmit a
packet using the maximum powe?, then the received signal ZRi; <log <1 + Z h,;4P) VS C {2,3}.
power will be 4P. Of course, this requires that the nodes i€S i€s

must be perfectly synchronized. In the absence of perfq%both nodes send only cooperative traffigd, — R, = 0)
synchronization, other cooperative techniques could be usgd, " o0 o el satisfy 2 34
4

Also, we note that in general this is not the optimal cooperative
strategy from the _view of maximizing capacfty. _ RS < log (1 + (\/h*24Jr h34)2P> .

We do not require that all traffic from node 1 to 4 is relayed
using this cooperative mode; node 1 can also send “diredt’ addition, we allow the nodes to transmit both cooperative
traffic to either node 2 or 3, which the receiving node theand direct traffic simultaneously. One way to model this is
individually relays to node 4. Exogenous traffic arrives db allow time-sharing between the above two modes. More
node: = 1,2,3 according to an ergodic counting procesgenerally, we can view this as a type of 3-user multiaccess
A;(t), where A;(t) is the number of packet arrivals up tochannel, with 2 users corresponding to the direct traffic for
time ¢. The packet lengthg; of exogenous traffic at node nodes 2 and 3, respectively, and a third user corresponding
are i.i.d. with E[Z;] < co and E[Z2] < oo. Each node will to the cooperative traffit. The difference here is that the
store all arriving packets in an infinite capacity buffer untipower constraints of the users are coupled. If both users
they are transmitted. Léf; (¢) be the number of untransmitted2 and 3, devote a fractiomw € [0,1] of their power to
bits (unfinished work) at node 1, and 1&%4(t) and U;.(t)
respectively be the unfinished work of direct and Cooperati\_/eslt is reasonable to assume that we can achieve any rate in these regions

. . . if the times at which we apply the controls are sufficiently separated as to
traffic at nodei = 2,3. All exogenous arrivals at nodes 2, the use of long codewords.

4A key assumption here is that the encoding of the traffic by these three
2Indeed, the optimal strategy and the capacity of the parallel Gaussian relagers” is done only based on their own message and that the messages are
channel is an open problem [6]. independent.



cooperative traffic, then we assume that they can achieve @&yThroughput Optimal Rate Allocation

c d d )\ — H H
rates(R§, Ryy, R3y) = (Ra, Rs, Re) which satisfy Theorem 1 states that jf = (p1, p2, p3) € int(S), then the

gueues can be stabilized. In general, however, this may require
ZRi <log 1+ Zpi<a) VS C {4,5,6}, (3) knowing the value op. In reality, p can be learned only over
Py prd time, and may be variable. One would prefer to fadhptive

rate allocation policies which can stabilize the netwaithout
where Py(a) = (Va1 + viz1)2aP, Ps(a) = has(1 — )P, knowing p, as long asp € int(S). These rate allocation
and Ps(a) = hsa(1 — a)P. Let Coarac (o) denote this set Policies are callecthroughput optimal As shown in [4], a
of feasible rates for a particular power splitting parameter throughput optimal resource allocation policy for stochastic
Then we assume that the controller can choose any rates frd@iworks with physical-layer capacity regions turns out to be

the cooperative-MAC capacity region given Iy, 4c = @ generalization of thenaximum differential backlogMDB)
Uaeo.n) Conrac (). It can be verified that the resulting regionPolicy first proposed by Tassiulas [3]. Due to cooperative
is convex. transmissions, however, the parallel relay network considered

Let Cope and Coprac be Cope and Conac embedded here is somewhat different from the networks considered

in RS, respectively. That is{ s, R, Rl) € Cope if and 1N [4]. Nevertheless, we show that Fhe MDB policy' can pe
only if (RS, Rdy, RY,,0,0,0) € Cope, and (RS, RY,, RY,) € adapted to produce a throughput optimal rate allocation policy
Conmac it and only if (0,0,0, RS, RY,, RY,) € Cowmac. 'of the parallel relay network. .
Under the duplex constraint, the overall physical-layer capacity W& consider examine the evolution of the network at time
region isC = conv(Cepe,Conrac), i.e. the convex hull of |nst§1r_1ts separated by > 0 units of_ time, whereT is
these two sets. sufficiently large to allow for large coding lengths. We make

the following assumptions for the packet arrival processes.
Let Ay = (A1k, Aok, As) be the arrival vector for théth
OPTIMAL RATE ALLOCATION to distribution 74 with mean E[A] = AT, where A =

(A1, A2, A3) are the arrival rates. Furthermore, assume that for

Given the model in Section Il, we proceed to characterize | . 9 3 o
the network stability region and the throughput optimal rat%acm’ E[4]] < oo, and Pr (ni:l{Az - O}> > 0. These

allocation policy. Although the results we obtain here m s;umptions on the arrival process, for ex"’?mp'e' clearly hold
be reminiscent of results for conventional networks [3], [4 o mdependent_ homogeneous Poisson arrival processes. The
we shall find that the cooperative nature of the parallel rel o(\a/e assumptions can be relaxed to the Markov modulated

network introduces some significantly new elements.

Theorem 2:A throughput optimal rate allocation policy
A. Stability Region R*(u) for the parallel relay network of Figure 1 is given by
the solution to the following optimization:

Let A\, = lim;, A4;(t)/t be the packet arrival rate . ; ;
of traffic to nodei. Let p; = X\E[Z] be the corre- max (ur — 2uc) Ry + (w1 — uga) Ris + (u1 — uza) B3
sponding bit arrival rate. We say that queti@s stable if
limsuptﬁoc%fot 1[U1.(T)>§]d7' — 0 as¢ — oo, where 1{4}
is the indicator function. The network stability regidh is
the closure of the set of allpi,p2, p3) € R} for which  Note that the policy in (4) is the not the same as the con-
there exists some feasible rate allocation poliRydefined ventional MDB policy of [3], [4]. In particular, the coefficient
by R = R(u) € C, whereu = (u1, uc, u24,usa), Which can terms u; — 2u, and 2u. reflect thequeue couplingeffect
guarantee that all queues are stable. Note &h& a function induced by the cooperative transmission structure. We refer
of the queue state and can assign any rate from the physicatp the policy of (4) as th€ooperative Maximum Differential

g RY, + uzqg R, 4 2u. RS (4)

layer capacity regiot. Backlog(CMDB) policy.
Using arguments similar to those in [3], [4], we can establish ) -
the following. Proof of Theorem 2To show that the CMDB policy stabilizes

the network for anyp = (p1, p2, p3) € int(S), it is convenient

Theorem 1:The stability regionS of the parallel relay to consider a fictitious networl; which is the same as the
network of Figure 1 is set of allp1, p2, p3) € R3. for which  networkg, except that arrivals are allowed to enter the queues
there exist non-negative flow variable’, fd,, fi, fy, f&4  2c and 3c. Let S; be the stability region of the network
which support (p1, p2, p3) relative to the weighted graphGy. It is clear that if the CMDB policy stabilizeg for all
defined by the long-term rates given [ That is, the (p1,p2c, p2d, P3¢, p3a) € int(Sy) such thatps, = ps. = 0,
following flow conservation relations must be satisfipd:= then CMDB also stabilize§ for all p = (p1, p2, p3) € int(S).
fe+FL+ fd, poa = f& — fh, pea = f& — f&. In addition, Therefore, from now on, we concentrate on the artificial
(fcvf1d2vfld3’fcvf2d4vfg4) ecC. networkgf.



To show that the CMDB policy stabilizeg; for all For any (p1,0, p24,0, p3q) € int(Sy), there existsd > 0
(p1,0, p2q,0, p3a) € int(Sy), we use an extension of Foster'ssuch that(p, + 9, 0, p2q + 6, 9, psa + ) € Sy. Therefore, there
Criterion for the convergence of Markov chams [1], [2], [4]exist non-negative flow vanable(sf1 f i, f4,f24, ) e
Consider the Lyapunov functiol (u) = u? + ZZ J(uZ, + Csuchthatpy +6 = fl+ fih + fis, poa + 0 = f§h — fia,

u2,). We wish to show that there exists a compact subsef; + ¢ = f¢, — fk, andd = f2 — f1. We therefore have
A C R’ such that under the CMDB polic§[V (U (t+T')) —

VU@)U(t) = u] < —e for all w ¢ A, wheree > 0. This, u1(pr + 6) + uga(paa + 0) + usa(psa + ) + 2ucd
along with some other technical conditions [4], implies the = u1(f} + fis + fi5) +uaa(fsy — fis) + uza(fSy — fi)
existence of a steady state distribution &@r +2u(f—
We have: = (u1 — 2ue) fi + (w1 — U2d)f1d2 + (u1 — USd)fldg
Ui(t+T) Fuoqfsy + usafsy + 2ucfs
_ o c d +12 . )
RO Bl = U0 L0 RO Let R(1) = (R§(0), By (1), Rby(0), BS(0), B, (1), R (0)
< (Uy(t) + By(t) — (RS () + R, (1) + Ry (t ))T) be chosen according to the CMDB rule described in (4). Then,
2 c d Bi(t)\ since(ff, fiy, fia, f5, foh, f54) € C, ua(p1 + 0) + uaa(paa +
< Ui(t) — 2T (1) <R1(t) + Riy(t) + Ris(t) - ) 0) + usq(psa + ) + 2u.0 is less than or equal to the RHS

B2(#) + (RE(£) + B (£) + R (£)2T2 of (6). SinceE[B;(t)/T] = p1 and E[B;4(t)/T] = p;q for

B (R () Ria (6) 1 Ris (1) i=1,2, the RHS of (5) implies
Here B4 (t) is the number of bits arriving to queue 1 in the _
tth slot, and(x)* denotesmax(z, 0). Similarly, fori = 2,3, EVU(t+1) - VIU@)IU(L) = ul
< B —2T6(uy + ugg + usg + 2u,).
Ut +T) < Ug(t) — 2TU(t)(Ri(t) — Ri(t)))

(t
+(R§(t)? + RS(t

Let A = {u : uy + usq + uzq + 2u. < S5} Then, for any

)T, ¢ > 0, and anyu ¢ A, E[V(U(t + T)) = VU®)[U () =
Ut +T) < Ui(t) — 2TUa(t) (R (1) — RY; (1) u] < —e.
—Bialt )/T)+Bd(t) +2B;a(t) RS, (H)T We have shown that the CMDB policy stabilizes;
+(R(iiz( ) ( )2)T2 for all (pl,O,de,O,pgd) € int('Sf). Th.L!S, we have
also shown that the CMDB policy stabilize§ for all
Note that sinceys. = p3. = 0, there are no exogenous arrivalp = (p1, p2, p3) € int(S). a

to queuec and3c. Taking conditional expected value of both

sides of the above inequalities given the evétit) = u, and

re-arranging, we have IV. CALCULATING THE CMBD PoLICY

We now focus on solving the optimization problem (4)
EVU(t+T1) - VIU®)U() = u] B required by the CMBD policy. We focus on a symmetric
< 9TuE [Rf(t)+Rf2(t)+R(113(t) B l(t)\U(t) :u] network (112 = hiz = hoy = has = 1) in this section.

T In this caseCcpe is given by (2) and the power variables
—2T'(2u.)E[R4(t) — RI(H)|U (t) = u] used in the definition o€carac (o) becomePy(a) = 4aP,
3 Bzd(t) P5(Oé):P6(OZ):(1—OZ)P
*2TZUME [3?4(0 — R{,(t) - T U(t) = U] For simplicity of notation, letw,, wy, ws, w4, ws, ws) de-
i=2 note (u; — 2ue, U1 — Uad, U1 — Usd, 2Uc, U4, Uzd), and let
+6 (X Ry, Ry, Rs, Ry, Rs, Rg) denote(RS,R%,,R%, RS R4, , RY,).

where s > 0 is an upper bound on a sum of terms involvmg;]rhe CMBD policy can now be expressed as

the second moments of the bit arrivals in ke slot (which
are bounded since the second moments of the packet arrivals maXZwiRi, (7)
and the packet sizes are bounded), and powers of transmission '

rates (which are bounded sin€eis bounded). _ Note that the solutionR* to (7) lies in SODV(€CBCH
Let E, [X] denoteE[X|U(t) = u|. Note that Comac(a®)) for some a* € [0,1], where Conrac(a®)
. d d el _ pe is the appropriate embedding ofcprac(a®) in Ri.

ulE [RY(E) + Rip (1) + Rig(8)] + 2ucBuRy(t) — Ri(t)] Since Ccpe and Coprac(a*) are both convex polytopes,

d conv(Cepe,Comac(a*)) is also a convex polytope. Now

+Zu“iE — Ru()] since R* also maximizes thdinear objective of (7) over
B B . B d conv(Cepe,Comac(a*)), R is (without loss of optimality)
- (ul 2uc) “[ng )+ (u u2d)5“[R12(t)] an extreme point ofonv(Ccc,Conmac(a*)). Thus, R* is
+(u1 — uza) Eu[R13(1)] + uzaEu[R34(t)] an extreme point either ocpc or an extreme point of

3B [RY, (1)) 4 2uEy [RS(1)] (6) Cemac(a®). We now consider these cases separately.



Case 1 R" is an extreme point of -zc. In this case R*
has the form( R}, R}, R5,0,0,0). Thus, (R}

log(1 +
,R3, R3) solves R}, R:, Rf), where RM is given by (10) anda* is given

P) andR RE‘3] = 0. Otherwise,R* = (0,0,0,

by (11).

max
ReCope ©

Z wilR 8

V. CONCLUSIONS

In this paper we considered a model of a parallel relay

Since Cope is a simplex, (
follows. Let w) > Wig] > wig] be wy,wq, w3 arranged in the
decreasingrder. ThenR};, = log(1+P) andRE‘] = Rj3 = 0.
Thus, whenever the CMDB

1, 3, R3) is easily given as network that incorporates the stochastic arrival of traffic within

network. For this model we showed that a variation of a

maximum back pressure policy is throughput optimal, where
policy operates in the broadcagis policy is modified to incorporate the potential gains of

mode, it allocates maximum rafieg(1 + P) to the traffic cooperative communication. We only considered one type
type with the largest weightv;. The optimal value of (8) of cooperation, namely decode and forward combined with

is then L§ g (w1, we, ws) (max;=1,2,3w;)log(l + P).
Under the assumption tha@* is an extreme point of ¢ ¢,
L pe(wr, we,ws) is equal to the optimal value of (7),
L*(wl, . ,'LU6).

_ 1
Case 2 R" is an extreme point afcarac(a*). In this case, s

R* has the form(0,0,0, R}, R, Rg). Thus, (R}, RE, Rf)

solves
Yun

Since Coprac(a®) is a polymatroid [11], (R}, RE, R§) can
be explicitly given as follows. Letwyy),ws), w;s be the
largest, second largest, and smallest elemedtQf ws, we},
respectively. Then

Pyj(a”)

Ry =log |1+
b ( 1+ Py

For instance, ifwy > ws > wg, then Ry = log(1 + 4a* P),

1—a™)P
R5 =log (1 + S-Hlﬁ) Rg = log (1 + m)
Pj(a)

Next, to finda*, we can solve
14205 P (00) '

6
arél[%?cl] ; w;) log (1 +

Let L(«) be the objective in (11). For the casewf > ws >
we, it can be verified thakL(«) is concave iny over|0, 1], and
thatZ'(«) > O forall « € [0, 1]. Thus,a* = 1, i.e.all power is
allocated to cooperative transmissiaver the MAC. In other
cases,L(«) may not be concave, and one needs to solve for
the stationary points of(«) and compare the value df(«a)
at the stationary points with its values on the boundaries.

Let Ly a0 (ws, ws,ws) be the optimal objective of (11).
Under the assumption th&* is an extreme point & c s ac»
we haveLy ;4o (wa, ws,ws) = L*(wn, . .., ws).

[2]
©)

RGCCMAC (a®)

K]

) i =4,5,6. (10)
) [6]

(7]

[8]
(11)

El

(10]

(11]

The previous discussion for Cases 1 and 2 operated under
the assumptiorthat R* is an extreme point of oz or that
R* is an extreme point o€car4c. Using these arguments,
on the other hand, it is easy to see that the following is true:

Theorem 3:Consider the four-node parallel relay net-
work with differential queue backlogsv,, ws, ..., ws. If
L¢po(wy, wa, w3) > L ac(wa, ws, ws)), then the optimal
solution R* to (7) is (R3, R;, R%,0,0,0), where Ry =

beamforming. Potential future directions include considering
other types of cooperation as well as other network topologies.
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