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Abstract— We give a model for cooperative communication in
a parallel relay network that includes the stochastic arrival of
packets and queueing. For this model we provide a throughput
optimal network control policy which stabilizes the network
for any arrival rate in its stability region. This policy is a
generalization of maximum differential backpressure policies
which takes into account the potential cooperative gains in the
network.

I. I NTRODUCTION

In recent years, motivated chiefly by wireless network-
ing applications, there has been interest in models which
jointly address “network layer” issues such as the random
generation of traffic, delay, and buffer occupancy, along with
traditional “physical layer” issues such as modulation, coding,
and channel modeling. In [1], [2], models for multiaccess
and broadcast channels taking into account both queueing
dynamics as well as information-theoretic capacity regions
have been considered. For these models, the networkstability
region is characterized; this is the set of arrival rates for which
all queues can be stabilized by a feasible rate and power alloca-
tion policy. Furthermore, simplethroughput optimalresource
allocation policies are specified, which stabilize the system
for any arrival rates in the stability region, without requiring
any a priori knowledge of the arrival statistics. Results using
similar techniques have been shown in [3], [4] for other
(non-information theoretic) physical layer models, where joint
power/rate allocation and routing are performed for multi-hop
transmission.

A feature of all the above models is that each packet follows
a single route from the source to the destination. In particular,
this does not incorporate the potential gains from various
cooperative relayingtechniques (e.g. [5], [6], [7], [8], [9],
[10]). With such techniques, multiple nodes may cooperate
in relaying a packet, essentially forming a distributed antenna
array. Cooperative communication has mainly been addressed
from the physical layer viewpoint, i.e. by studying the achiev-
able rates or diversity gains of given cooperative schemes.
A goal of this paper is to study a model of cooperative
communication which incorporates thestochastic arrival of
traffic and queueing dynamicsat the various nodes in the

1This research was supported in part by NSF under grants CCR-0313329
and CCR-0313183, and by ARO under grant DAAD19-03-1-0229.
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Fig. 1. A four node parallel relay network model.

network. In the next section, we describe such a model based
on the parallel Gaussian relay channel studied in [5], [6]. For
this model we characterize the network’s stability region and
give a throughput optimal network control policy. Compared
to the models in [1], [2], [3], [4], a new potential trade-off
emerges: in order to exploit cooperative gains, information
has to be sent along multiple routes; this in turn temporarily
increases the congestion within the network.

II. N ETWORK MODEL

Consider a simple network with cooperative communication
as shown in Figure 1. This networkG consists of four nodes
V = {1, 2, 3, 4}. Traffic originates at nodes 1, 2, and 3, and
the destination of all traffic in the network is node4. At
the physical layer, we model this as a modified version of
a Gaussian parallel relay network [5], [6]. Each nodei ∈ V
has an average power constraintP . Node 1 communicates
with nodes 2 and 3 over a Gaussian broadcast channel with
bandwidthW . If X1(t) is the transmitted signal by node1,
then the received signal at nodei = 2, 3, is given by

Yi(t) =
√

h1iX1(t) + Zi(t), (1)

where Zi(t) is a white Gaussian noise process with noise
density N0/2 and h1i is the channel gain between node 1
and i.1 Nodes2 and 3 the communicate to node4 over a2-
user Gaussian multiaccess channel, also with bandwidthW .

1Note all channel gains are fixed and known at the transmitters and
receivers. Hence, using cooperative transmissions for diversity gains as in
[9] is not relevant.



The received signal at node4 is given by

Y4(t) =
∑

i=2,3

√
hi4Xi(t) + Z4(t),

where Z4(t) is a white Gaussian noise process with noise
densityN0/2. All noise processes are mutually independent
and independent of the channel inputs. For convenience, we
normalize both the bandwidth and the noise power:W =
1, N0W = 1. We define asymmetric networkto be one where
h12 = h13 = 1 andh24 = h34 = 1.

To simplify our discussion, we assume that at any time
the network is either operating in the multi-access mode or
the broadcast mode, i.e., ifX1(t) > 0 then X2(t) = 0
and X3(t) = 0, and likewise if X2(t) > 0 or X3(t) > 0
then X1(t) = 0. From the point of view of nodes2 and 3,
this enforces ahalf-duplexing constraint[9], [10], i.e. these
nodes cannot transmit and receive simultaneously. This is
considered a realistic constraint in practical systems. However,
we note that our assumption also prohibits schedules which
do not violate the half-duplexing constraint, such as node 1
transmitting to node 2, while node 3 transmits to node 4. Also,
as in [5], we do not consider direct transmissions from node 1
to node 4. This is reasonable when the distance between these
nodes in large. Both of the above-mentioned possibilities could
in principle be included in our model at the expense of more
complicated notation.

Cooperation in this network is achieved by having nodes 2
and 3 cooperate to relay information from node 1 to node 4.
We assume that this is accomplished by having both nodes use
a decode and forwardstrategy. Namely, they will both receive
and decode the same packet from node 1; eventually, they will
simultaneously transmit this packet to node 4 by coherently
beamforming the received signal at node 4. For example, in a
symmetric network, if node 2 and 3 cooperatively transmit a
packet using the maximum power,P , then the received signal
power will be 4P . Of course, this requires that the nodes
must be perfectly synchronized. In the absence of perfect
synchronization, other cooperative techniques could be used.
Also, we note that in general this is not the optimal cooperative
strategy from the view of maximizing capacity.2

We do not require that all traffic from node 1 to 4 is relayed
using this cooperative mode; node 1 can also send “direct”
traffic to either node 2 or 3, which the receiving node then
individually relays to node 4. Exogenous traffic arrives at
node i = 1, 2, 3 according to an ergodic counting process
Ai(t), where Ai(t) is the number of packet arrivals up to
time t. The packet lengthsZi of exogenous traffic at nodei
are i.i.d. withE[Zi] < ∞ and E[Z2

i ] < ∞. Each node will
store all arriving packets in an infinite capacity buffer until
they are transmitted. LetU1(t) be the number of untransmitted
bits (unfinished work) at node 1, and letUid(t) and Uic(t)
respectively be the unfinished work of direct and cooperative
traffic at nodei = 2, 3. All exogenous arrivals at nodes 2

2Indeed, the optimal strategy and the capacity of the parallel Gaussian relay
channel is an open problem [6].

and 3 are included in thedirect traffic. By assumption, all
cooperative traffic is received at both nodes 2 and 3. Hence,
for all t, U2c(t) = U3c(t), and so we will denote both of these
quantities byUc(t). Let U(t) = (U1(t), Uc(t), U2d(t), U3d(t))
denote the joint queue state at timet. We consider the case
where givenU(t) at time t, a network controller specifies a
rate allocationR(t) = (Rc

1, R
d
12, R

d
13, R

c
4, R

d
24, R

d
34), where

Rd
ij is the rate of direct traffic between nodesi and j, Rc

1 is
the rate node 1 sends cooperative traffic to nodes 2 and 3, and
Rc

4 is the rate nodes2 and 3 cooperatively forward traffic to
node 4. At times, it will be more convenient to denote the
components ofR(t) as (R1(t), R2(t), . . . , R6(t)), where for
exampleR6 ≡ Rd

34.
The rate allocation chosen for timet must respect the half-

duplex constraint described above and given that the network
operates in the broadcast or multiaccess mode, the rates must
lie in the corresponding capacity region.3 We describe these
capacity regions next. First consider the broadcast mode and
without loss of generality assume thath12 ≤ h13. Let CBC be
the capacity region of the two-user Gaussian broadcast channel
defined by (1). Then it follows that the rates(Rc

1, R
d
12, R

d
13)

must satisfy(Rd
12 + Rc

1, R
d
13) ∈ CBC . Let the cooperative

broadcast regionCCBC be the set of all such allowable
(Rc

1, R
d
12, R

d
13). For a symmetric network (h12 = h13) CCBC

reduces to the set of non-negative rates that lie in the simplex
defined by

3∑

i=1

Ri ≤ log (1 + P ) . (2)

In the multiaccess mode, if nodes 2 and 3 only send direct
traffic (Rc

4 = 0), then the transmission rates(Rd
24, R

d
34) must

lie in the corresponding multiaccess capacity regionCMAC ;
this is the set of non-negative rates that satisfy

∑

i∈S
Rd

i4 ≤ log

(
1 +

∑

i∈S

hi4P

)
∀S ⊆ {2, 3}.

If both nodes send only cooperative traffic (Rd
24 = Rd

34 = 0)
then the transmission rateRc

4 must satisfy

Rc
4 ≤ log

(
1 + (

√
h24 +

√
h34)2P

)
.

In addition, we allow the nodes to transmit both cooperative
and direct traffic simultaneously. One way to model this is
to allow time-sharing between the above two modes. More
generally, we can view this as a type of 3-user multiaccess
channel, with 2 users corresponding to the direct traffic for
nodes 2 and 3, respectively, and a third user corresponding
to the cooperative traffic.4 The difference here is that the
power constraints of the users are coupled. If both users
2 and 3, devote a fractionα ∈ [0, 1] of their power to

3It is reasonable to assume that we can achieve any rate in these regions
if the times at which we apply the controls are sufficiently separated as to
allow the use of long codewords.

4A key assumption here is that the encoding of the traffic by these three
“users” is done only based on their own message and that the messages are
independent.



cooperative traffic, then we assume that they can achieve any
rates(Rc

4, R
d
24, R

d
34) ≡ (R4, R5, R6) which satisfy

∑

i∈S
Ri ≤ log

(
1 +

∑

i∈S

Pi(α)

)
∀S ⊆ {4, 5, 6}, (3)

whereP4(α) = (
√

h24 +
√

h34)2αP , P5(α) = h24(1− α)P ,
and P6(α) = h34(1 − α)P . Let CCMAC(α) denote this set
of feasible rates for a particular power splitting parameterα.
Then we assume that the controller can choose any rates from
the cooperative-MAC capacity region given byCCMAC =⋃

α∈[0,1] CCMAC(α). It can be verified that the resulting region
is convex.

Let CCBC and CCMAC be CCBC and CCMAC embedded
in R6

+, respectively. That is,(Rc
1, R

d
12, R

d
13) ∈ CCBC if and

only if (Rc
1, R

d
12, R

d
13, 0, 0, 0) ∈ CCBC , and(Rc

4, R
d
24, R

d
34) ∈

CCMAC if and only if (0, 0, 0, Rc
4, R

d
24, R

d
34) ∈ CCMAC .

Under the duplex constraint, the overall physical-layer capacity
region isC = conv(CCBC , CCMAC), i.e. the convex hull of
these two sets.

III. N ETWORK STABILITY REGION AND THROUGHPUT

OPTIMAL RATE ALLOCATION

Given the model in Section II, we proceed to characterize
the network stability region and the throughput optimal rate
allocation policy. Although the results we obtain here may
be reminiscent of results for conventional networks [3], [4],
we shall find that the cooperative nature of the parallel relay
network introduces some significantly new elements.

A. Stability Region

Let λi = limt→∞Ai(t)/t be the packet arrival rate
of traffic to node i. Let ρi = λiE[Zi] be the corre-
sponding bit arrival rate. We say that queuei is stable if
lim supt→∞

1
t

∫ t

0
1[Ui(τ)>ξ]dτ → 0 as ξ → ∞, where 1{·}

is the indicator function. The network stability regionS is
the closure of the set of all(ρ1, ρ2, ρ3) ∈ R3

+ for which
there exists some feasible rate allocation policyR defined
by R = R(u) ∈ C, whereu = (u1, uc, u2d, u3d), which can
guarantee that all queues are stable. Note thatR is a function
of the queue stateu and can assign any rate from the physical-
layer capacity regionC.

Using arguments similar to those in [3], [4], we can establish
the following.

Theorem 1:The stability regionS of the parallel relay
network of Figure 1 is set of all(ρ1, ρ2, ρ3) ∈ R3

+ for which
there exist non-negative flow variablesfc, fd

12, f
d
13, f

d
24, f

d
34

which support (ρ1, ρ2, ρ3) relative to the weighted graph
defined by the long-term rates given byC. That is, the
following flow conservation relations must be satisfied:ρ1 =
fc + fd

12 + fd
13, ρ2d = fd

24− fd
12, ρ2d = fd

34− fd
13. In addition,

(f c, fd
12, f

d
13, f

c, fd
24, f

d
34) ∈ C.

B. Throughput Optimal Rate Allocation

Theorem 1 states that ifρ = (ρ1, ρ2, ρ3) ∈ int(S), then the
queues can be stabilized. In general, however, this may require
knowing the value ofρ. In reality,ρ can be learned only over
time, and may be variable. One would prefer to findadaptive
rate allocation policies which can stabilize the networkwithout
knowing ρ, as long asρ ∈ int(S). These rate allocation
policies are calledthroughput optimal. As shown in [4], a
throughput optimal resource allocation policy for stochastic
networks with physical-layer capacity regions turns out to be
a generalization of themaximum differential backlog(MDB)
policy first proposed by Tassiulas [3]. Due to cooperative
transmissions, however, the parallel relay network considered
here is somewhat different from the networks considered
in [4]. Nevertheless, we show that the MDB policy can be
adapted to produce a throughput optimal rate allocation policy
for the parallel relay network.

We consider examine the evolution of the network at time
instants separated byT > 0 units of time, whereT is
sufficiently large to allow for large coding lengths. We make
the following assumptions for the packet arrival processes.
Let Ak = (A1k, A2k, A3k) be the arrival vector for thekth
T -slot. We assume{Ak : k ∈ Z+} are i.i.d. according
to distribution πA with mean E[A] = λT , where λ =
(λ1, λ2, λ3) are the arrival rates. Furthermore, assume that for

each i, E[A2
i ] < ∞, and Pr

(⋂3
i=1{Ai = 0}

)
> 0. These

assumptions on the arrival process, for example, clearly hold
for independent homogeneous Poisson arrival processes. The
above assumptions can be relaxed to the Markov modulated
case.

Theorem 2:A throughput optimal rate allocation policy
R∗(u) for the parallel relay network of Figure 1 is given by
the solution to the following optimization:

max
R∈C

(u1 − 2uc)Rc
1 + (u1 − u2d)Rd

12 + (u1 − u3d)Rd
13

+u2dR
d
24 + u3dR

d
34 + 2ucR

c
4 (4)

Note that the policy in (4) is the not the same as the con-
ventional MDB policy of [3], [4]. In particular, the coefficient
terms u1 − 2uc and 2uc reflect thequeue couplingeffect
induced by the cooperative transmission structure. We refer
to the policy of (4) as theCooperative Maximum Differential
Backlog(CMDB) policy.

Proof of Theorem 2: To show that the CMDB policy stabilizes
the network for anyρ = (ρ1, ρ2, ρ3) ∈ int(S), it is convenient
to consider a fictitious networkGf which is the same as the
networkG, except that arrivals are allowed to enter the queues
2c and 3c. Let Sf be the stability region of the network
Gf . It is clear that if the CMDB policy stabilizesGf for all
(ρ1, ρ2c, ρ2d, ρ3c, ρ3d) ∈ int(Sf ) such thatρ2c = ρ3c = 0,
then CMDB also stabilizesG for all ρ = (ρ1, ρ2, ρ3) ∈ int(S).
Therefore, from now on, we concentrate on the artificial
networkGf .



To show that the CMDB policy stabilizesGf for all
(ρ1, 0, ρ2d, 0, ρ3d) ∈ int(Sf ), we use an extension of Foster’s
Criterion for the convergence of Markov chains [1], [2], [4].
Consider the Lyapunov functionV (u) ≡ u2

1 +
∑3

i=2(u
2
ic +

u2
id). We wish to show that there exists a compact subset

Λ ⊂ R5
+ such that under the CMDB policy,E[V (U(t+T ))−

V (U(t))|U(t) = u] < −ε for all u /∈ Λ, whereε > 0. This,
along with some other technical conditions [4], implies the
existence of a steady state distribution forU .

We have:

U2
1 (t + T )

= [(U1(t) + B1(t)− (Rc
1(t) + Rd

12(t) + Rd
13(t))T )+]2

≤ (U1(t) + B1(t)− (Rc
1(t) + Rd

12(t) + Rd
13(t))T )2

≤ U2
1 (t)− 2TU1(t)

(
Rc

1(t) + Rd
12(t) + Rd

13(t)−
B1(t)

T

)

+B2
1(t) + (Rc

1(t) + Rd
12(t) + Rd

13(t))
2T 2

Here B1(t) is the number of bits arriving to queue 1 in the
tth slot, and(x)+ denotesmax(x, 0). Similarly, for i = 2, 3,

U2
ic(t + T ) ≤ U2

ic(t)− 2TUic(t)(Rc
4(t)−Rc

1(t)))
+(Rc

1(t)
2 + Rc

4(t)
2)T 2,

U2
id(t + T ) ≤ U2

id(t)− 2TUid(t)(Rd
i4(t)−Rd

1i(t)
−Bid(t)/T ) + Bid(t)2 + 2Bid(t)Rd

1i(t)T
+(Rd

1i(t)
2 + Rd

i4(t)
2)T 2

Note that sinceρ2c = ρ3c = 0, there are no exogenous arrivals
to queues2c and3c. Taking conditional expected value of both
sides of the above inequalities given the eventU(t) = u, and
re-arranging, we have

E[V (U(t + T ))− V (U(t))|U(t) = u]

≤ −2Tu1E

[
Rc

1(t) + Rd
12(t) + Rd

13(t)−
B1(t)

T
|U(t) = u

]

−2T (2uc)E[Rc
4(t)−Rc

1(t)|U(t) = u]

−2T

3∑

i=2

uidE

[
Rd

i4(t)−Rd
1i(t)−

Bid(t)
T

|U(t) = u

]

+β (5)

whereβ > 0 is an upper bound on a sum of terms involving
the second moments of the bit arrivals in thetth slot (which
are bounded since the second moments of the packet arrivals
and the packet sizes are bounded), and powers of transmission
rates (which are bounded sinceC is bounded).

Let Eu[X] denoteE[X|U(t) = u]. Note that

u1Eu[Rc
1(t) + Rd

12(t) + Rd
13(t)] + 2ucEu[Rc

4(t)−Rc
1(t)]

+
3∑

i=2

uidEu[Rd
i4(t)−Rd

1i(t)]

= (u1 − 2uc)Eu[Rc
1(t)] + (u1 − u2d)Eu[Rd

12(t)]
+(u1 − u3d)Eu[Rd

13(t)] + u2dEu[Rd
24(t)]

u3dEu[Rd
34(t)] + 2ucEu[Rc

4(t)] (6)

For any (ρ1, 0, ρ2d, 0, ρ3d) ∈ int(Sf ), there existsδ > 0
such that(ρ1 + δ, δ, ρ2d + δ, δ, ρ3d + δ) ∈ Sf . Therefore, there
exist non-negative flow variables(fc

1 , fd
12, f

d
13, f

c
4 , fd

24, f
d
34) ∈

C such thatρ1 + δ = f1
c + fd

12 + fd
13, ρ2d + δ = fd

24 − fd
12,

ρ3d + δ = fd
34 − fd

13, andδ = f4
c − f1

c . We therefore have

u1(ρ1 + δ) + u2d(ρ2d + δ) + u3d(ρ3d + δ) + 2ucδ

= u1(f1
c + fd

12 + fd
13) + u2d(fd

24 − fd
12) + u3d(fd

34 − fd
13)

+2uc(f4
c − f1

c )
= (u1 − 2uc)f c

1 + (u1 − u2d)fd
12 + (u1 − u3d)fd

13

+u2df
d
24 + u3df

d
34 + 2ucf

c
4

Let R(t) = (Rc
1(t), R

d
12(t), R

d
13(t), R

c
4(t), R

d
24(t), R

d
34(t))

be chosen according to the CMDB rule described in (4). Then,
since(f c

1 , fd
12, f

d
13, f

c
4 , fd

24, f
d
34) ∈ C, u1(ρ1 + δ) + u2d(ρ2d +

δ) + u3d(ρ3d + δ) + 2ucδ is less than or equal to the RHS
of (6). SinceE[B1(t)/T ] = ρ1 and E[Bid(t)/T ] = ρid for
i = 1, 2, the RHS of (5) implies

E[V (U(t + T ))− V (U(t))|U(t) = u]
≤ β − 2Tδ(u1 + u2d + u3d + 2uc).

Let Λ = {u : u1 + u2d + u3d + 2uc ≤ β+ε
2Tδ }. Then, for any

ε > 0, and anyu /∈ Λ, E[V (U(t + T )) − V (U(t))|U(t) =
u] < −ε.

We have shown that the CMDB policy stabilizesGf

for all (ρ1, 0, ρ2d, 0, ρ3d) ∈ int(Sf ). Thus, we have
also shown that the CMDB policy stabilizesG for all
ρ = (ρ1, ρ2, ρ3) ∈ int(S). 2

IV. CALCULATING THE CMBD POLICY

We now focus on solving the optimization problem (4)
required by the CMBD policy. We focus on a symmetric
network (h12 = h13 = h24 = h34 = 1) in this section.
In this case,CCBC is given by (2) and the power variables
used in the definition ofCCMAC(α) becomeP4(α) = 4αP ,
P5(α) = P6(α) = (1− α)P .

For simplicity of notation, let(w1, w2, w3, w4, w5, w6) de-
note (u1 − 2uc, u1 − u2d, u1 − u3d, 2uc, u2d, u3d), and let
(R1, R2, R3, R4, R5, R6) denote(Rc

1,Rd
12,Rd

13,Rc
4,Rd

24, Rd
34).

The CMBD policy can now be expressed as

max
R∈C

6∑

i=1

wiRi, (7)

Note that the solutionR∗ to (7) lies in conv(CCBC ,
CCMAC(α∗)) for some α∗ ∈ [0, 1], where CCMAC(α∗)
is the appropriate embedding ofCCMAC(α∗) in R6

+.
Since CCBC and CCMAC(α∗) are both convex polytopes,
conv(CCBC , CCMAC(α∗)) is also a convex polytope. Now
since R∗ also maximizes thelinear objective of (7) over
conv(CCBC , CCMAC(α∗)), R∗ is (without loss of optimality)
an extreme point ofconv(CCBC , CCMAC(α∗)). Thus,R∗ is
an extreme point either ofCCBC or an extreme point of
CCMAC(α∗). We now consider these cases separately.



Case 1: R∗ is an extreme point ofCCBC . In this case,R∗

has the form(R∗1, R
∗
2, R

∗
3, 0, 0, 0). Thus,(R∗1, R

∗
2, R

∗
3) solves

max
R∈CCBC

3∑

i=1

wiRi. (8)

Since CCBC is a simplex,(R∗1, R
∗
2, R

∗
3) is easily given as

follows. Let w[1] ≥ w[2] ≥ w[3] be w1, w2, w3 arranged in
decreasingorder. ThenR∗[1] = log(1+P ) andR∗[2] = R∗[3] = 0.
Thus, whenever the CMDB policy operates in the broadcast
mode, it allocates maximum ratelog(1 + P ) to the traffic
type with the largest weightwi. The optimal value of (8)
is then L∗CBC(w1, w2, w3) = (maxi=1,2,3 wi) log(1 + P ).
Under the assumption thatR∗ is an extreme point ofCCBC ,
L∗CBC(w1, w2, w3) is equal to the optimal value of (7),
L∗(w1, . . . , w6).

Case 2: R∗ is an extreme point ofCCMAC(α∗). In this case,
R∗ has the form(0, 0, 0, R∗4, R

∗
5, R

∗
6). Thus, (R∗4, R

∗
5, R

∗
6)

solves

max
R∈CCMAC(α∗)

6∑

i=4

wiRi (9)

Since CCMAC(α∗) is a polymatroid [11], (R∗4, R
∗
5, R

∗
6) can

be explicitly given as follows. Letw[4], w[5], w[6] be the
largest, second largest, and smallest element of{w4, w5, w6},
respectively. Then

R∗[i] = log

(
1 +

P[i](α∗)
1 +

∑
j<i P[j](α∗)

)
, i = 4, 5, 6. (10)

For instance, ifw4 ≥ w5 ≥ w6, thenR4 = log(1 + 4α∗P ),
R5 = log

(
1 + (1−α∗)P

1+4α∗P

)
, R6 = log

(
1 + (1−α∗)P

1+(3α∗+1)P

)
.

Next, to findα∗, we can solve

max
α∈[0,1]

6∑

i=4

w[i] log

(
1 +

P[i](α)
1 +

∑
j<i P[j](α)

)
. (11)

Let L(α) be the objective in (11). For the case ofw4 ≥ w5 ≥
w6, it can be verified thatL(α) is concave inα over [0, 1], and
thatL′(α) ≥ 0 for all α ∈ [0, 1]. Thus,α∗ = 1, i.e.all power is
allocated to cooperative transmissionover the MAC. In other
cases,L(α) may not be concave, and one needs to solve for
the stationary points ofL(α) and compare the value ofL(α)
at the stationary points with its values on the boundaries.

Let L∗CMAC(w4, w5, w6) be the optimal objective of (11).
Under the assumption thatR∗ is an extreme point ofCCMAC ,
we haveL∗CMAC(w4, w5, w6) = L∗(w1, . . . , w6).

The previous discussion for Cases 1 and 2 operated under
the assumptionthat R∗ is an extreme point ofCCBC or that
R∗ is an extreme point ofCCMAC . Using these arguments,
on the other hand, it is easy to see that the following is true:

Theorem 3:Consider the four-node parallel relay net-
work with differential queue backlogsw1, w2, . . . , w6. If
L∗CBC(w1, w2, w3) ≥ L∗CMAC(w4, w5, w6)), then the optimal
solution R∗ to (7) is (R∗1, R

∗
2, R

∗
3, 0, 0, 0), where R∗[1] =

log(1 + P ) and R∗[2] = R∗[3] = 0. Otherwise,R∗ = (0, 0, 0,
R∗4, R

∗
5, R

∗
6), where R∗[i] is given by (10) andα∗ is given

by (11).

V. CONCLUSIONS

In this paper we considered a model of a parallel relay
network that incorporates the stochastic arrival of traffic within
the network. For this model we showed that a variation of a
maximum back pressure policy is throughput optimal, where
this policy is modified to incorporate the potential gains of
cooperative communication. We only considered one type
of cooperation, namely decode and forward combined with
beamforming. Potential future directions include considering
other types of cooperation as well as other network topologies.
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