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Abstract—We consider the capacity of a downlink Orthogonal
Frequency Division Multiple Access (OFDMA) system with lim-
ited feedback rate RF per sub-channel and finite coherence time
T . The feedback is used to relay channel state information (CSI)
from K users to the base station. The order-optimal capacity
growth with Rayleigh fading sub-channels is Θ(N log log K) as
N and K increase with fixed ratio, where N is the number of
sub-channels. However, to achieve this, previous work requires a
feedback rate per subchannel that scales linearly with the system
size. Here we explicitly include the feedback overhead when
calculating the sum capacity, and study the tradeoff between
feedback rate and sum capacity. We propose two limited feedback
schemes, one based on sequential transmissions across users and
the other based on random access, in which the each feedback bit
requests the use of a sub-channel group containing multiple sub-
channels. With fixed RF T , the sum capacity for both schemes
with optimized sub-channel groups increases as Θ(N). If RF T
grows faster than log K, then both schemes can achieve the order-
optimal capacity growth. We also show that when RF T is small,
the random access scheme performs better than the sequential
transmission scheme, whereas the reverse is true for large RF T .

I. INTRODUCTION

Orthogonal Frequency Division Multiple Access (OFDMA)
can exploit both frequency and multiuser diversity through an
appropriate assignment of users to sub-channels. We consider
downlink OFDMA system in which the base station assigns
at most a single user to each sub-channel. Given perfect
channel state information (CSI), i.e., knowledge of all sub-
channel gains across all users, the sum capacity is achieved
by assigning the user with the best channel gain to each sub-
channel and water-filling the power over the sub-channels.
Related optimized power and rate allocations are discussed
in [1], [2]. Although those schemes can achieve substantial
capacity gains, relative to that with no CSI at the transmitter,
the associated feedback required in a mobile environment is
likely to be excessive in practice.

The feedback overhead for downlink OFDMA can be
substantially reduced by coarsely quantizing the CSI at the
receivers before sending it back to the base station. Feedback
schemes in which each user feeds back one bit per sub-
channel have been proposed and studied in [3]–[5]. Each
feedback bit indicates whether or not the particular channel
gain exceeds a pre-determined threshold. It shown in [6] that
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with Rayleigh fading sub-channels the corresponding weighted
sum capacity grows as N log(log(K)), where N is the number
of sub-channels, which is same the capacity growth achieved
with perfect CSI at the base station. Furthermore, the gap
between the capacity with perfect CSI and the one bit feedback
scheme is bounded by a constant [6]. Other related work
on limited feedback schemes for the downlink narrowband
Multiple Input Multiple Output (MIMO) channel has appeared
in [7]–[10].

Even one-bit feedback per sub-channel is likely to be
excessive in many applications. Namely, the total amount of
feedback grows as NK, which is much faster than the rate
at which the downlink capacity grows. Hence, given a fixed
coherence time T , during which the feedback occurs, as N and
K scale up, the feedback eventually dominates the coherence
time, so that the optimal capacity growth is unsustainable. This
problem motivates the work in this paper. Namely, here we
assume that both the feedback rate per sub-channel RF and
the coherence time T are fixed, i.e., do not scale up with
the number of users K. Also, the duration of the feedback
is explicitly modeled as part of the coherence time T . Our
objective is then to maximize the sum capacity, accounting
for the loss in channel uses due to feedback.

We consider two feedback schemes, which can be used to
reduce the feedback rate below one bit per sub-channel. In both
schemes, non-overlapping groups of sub-channels are formed,
where each group contains the same number of sub-channels.
Each feedback bit then requests the use of all sub-channels
in that group. Here we assume that a sub-channel group is
requested only if all sub-channel gains exceed a threshold.
Clearly, the total feedback decreases with the size of the sub-
channel groups.

In the first feedback scheme, each user forms a binary
vector, which indicates the set of requested sub-channel
groups. That vector is losslessly compressed, and the users
then transmit their compressed vectors to the base station
sequentially. In the second scheme, a group of users is assigned
to each sub-channel group. (The user groups may overlap.)
Users assigned to a particular sub-channel group then contend
for the use of that group via random access. That is, each user
transmits an ID over the assigned sub-channel group, provided
that all sub-channel gains exceed the threshold, where the
number of bits in the ID depends on the number of users
assigned to a group. If multiple users request the same sub-



channel group, we assume a collision, so that the sub-channel
group remains idle. For both schemes, we optimize the size
of the sub-channel group and the channel gain threshold, and
for the random access scheme, we also optimize the size of
the user groups.

As in [4], [6], we assume perfect CSI at the receiver and
i.i.d. Rayleigh fading sub-channels. We show that for both
feedback schemes with fixed RF and T , the sum capacity
grows as Θ(N)1. Hence the feedback constraint eliminates the
multiuser diversity term log(log(K)), which is present with
unlimited feedback. However, the constants associated with
the Θ(N) growth for both schemes have the form log(RF T ).
Consequently, if RF T grows faster than log(K), we obtain
the order-optimal growth of N log(log(K)). We also show
that when RF T is small, the random access feedback scheme
outperforms the first feedback scheme, whereas the reverse is
true when RF T is large.

II. SYSTEM MODEL

For the downlink OFDMA system considered, the ith re-
ceived sample for user k, assigned to sub-channel n, is given
by

yn
k (i) =

√
hn

kejθn
k xn

k (i) + wn
k (i) (1)

1 ≤ k ≤ K, 1 ≤ n ≤ N , where xn
k is the transmitted

symbol, hn
k is the squared channel gain, θn

k is the random
phase uniformly distributed in [0, 2π], and wn

k is additive white
Gaussian noise with zero mean and unit variance. The channel
gains are assumed to be Rayleigh distributed with variance
σ2, and are independent across users and sub-channels. Also,
we assume that all channel gains remain constant during a
coherence time of T seconds, and that each receiver has perfect
CSI, i.e., the gains hn

k , 1 ≤ n ≤ N , are known at receiver k.
During each coherence time T , the base station assigns

users to sub-channels to maximize the sum rate over all
users. At most one user can be assigned to any sub-channel.
This assignment is based on feedback, which the base station
receives from the mobiles during the start of the coherence
time T (e.g. in a time-division duplex(TDD) system). 2 We
assume a fixed coherence time T , and a limited feedback rate
per sub-channel RF . To reduce the total feedback from all
users, we consider two limited feedback protocols: a random
access, or contention-based scheme, and a non-contention
(sequential feedback) scheme. In both schemes, the feedback is
reduced by grouping sub-channels. Namely, each sub-channel
group contains αN sub-channels, where 0 < α < 1. The sub-
channel groups do not overlap, so that there are 1/α groups.
A user k can request a particular sub-channel group Hm,
1 ≤ m ≤ 1/α, provided that hn

k ≥ to for all n ∈ Hm.

1We use the notation: xK = O(yK) if limK→∞
|xK |
|yK |

≤ M ; xK =

Ω(yK) if yK = O(xK); xK = Θ(yK) if xK = O(yK) and xK =
Ω(yK); xK � yK if limK→∞

xK
yK

= 1.
2Of course in a TDD system, the base station could also use the uplink

traffic to estimate some the channel conditions, provided that the user was
transmitting on the uplink. We do not model this source of channel information
here.

A. Feedback Protocols

Here we specify the feedback protocols along with the
corresponding total feedback and sum rate objectives.

1) Sequential scheme: The sequential feedback scheme is
specified as follows:
• Each user can request any sub-channel group. For a

particular user k the set of requests is represented by
a (1/α)-bit feedback vector, where the mth entry is ‘1’
if hn

k ≥ to for all n ∈ Hm, and is ‘0’ otherwise.
• The users transmit their binary feedback vectors sequen-

tially. Each binary vector is losslessly compressed before
transmission.

• The base station decodes the compressed feedback bits
from all users. If a channel group is requested by more
than two users, then the base station randomly assigns
one of them to that channel group. If the channel group
is not requested by any user, then the group is not used
during the coherence time.

The probability that a user requests a particular channel
group is po = e−αNto/σ2

. Since the feedback bit sequence is
i.i.d., its entropy is given by 1

α ×H(po) where

H(po) = −po log(po)− (1− po) log(1− po) (2)

is the binary entropy function. According to [11, Thm. 5.4.1],
we can find a coding scheme such that the expected codeword
length L satisfies 1

αH(po) ≤ L ≤ 1
αH(po) + 1. Since the

feedback time-slot allocated to each user should contain at
least one bit, we assume that the average number of feedback
bits per user is 1

αH(po) + 1.3

Suppose that the total feedback rate is NRF , i.e., it scales
linearly with the number of sub-channels N . Also, we scale
the number of users K in proportion with N , i.e., K/N = ρ.
The average duration of the feedback time slot allocated to
a particular user is then

1
α H(po)+1

NRF
channel uses, and the

average total feedback time within a coherence time T is
K ×

1
α H(po)+1

NRF
. It can be shown that for the optimal system

parameters discussed in Section III-A, the total feedback time
converges to its mean with probability one, as the system
scales. Hence, asymptotically the fraction of the coherence
time devoted to feedback is then

fseq = ρ
1
αH(po) + 1

RF T
. (3)

We assume that the base station allocates power uniformly
over the active sub-channels. Given power P per user, the
average power per sub-channel group is then the total power
divided by the average number of active channel groups, or
KP/(ps/α), where ps = 1−(1−po)K is the probability that a
channel group is requested by at least one user. The average re-
ceived Signal-to-Noise Ratio on a particular subchannel n as-
signed to user k is then KPhn

k/[(ps/α)×(αN)] = ρPhn
k/ps.

3Here we ignore additional feedback, which may be required to demarcate
the user transmissions. For example, this may be required if the users are
unable to decode the feedback transmissions from all other users. Accounting
for this additional feedback does not change the main results presented in
Section III-A.



We assume that the code rate is matched to the channel
threshold to, so that with an optimal code the achievable rate
per active sub-channel is

rseq = log
(

1 +
ρPto
ps

)
. (4)

Accounting for the feedback in (3) as part of the coherence
time enables us to write the average sum rate as

R̃seq = Npsrseq(1− fseq) (5)

where Nps is the average number of active sub-channels. In
what follows, we maximize R̃seq over the parameters α and
to, giving the optimized objective

Rseq = max
α,to

R̃seq. (6)

2) Contention scheme: The contention, or random access
scheme is defined as follows:
• For each sub-channel group, βK users are allowed to

contend for that group, where 0 < β < 1. Each user can
therefore request only a subset of available sub-channel
groups.

• To request a sub-channel group (i.e., if the channel gains
are above the threshold), user k transmits log(βK) + 1
identification bits over the associated αN sub-channels.

• The base station allocates the group to the user whose
feedback bits are successfully received by the base sta-
tion. If multiple users contend for the same group, then
a collision occurs, and the group remains idle.

Here log(βK) feedback bits are needed to identify a user
within the user group assigned to a particular sub-channel
group. The additional bit ensures that at least one feedback bit
is sent. Instead of allocating one dedicated time slot for each
user, as in the sequential scheme, all βK users simultaneously
access the same bandwidth to transmit their feedback bits. A
sub-channel group is assigned to a user if and only if one out
of βK users requests that sub-channel group.

In analogy with (5), the sum capacity objective is

R̃con = Nptrcon(1− fcon), (7)

where pt = βKe−αNto/σ2
(1− e−αNto/σ2

)βK−1 is the prob-
ability that a single user requests a sub-channel group,

rcon = log
(

1 +
ρp

pt
to

)
, (8)

and
fcon =

log(βK) + 1
αNRF T

(9)

is the fraction of the coherence time used for feedback.
We can again maximize R̃con over the parameters α and to,

and the additional parameter β giving the optimized objective

Rcon = max
α,β,to

R̃con. (10)

In what follows, we will compare the performance of the se-
quential and contention schemes as a function of the feedback
RF T .

III. MAIN RESULTS

A. Capacity Growth Order

If there is no limit on the feedback rate and/or the coherence
time, then the sum-capacity grows at rate Θ(N log(log(K)))
as N and K increase with fixed ratio. In this section, we char-
acterize this growth rate for the two schemes in the previous
section, assuming that the feedback rate and coherence time
are fixed.

Lemma 1: In the optimal sequential scheme, the probability
that a user requests a channel group is decreasing as Θ(1/K)
as K → ∞. The optimal grouping size is increasing as
Θ(log(K)). The average number of channel groups requested
by one user is decreasing as Θ(1/ log(K)).

Here, by “optimal” we mean that the parameters α and to
are optimized for each K and N . The key idea behind this
lemma is that under the optimal scheme, the total feedback
time must be bounded. Both decreasing the probability that
a channel is requested and increasing the grouping size help
to limit this quantity. However, these also decrease the sum
capacity if the feedback overhead is not taken into account.
Hence, the optimal scheme must decrease these “fast enough”,
but not too fast. To determine the optimal rate, as in [4], we
use results from extreme order statistics [12] to characterize
the asymptotic probability that a channel is requested. We omit
the detailed proof due to space considerations.

Lemma 2: In the contention scheme, if to → ∞ as K →
∞, then to have a non-zero asymptotic rate, it must be that
βK →∞ and αN →∞.

In other words, in the contention scheme, if the threshold
approaches infinity, the channel group size and the number
of users per group must also.4 This follows since increasing
to increases the transmission rate on a successful channel,
but also effects the probability of success pt. To keep pt

from going to zero too quickly, βK must increase. If βK
increases, then αN must also increase to keep the feedback
time bounded.

Using these two lemmas, we have the following proposition.
Proposition 1: Given a fixed value of RF T , both Rseq and

Rcon grow as Θ(N), as N →∞.

B. Performance Comparison

Proposition 1 shows that the sum capacity of both schemes
increases as Θ(N). Next we compare the performance of the
two schemes in terms of their asymptotic first order constant.
Let γ denote this constant for the optimal sequential scheme,
i.e., Rseq � γN as N →∞. Using asymptotic order statistics,
it can be shown that this constant has the form

γ = ν

(
1− − log(1− µ)µ(e

ν
µ − 1)

ρPσ2RF T
− ρ

RF T

)
, (11)

where µ , ps is the asymptotic probability that a group is
requested by more than one user and ν , µ log(1 + ρP

µ to)
represents the asymptotic rate per sub-channel carrying the

4Note that this does imply that in the optimal contention scheme, the
threshold approaches infinity.



downlink data. To find the first order constant, we must
maximize (11) over µ and ν. The Karush-Kuhn-Tucker (KKT)
conditions for this optimization problem result in the following
two equations that the optimal µ and ν must satisfy:

log(1− µ)(et − 1− tet) =
ν

1− µ
(et − 1), (12)

ρPσ2RF T − ρ2Pσ2 = − log(1− µ)
µ

((t + 1)et − 1), (13)

where t , ν/µ.
For the contention scheme, there are three parameters to

optimize over. Furthermore, we can’t necessarily apply asymp-
totic order statistics in this case, because the optimal number
of channel groups may not approach infinity as K increases.
However, we can still compare the schemes in two extreme
cases: large RF T and small RF T .

Theorem 1: There exists constants b∗1 ≥ b∗2 ≥ ρ, such that
when RF T > b∗1 (RF T < b∗2) the first order constant of
the sequential scheme is greater than (less than) that of the
contention scheme.

We give a brief sketch of the proof of this next. We consider
the following two cases: (a.) RF T is large, and (b.) RF T is
small. For case (a.), it can be shown that the ρ

RF T term in (11)
can be neglected. We then compare the first order constants of
the two schemes by assuming that the fraction of time devoted
to feedback and the channel threshold for both schemes lie
within one of three given sets. Within each set, the sequential
scheme performs better than the contention scheme. For case
(b.), we show that as RF T decreases to ρ, the capacity of the
sequential scheme approaches 0 while the capacity of collision
scheme is bounded away from 0.

We conjecture that the first order constant of both schemes
is an increasing and concave function of RF T and that they
cross at one point (i.e. b∗1 = b∗2). The numerical results below
support this statement.

C. Impact of RF T on Capacity

In [4], the capacity achieved by a one bit feedback scheme is
shown to increase as Θ(N log(log(K))), which is the same as
optimal growth rate with full CSI at the base station. However,
in Prop. 1, the capacity only scales like Θ(N); i.e. there is no
longer the multiuser diversity gain of log(log(K)). As we will
show next, this is due to the constraint that RF T is fixed.
Indeed, for the one bit feedback scheme in [4], each user
sends back one bit per sub-channel. Thus the total amount
of feedback per sub-channel is K bits. In our model, this
would result in a feedback time of K

RF
, which would eventually

exceed T . To prevent this from happening, in the one-bit
feedback scheme, RF T would need to increase linearly with
K as the system scales. The next proposition shows that for
the two schemes considered here RF T only needs to increase
faster than log(K) to recover the multi-user diversity gains.

Proposition 2: If RF T increases slower than Θ(log(K))
as K → ∞, then Rseq and Rcon both increase as
Θ(N log(RF T )). If RF T increases faster than Θ(log(K)),
Rseq and Rcon both increase as Θ(N log(log(K))).

We give a brief sketch of the proof. If RF T increases faster
than log(K), then the fraction of time used for feedback in
the contention scheme satisfies

log(βK) + 1
αNRF T

≤ log(K) + 1
RF T

→ 0.

Therefore, Rcon/N � Pt log(1 + ρp
Pt

to). We construct a lower
bound on Rcon/N by setting αN = 1, βK = K and
to = σ2 log(K). For these parameters, Pt = Ke− log(K)(1 −
e− log(K))K−1 → e−1, and the throughput per sub-channel
grows as Θ(N log(log(K))). Therefore, Rcon is increasing at
least as fast as Θ(N log(log(K))). From Theorem 1, Rcon is
upper bounded by Rseq when RF T is large. Both Rcon and
Rseq are upper bounded by the optimal sum capacity with full
CSI, which also increases as Θ(N log(log(K))). Combining
these observations it follows that Rcon and Rseq both increase
as Θ(N log(log(K))).

If RF T increases slower than Θ(log(K)), it can be shown
that Rseq increases like Θ(N log(RF T )). For the contention
scheme, we first lower bound Rcon by setting αN = 1 and
to = σ2 log(βK). With these settings, pt = (1 − 1

βK )βK−1.
As βK increases, pt is lower bounded by e−1. Therefore, we
have

Rcon/N

≥ e−1 log
(

1 +
ρPσ2

e−1
log(βK)

)(
1− log(βK) + 1

RF T

)
= Θ(log(RF T )).

Theorem 1 shows that Rcon is upper bounded by Rseq when
RF T is large. Therefore, Rcon also scales Θ(N log(RF T )).

Note that if the base-station does not have any CSI (zero
feedback bits) and codes over many channel realizations, it
can achieve an average sum capacity of

Rnf = N

∫ ∞

x=0

log(1 + ρPx)dF (x)x, (14)

where F (x) is the cumulative distribution function of the
channel gains. This quantity is also increasing as Θ(N).
However, Proposition 2 implies that the first order constants of
the two limited feedback schemes increase with RF T , while
the constant for Rnf does not. This implies that for large
enough values of RF T , these schemes will perform better
than a no feedback scheme; however, the improvement does
not increase the first order growth rate.

IV. NUMERICAL RESULTS

In this section, we provide some numerical examples
which illustrate the asymptotic performance of both feedback
schemes. For all the users, the channel gains are modeled
as Rayleigh with variance σ2 = 1, and we set the power
per user, P = 10 (10 dB). Figure 1 shows the optimized
first order constant for each scheme as a function of different
values of RF T and for different loads, ρ = K/N . For
each scheme, we optimized this constant numerically over the
relevant parameters (i.e. to, α and β). As stated in Theorem 1,
for a given ρ, when RF T is small the contention scheme has
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the larger constant, while when RF T is large the sequential
scheme performs better. For each of these cases, there is a
single crossing point as conjectured after Theorem 1. The
crossing point is shifted to the right as ρ increases. The
sum capacity of the sequential scheme goes to 0 when RF T
approaches ρ. This is because the entire coherence time T is
used for feedback.

Figure 2 show the optimized parameters for both schemes
as a function of RF T , when ρ = 1. The top part shows the
optimal asymptotic thresholds for the two schemes. For both
schemes, the optimal thresholds converge to a finite value that
increases with RF T . This can be contrasted with the one-
bit feedback scheme in [4], in which the optimal thresholds
approach infinity as the system scales. The lower part of
the figure shows the optimal group sizes for the contention

scheme.5 As RF T increases, the number of channels in each
group decreases to 1, while the number of users in each group
increases.

V. CONCLUSION

We have presented two feedback schemes for downlink
OFDMA with finite coherence time T and limited feedback
link capacity RF . The capacity growth for both schemes is
Θ(N) as the number of users and sub-channels increase,
although the multi-user diversity log log K term can be re-
covered if the feedback RF T is allowed to increase as log K.

For purposes of analysis, we have assumed that a user
requests a sub-channel group only if all sub-channel gains in
the group exceed a pre-determined threshold. This criterion is
rather severe, and it is of interest to re-evaluate performance
with other selection criteria, e.g., based on associated rates.
Also, we have assumed perfect CSI at the receiver, and have
not accounted for the additional overhead associated with
channel estimation. Finally, we have assumed a single antenna
at the base station. Extending the feedback schemes considered
here to MIMO OFDMA, and examining the associated tradeoff
between downlink capacity and feedback is an interesting
direction for future work.
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