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I. Summary

For wireless data traffic, energy efficiency can be improved by
adapting the transmission power and rate over time based on
the offered traffic as well as any channel state information. In
this context, a variety of transmission scheduling approaches
have been studied including [1, 2, 3]. These approaches at-
tempt to manage the fundamental trade-off between packet
delay and transmission power or energy. Specifically, packet
delay can be reduced by transmitting at a higher rate, but
this requires an increased energy per bit. In fading channels,
reducing packet delay also prohibits users from optimally allo-
cating their power over time in response to channel variations.

In this paper, we consider a model for transmission schedul-
ing over a fading channel from [2]. In this model, data ran-
domly arrives at a transmission buffer where it is held until
it is encoded and transmitted over the fading channel. The
transmitter can vary the transmission power and rate based
on both the channel state and the buffer occupancy. In [2],
the optimal trade-off between the average delay incurred by
the arriving data and the long-term average power was stud-
ied in a Markov decision framework. The behavior of this
trade-off was characterized in the asymptotic regime of large
delays (low power). In this regime, it was shown that the rate
at which the required power decreases as the average delay,
D, increases is1 Θ

(
1

D2

)
.

In this paper, we focus on the behavior of the power/delay
trade-off in the asymptotic regime of small delays (high
power). We focus on a case where infinite power is required
to minimize the average delay. This will be true for example
in a Rayleigh fading channel. In this regime, we show that
compared to the large delay asymptotics, the average power
decreases at a much faster rate as the delay increases. This
implies that the savings in power gained by relaxing the delay
constraint are much more significant when the delay constraint
is stringent.

We consider a discrete-time fluid queueing model with an
infinite buffer size. At time n, Un bits are removed from the
buffer and transmitted over a block fading channel, with chan-
nel gain Hn, assumed to be known at the transmitter. The
transmission power required to reliably send these bits is given

by P (Hn, Un) = σ2

|Hn|2 (2Un/N − 1), where N is the number of

channel uses in each block and σ2 is the additive noise vari-
ance. Let µ(s, h) denote a transmission policy, that specifies
the amount of data transmitted at each time-unit as a func-
tion of the current buffer state, Sn and the current channel

1We use the notation an = O(bn) if lim supn→∞
|an|
|bn| < ∞,

an = Ω(bn) if lim supn→∞
|bn|
|an| < ∞ and an = Θ(bn) if an = O(bn)

and an = Ω(bn).

gain Hn. For a given policy µ, let D̄µ denote the average
delay and let P̄ µ denote the long-term average transmission
power. For a given channel and arrival process, the optimal
delay/power curve, D∗(P ) is defined to be

D∗(P ) = inf{D̄µ : µ such that P̄ µ ≤ P}.
For the channels of interest as P → ∞, D∗(P ) → Dmin and
for any P < ∞, D∗(P ) > Dmin. We study the rate at which
D∗(P ) decreases.

First we consider a simple “fixed-power” transmission pol-
icy in which the transmitter always sends at a constant power
P̄ , but a variable rate.

Proposition 1 For any sequence of fixed power policies, µk,

with P̄ µk →∞, D̄µk−Dmin = O
(

1
log P̄ µk

)
. Furthermore, as-

suming that the channel gain distribution satisfies Pr(|H|2 <

h) = Θ(h) as h → 0, then D̄µk −Dmin = Ω
(

1
P̄ µk log P̄ µk

)
.

The proof of this relies on finding upper and lower bounds
on the average buffer occupancy and then applying Little’s
law. The bounds used are similar to Kingmann’s bounds for
a G/G/1 queue [4].

Next we consider channel threshold policies, where the
transmitter sends at a constant rate R whenever the mag-
nitude of the channel gain is greater than a given threshold
and transmits nothings otherwise.

Proposition 2 There exists a sequence of channel threshold

policies, {µk} with P̄ µk →∞ and Dµk −Dmin = Θ
(
e−P̄ µk

)
.

From this it follows that D∗(P ) must decrease faster than
e−P as P →∞.

These propositions can be generalized to a multi-user set-
ting as well as a finite buffer model.
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