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The Role of Switching in Reducing the Number of
Electronic Ports in WDM Networks

Randall A. Berry and Eytan Modiano

Abstract— We consider the role of switching in minimizing the
number of electronic ports (e.g., SONET ADMs) in an optical
network that carries sub-wavelength traffic. Providing nodes with
the ability to switch traffic between wavelengths, such as through
the use of SONET cross-connects, can reduce the required
number of electronic ports. We show that only limited switching
ability is needed for significant reductions in the number of
ports. First, we consider architectures where certain “hub” nodes
can switch traffic between wavelengths and other nodes have no
switching capability. For such architectures, we provide alower
bound on the number of electronic ports that is a function of the
number of hub nodes. We show that our lower bound is relatively
tight by providing routing and grooming algorithms that nearly
achieve the bound. For uniform traffic, we show that the number
of electronic ports is nearly minimized when the number of hub
nodes used is equal to the number of wavelengths of traffic
generated by each node. Next, we consider architectures where
the switching ability is distributed throughout the network. Such
architectures are shown to require a similar number of portsas
the hub architectures, but with a significantly smaller “switching
cost.” We give an algorithm for designing such architectures and
characterize a class of topologies where the minimum number
of ports is used. Finally, we provide a general upper bound on
the amount of switching required in the network. For uniform
traffic, our bound shows that as the size of the network increases,
each traffic stream must be switched at most once in order to
achieve the minimum port count.

Index Terms— Optical Networks, Traffic grooming, SONET.

I. I NTRODUCTION

Wavelength division multiplexing (WDM) is increasingly
being deployed to provide high capacity metro core networks.
Typically these networks have a SONET ring architecture,
where each node in the ring uses a SONET Add/Drop Mul-
tiplexer (ADM) to electronically combine several lower rate
streams onto a wavelength, e.g. 16 OC-3 circuits can be
multiplexed onto one OC-48 stream. With WDM, multiple
SONET rings can be supported on a single fiber; however, each
additional ring will require additional ADMs. The cost of these
electronic ports dominates the cost of such a network. Man-
aging this cost is particularly important in the cost-sensitive
metro environment. To reduce the number of electronic ADMs,
WDM Add/Drop Multiplexers (WADMs) can be employed;
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WADMs allow a wavelength to either be dropped at a node
or to optically bypass a node. When a wavelength is not
dropped at a node, an electronic ADM is not required for
that wavelength. The required number of SONET ADMs can
be further reduced bygrooming the lower rate traffic so that
the minimum number of wavelengths need to be dropped at
each node.

The benefits of grooming with WADMs have been looked
at in a number of recent papers including [1-17]. The general
grooming problem is NP-complete [1]. However, for several
special cases, algorithms have been found that significantly
reduce the required number of ADMs. For example, for uni-
form all-to-all traffic, algorithms have been found for bothbi-
directional rings [2,4,5] and unidirectional rings [1]. Heuristic
algorithms for general (non-uniform) traffic have also been
presented in [8-11]. In much of the work on grooming, such as
[1,3,8,9,10], it is assumed that each low-rate circuit muststay
on the same wavelength between the source and destination.
This assumption can be relaxed when a node is equipped
with a SONET digital cross-connect (DXC), which allows for
the electronic switching of low rate streams between SONET
rings (i.e., wavelengths). The added flexibility provided by
DXCs can enable the traffic to be more efficiently groomed,
leading to a reduction in the required number of ADMs. An
example of this is given in [1] where it is shown that even a
singlehub node with a DXC can reduce the required number
of ADMs over a network with no switching capability, even
when the hub node is required to have an ADM on every
wavelength. In [5] it was shown that the cost savings, in
terms of ADMs, with a single-hub architecture can be as high
as 37.5 percent. In other work, such as [4], it is assumed
that every node can cross-connect every wavelength that is
dropped at that node. Clearly, more switching capability will
not increase the required number of ADMs. However, there is
a non-negligible cost associated with providing this electronic
switching. Therefore, in addition to minimizing the required
number of ADMs, it is also desirable to limit the amount of
switching in the network.

In this paper we consider architectures that are efficient
both in terms of the number of ADMs used, as well as the
amount of switching provided. First, we considermultiple hub
architectures, which are a generalization of the single hub
architecture in [1]. In this case, we assume that there are
two types of nodes in the ring - hub nodes and non-hub
nodes. Each hub node can cross-connect every wavelength
dropped at the node, while non-hub nodes have no DXC’s.
In this case, we study the number of hub nodes needed to
minimize the number of ADMs in the network. We bound
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the number of ADMs needed for a multi-hub architecture and
provide algorithms for traffic grooming in such a ring. Next,
we considerdistributed hub architectures, where each node in
the ring may have limited cross-connect capability. In thiscase,
each node is able to switch traffic between only a subset of the
wavelengths dropped at that node. We introduce a new notion
of “switching cost” that quantifies the amount of switching
used in a ring. We give examples to show that a distributed
hub architecture can result in an efficient use of ADMs as well
as a smaller switching cost than a multi-hub architecture. We
identify a class of rings where a distributed hub architecture
can be found that requires the minimum number of ADMs.
We again provide a heuristic algorithm for grooming and
switching in this type of ring. Finally, we consider an upper
bound on the average amount of switching needed in a network
that minimizes the required number of ADMs. This bound
is general in that it applies to an arbitrary topology and is
useful in that it provides additional insight into the amount of
switching needed in a network.

II. M ULTIPLE HUB ARCHITECTURES

In this paper we primarily consider unidirectional ring
networks such as a UPSR SONET ring. This is done mainly
to simplify our description; as will be evident, much of the
following can be easily generalized to bi-directional rings
and, in some cases, to arbitrary mesh networks. Let the
network nodes be represented by the setSN = {1, 2, . . . , N}.
Also, for simplicity, we assume that all traffic has the same
granularity ofg, i.e., g low-rate circuits can be combined on
each wavelength.

In Figure 1, three possible ring architectures for a ring with
N = 4 nodes are shown. Figure 1(a) is a static ring without
cross-connects. In this architecture no switching is employed,
hence each circuit must be assigned to a single wavelength
that must be processed (dropped) at both the source and the
destination. For example all traffic between nodes 1 and 2 must
be assigned toλ1. This static architecture is the traditional
SONET ring architecture that has been used in the studies of
[1,2,3]. Figure 1(b) depicts a single hub architecture where
a large cross-connect is located at one hub (node 3). The
cross-connect is able to switch any low rate circuit from any
incoming wavelength to any outgoing wavelength. With this
architecture, each node can send all of its traffic to the hub
node where the traffic is switched, groomed and sent back
to the destination nodes. Finally, shown in Figure 1(c) is a
multiple hub architecture, with 2 hub nodes (nodes 1 and 3).
Each hub node has a small cross-connect that can switch traffic
among the wavelengths dropped at that node. Each node on the
ring can send a fraction of its traffic to one of the hub nodes,
where it is properly groomed and relayed to its destination.

To illustrate the potential benefit of the multiple hub ar-
chitecture, consider a unidirectional ring withN = 9 nodes
where each wavelength supports an OC-48 and traffic demand
is uniform with two OC-12’s between each pair, i.e.,g = 4 and
the traffic demand is forr = 2 low-rate circuits. In this case,
each node generates 16 OC-12’s or four wavelengths of traffic.
With the single hub solution, each node can send all four
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Fig. 1. Possible grooming architectures.

wavelengths of traffic to be groomed at the hub at, say, node
1. Thus with a single hub, each node would use 4 ADMs, and
the hub would need 8x4=32 ADMs for a total of 64 ADMs. In
a 2-hub architecture, each node would send two wavelengths
worth of traffic to each hub (for example, at nodes 1 and 5); an
additional wavelength would be used for traffic between the
two hubs, resulting in 58 ADMs. Finally a 4-hub architecture
can be used where each node sends one wavelength to each of
four hubs and some additional ADMs are used to handle the
inter-hub traffic. Using one of the grooming algorithms that
is developed in Sect. III.B, a 4-hub architecture can be found
for this ring that requires only 52 ADMs. In the next section,
we give a lower bound on the number of ADMs required
assuming unlimited switching capability; for this example, that
bound would be 48 ADMs. Thus, with 4 hubs the bound is
nearly met, and any further increase in the amount of switching
could at best result in only a moderate additional savings of
ADMs.1 Notice that in this case the number of hubs is equal
to the number of wavelengths generated by a node. It can
also be shown that using the 4-hub architecture reduces the
required number of wavelengths from 32 to 26. Thus the 4-hub
architecture is more efficient both in the use of wavelengths
as well as ADMs.

A. Bounds on the required number of ADMs

In the following, we develop a lower bound on the required
number of ADMs for aK-hub architecture. We consider the
case where there is a uniform traffic demand ofr ≤ g circuits
between each pair of nodes in the ring.2 In this case, a lower
bound on the number of ADMs needed in a unidirectional ring,
assuming unlimited switching ability, is given in the following
proposition, first derived in [5].

Proposition 1 ([5]): The number of ADMs,A, needed to
support uniform traffic in a unidirectional SONET ring with
parameters(N, r, g) is bounded by:

A ≥
2N(N − 1)r

g + r
(1)

A lightpath in a ring refers to a single wavelength con-
nection between two nodes, which is not dropped at any

1Indeed, a 4-hub architecture requiring only 49 ADMs can be found; thus,
the possible savings with more switching capability is at most 1 ADM.

2If there is more than a full wavelength of traffic between a pair of nodes,
then assigning each full wavelength to a direct lightpath isclearly optimal.
Therefore, this traffic can be ignored for our purposes.
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intermediate nodes. Thus when a circuit is carried overn
lightpaths, it is either dropped and continued or switchedn−1
times; in this case each lightpath is said to carry1/n-th of
the “full” circuit. The lower bound in Prop. 1 is obtained
by recognizing that each lightpath in the network must be
terminated with exactly two ports. Thus, a lower bound on the
number of lightpaths,L, needed to support all of the traffic
in the network can be translated into a lower bound on the
number of ADMs,A. Since the direct traffic between two
nodes is equal tor low rate circuits, each lightpath can at
most carryr “full” circuits entirely from their source to their
destination. The remaining capacity of that lightpath(g − r)
can only be used to carry circuits that are also carried on
at least one other lightpath. Hence, each lightpath can carry
at mostQ = r + (g − r)/2 “full” circuits. Since the total
traffic demand under the uniform traffic assumption is equal
to L = N(N −1)r circuits, the number of lightpaths required
is lower-bounded byL/Q. Each lightpath is terminated at a
port; therefore, the number of ports needed is at least2L/Q.
However, a SONET ADM can be used both as a receiving and
transmitting port, henceA ≥ L/Q and the bound follows.3

The bound in Prop. 1 is not tight in general, but it can
be achieved in several cases. It is insightful to consider some
characteristics of these cases. From the above, it can be seen
that for (1) to be tight, each lightpath must be efficiently
packed so that it containsQ “full” circuits. This in turn
requires the following three conditions to be met:

a) Each lightpath must be fully utilized;
b) No circuit can travel over more than 2 lightpaths;
c) Each lightpath must carryr full circuits (directly from

the source to the destination).

To see that these conditions can indeed be satisfied, consider
the case where(N − 1)r = g, i.e., each node generates
a full wavelength worth of traffic. Suppose a single cross-
connect hub is chosen and all traffic is sent to the hub, where
it is switched and sent back to its destination. In this case,
the above conditions are met, and the bound in (1) is tight.
However, in general it is not possible to achieve the bound
by using this single hub architecture. This is because each
node only hasr circuits whose final destination is the hub.
Thus when a node generates more than one wavelength worth
of traffic, each wavelength sent to the hub cannot containr
full circuits, as required by condition (c) above. When all of
the traffic is routed through a single hub, only2(N − 1)r
circuits can be carried on a single lightpath and the remaining
(N − 1)(N − 2)r circuits must traverse two lightpaths. Since
each lightpath can carry at mostg circuits, the total number
of lightpaths,L, (and henceA) is bounded by:

L = A ≥ (2(N − 1) + 2(N − 1)(N − 2))

(

r

g

)

=
2(N − 1)2r

g

(2)

3The bound can clearly be made tighter by including a ceiling;for large
g/r the bound can also be tightened by taking the maximum ofL/Q andN ,
since each node must have at least one ADM.

Notice that the difference between the right-hand side of the
bound in (2) and the bound in (1) is

2(N − 1)r

g(g + r)
((N − 1)r − g)

This is strictly positive unless(N − 1)r = g, i.e., each node
generates a single wavelength of traffic.

The above considerations lead us to consider a multiple
hub architecture. We define aK-hub architecture to be a
ring with K hub nodes, with the restriction that all traffic
between non-hub nodes must be routed to one ofK hubs.
We do not allow traffic between non-hub nodes to be sent
directly (without going through a hub). Our main reason for
this restriction is to focus on architectures that are simple
to design, implement and analyze. Also, as will be seen
in the following, relaxing this restriction cannot result in
significant improvements. Assume each of theK hubs has
a cross-connect capable of switching any circuit from any
input wavelength to any output wavelength. Again, consider
a unidirectional ring withN nodes, a traffic granularity ofg
and uniform traffic withr circuits between each pair. WithK
hubs (andN − K non-hub nodes), a total of2(N − K)Kr
circuits can be routed between the hubs and the non-hubs in
one hop. The remaining traffic between the non-hub nodes, of
which there are (N −K)(N −K − 1)r circuits, will traverse
two lightpaths. Therefore, all traffic that is either to or from a
non-hub node requires at least

2(N − K)Kr + 2(N − K)(N − K − 1)r

g

=
2(N − K)(N − 1)r

g

(3)

lightpaths. Additionally we have to account for the traffic
between hub nodes. By the same reasoning as used in deriving
(1), this traffic requires at least2K(K−1)r/(g+r) lightpaths.
Hence,

A ≥
2(N − K)(N − 1)r

g
+

2K(K − 1)r

g + r
(4)

Since the bound in (1) does not depend on the number of hubs,
(4) can be tightened by combining it with (1). This yields the
following bound on the number of ADMs.

Proposition 2: For a K-hub architecture, the number of
ADMs, A, satisfies

A ≥ max

{

2(N − K)(N − 1)r

g
+

2K(K − 1)r

g + r
,

2N(N − 1)r

g + r

}

.

(5)

Some insight can be gained from examining the behavior
of (5) asK, the number of hubs, varies. Notice that only the
first quantity inside the maximization in (5) varies withK,
we denote this quantity byA(K). WhenK = (N − 1)r/g,
A(K) = 2N(N − 1)r/(g + r), i.e., the two quantities in the
maximization in (5) are equal. Hence, when(N −1)r/g is an
integer, this number of hubs minimizes the bound in (5). To
address the case where(N − 1)r/g is not an integer, we note
that for

K ≤ 0.5 [(N − 1)(1 + r/g) + 1] , (6)
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A(K) can be shown to be decreasing inK, otherwise it is
increasing. Furthermore, forr ≤ g,

⌈(N − 1)r/g⌉ < 0.5 [(N − 1)(1 + r/g) + 1] . (7)

Thus, we have that forr ≤ g, the number of hubs,K∗, that
results in the smallest bound on the number of ADMs is given
by K∗ = ⌈(N − 1)r/g⌉; i.e., K∗ is equal to the number of
wavelengths of traffic generated by each node. Notice that
when usingK∗ hubs, the lower bound in (5) is equal to the
lower bound in (1), which did not have the restriction that
traffic had to be routed through a hub. The above example,
where (N − 1)r = g, provides one case where this bound
is tight usingK∗ = 1 hubs. As another example, consider
the case wherer = g, i.e., there is a full wavelength traffic
demand between each pair of nodes. Setting up one lightpath
between every pair of nodes is clearly the optimal way to route
this traffic. This requiresN(N − 1) ADMs, which meets the
bound in (5) withK∗ = N hubs, i.e., each node is essentially
a hub. We note in this case, however, that no switching is
required at the hubs.

At this point we have bounded the number of ADMs in a
K-hub architecture, and we have shown that the number of
hubs that optimizes this bound is given byK∗. This does not
tell us how to groom traffic or, in general, how tight this bound
will be. In the next section we develop some simple grooming
algorithms for aK-hub architecture, where each non-hub
node sends its traffic to one or more of the hubs. For these
algorithms we will see that, indeed,K∗ is (approximately)
the optimal number of hubs and that the bound in (5) can be
approached closely in many cases.

B. K-Hub grooming algorithms

We consider several simple grooming algorithms for aK-
hub architecture in a ring withN > K nodes. For the purpose
of describing these algorithms, the exact location of the hubs
is irrelevant.

1) Group algorithms: The first type of multi-hub archi-
tectures we discuss involves grouping theN nodes in the
ring into K distinct groups, each of approximate equal size
N/K. Of course, whenK does not divideN , group sizes
may differ by one. Each hub node is associated with exactly
one group. Given such a division of the nodes, several pos-
sible grooming/routing algorithms are possible. One natural
approach would be for all non-hub nodes within a group
to send and receive all of their traffic from the hub node
associated with the group. The hub nodes would then exchange
all traffic between groups.4 This requires⌈(N − 1)r/g⌉ ADMs
at each non-hub node; a corresponding number of ADMs is
also required at each hub node for the traffic to and from
the non-hub nodes. The inter-group traffic can be handled by
making one hub a “super-hub” which switches and distributes
all inter-group traffic. With this approach, the total ADMs

4The “hierarchical ring” proposed in [4] is similar to this type of architec-
ture.

requirement for this architecture can be upper-bounded by:

A ≤

⌈

(N − ⌊N/K⌋) ⌈N/K⌉ r

g

⌉

2K

+ 2(N − K)

⌈

(N − 1) r

g

⌉

. (8)

Notice that with this architecture, traffic between non-hub
nodes in different groups needs to be switched at the hub
for each group. Such traffic would then be carried over
three lightpaths. As discussed in Sect. 3, this precludes such
architecture from ever attaining the bound in (1). We consider
a variation of this architecture where all traffic travels over
at most two lightpaths. Specifically, assume that every node,
including the hub nodes, now sends all traffic destined to any
node in a group to the respective hub node.5 The hub nodes
once again distribute the traffic to the non-hub nodes in their
group. Exact computation of the ADM requirement for this
architecture is cumbersome because of the fact thatK does
not always divideN . Instead, we proceed with the following
approximate, yet insightful, analysis. Assume each node sends
1/K of its total traffic to each hub (this assumption would be
exact if all groups were of equal size). Hence each node sends
⌈(N − 1)r/Kg⌉ wavelengths of traffic to each of theK hubs.
In addition, each hub node must send the groomed traffic to
its subsidiary nodes. Each subsidiary node must receive a total
of (N −1)r circuits using⌈(N − 1)r/g⌉ wavelengths. Hence,
each non-hub node generatesK ⌈(N − 1)r/Kg⌉ wavelengths
worth of traffic and receives⌈(N − 1)r/g⌉ wavelengths. This
can be accomplished using no more thanK ⌈(N − 1)r/Kg⌉
ADMs at each non-hub node. Now, each hub node receives
⌈(N − 1)r/Kg⌉ wavelengths of traffic from each of(N − 1)
nodes and each hub nodes sends(K − 1) ⌈(N − 1)r/Kg⌉
to the other hub nodes. Also, each hub node must send
⌈(N − 1)r/g⌉ wavelengths of traffic to each of its subsidiary
nodes. Hence, the number of wavelengths sourced and termi-
nated at each hub node is approximately the same and equal
to (N − 1) ⌈(N − 1)r/Kg⌉. Summing over all of the nodes,
the total number of ADMs required is equal to

(N − K)K

⌈

(N − 1)r

Kg

⌉

+ K(N − 1)

⌈

(N − 1)r

Kg

⌉

= K(2N − K − 1)

⌈

(N − 1)r

Kg

⌉

. (9)

With this algorithm each circuit travels over at most 2 light-
paths. However, notice that each non-hub node receives all
its traffic from the corresponding hub. Thus, when every
node generates more than 1 wavelength worth of traffic, each
lightpath terminated at a non-hub node cannot containr direct
circuits, which is another requirement for the bound in (1)
to be met. In the next section, we consider an algorithm
where each non-hub node sends and receives traffic from all
of the hub nodes. This approach allows traffic to more closely
emulate the characteristics for achieving the bound in (1).

5An analogous architecture can be considered where all nodesin a group
send their traffic to the hub node for the group, and the hub node then forwards
the traffic to the destination.
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2) Symmetric algorithm: In this algorithm, each non-hub
node divides its traffic so that it sends approximately an equal
amount to each of theK hubs. The traffic sent from a given
non-hub node to a given hub will include traffic whose final
destination is that hub as well as traffic for other non-hub
nodes. The traffic for other non-hub nodes will be switched
at the hub and forwarded to its destination. Suppose that each
non-hub node can divide its traffic to satisfy the following two
conditions:

i) No more thanH = ⌈(N − 1)r/Kg⌉ wavelengths of
traffic are sent to each hub from each non-hub node;

ii) No more thanH wavelengths of traffic are received at
any non-hub node from any hub.

If the traffic can be divided in this way, each non-hub node will
require at mostKH ADMs and each hub node will require at
most(N − K)H ADMs for sending traffic to non-hub nodes.
Thus all traffic either to or from the non-hub nodes can be
supported using at most2K(N −K)H ADMs. Next, we give
one construction which shows that the traffic can indeed be
divided to satisfy the above two conditions.

Let the non-hub nodes be numbered1, 2, . . . , N − K and
the hub nodes be numbered1, . . . , K. Recall that the traffic
demand between each pair of nodes isr circuits. For l =
1, . . . , r, route thelth circuit between non-hub nodesi andj,
through hubk, where

k =

{

⌈((i − j)r + l) mod K⌉ , if j > i,

⌈((i − j − 1)r + l) mod K⌉ , if j < i.
(10)

This assignment ensures that the hub nodes are evenly loaded
and can be thought of as follows: the circuits from any non-
hub node to all other non-hub nodes are listed and uniquely
labeled with one of(N −K − 1)r consecutive integers. Each
circuit is then sent to the hub that corresponds to its label
mod K. This results in at most⌈(N − K − 1)r/K⌉ circuits
of non-hub node to non-hub node traffic being sent to each
hub from any non-hub node. Each non-hub node will also
send the traffic for a given hub node directly to that hub node;
including this traffic we have at most⌈(N − K − 1)r/K⌉+r
circuits being sent to each hub from each non-hub node. This
requires at most

⌈

⌈(N − K − 1)r/K⌉ + r

g

⌉

=

⌈

⌈(N − 1)r/K⌉

g

⌉

=

⌈

(N − 1) r

Kg

⌉

= H

(11)

wavelengths, where the last equality follows sinceg is an
integer. This shows that condition (i) is satisfied by this traffic
assignment. Essentially the same arguments can be used to
show that condition (ii) is also satisfied by this assignment.

So far we have only addressed traffic to or from the
non-hub nodes. In addition, inter-hub traffic must also be
accommodated. The simplest way to accomplish this is by
making one of theK hub nodes a “super-hub,” to which
all hub nodes send their inter-hub traffic. The super-hub then
distributes the inter-hub traffic to the respective hubs. This
requires an additional2(K − 1) ⌈(K − 1)r/g⌉ ADMs for the

inter-hub traffic. Thus the total number of ADMs required for
the above algorithm is given by:

A = 2K(N−K)

⌈

(N − 1)r

Kg

⌉

+2(K−1)

⌈

(K − 1)r

g

⌉

. (12)

While this simple algorithm is generally effective, it should
be immediately obvious that when the number of hub nodes
is large the algorithm becomes inefficient. This is because the
inter-hub traffic is handled using a single-hub architecture. We
know, from our earlier discussion, that when the traffic among
nodes exceeds a single wavelength, a single hub architecture
is inefficient. A further improvement can be obtained by using
a hierarchical architecture with multiple “super-hubs” that are
used for routing the inter-hub traffic.

The required number of ADMs in such a hierarchical
architecture can be calculated recursively. Specifically,let
A(N, K) denote the minimum number of ADMs needed for
an architecture withN nodes andK hubs, where traffic that
originates at the non-hub nodes is routed as above, and inter-
hub traffic is handled using a hierarchical architecture. Let

A∗(N) = min
K≤N

{A(N, K)}

denote the minimum number of ADMs needed when the opti-
mum number of hubs is used. Then assuming that the optimum
number of “super-hubs” is used in the above architecture we
have,

A(N, K) = 2K(N − K)

⌈

(N − 1) r

Kg

⌉

+ A∗(K). (13)

Using (13), the number of ADMs needed for a hierarchical
K−hub architecture can be recursively calculated.

The results from using the symmetric algorithm are shown
in Table I. The five columns on the right show the number of
ADMs required when usingK = 1 to 5 hubs respectively. For
example, in the case of a 17 node ring, the minimum ADM
solution is achieved with 4 hubs. Highlighted in the table isthe
solution that achieves the minimum number of ADMs. This
corresponds exactly to the number of hubs,K∗, that optimizes
the lower bound from Sect. II.A, which is equal to the number
of wavelengths of traffic generated at each node. The value of
K∗ is given in column 2 and the lower bound when using the
optimal number of hubs,K∗, is given in column 3.

III. D ISTRIBUTED HUB ARCHITECTURES

In this section, we relax the assumption that each node is
either a hub or a non-hub node, and we allow only a subset
of the wavelengths dropped at a node to be switched. In this
case, instead of a few hub nodes with complete switching
capability, each node may have some partial switching capa-
bility, provided by a small cross-connect. Such an architecture
has several advantages. The first advantage is that the size
of a cross-connect is a significant component of its cost.
Using several smaller cross-connects may lead to lower costs.
Distributing the switching requirements over all nodes in a
ring also allows for more uniform node requirements. Finally,
with such an architecture, the ring may be more robust to node
failures. The cost of such an approach may be an increase in
the complexity of control and management.
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Symmetric Algorithm
N K∗ Bound K=1 K=2 K=3 K=4 K=5
5 1 8 8 14 16 14 8
6 2 12 20 18 22 22 18
7 2 17 24 22 28 30 28
8 2 22 28 26 34 38 38
9 2 29 32 30 40 46 48
10 3 36 54 66 46 54 58
11 3 44 60 74 52 62 68
12 3 53 66 82 58 70 78
13 3 62 72 90 64 78 88
14 4 73 104 98 136 86 98
15 4 84 112 106 148 94 108
16 4 96 120 114 160 102 118
17 4 109 128 122 172 110 128

TABLE I

THE NUMBER OFADM S NEEDED WITH MULTIPLE HUBS

To quantify the amount of switching used in different
architectures, we assign aswitching cost of (ng)2 to a DXC
that can cross connect low-rate traffic betweenn wavelengths.
Assuming that the DXC is a crossbar switch, this cost is equal
to the number of cross-points in the switch. This is a common
metric used in studying switch designs. If multi-stage switch
architectures are used then this cost could be modified to
reflect this. However the above metric will suffice to illustrate
our points. The total switching cost for a ring architectureis
then the sum of the switching costs of all DXCs in the ring.

A. Example

Consider a unidirectional ring withN = 9 nodes, a traffic
granularity of g = 2 and uniform traffic demand ofr = 1
circuit between each pair of nodes. In this case, from Prop. 1
we have a lower bound of 48 ADMs. First, we consider
supporting this traffic using the symmetric architecture from
Sect. II.B. Each node generates 4 wavelengths worth of traffic.
Thus from (13) this traffic can be supported with 4 hub nodes
and 50 ADMs. Each hub node receives one wavelength from
each of the 5 non-hub nodes and must be able to switch circuits
between these wavelengths. This requires a5g × 5g DXC.
Therefore, the switching cost of this architecture is greater
than6 4(100) = 400.

Next we describe a distributed switching architecture for
supporting the same traffic. Consider dividing the nodes into
the following groups of three:

(1,2,3) (4,5,6) (7,8,9) (1,4,7)

(1,5,8) (1,6,9) (2,5,7) (2,6,8)

(2,4,9) (3,6,7) (3,5,9) (3,4,8)

Notice that each pair of nodes is in exactly one of these
groups. The traffic between all three nodes in each group can
be supported by having two of the nodes send all of their traffic
to the third node, as depicted in Figure 2. A2g × 2g DXC
at the third node can be used to switch the incoming traffic,
which can then be forwarded to its destination. This requires

6The actual switching requirements will be larger than this because we have
not accounted for the switching required for inter-hub traffic.

4 ADMs and a switching cost of(2g)2 = 16. Since there are
12 groups, supporting all of the traffic requires 48 ADMs and
a total switching cost of 192. Notice that in this case we are
using the minimum number of ADMs given by the bound in
Prop. 1 and the switching cost is over 50 percent less than the
cost for the symmetric multi-hub architecture. Also noticethat
any node within each group could serve as the “hub” for that
group. For example, the switching capability could be spread
out among all the nodes in the ring or concentrated at only 4
nodes.

 

{ 2-1,3-1}  

{ 2-3,1-3}  { 3-2,3-1}  

{ 1-2,1-3}  

1 

λ1 

λ2 

2 3 

-- ADM i -- node i 
 

Fig. 2. Architecture for supporting traffic between the firstgroup of nodes
(1, 2, 3) in the example from Sect. III.A. The two horizontal lines correspond
to two wavelengths. The traffic sent on each lightpath is alsoindicated in the
figure. The cross-connect, indicated by the vertical line, is at node 2.

B. Perfect Architectures

The distributed architecture in the above example meets the
lower bound on the required number of ADMs from Prop. 1.
As discussed in Sect. II.A, for any architecture that meets the
bound in Prop. 1 with equality, each lightpath must containr
direct circuits andg − r circuits that travel over 2 lightpaths.
Assuming that all the indirect circuits must be switched, then
at least a2g × 2g DXC is required for each pair of indirect
circuits; this is exactly what is used in the above example. In
this section we consider a generalization of the above example
to other rings, i.e., other values ofN , g, andr. We call such
an architecture aperfect architecture. Specifically, in a perfect
architecture the nodes in the ring are divided into groups of
g/r + 1 nodes such that each pair of nodes is in at most one
group. One node in each group serves as a hub node for the
group. All other nodes send their traffic to this hub node, where
it is switched and forwarded to its destination. For a given set
of parameters(N, r, g), it may not be possible to divide the
traffic in the above manner; i.e. a perfect architecture may
not exist (e.g., ifg/r is not an integer). However, when it
does exist it uses the minimum number of ADMs for any
architecture.

Proposition 3: If a perfect architecture exists for a unidirec-
tional ring with parameters(N, r, g) then it uses the minimum
number of ADMs of any architecture that can support this
traffic.

Proof: Each group ofg/r + 1 nodes requires2(g/r)
ADMs and supports(g/r + 1)(g/r)r/2 circuits. Since there
areN(N − 1)r/2 total circuits, the total number of groups is

N(N − 1)(r/2)

(g/r + 1)(g/r)(r/2)
=

N(N − 1)r2

(g + r) g
. (14)
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Hence, the total number of ADMs is
(

N(N − 1)r2

(g + r) g

) (

2g

r

)

=
2N(N − 1)r

g + r
, (15)

This exactly meets the lower bound in Prop. 1, and therefore
is the minimum number of ADMs needed for any architecture.

Let M = g/r + 1 and assume that this is an integer. The
problem of finding groups ofM nodes for which a perfect
architecture exists can be described in graph theoretic terms.
Consider a fully connected graph withN nodes; denote this
graph byKN . Assume each node in this graph represents a
node in the ring; a pair of nodes is represented by a link
in this graph. Each group in the above construction can be
viewed as a fully connected subgraph withM nodes. The
above construction gives a family of subgraphs that are edge
disjoint and cover the graph,KN . Such a family is referred
to as adecomposition of the original graph. In this case each
subgraph in the decomposition is isomorphic toKM (a fully
connected graph withM nodes). This is referred to as aKM -
decomposition ofKN . In these terms, a perfect architecture
can be found if there exists aKM -decomposition ofKN ,
whereM = g/r + 1 is an integer.

The problem of graph decompositions has been well studied
in the graph theory literature and is related to combinatoric
problems such as finding a block orthogonal designs or Steiner
triple systems of a given order [18]. The next proposition
provides a necessary condition for the existence of aKM -
decomposition ofKN .

Proposition 4 ([18]): If there exists aKM -decomposition
of KN , then the following hold:

M − 1|N − 1 andM(M − 1)|N(N − 1).
Here we use the notationa|b to denote thata is a divisor
of b. Furthermore, the above conditions can be shown to be
sufficient for all but a finite number of values ofM and N
[18]. By combining the above arguments we have that unless
M − 1|N − 1 andM(M − 1)|N(N − 1), whereM = g/r +
1, a perfect architecture cannot be found. Also, except for a
finite number of values ofM andN the above conditions are
sufficient. Notice that for the example in Sect. III.A, the above
conditions are met.

When a perfect architecture can be found, it will have
N(N − 1)/K(K − 1) DXC’s, and each DXC will have a
switching cost of((K − 1)g)2. Thus the total switching cost
is

N(N − 1)

(

1 −
1

K

)

= N(N − 1)

(

g3

g + r

)

. (16)

C. Grooming Algorithm

From the preceding section, for an arbitraryN , g and r,
a perfect architecture may not exist. In this section, we give
a heuristic algorithm for routing and grooming traffic for an
arbitrary ring that attempts to mimic a perfect architecture.
The basic idea of this algorithm is to first find subsets of the
total traffic requirement that are similar to the subsets used
in a perfect architecture. Each subset will then be supported
using a single small cross-connect at one hub node. In a

perfect architecture, these subsets of traffic correspond to all-
to-all traffic among a group ofM nodes, where each node in
the group generates a full wavelength worth of traffic. In the
general case, these subsets will not necessarily correspond to
all-to-all traffic between the nodes in a group. In particular, a
pair of nodes may appear in multiple groups, but the traffic
between the pair will only be assigned to one of the groups.
In addition, each node in a group may not generate a full
wavelength worth of traffic.

The algorithm sequentially forms groups of nodes and, for
each group, a corresponding subset of the offered traffic. Each
group is formed by adding nodes, in a greedy fashion, in
an attempt to form perfect subsets. The corresponding traffic
subset is simultaneously formed by adding all the remaining
traffic between each node added to the group and the nodes
already in the group. By remaining traffic, we mean circuits
that have not yet been assigned to another group.

We give a more precise description of this algorithm next.
To simplify the discussion we only describe the case where
r = 1. We maintain a list of the circuits,Ci, originating at each
node,i, in the ring that have not yet been assigned to a subset.
A list of the nodes in each group and the corresponding traffic
subsets are also maintained. When we say a nodei is added
to a group, this implies that all the remaining traffic between
that node and any other node in the group is assigned to the
traffic subset. Abi-directional circuit between two nodesi and
j includes both a circuit fromi to j and a circuit fromj to i.

Grouping Algorithm:
1) Setn=1.
2) Choose as the first node in groupGn, a node with the

maximal remaining circuits to be assigned.
3) Add a node to groupGn that will result in the largest

increase in the number of circuits in the corresponding
traffic subset.

4) If more than one node in groupGn hasg bi-directional
circuits in the traffic subset,or there are no circuits that
are not yet assigned to the nodes in groupGn (i.e., Ci

is empty for alli in Gn) continue to step 5. Otherwise
go to 3.

5) If all circuits have been assigned, stop. Otherwise, set
n = n + 1, go to 1.

In steps 2 and 3 any ties can be broken arbitrarily; for example,
by choosing the node with the smallest label. Step 4 ensures
that no non-hub node in the resulting architecture will generate
more than one wavelength worth of traffic.

As an example, consider applying the algorithm to the ring
from Sect. III.A, with N = 9, g = 2, and r = 1. Assume
that all ties are broken by choosing the node with the smallest
label. Initially, all nodes have all 8 circuits to be assigned,
so any node can be chosen to start the groupG1. Using our
tie breaking rule, we choose node 1. Next adding any other
node toG1 will result in adding one bi-directional circuit to
the traffic subset, so node 2 will be chosen. At this point both
nodes in the group have1 < g bi-directional circuits assigned,
so we may add another node. Again the choice of node does
not matter; so node 3 is chosen. Now,G1 = {1, 2, 3}, and
each node hasg bi-directional circuits in the traffic subset,
thus we begin formingG2. Every node except 1,2, or 3 have
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all 8 circuits yet to be assigned, and thus can be chosen to
startG2. Continuing in this manner, it can be shown that the
algorithm will form the groups given in the example.

After forming groups using the above algorithm, the traffic
for each group can then be supported using a single DXC at
one “hub” node for the group. This “hub” node will be chosen
from the nodes that have the maximal number of circuits in the
traffic subset. Each “non-hub” node in the group will generate
no more than 1 wavelength worth of traffic and send all of
the traffic to the hub node. If there areK nodes in a group
and each non-hub node uses a different wavelength, the traffic
can be supported using2(K − 1) ADMs and a switching cost
of (Kg)2. In cases where each node in the group does not
generate a full wavelength of traffic, the number of ADMs and
the switching cost can often be reduced by allowing nodes to
share a wavelength. If all traffic must go through the DXC,
then assigning traffic to wavelengths to minimize the needed
number of ADMs is equivalent to the egress grooming problem
studied in [1]. This problem can be reduced to the well-known
Bin Packing problem [1]; any heuristic for the Bin Packing
problem can then be used to assign the traffic to wavelengths.

As an example of this algorithm consider a ring withN = 6,
g = 4, andr = 1. In this case,g/r + 1 = 5, and 4 is not a
divisor of 5, so a perfect architecture cannot be found. Using
the above algorithm results in the following subsets of traffic:

Subset 1: all-to-all traffic between{1,2,3,4,5}
Subset 2: traffic between 6 and{1,2,3,4,5}.
The first subset of traffic requires 8 ADMs and a switching

cost of(4g)2 = 256. The second subset requires 7 ADMs and
a switching cost of(2g)2 = 64. Therefore, this architecture
requires 15 ADMs and a total switching cost of 320. For com-
parison, the best symmetric hub architecture from Sect. II.B
will require 18 ADMs and a switching cost of 512.

A more extensive comparison is shown in Figures 3 and 4.
In Fig. 3, the required number of ADMs for a distributed hub
architecture based on the above algorithm is plotted for a ring
with g = 16 and r = 1 as the number of nodes varies from
N = 6 to 20. The number of ADMs needed for the symmetric
hub architecture and the lower bound from Prop. 1 are also
shown. For comparison we also give a lower bound from [1] on
the number of ADMs required without switching. In general
this lower bound is overly optimistic, i.e., the actual number
of ADMS required without switching is typically greater than
this bound. Note that both the symmetric hub architecture and
the distributed hub use nearly the same number of ADMs for
the range of values shown. Both approaches meet the lower
bound from Prop. 1, for specific values ofN (e.g.,N = 17).
Also note that the curves for the symmetric and distributed hub
cases both sharply increase whenN = 18. This is the value of
N where the number of wavelengths generated by each node
increases from 1 to 2. The savings relative to the bound on a
network with no switching is greatest just before these jumps,
i.e., when each node is generating enough circuits to fill up an
integer number of lightpaths. The largest gain shown is for the
case whenN = 17, where using switching reduces the number
of ADMs by more than 40%. For certain values ofN , the
symmetric hub architecture uses more ADMs than the lower
bound from [1]. This is partly due to the fact the lower bound

in [1] is not always obtainable; also, for these cases, we can
further reduce the needed number of ADMs in the symmetric
hub architecture by multiplexing the traffic from several non-
hub nodes onto a single wavelength. Figure 4 compares the
switching cost between the symmetric hub architecture and the
distributed hub architecture for the same ring. Though these
two approaches required a similar number of ADMs, the dis-
tributed hub architecture has a significantly smaller switching
cost. AsN increases the difference in switching requirements
increases; forN = 17 the distributed hub architecture has a
switching cost that is more than 97% less than the symmetric
hub case. We have observed similar trends for other parameter
settings. In general, the benefits of switching appear to be
greater for larger values ofg. For example, wheng = 4 and
r = 1, over the same range ofN , switching reduces the needed
number of ADMs by at most 20% compared to the lower
bound in [1].
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IV. A BOUND ON THE AVERAGE AMOUNT OF SWITCHING

NEEDED

So far we have considered lower bounds on the number of
ADMs needed, and we have argued that if these bounds can
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be achieved then it will require that all circuits be switched
at most once. Based on this we developed algorithms that can
significantly reduce the required number of ADMs. However,
in general there is no assurance that the bounds in Sect. II.A
are tight; in which case it might be possible to further reduce
the ADM requirement by allowing more switching in the
network. In this section we provide some insight into this
situation by developing an upper bound on the amount of
switching needed in a network, in terms of the number of
ports in the network. Using this bound we show that reducing
the number of ports inherently requires that traffic be only
switched a small number of times.

Again we consider a WDM network withN nodes, whereg
low rate traffic streams are multiplexed onto each wavelength.
Let T be the total number of ports in the network, where each
lightpath is terminated by 2 ports (i.e., there areT/2 ADMs).
Let C be the total number of low rate (unidirectional) circuits
in the network. Now,f = T/C is the average number of ports
per circuit. Note that by setting up a point-to-point lightpath
for each circuit,f can always be made equal to 2. Of course,
more efficient grooming algorithms would lead tof being less
than 2. Fori = 1, . . . , C, assume theith circuit usesLi ports,
i.e., this circuit is sent overLi − 1 lightpaths. Define

K =
1

C

∑

i

Li,

so thatK denotes the average number of ports used by a
circuit. Finally, let S be the average number of times that
a circuit is switched. We want to show that in a network
architecture that minimizes the overall number of needed ports,
T , each circuit needs to be switched on average only a small
number of times. Note that for a givenC, minimizing T is
equivalent to minimizingf . Also, note that the number of
times a circuit is switched is upper-bounded byLi/2−1. (This
is an upper bound, since the wavelength a circuit is on may
be dropped at an intermediate node only to add/drop another
circuit sharing that wavelength, but not switched.) ThusS is
upper bounded byK/2 − 1. Since each port is shared by at
mostg circuits, we have thatCK/g ≤ T , which implies that
K ≤ fg. Hence,

S ≤
fg

2
− 1. (17)

Thus for a given topology and traffic demand, any upper bound
on f (or equivalentlyT ) can be converted into an upper
bound onS. This suggests that a topology that is efficient
in the use of ports (smallf ) will not use much switching
(smallS). Moreover, the most port efficient topology will yield
the tightest bound onS in (17). We consider some specific
examples of this bound next.

For any topology and traffic demand, as noted earlier,f ≤ 2,
substituting this into (17) we have

S ≤ g − 1. (18)

Wheng = 1, this implies that no switching is required, as one
would expect (since point-to-point circuits are most efficient).
For g > 1, the above bound is very loose because establishing
point-to-point circuits is inefficient in terms of the number of
ports. Next consider a unidirectional ring with uniform traffic

of r circuits between allN nodes so thatC = N(N − 1)r.
The number of ports needed with an arbitrary number of
switches is upper-bounded by the ports required in a single
hub architecture. The total number of ports for a single hub
architecture is given byT = 4 ⌈(N − 1) r/g⌉ (N − 1). Thus
we have,

S ≤
4 ⌈(N − 1) r/g⌉ (N − 1)g

2N(N − 1)r
− 1

= 2

⌈

(N − 1) r

g

⌉

g

Nr
− 1

≤ 2

(

N − 1

N

)

+ 2
g

Nr
− 1.

(19)

We emphasize that while (19) was developed by considering
a single hub architecture, the bound applies to an architecture
with an arbitrary number of hubs and general topology. Notice
that for any fixedg/r asNgets large, the upper bound on the
average amount of switching in (19) approaches 1. Also notice
that wheng/r < 1, then the right-hand side of (19) is less than
one for anyN. In other words, when each node generates
more than a wavelength of traffic for each other node, the
average amount of switching per circuit in an architecture that
efficiently uses ports will be less than one. Of course, for the
hub architectureS is less than one by design. However, the
above tells us that any architecture that sought to further reduce
the number of ADMs would not require more switching than
the bound onS given in (19). Furthermore, instead of using a
single hub architecture to bound the number of ports needed,
a better bound on the number of ports can be found by using
a more efficient architecture. As an example, we consider the
symmetric multi-hub architecture from Sect. II.B. In this case
the number of ports can be found using (13). Figure 5 shows
the resulting bound onS as a function ofN , for a ring with
g = 4, r = 1. In finding this bound the optimal number of
hubs were chosen for eachN . Notice that for all but 3 values
of N this bound is less than one, suggesting that each circuit
needs to be switched at most once.
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V. CONCLUSIONS

We have shown that providing limited switching ability
can aid in reducing the number of ADMs needed in a
SONET/WDM ring network. We have considered providing
this switching ability in two types of architectures – multiple
hub architectures and distributed hub architectures. In both
cases, significant savings in ADMs are possible. We introduced
a notion of the switching cost needed in a ring and showed
that the distributed hub architecture incurred a significantly
smaller switching cost than a multiple hub architecture. We
also presented an upper bound on the amount of switching
needed in a network; this bound suggests that in a network
that efficiently utilizes ADMs, circuits need to be switchedat
most once, as they are in the architectures presented here.

In addition to reducing the number of ADMs, other advan-
tages of switching include the ability to better support dynamic
traffic and to improve a network’s robustness to node failures.
In addressing such issues, the placement of switches withina
ring will likely be an important consideration.
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