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Abstract

We consider a distributed power control scheme for wireless ad hoc networks, in which each user

announces a price that reflects compensation paid by other users for their interference. We present an

asynchronous distributed algorithm for updating power levels and prices. By relating this algorithm

to myopic best response updates in a fictitious game, we are able to characterize convergence using

supermodular game theory. Extensions of this algorithm to a multi-channel network are also presented,

in which users can allocate their power across multiple frequency bands.

I. INTRODUCTION

Mitigating interference is a fundamental problem in wireless networks. A basic technique for

this is to control the nodes’ transmit powers. In an ad hoc wireless network power control is

complicated by the lack of centralized infrastructure, which necessitates the use of distributed

approaches. This paper addresses distributed power control for rate adaptive users in a wireless

network. We consider two models: a single channel spread spectrum (SS) network, where all

users spread their power over a single frequency band, and a multi-channel model, where each

user can allocate its power over multiple frequency bands. The latter model is motivated by

multi-carrier transmission (e.g., Orthogonal Frequency Division Multiplexing (OFDM)), where

each channel might represent a single carrier, or a group of adjacent carriers. In both cases,

the transmission rate for each user depends on the received signal-to-interference plus noise

ratio (SINR). Our objective is to coordinate user power levels to optimize overall performance,

measured in terms of total network utility.
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We study protocols in which the users exchange price signals that indicate the “cost” of

received interference. Pricing mechanisms for allocating resources in networks have received

considerable attention for both wire-line (e.g. [1], [15]) and wireless networks (e.g. [2]–[4]).

The problem here differs from much of the previous work because, due to interference, the

users’ objective functions are coupled, and the overall network objective may not be concave

in the allocated resource (transmit power). Also, in most previous work, prices are Lagrange

multipliers for some constrained resource such as power or bandwidth; here the prices reflect

the interference or externalities among the users instead of a resource constraint. Our single

channel model is similar to that considered in [5], which also discusses combined power and

rate control. The power adaptation in [5] solves a similar problem to that considered here using

gradient updates. Instead, we consider an approach based on supermodular game theory [6],

which allows for a larger class of utility functions and appears to have faster convergence.

A variety of game-theoretic approaches have been applied to network resource allocation, as

surveyed in [7]. Supermodular game theory, in particular, has been used to study power control

in [8]–[10]. Our approach differs in that (i) we focus on an ad hoc instead of a cellular network;

(ii) we consider a different functional form for the utilities than some authors, and (iii) we do not

directly model the problem as a non-cooperative game. Instead, the users voluntarily cooperate

with each other by exchanging interference information. We introduce a fictitious game and apply

a strategy space transformation to view this algorithm as a supermodular game. Other work on

power control in CDMA cellular and ad hoc networks includes [8], [9], [11]–[13]. In most prior

work on ad hoc networks, a transmission is assumed to be successful if a fixed minimum SINR

requirement is met. This is true for fixed-rate communications. However, this is not the case

for “elastic” data applications, which can adapt transmission rates. In this paper, we focus on

rate-adaptive users, where the goal of power control is to maximize total network performance

instead of guarantee interference margins for each user.

For multi-channel networks, an additional consideration is how the users allocate their power

across the available channels. We decompose this power allocation by introducing a “power price”

for each user, which represents a dual variable corresponding to the user’s total power constraint.

Each user must now take into account both the interference prices and their own power price.



3

We present a distributed gradient projection algorithm to solve for the optimal power prices.

This is similar in spirit to the optimization flow control algorithm for wire-line networks in [15].

However, here the dual variables are not determined by each link in the network, but rather by

each user. Also, the corresponding primal problem is not separable due to the interference.

In the next section, we describe and analyze our distributed price/power adjustment algorithm

for a single channel network. We then turn to the multi-channel model in Sect. III. Simulation

results are given in Sect. IV, and conclusions are presented in Sect. V.

II. SINGLE CHANNEL NETWORKS

We consider a snap-shot of an ad hoc network with a set M = {1, ..., M} of distinct node

pairs. As shown in Fig. 1, each pair consists of one dedicated transmitter and one dedicated

receiver.1 We use the terms “pair” and “user” interchangeably in the following. In this section,

we assume that each user i transmits an SS signal spread over the total bandwidth of B Hz. Over

the time-period of interest, the channel gains of each pair are fixed. The channel gain between

user i’s transmitter and user j’s receiver is denoted by hij. Note that in general hij 6= hji, since

the latter represents the gain between user j’s transmitter and user i’s receiver.

Each user i’s quality of service is characterized by a utility function ui (γi), which is an

increasing and strictly concave function of the received SINR,

γi (p) =
pihii

n0 + 1
B

∑

j 6=i pjhji

, (1)

where n0 is the background noise power and p = (p1, · · · , pM) is a vector of the users’

transmission powers. The users’ utility functions are coupled due to mutual interference. An

example utility function is a logarithmic utility function ui (γi) = θi log (γi), where θi is a user

dependent priority parameter.2

1For example, this could represent a particular schedule of transmissions determined by an underlying routing and MAC

protocol.

2In the high SINR regime, logarithmic utility approximates the Shannon capacity log (1 + γi) weighted by θi. For low SINR,

a user’s rate is approximately linear in SINR, and so this utility is proportional to the logarithm of the rate.
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The problem we consider is to specify p to maximize the utility summed over all users, where

each user i must also satisfy a transmission power constraint, pi ∈ Pi = [P min
i , P max

i ], i.e.,

max
{ � :pi∈Pi ∀i}

M
∑

i=1

ui (γi(p)) . (P1)

Note that a special case is P min
i = 0; i.e., the user may choose not to transmit.3

As a baseline distributed approach, consider the case where the users do not exchange any in-

formation and simply choose transmission powers to maximize their individual utilities. As in [8],

this can be modeled as a non-cooperative power (NCP) control game GNCP = [M, {Pi} , {ui}],

where the players in the game correspond to the users in M; each player picks a transmission

power from the strategy set Pi and receives a payoff ui (γi). In this game p is the power profile,

and the power profile of user i’s opponents is defined to be p−i = (p1, ..., pi−1, pi+1, ..., pM), so

that p = (pi; p−i). Similar notation will be used for other quantities. User i’s best response is

Bi (p−i) = arg maxpi∈Pi
ui (γi(pi, p−i)) , i.e., the pi that maximizes ui (γi (pi, p−i)) given a fixed

p−i. A power profile p∗ is a Nash Equilibrium (NE) of GNCP if it is a fixed point of the best

responses, i.e. ui(γi(p
∗
i ; p

∗
−i)) ≥ ui(γi(p

′
i; p

∗
−i)) for any p′i ∈ Pi and any user i.

Since each user’s payoff ui (γi (pi, p−i)) is strictly increasing with pi for fixed p−i, and there is

no penalty for high transmission power as long as pi ∈ Pi, it is easy to verify that the unique NE

of GNCP is p∗
NCP = (Pmax

i )M

i=1 , i.e., each transmitter uses its maximum power. This solution

can be far from the socially optimal solution given by Problem P1.

Although ui(·) is concave, the objective in Problem P1 may not be concave in p. However, it

is easy to verify that any local optimum, p∗ = (p∗1, ..., p
∗
M), of this problem will be regular (see

p. 309 of [16]), and so must satisfy the Karush-Kuhn-Tucker (KKT) necessary conditions:

Lemma 1 (KKT conditions:): For any local maximum p∗ of Problem P1, there exist unique

Lagrange multipliers λ∗
1,u, ..., λ

∗
M,u and λ∗

1,l, ..., λ
∗
M,l such that for all i ∈ M,

∂ui (γi (p
∗))

∂pi

+
∑

j 6=i

∂uj (γj (p∗))

∂pi

= λ∗
i,u − λ∗

i,l, (2)

3Occasionally, for technical reasons, we require P min
i > 0; in these cases, P min

i can be chosen arbitrarily small so that this

restriction has little effect. Note that for certain utilities, e.g., θi log (γi), all assigned powers must be strictly positive, since as

Pi → 0, the utility approaches −∞.
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λ∗
i,u(p

∗
i − P max

i ) = 0, λ∗
i,l(P

min
i − p∗i ) = 0, λ∗

i,u, λ
∗
i,l ≥ 0. (3)

Let

πj (pj, p−j) = −
∂uj (γj (pj, p−j))

∂Ij (p−j)
, (4)

where Ij (p−j) =
∑

k 6=j pkhkj is the total interference received by user j (before bandwidth

scaling). Here, πj (pj, p−j) is always nonnegative and represents user j’s marginal increase in

utility per unit decrease in total interference. Using (4), condition (2) can be written as

∂ui (γi (p
∗))

∂pi

−
∑

j 6=i

πj

(

p∗j , p
∗
−j

)

hij = λ∗
i,u − λ∗

i,l. (5)

Viewing πj (= πj (pj, p−j)) as a price charged to other users for generating interference to

user i, condition (5) is a necessary and sufficient optimality condition for the problem in which

each user i specifies a power level pi ∈ Pi to maximize the following surplus function

si (pi; p−i, π−i) = ui (γi (pi, p−i)) − pi

∑

j 6=i

πjhij, (6)

assuming fixed p−i and π−i (i.e., each user is a price taker and ignores any influence he may

have on these prices). User i therefore maximizes the difference between its utility minus its

payment to the other users in the network due to the interference it generates. The payment is its

transmit power times a weighted sum of other users’ prices, with weights equal to the channel

gains between user i’s transmitter and the other users’ receivers. This pricing interpretation of

the KKT conditions motivates the following asynchronous distributed pricing (ADP) algorithm.

A. Asynchronous Distributed Pricing (ADP) Algorithm

In the ADP algorithm, each user announces a single price and all users set their transmis-

sion powers based on the received prices. Prices and powers are asynchronously updated. For

i ∈ M, let Ti,p and Ti,π, be two unbounded sets of positive time instances at which user i

updates its power and price, respectively. User i updates its power according to Wi(p−i, π−i) =

arg maxp̂i∈Pi
si (p̂i; p−i, π−i) , which corresponds to maximizing the surplus in (6). Each user

updates its price according to Ci(p) = −∂ui(γi(
� ))

∂Ii(p−i)
, which corresponds to (4). Using these update

rules, the ADP algorithm is given in Fig. 2. Note that in addition to being asynchronous across

users, each user also need not update its power and price at the same time.4

4Of course, simultaneous updates of powers and prices per user or synchronous updating across all users is a special case.
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In the ADP algorithm not only are the powers and prices generated in a distributed fashion,

but also each user only needs to acquire limited information. To see this note that the power

update function can be written as

Wi(p−i, π−i) = max

[

min

[

pi

γi (p)
gi

(

pi

γi(p)

(

∑

j 6=i

πjhij

))

, Pmax
i

]

, Pmin
i

]

,

where pi

γi(
� )

is independent of pi, and

gi (x) =



















∞, 0 ≤ x ≤ u′
i (∞) ,

(u′
i)
−1 (x) , u′

i (∞) < x < u′
i (0) ,

0, u′
i (0) ≤ x.

Likewise, the price update can be written as Ci (p) = ∂ui(γi(
� ))

∂γi(
� )

(γi(
� ))2

Bpihii
. From these expressions,

it can be seen that to implement the updates, each user i only needs to know: (i) its own

utility ui, the current SINR γi and channel gain hii, (ii) the “adjacent” channel gains hij for

j ∈ M and j 6= i, and (iii) the price profile π. By assumption each user knows its own

utility. The SINR γi and channel gain hii can be measured at the receiver and fed back to

the transmitter. Measuring the adjacent channel gains hij can be accomplished by having each

receiver periodically broadcast a beacon; assuming reciprocity, the transmitters can then measure

these channel gains. The adjacent channel gains account for only 1/M of the total channel gains

in the network; each user does not need to know the other gains. The price information could

also be periodically broadcast through this beacon. Since each user announces only a single

price, the number of prices scales linearly with the size of the network. Also, numerical results

show that there is little effect on performance if users only convey their prices to “nearby”

transmitters, i.e., those generating the strongest interference.

Denote the set of fixed points of the ADP algorithm by

FADP ≡ {(p, π) | (p, π) = (W (p, π) , C(p))} , (7)

where W(p, π) = (Wk(p−k, π−k))
M
k=1 and C(p) = (Ck(p))M

k=1. Using the strict concavity of

ui(γi) in γi, the following result can be easily shown.

Lemma 2: A power profile p∗ satisfies the KKT conditions of Problem P1 (for some choice

of Lagrange multipliers) if and only if (p∗, C(p∗)) ∈ FADP .
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If there is only one solution to the KKT conditions, then it must be the global maximum

and the ADP algorithm would reach that point if it converges.5 In general, FADP may contain

multiple points including local optima or saddle points.

B. Convergence Analysis of ADP Algorithm

We next characterize the convergence of the ADP algorithm by viewing it in a game theoretic

context. A natural generalization of the NCP game is to consider a game where each player i’s

strategy includes specifying both a power pi and a price πi to maximize a payoff equal to the

surplus in (6). However, since there is no penalty for user i announcing a high price, it can be

shown that each user’s best response is to choose a large enough price to force all other users

transmit at P min
i . This is certainly not a desirable outcome and suggests that the prices should

be determined externally by another procedure.6 Instead, we consider the following Fictitious

Power-Price (FPP) control game, GFPP = [FW ∪ FC,
{

PFW
i ,PFC

i

}

,
{

sFW
i , sFC

i

}

], where the

players are from the union of the sets FW and FC, which are both copies of M. FW is

a fictitious power player set; each player i ∈ FW chooses a power pi from the strategy set

PFW
i = Pi and receives payoff

sFW
i (pi; p−i, π−i) = ui (γi (p)) −

∑

j 6=i

πjhijpi. (8)

FC is a fictitious price player set; each player i ∈ FC chooses a price πi from the strategy set

PFC
i = [0, π̄i] and receives payoff

sFC
i (πi; p) = − (πi − Ci (p))2 . (9)

Here π̄i = sup � Ci (p) , which could be infinite for some utility functions.

In GFPP , each user in the ad hoc network is split into two fictitious players, one in FW who

controls power pi and the other one in FC who controls price πi. Although users in the real

network cooperate with each other by exchanging interference information (instead of choosing

prices to maximize their surplus), each fictitious player in GFPP is selfish and maximizes its own

5In the following section, we will give conditions under which this occurs.

6A similar situation arises in [2], where users in a multi-hop network announce prices charging other users for packets they

forward. In that case, the prices also cannot be determined by individual surplus optimizations.
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payoff function. In the rest of this section, a “user” refers to one of the M transmitter-receiver

pairs in set M, and a “player” refers to one of the 2M fictitious players in the set FW ∪FC.

In GFPP the players’ best responses are given by BFW
i (p−i, π−i) = Wi (p−i, π−i) for i ∈

FW and BFC
i (p) = Ci (p) for i ∈ FC, where Wi and Ci are the update rules for the ADP

algorithm. In other words, the ADP algorithm can be interpreted as if the players in GFPP

employ asynchronous myopic best response (MBS) updates, i.e. the players update their strategies

according their best responses assuming the other player’s strategies are fixed. It is known that

the set of fixed points of MBS updates are the same as the set of NEs of a game [6, Lemma

4.2.1]. Therefore, we have:

Lemma 3: (p∗, π∗) ∈ FADP if and only if (p∗, π∗) is a NE of GFPP .

Together with Lemma 2, it follows that proving the convergence of asynchronous MBS updates

of GFPP is sufficient to prove the convergence of the ADP algorithm to a solution of KKT

conditions. We next analyze this convergence using supermodular game theory [6].

We first introduce some definitions7. A real m-dimensional set V is a sublattice of R
m if

for any two elements a, b ∈ V , the component-wise minimum, a ∧ b, and the component-wise

maximum, a∨b, are also in V . In particular, a compact sublattice has a (component-wise) smallest

and largest element. A twice differentiable function f has increasing differences in variables (x, t)

if ∂2f/∂x∂t ≥ 0 for any feasible x and t.8 A function f is supermodular in x = (x1, .., xm) if

it has increasing differences in (xi, xj) for all i 6= j.9 Finally, a game G = [M, {Pi} , {si}] is

supermodular if for each player i ∈ M, (a) the strategy space Pi is a nonempty and compact

sublattice, and (b) the payoff function si is continuous in all players’ strategies, is supermodular

in player i’s own strategy, and has increasing differences between any component of player i’s

strategy and any component of any other player’s strategy. The following theorem summarizes

several important properties of these games.

Theorem 1: In a supermodular game G = [M, {Pi} , {si}],

7More general definitions related to supermodular games are given in [6].

8If we choose x to maximize a twice differentiable function f (x, t) , then the first order condition gives ∂f (x, t) /∂x|x=x∗ =

0, and the optimal value x∗ increases with t if ∂2f/∂x∂t > 0.

9A function f is always supermodular in a single variable x.
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(a) The set of NEs is a nonempty and compact sublattice and so there is a component-wise

smallest and largest NE.

(b) If the users’ best responses are single-valued, and each user uses MBS updates starting

from the smallest (largest) element of its strategy space, then the strategies monotonically

converge to the smallest (largest) NE.

(c) If each user starts from any feasible strategy and uses MBS updates, the strategies will

eventually lie in the set bounded component-wise by the smallest and largest NE. If the

NE is unique, the MBS updates globally converge to that NE from any initial strategies.

Properties (a) follows from Lemma 4.2.1 and 4.2.2 in [6]; (b) follows from Theorem 1 of [9]

and (c) can be shown by Theorem 8 in [17].

Next we show that by an appropriate strategy space transformation certain instances of GFPP

are equivalent to supermodular games, and so Theorem 1 applies. We first study a simple two-

user network, then extend the results to a M -user network.

1) Two-user networks: Let G2
FPP be the FPP game corresponding to a two user network; this

will be a game with four players, two in FW and two in FC. First, we check whether G2
FPP

is supermodular. Each user i ∈ FW clearly has a nonempty and compact sublattice (interval)

strategy set, and so does each user i ∈ FC if π̄i < ∞.10 Each player’s payoff function is (trivially)

supermodular in its own one-dimensional strategy space. The remaining increasing difference

condition for the payoff functions does not hold with the original definition of strategies (p, π)

in G2
FPP . For example, from (8), ∂sFW

i /∂pi∂πj = −hij < 0 for any j 6= i, e.g. a higher price

leads the other users to decrease their powers. However, if we define π ′
j = −πj and consider

an equivalent game where each user j ∈ FC chooses π ′
j from the strategy set [−π̄j , 0] , then

∂sFW
i /∂pi∂π′

j = hij > 0, i.e. sFW
i has increasing differences in the strategy pair

(

pi, π
′
j

)

(or

equivalently (pj,−πj)). If all the users’ strategies can be redefined so that each player’s payoff

satisfies the increasing differences property in the transformed strategies, then the transformed

FPP game is supermodular.

10When P min
i = 0, this bounded price restriction is not satisfied for utilities such as ui(γi) = θiγ

α
i /α with α ∈ [−1, 0),

since πi = θiγ
α+1
i / (pihiiB) is not bounded as pi → 0. However, as noted above, we can set P min

i to some arbitrarily small

value without effecting the performance.
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Let γmin
i = min{γi(p) : pi ∈ Pi ∀i} and γmax

i = max{γi(p) : pi ∈ Pi ∀i}. An increasing,

twice continuously differentiable, and strictly concave utility function ui (γi) is defined to be

• Type I if −γiu
′′
i (γi)

u′
i(γi)

∈ [1, 2] for all γi ∈ [γmin
i , γmax

i ];

• Type II if −γiu
′′
i (γi)

u′
i(γi)

∈ (0, 1] for all γi ∈ (γmin
i , γmax

i ] .

The term −γiu
′′
i (γi) /u′

i (γi) is called the coefficient of relative risk aversion in economics

[18] and measures the relative concaveness of ui (γi). Many common utility functions are either

Type I or Type II, as shown in Table I. The logarithmic utility function is both Type I and

II. A Type I utility function is “more concave” than a Type II one. Namely, an increase in

one user’s transmission power would induce the other users to increase their powers (i.e.,

∂2ui (γi (p)) /∂pi∂pj ≥ 0 for j 6= i); a Type II utility would have the opposite effect (i.e.,

∂2ui (γi (p)) /∂pi∂pj ≤ 0 for j 6= i). The strategy spaces must be redefined in different ways

for these two types of utility functions to satisfy the requirements of a supermodular game.

Proposition 1: G2
FPP is supermodular in the transformed strategies (p1, p2,−π1,−π2) if both

users have Type I utility functions.

Proposition 2: G2
FPP is supermodular in the transformed strategies (p1,−p2, π1,−π2) if both

users have Type II utility functions.

The proofs of both propositions consist of checking the increasing differences conditions for

each player’s payoff function. These results along with Theorem 1 enable us to characterize the

convergence of the ADP algorithm. For example, if the two users have Type I utility functions

(and π̄1, π̄2 < ∞), then FADP is nonempty. In case of multiple fixed points, there exist two

extreme ones
(

pL, πL
)

and
(

pR, πR
)

, which are the smallest and largest fixed points in terms

of strategies (p1, p2,−π1,−π2). If users initialize with (p (0) , π (0)) =
(

Pmin
1 , Pmin

2 , π̄1, π̄2

)

or

(Pmax
1 , Pmax

2 , 0, 0), the power and prices converge monotonically to
(

pL, πL
)

or
(

pR, πR
)

, re-

spectively. If users start from arbitrary initial power and prices, then the strategies will eventually

lie in the space bounded by
(

pL, πL
)

and
(

pR, πR
)

. Similar arguments can be made with Type

II utility functions with a different strategy transformation. Convergence of the powers for both

types of utilities is illustrated in Fig. 3.

2) M -user Networks: Proposition 1 can be easily generalized to a network with M > 2:

Corollary 1: For an M -user network if all users have Type I utilities, GFPP is a supermodular
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in the transformed strategies (p,−π) .

In this case, Theorem 1 can again be used to characterize the structure of FADP as well

as the convergence of the ADP algorithm. On the other hand, it can be seen that the strategy

redefinition used in Proposition 2, can not be applied with M > 2 users so that the increasing

differences property holds for every pair of users.

With logarithmic utility functions, it is shown in [5] that Problem P1 is a strictly concave

maximization problem over the transformed variables yi = log pi. In this case Problem P1 has

a unique optimal solution, which is the only point satisfying the KKT conditions. It follows

from Lemma 2 and Lemma 3 that GFPP will have a unique NE corresponding to this optimal

solution and the ADP algorithm will converge to this point from any initial choice of powers and

prices.11 With some minor additional conditions, the next proposition states that these properties

generalize to other Type I utility functions. The proof is given in Appendix A.

Proposition 3: In an M -user network, if for all i ∈ M:

a) Pmin
i > 0, and

b) −
γiu

′′
i (γi)

u′
i(γi)

∈ [a, b] for all γi ∈ [γmin
i , γmax

i ], where [a, b] is a strict subset of [1, 2];

then Problem P1 has a unique optimal solution, to which the ADP algorithm globally converges.

III. MULTI-CHANNEL NETWORKS

We now turn to a power control problem in a multi-channel network, where each user i ∈ M

is able to transmit over a set of K = {1, ..., K} orthogonal channels. A superscript k denotes

that a quantity refers to the kth channel, e.g. pk
i is the ith user’s power on channel k. We denote

the vector of powers across users for a particular channel k by pk =
(

pk
i

)M

i=1
and the vector of

power across channels for a particular user i by pi =
(

pk
i

)K

k=1
. Finally, p = (pi)

M
i=1 will denote

the power profile of all users in all channels. The same notation is used for other quantities such

as SINR and prices. Each user i’s power allocation must lie in the set,

PMC
i =

{

pi :
∑

k∈K

pk
i ≤ Pmax

i , and pk
i ≥ Pmin

i , ∀k ∈ K

}

,

11Moreover, if each user i ∈ M starts from profile (pi (0) , πi (0)) =
�
Pmin

i , θi/ (n0B) � or (Pmax
i , 0), then their strategies

will monotonically converge to this fixed point
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Where P max
i is a total power constraint. User i’s SINR on channel k is12

γk
i

(

pk
i , p

k
−i

)

=
pk

i h
k
ii

nk
0 +

∑

j 6=i h
k
jip

k
j

.

In this section, we assume that each user has a “channel separable” utility, ui (γi (p)) =
∑

k∈K uk
i

(

γk
i

(

pk
i , p

k
−i

))

, where uk
i is an increasing and strictly concave function that represents

the benefit user i receives from channel k. In other words, a user’s utility is the sum of utilities

from each channel. For example, this is appropriate when the utility is linear in the rate a user

receives, and the total rate is the sum of the rate on each channel. Problem P1 then becomes

max
{p: �

i∈P
MC
i , ∀i}

∑

i∈M

∑

k∈K

uk
i

(

γk
i

(

pk
))

. (P2)

Next we discuss two generalizations of the ADP algorithm to this setting.

A. Multi-channel ADP (MADP)

The MADP algorithm is a direct generalization of the ADP algorithm in which each user i

announces a vector of prices πi, one for each channel, and chooses a power vector pi ∈ PMC
i

to maximize the surplus function

sMC
i

(

pi; p−i, π−i

)

= ui

(

γi

(

pi; p−i

))

−
∑

k∈K

pk
i

∑

j 6=i

πk
j h

k
ij.

Specifically, for each user i, the MADP algorithm is exactly the same as the ADP algorithm

except the scalars pi and πi are replaced by the corresponding vectors pi and πi. The update func-

tions Wi and Ci are also replaced by vector update rules W i(p−i, π−i) and Ci(p
k) = (Ck

i (pk))K
k=1,

where W i(p−i, π−i) = arg maxˆ
�

i∈P
MC
i

sMC
i

(

p̂i; p−i, π−i

)

, and Ck
i

(

pk
)

= −
∂uk

i ( � k
i (pk

i ;pk
−i))

∂Ik
i (pk

−i)
,

with Ik
i

(

pk
−i

)

=
∑

j 6=i p
k
j h

k
ji. Once again these updates may be asynchronous across users and

among the price and power updates.

The single channel fictitious game GFPP can also be generalized to the multi-channel setting

so that each player’s best response corresponds to the update steps in the MADP algorithm. We

denote this game by GMFPP =
[

MFW ∪MFC,
{

PMFW
i ,PMFC

i

}

,
{

sMFW
i , sMFC

i

}]

. Again

this game has two sets of players MFW and MFC both copies of M. Each player in MFW

12If there is any spreading on each channel as in multi-carrier CDMA, the factor 1
B

can be absorbed into the channel gains.
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chooses a power vector pi from the strategy set PMFW
i = PMC

i and receives a payoff of

sMFW
i

(

pi; p−i, π−i

)

= sMC
i

(

pi; p−i, π−i

)

. Each player in MFC is chooses a price vector πi

from the strategy set PMFC
i = [0, π̄i] , where π̄i = sup � Ci (p), and receives a payoff

sMFC
i (πi; p) = −

∑

k∈K

(

πk
i − Ck

i

(

pk
))2

.

Let FMADP denote the set of fixed points of the MADP algorithm; i.e., the values of (p, π)

such that for all i, W i(p−i, π−i) = pi and Ci(p
k) = πi. By the same arguments as in the single

channel case, we have:

Lemma 4: The following are equivalent: (1) A power profile p∗ satisfies the KKT conditions

of Problem P2; (2)
(

p∗, CMC (p∗)
)

∈ FMADP , and (3)
(

p∗, CMC (p∗)
)

is a NE of GMFPP .

In a network with K = 2 channels, certain instances of GMFPP can again be transformed into

equivalent supermodular games. Notice that due to the total power constraint, the strategy set

PMFW
i is not a sublattice.13 However, PMFW

i is a sublattice in transformed strategy (p1
i ,−p2

i ) ,.

Using this transformation, we can extend the results from Sect. II-B.

Corollary 2: In a network with K = 2 channels, GMFPP is supermodular in the transformed

strategies (p1,−p2,−π1, π2) if for all i and k, uk
i

(

γk
i

)

is Type I.

Corollary 3: In a network with K = 2 channels and M = 2 users, GMFPP is supermodular

in the strategies: (p1
1,−p1

2,−p2
1, p

2
2, π

1
1,−π1

2 ,−π2
1, π

2
2), if for all i and k, uk

i

(

γk
i

)

is Type II.

When GMFPP is supermodular, the convergence of the MADP algorithm is again characterized

by Theorem 1. Notice that Corollary 2 applies to a network with any number of users, while

the strategy transformation in Corollary 3 does not generalize to M > 2. In both cases, these

transformations do not extend to K > 2 channels.

B. Dual ADP (DADP) Algorithm

The DADP algorithm is another generalization of the ADP algorithm to multiple channels. This

algorithm is based on relaxing each user i’s total power constraint in Problem P2 by introducing

a power price µi so that the objective function becomes
∑

k∈K

∑

i∈M

(

uk
i

(

γk
i

)

− µip
k
i

)

. For a

13For example, a =
�
Pmin

i , Pmax
i − Pmin

i � ∈ PMFW
i and b =

�
Pmax

i − Pmin
i , Pmin

i � ∈ PMFW
i but a ∨ b =�

Pmax
i − Pmin

i , Pmax
i − Pmin

i � /∈ PMFW
i , assuming Pmax

i > 2Pmin
i , which is necessary for PMFW

i to contain for than

one point.
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given µ = (µi)
M
i=1, the resulting problem is separable across channels, and so can be decomposed

into K subproblems, one for each channel k, given by

max
{pk:pk

i ∈Pi,∀i}

∑

i∈M

uk
i

(

γk
i

(

pk
))

− µip
k
i , (P3)

where Pi =
[

Pmin
i , Pmax

i

]

. A modified version of the (single channel) ADP algorithm can be

applied to the subproblem P3 for each channel k, where the price update, Ck,MC
i

(

pk
)

is the

same as in the MADP algorithm, and the power update is modified to be

Wk,MC
i

(

pk
−i, π

k
−i, µi

)

= arg max
pk

i ∈Pi

(

uk
i

(

γk
i

(

pk
i , p

k
−i

))

− pk
i

(

∑

j 6=i

πk
j hk

ij + µi

))

,

which includes both the cost due to interference and user i’s power price. For a given µ, any

fixed point of this algorithm will satisfy the KKT conditions of subproblem P3.

In the DADP algorithm each user asynchronously updates its price and power for each channel

using the above update rules. Additionally each user i periodically updates its own power price

according to

µi(t) =

[

µi(t
−) + κ

(

∑

k∈K

pk
i (t

−)) − P max
i

)]+

, (10)

where κ > 0 is a given constant and [x]+ = max{x, 0}. In other words, if the current power

allocation is less (greater) than P max
i , the user decreases (increases) its power price. The complete

algorithm is given in Fig. 4, where T k
i,p, T k

i,π, and Ti,µ are unbounded sets of positive time instances

at which each user i updates pk
i , πk

i , and µi, respectively. In this case, it can be seen that any

fixed point of this algorithm will satisfy the KKT conditions of Problem P2.

We analyze the convergence of this algorithm under the following simplifying assumptions:

A1) Synchronous updates: the power prices are updated synchronously across all users.

A2) Separation of time-scales: between any two updates of the power prices, the updates in

steps 3 and 4 of the algorithm converge to a fixed point.

Assumption A1 is for analytical convenience and can likely be relaxed using techniques as in

[21]. Steps 3 and 4 of the algorithm are implementing the modified version of the ADP algorithm

on each channel. If every utility satisfies the conditions as in Proposition 3, these updates will

converge to a fixed point for any fixed µ. However, a large number of updates may be required
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for convergence; hence, A2 implies that there are many of these updates between any two power

price updates. Numerical results in Sect. IV show that convergence can still be obtained when

this assumption is dropped.

Theorem 2: In a network with M users and K channels, if for all i ∈ M and k ∈ K, P min
i

and uk
i (γ

k
i ) satisfy the conditions (a) and (b) in Proposition 3; then under assumptions A1 and

A2, for small enough step size κ the DADP algorithm globally converges to the unique optimal

solution to Problem P2.

Under these assumptions, it follows from Proposition 3 that for any µ there is only one fixed-

point, pk (µ) =
(

pk
i (µi)

)M

i=1
, for each channel k which corresponds to the optimal solution

of subproblem P3 for that channel. This fixed-point specifies the value of the following dual

function for Problem P2,

D (µ) =
∑

k∈K

Gk (µ) +
∑

i∈M

µiP
max
i , (11)

where Gk (µ) =
∑

i∈M

(

uk
i

(

γk
i

(

pk (µ)
))

− µip
k
i (µi)

)

. In this setting the power price update

can be viewed as a distributed gradient projection algorithm [16] for solving the dual problem:

min�

≥0
D (µ) . (D)

The proof of this theorem, given in Appendix B, shows that (a) this algorithm converges to

some µ∗ for small enough step-size κ, and (b) there is no duality gap and so p(µ∗) is the

optimal solution to Problem P2. The proof of (b) uses a similar argument as in the proof of

Proposition 3; the proof of (a) follows a similar argument as in [15], which requires showing

that the gradient of the dual function is Lipschitz continuous. This is complicated here since the

dual is not separable across users in each channel due to interference.

IV. SIMULATION RESULTS

We provide some simulation results to illustrate the performance of the ADP and DADP

algorithms. We simulate a network contained in a 10m×10m square area. Transmitters are

randomly placed in this area according to a uniform distribution, and the corresponding receiver

is randomly placed within 6m×6m square centered around the transmitter.

First we consider a single channel network with M = 20 users each with utility ui = log(γi).

The channel gains hij = d−4
ij , P max

i /n0=40dB, and B=128. Figure 5 shows the convergence of
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the powers and prices for each user under the ADP algorithm for a typical realization, starting

from random initializations. Also, for comparison we show the convergence of these quantities

using a gradient-based algorithm as in [5] with a step-size of 0.001.14. Both algorithms converge

to the optimal power allocation, but the ADP algorithm converges much faster; in all the cases

we have simulated, the ADP algorithm converges about 10 times faster than the gradient-based

algorithm (if the latter converges). The ADP algorithm, by adapting power according to the best

response updates, is essentially using an “adaptive step-size” algorithm: users adapt the power in

“larger” step-sizes when they are far away from the optimal solution, and use finer steps when

close to the optimal.

Next we examine the convergence of DADP algorithm in a multi-channel network with M =

50 users and K = 16 channels. The other parameters are the same as in the single channel

case, except here hk
ij = d−4

ij αk
ij , where αk

ij is an unit mean exponential random variable that

models frequency selective fading across channels. Here we simulate a version of the algorithm

with step-size κ = 0.05 starting from a random initialization. All users synchronously update

their power prices; the time between each update is referred to as a dual iteration. During each

dual iteration, the users also synchronously perform both steps (3) and (4), which we refer to

as a primal update. In Theorem 2, we assumed that there were arbitrarily many primal updates

during each dual iteration. Here we investigate the case where only a small number of primal

updates are used. Figure 6 shows the relative error between the current utility and the optimal

value as a function of the number of dual iterations, with a maximum of 1,3,5, and 7 primal

updates per iteration. Each point is averaged over 100 random topology realization. Even with

only 1 primal update per iteration, the relative error quickly decreases. Figure 7 shows relative

error as a function of the total number of primal updates; in this case, the number of updates

per iteration appears to have little effect on the average performance.

V. CONCLUSIONS

We have presented distributed power control algorithms for both single channel and multi-

channel wireless networks. In these algorithms users announce prices to reflect their sensitivities

14In our experiments, a larger step-size than 0.001 would often not converge
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to the current interference levels and then adjust their power to maximize their surplus. In certain

cases, we are able to characterize the convergence of there algorithms and show that they achieve

an optimal power allocation. Some other desirable features of these algorithms are that they can

be asynchronously implemented, they require only limited knowledge of channel gains by each

user, and each users only announces a single price per channel. Also our numerical results show

that the algorithms converge quickly, which also limits the required overhead. Here we focus

on a static setting, where the communicating pairs and the channel conditions are fixed. An

interesting future direction is to consider dynamic environments.

APPENDIX
A. Proof of Proposition 3:

As in [5], we use a logarithmic change of variables. Specifically, we show that in the variables

yi = log pi, Problem P1 becomes the optimization of a strictly concave objective over a compact,

convex set. It follows that Problem P1 has a unique global optimum, which is the only solution

to the KKT conditions. Furthermore, the solutions to the KKT conditions in the variables y have

a one-to-one correspondence to solutions in the original variables p. It follows that there is only

one solution to the KKT conditions in the original variables, and hence by Lemma 2, FADP

is a singleton set containing only the global optimum. Therefore, the ADP algorithm globally

converges to this point.

All that remains is to show that Problem P1 has the desired properties in the variables y.

In the transformed variables, the constraint set becomes Y =
∏

i∈M[log P min
i , log P max

i ], which

is clearly compact and convex. To show that the objective is strictly concave, we show that its

Hessian is negative definite for all y ∈ Y .

Let utot(y) denote the objective to Problem P1 in terms of the transformed variables. The

Hessian matrix, H(y) = ∇ ��� utot(y) consists of diagonal elements:

Hii(y) = γi (u
′′
i γi + u′

i) +
∑

j 6=i

γ2
j (Aij)

2 [u′′
jγ

2
j + 2u′

jγj − u′
j (Aij)

−1] ,

for all i ∈ M, and off-diagonal elements,

Hil(y) = −γ2
i Ali (u

′′
i γi + u′

i) − γ2
l Ail (u

′′
l γl + u′

l) +
∑

j 6=i,l

γ3
j (AljAij)

(

u′′
jγj + 2u′

j

)

,
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for all l 6= i. Here u
′

i = ∂ui(γi)
∂γi

, u′′
i = ∂2ui(γi)

∂2γi
, and Ajk =

hjk exp(yj)

hkk exp(yk)
. Since all users have Type I

utilities, u′′
i γi + u′

i ≤ 0, and u′′
i γi + 2u′

i ≥ 0, for all i. It follows that Hil(y) ≥ 0, and

Hii(y) < γi (u
′′
i γi + u′

i) +
∑

j 6=i

γ3
j (Aij)

2 (u′′
jγj + u′

j

)

≤ 0. (12)

Using these relations, it can be shown that for all i ∈ M and all y ∈ Y ,

|Hii(y)| −
∑

l 6=i

|Hil(y)| ≥ εi, (13)

where,

εi = u′
i (γ

max
i )

n0γ
min
i

hiiPmax
i

(a − 1) +
∑

j 6=i

u′
j

(

γmax
j

) hijP
min
i

(

γmin
j

)3

(

hjjP
max
j

)2 (2 − b) .

Here a and b are the constants in the proposition. By assumption (a − 1) ≥ 0 and (2 − b) ≥ 0,

and at least one of these inequalities is strict. It follows that εi > 0, i.e. H(y) is diagonal

dominant. From Gersgorin’s Theorem [20, page 344], the eigenvalues {λi}
M
i=1 of H(y) satisfy

|λj − Hii| ≤
∑

l 6=i |Hli| for all i. Combining this with the diagonal dominance we have λj ≤

−mini εi < 0 for all j. Since H(y) is real and symmetric and has all negative eigenvalues, it

must be negative definite as desired. �

B. Proof of Theorem 2

Consider the variable transformation yk
i = log(pk

i ) for all i and k. By a similar argument

as in the proof of Prop. 3, it follows that, under the conditions of Prop. 3, Problem P2 in the

transformed variables is the optimization of a strictly concave objective over a bounded, convex

set. Also, between each power price update, the DADP algorithm will converge to the unique

fixed point with power allocation p(µ) which maximizes the Lagrangian,

L (y, µ) =
∑

k∈K

∑

i∈M

(

uk
i

(

γk
i

(

yk
))

− µi exp
(

yk
i

))

+
∑

i∈M

µiP
max
i ,

over all y for which exp(yk
i ) ∈ Pi for all i and k. This specifies the dual function D(µ) in

(11). Since the primal is strictly concave in the transformed variables, there will be no duality

gap between Problem P2 and the dual problem D [16, Prop. 5.3.1]. Therefore, given an optimal

dual solution µ∗ to Problem D, p(µ∗) will be the optimal solution to Problem P2. Also, since

the primal is strictly concave, D (µ) is continuously differentiable everywhere [16, Prop. 6.1.1],
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and ∂D(
�

)
∂µi

= Pmax
i −

∑

k∈K pk
i (µi) , i.e., (10) is indeed a gradient projection update. All that

remains to be shown is that (10) converges to an optimal dual value µ∗.

Let H = ∇2
� � L (y, µ) be the Hessian matrix of L(y, µ). Since L(y, µ) is separable across

carriers, H will be a block diagonal matrix diag
(

H1, · · · , HK
)

, where for each k, Hk =
[

∂2L( � ,
�

)

∂yk
i ∂yk

j

]

. From the same argument as in the Proof of Prop. 3, each matrix H
�

will be negative

definite and its eigenvalues {λk
j}

M
j=1 will satisfy maxj∈M λk

j < −εk ≡ −mini∈M εk
i , where

εk
i = uk′

i

(

γk,max
i

) n0γ
k,min
i

hk
iiP

max
i

(a − 1) +
∑

j 6=i

uk′
j

(

γk,max
j

) hk
ijP

min
i

(

γk,min
j

)3

(

hk
jjP

max
j

)2 (2 − b) > 0.

Therefore, H will be negative definite, and ∇2D (µ) = −∇g (y (µ))′ H−1∇g (y (µ)) , where

∇g(y) is the gradient matrix of g (y) = (gi (yi))
M
i=1 , with gi (yi) =

∑

k∈K eyk
i − Pmax

i [16,

Sect. 6.1]. Note that ∇g (y (µ)) =
[

A1� · · ·AK�
]′

, where Ak� = diag
(

eyk
1 (µ1), · · · , eyk

M (µM )
)

.

And so, ∇2D (µ) = −
∑

k∈K Ak�
(

Hk
)−1

Ak� . We use this to prove that ∇D (µ) is Lipschitz

continuous. Let ‖X‖2 denote the Euclidean norm of matrix X. Given any µ and µ′, using

Taylor’s Theorem there exists some α ∈ [0, 1] such that µ′′ = αµ + (1 − α)µ′ satisfies:

‖∇D (µ) −∇D (µ′)‖2 =
∥

∥∇2D (µ′′)
∥

∥

2
‖µ − µ′‖2 , (14)

where

∥

∥∇2D (µ)
∥

∥

2
=

∥

∥

∥

∥

∥

−
∑

k∈K

Ak�
(

Hk
)−1

Ak�

∥

∥

∥

∥

∥

2

≤
∑

k∈K

∥

∥Ak�
∥

∥

2

∥

∥

∥

(

Hk
)−1
∥

∥

∥

2

∥

∥Ak�
∥

∥

2

=
∑

k∈K

(

max
i

pk
i (µi)

)2

ρ
(

(

Hk
)−1
)

≤
(

max
i

Pmax
i

)2∑

k∈K

(

1

εk

)

≡ J. (15)

These relations follow from because the Euclidean norm of a real, symmetric matrix is equal

to its spectral radius [21, Prop. A.24], and the Euclidean norm of the inverse of a symmetric,

nonsingular matrix is equal to the reciprocal of the smallest magnitude of an eigenvalue of the

matrix [21, Prop. A.25]. Together (15) with (14) imply that ∇D (µ) is Lipschitz continuous.

By a similar argument to the above, it can be shown that for small enough α, ∇2D (µ)−αI is

nonnegative definite for all µ. It follows that ∇D(µ) is strongly convex [21, Prop. A.41]. Also,

since Problem P2 has a finite maximum, the objective of Problem D is lower bounded. Combining

these observations with the Lipschitz condition implies that there is a unique dual optimum µ∗,
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and if 0 < κ < 2/J the gradient projection algorithm converges to µ∗ geometrically [21, p. 215].

�
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Fig. 1. An example wireless network with four users (pairs of nodes) (Ti and Ri denote the transmitter and receiver of “user”

i, respectively).

(1.) INITIALIZATION: For each user i ∈ M choose some power pi(0) ∈ Pi and price

πi(0) ≥ 0.

(2.) POWER UPDATE: At each t ∈ Ti,p, user i updates its power according to

pi(t) = Wi

(

p−i(t
−), π−i(t

−)
)

.

(3.) PRICE UPDATE: At each t ∈ Ti,π, user i updates its price according to

πi(t) = Ci

(

p(t−)
)

.

Fig. 2. The ADP Algorithm.



22 SUBMITTED TO JSAC, FEB. 2005

TABLE I

EXAMPLES OF TYPE I AND II UTILITY FUNCTIONS.

Type I Type II

θi log(γi) θi log(γi)

θiγ
α
i /α (with α ∈ [−1, 0)) θiγ

α
i /α (with α ∈ (0, 1))

1 − e−θiγi 1 − e−θiγi

(with 1
γmin

i

≤ θi ≤
2

γmax

i

) (with θi ≤
1

γmax

i

)

a (γi)
2 + bγi a (γi)

2 + bγi

(with 0 ≤ −3aγmax
i ≤ b ≤ −4aγmin

i ) (with b ≥ −4aγmax
i > 0)

1
α

�
1 − exp � −α � (γi)

1−σ
−1

1−σ ����� 1
α

�
1 − exp � −α � (γi)

1−σ
−1

1−σ �����
(with σ ∈ (0, 1] and 0 ≤ (1 − σ)

�
γmin

i � σ−1
≤ α ≤ (2 − σ) (γmax

i )σ−1), (with σ ∈ (0, 1] and 0 ≤ α ≤ (1 − σ) (γmax
i )σ−1)

or σ ∈ (1, 2] and 0 ≤ α ≤ (2 − σ)
�
γmin

i � σ−1
).15

θi log (1 + γi)
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Fig. 3. Examples of the trajectories of the power profiles under the ADP algorithm for a two-user network with Type I (left) or

Type II (right) utility functions. In both cases, from the indicated initializations the power profiles will monotonically converge

to the indicated “corner” fixed points.
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(1.) INITIALIZATION: For each user i ∈ M choose some power pi (0) ∈ PMC
i ,

interference price πi (0) ≥ 0 and power price µi (0).

(2.) POWER PRICE UPDATE: At each t ∈ Ti,µ, user i updates its power price according

to

µi(t) =

[

µi

(

t−
)

+ κ

(

∑

k∈K

pk
i (t

−) − Pmax
i

)]+

.

(3.) POWER UPDATE: At each t ∈ T k
i,p, user i updates its power on carrier k according

to

pk
i (t) = Wk,MC

i

(

pk
−i(t

−), πk
−i(t

−), µi (t)
)

.

(4.) INTERFERENCE PRICE UPDATE: At each t ∈ T k
i,π, user i updates its interference

price on carrier k according to

πk
i (t) = Ck,MC

i

(

pk(t−)
)

.

Fig. 4. The DADP Algorithm.
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Fig. 5. Convergence of the prices and power for the ADP algorithm (left) and a gradient-based algorithm (right) in a network

with 40 users and logarithmic utility functions. Each curve corresponds to the power or price for one user.
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Fig. 6. Average relative difference between the total utility (Utot) and the optimal total utility (U∗
tot) as a function of the

number of dual iterations in the DADP algorithm.
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Fig. 7. Average relative difference between the total utility (Utot) and the optimal total utility (U∗
tot) as a function of the total

number of primal updates in the DADP algorithm.


