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Abstract

When transmitting stochastically arriving data over fading channels there is an inherent

trade-off between the required average transmission power and the average queueing delay

experienced by the data. This trade-off can be exploited by appropriately scheduling the

transmission of data over time. In this paper, we study the behavior of the optimal power-delay

trade-off for a single user in the regime of asymptotically small delays. In this regime, we first

lower bound how much average power is required as a function of the average queueing delay.

We show that the rate at which this bound increases as the delay becomes asymptotically small

depends on the behavior of the fading distribution near zero, as well as the arrival statistics. We

characterize this rate for two different classes of fading distributions, one class that requires

infinite power to minimize the queueing delay and one class that requires only finite power. We

then show that for both classes, this rate can essentially be achieved by a sequence of simple

“channel threshold” policies, which only transmit when the channel gain is greater than a given

threshold. We also consider several other transmission scheduling policies and characterize their

convergence behavior in the small delay regime.
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I. I NTRODUCTION

In many wireless communication scenarios energy management is an important issue

for reasons such as reducing the size and cost of communication devices and/or extending

a device’s usable life-time. Examples range from communication satellites to micro-

sensors. Often, the required transmission power is one of the main energy consumers

in a wireless devices; consequently, there has been much interest in approaches for

efficiently utilizing this resource. A basic technique for accomplishing this is through

transmission power control, i.e. adapting the transmission power over time in an attempt

to not use any more energy than needed to communicate reliably. With data traffic, in

addition to adjusting the transmission power used to send each packet of data, energy

efficiency can be further improved by adjusting the transmission rate or equivalently the

transmission time per packet, for example, by using adaptive modulation and coding.

Such approaches exploit the well-known fact that the required energy per bit needed

for reliable communication is decreasing in the number of degrees of freedom used to

send each bit; for fixed bandwidth, the available degrees of freedom increase with the

transmission time. In a fading channel, another benefit of adapting the transmission rate

and power is that it enables the transmitter to be “opportunistic” and send more data

during good channel conditions, which again reduces the required average energy per

bit.

Recently, a number of energy-efficient transmission scheduling approaches have been

studied including [1]–[15]. In these approaches transmission rate and/or power are ad-

justed over time based in part on the offered traffic as well as any available channel

state information. In each case, the goal is to effectively balance some cost related to

packet delay (e.g. the average queueing delay or a deadline by which all packets must

be transmitted) with some cost related to power or energy (e.g. the total energy over a

finite horizon or the long-term average power). Clearly, there is a fundamental trade-off

between such concerns, i.e., packet delay can be reduced by transmitting at a higher rate,

but this requires more energy per bit.
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In this paper, we re-visit the basic model for transmission scheduling over a fading

channel from [15]. In this model, data randomly arrives from some higher layer appli-

cation and is placed into a transmission buffer as shown in Figure 1. Periodically, some

data is removed from the buffer, encoded and transmitted over the fading channel. We

focus on the case where each codeword is sent over a fixed number of channel uses,

but different codewords may be of different rates. After the codeword is received, it is

decoded and passed to the corresponding higher layer application at the receiver. The

transmitter can vary the transmission power and rate based on both the channel state and

the buffer occupancy. As in [15], we consider the optimal power/delay trade-off,P ∗(D).

This characterizes the minimum long-term average power under any scheduling policy as

a function of the average queueing delay, for a given arrival process and channel fading

process. If the traffic arrives at an average rate ofĀ bits per second, then for a stable

system, the long-term average energy per bit is given byP ∗(D)/Ā, i.e., P ∗(D) also

reflects the minimum energy per bit needed for a given average delay. For any system

where the channel and arrival processes are not both constant,P ∗(D), will be a strictly

decreasing and convex function ofD. In [15], the behavior ofP ∗(D) was studied in the

asymptotic regime of large delays (low power). In this regime, it was shown thatP ∗(D)

approaches a limiting value ofP(Ā) at rate ofΘ
(

1
D2

)
. Here, we use the following
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notation to characterize the asymptotic behavior a functiong(x) asx→ x∗:

• g(x) = O(f(x)) if lim supx→x∗
|g(x)|
|f(x)| <∞,

• g(x) = Ω(f(x)) if lim supx→x∗
|f(x)|
|g(x)| <∞, and

• g(x) = Θ(f(x)) if g(x) = O(f(x)), andg(x) = Ω(f(x)).

In [15] it was also shown that, this rate can be achieved with a sequence of “buffer

threshold policies” whose only dependence on the buffer occupancy is via a simple

threshold rule. Moreover, this weak dependence on the buffer occupancy is required for

a sequence of policies to be order optimal (i.e., have the optimal convergence rate).

Here, we focus on the behavior of the power/delay trade-off in the asymptotic regime

of small delays (high power). Specifically, we study the optimal rate at which the average

delay decreases to its minimum value as the average power increases. The analysis of

the large delay asymptotics in [15] is based, in part, on using large deviation bounds on

the buffer occupancy, which are asymptotically tight for large buffer sizes. In the small

delay regime, these bounds are not very useful and we instead take a different approach

to analyze the system. We show that, in this regime, the optimal power/delay trade-off

behaves quite differently from the large delay regime. In particular, the convergence rate is

shown to depend strongly on the behavior of the fading distribution near zero. We focus

on two broad classes of channels: one class (“type A channels”) that requires infinite

power to minimize the queueing delay, and one class (“type B channels”) for which the

queueing delay can be minimized with finite power. These classes include most common

fading models, such as Rayleigh, Ricean and Nagakami fading. For each class, we first

lower bound the convergence rate in the small delay regime that can be achieved by

any transmission policy. We then show that this bound is achievable for both classes

of channels when using a sequence of “channel threshold policies.” These are policies

under which the transmission rate only depends on the channel gain through a simple

threshold rule. This demonstrates an interesting duality with the large delay regime,

where instead buffer threshold policies were order optimal. For a type A channels, we

then show that an even simpler fixed-rate channel threshold policy is also order optimal,
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where this policy does not depend at all on the buffer occupancy. However, such policies

are not order optimal for the type B channels. Finally we consider two sequences of sub-

optimal policies -fixed power policiesandfixed water-filling policies, which also have no

dependence on the buffer occupancy. These are shown to not have optimal convergence

rates for either type of channel.

The outline of the rest of the paper is as follows. In Section II, we discuss the problem

formulation in more detail and given some preliminary results. In Section III, we give

lower bounds on the optimal convergence rate. In Section IV, we analyze several optimal

and sub-optimal sequences of policies. We conclude in Section V. Most of the proofs

are given in the appendices.

II. PROBLEM FORMULATION

We next give a more precise description of our model for the system shown in Figure 1.

First the fading channel model is described. The channel is modeled as a discrete-time,

block-fading channel with additive white Gaussian noise and frequency-flat fading [16],

[17].1 Over each block ofN consecutive channel uses, the channel gain stays fixed.

Let
√
Hn denote the magnitude of the complex (base-band) channel gain during thenth

block andΘn denote the phase. LetXn = (Xn,1, . . . , Xn,N) andYn = (Yn,1, . . . , Yn,N)

be vectors inCN which denote, respectively, the channel inputs and outputs over thenth

block. These are related by:

Yn =
√
Hne

−jΘnXn + Zn. (1)

Here the additive noiseZn is a complex, circularly symmetric Gaussian random vector

with zero mean and covariance matrixσ2I, whereI denotes aN × N identity matrix.

Furthermore, the sequence{Zn} is independent and identically distributed (i.i.d.). The

sequence of channel gains,{Hn}, are also modeled as a sequence of random variables;

for simplicity, we assume that these are also i.i.d., which is appropriate when the time

1Most of the following will also generalize directly to a frequency-selective, block fading channel.
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for one block ofN channel uses is on the order of one coherence-time. For alln, Hn is

assumed to take values inH = R+ and have a continuous probability density function

fH(h) and probability distributionFH(h). For simplicity, we assume thatfH(h) > 0 for

all h > 0, which is true for most channel models of interest.2 This implies thatFH(h)

is strictly increasing overH. We assume that both the transmitter and receiver have

perfect channel state information (CSI),i.e., during thenth block, both the transmitter

and receiver know the value ofHn andΘn. Since both the transmitter and receiver know

Θn, we will ignore it in the following.

To model the buffer, we consider a discrete-time “fluid” buffer model in which time

is slotted and the length of each time-slot corresponds to a block ofN channel uses.

Let An be the number of bits that arrive between timen andn − 1, and letSn be the

buffer size at the start of thenth time-slot. Denote byUn the number of bits removed

from the buffer at the start of each time-slot, encoded and transmitted over the fading

channel during the time-slot. This is a fluid model because we do not restrict the amount

of “bits” that arrive to or are removed from the buffer during a time-slot to be an integer.

The resulting buffer dynamics are given by:

Sn+1 = max{Sn + An+1 − Un, An+1}, (2)

which ensures that the arriving data (An+1) waits in the buffer for at least one time-

unit. The buffer size is assumed to be infinite and we denote the buffer state space by

S = R+. We consider the case where the arrival process{An} is a sequence of i.i.d.

random variables taking values in a compact setA = [amin, amax] ⊂ R+ with probability

distributionFA(a). Here,amax andamin are, respectively, upper and lower bounds on the

amount of data that can arrive per time-unit. This process is assumed to be independent

of both the channel fading process and the noise process. LetĀ = E(An) denote the

expected amount of data that arrives per time-slot.

2This can be relaxed to assuming thatfh(h) > 0 in some small interval(0, ε).
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We assume that for the transmitter to reliably transmit at a rate ofr bits per channel

use during a given time-slot requires a received signal-to-noise ratio (SNR) given by a

function S(r). The main example we will consider is where

S(r) = 2r − 1, (3)

which is the received SNR required for the Gaussian channel in (1) to have a capacity of

r bits per channel use. More generally, the following analysis will hold for any function

S(r) that satisfies the following regularity property:

Definition 1: A SNR functionS(r) is regular if S(r) is increasing, differentiable, and

strictly convex withS(0) = 0, S ′(0) > 0, and limr→∞ S ′(r) = ∞.3

In addition to (3), most practical modulation and coding schemes will satisfy this

definition (e.g., see [4]). During a time-slot when the channel gain ish, the received

SNR is given byhP
σ2 , whereP is the transmission power. Thus, the required transmission

power to sendu bits during this time-slot is given by

P (h, u) :=
σ2

h
S(u/N). (4)

In the case of (3), this becomes

P (h, u) =
σ2

h

(
2u/N − 1

)
, (5)

which is the minimum power required so that the mutual information rate per channel

use during the given block is equal tou/N . Provided thatN is large enough, this choice

will give a reasonable indication of the power needed to reliably transmit at rateu/N .

One may question the reasonableness of modeling the required power using (5) when

we are analyzing the performance of a system in the regime of small delays, since to

communicate reliably at rates near capacity typically requires the use of long codes and

subsequently long delays. The main justification for this is that we are measuring delays

on the time-scale of the queue dynamics in 2; within each time-unit of this model, we

3We use the standard notationf ′ to denote d
dx

f .
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assume that there are still be enough degrees of freedom available in each time-slot to

use sophisticated coding and approach capacity. Indeed, in many recent wireless systems

data is transmitted in radio link control (RLC) blocks on a time-scale of 2-5 msec, using

a bandwidth a 1-5 MHz; this results in on the order of1000 channel uses per block.

Let µ : S ×H 7→ R+ denote a stationary (Markov) transmission policy that indicates

Un at any timen as a function ofSn andHn. Under such a policy,{Sn} will be a

Markov chain. Under policyµ, we define the time-average transmission power to be

P̄ µ ≡ lim sup
m→∞

1

m

m∑
n=1

E(P (Hn, µ(Sn, Hn))).

We also define the time-average delay to be,

D̄µ ≡ lim sup
m→∞

1

m

m∑
n=1

E(Sn)

Ā
.

Assuming that{Sn} is ergodic, it follows that that̄P µ = ES,HP (S,H) and D̄µ = ES
Ā

,

which is equal to the average queueing delay by Little’s law. Here and in the following,

given an ergodic process,{Xn}, we denote byX (without an index), a random variable

with the corresponding steady-state distribution. For a given channel and arrival process,

the optimal power/delay trade-off,P ∗(D), is defined by

P ∗(D) ≡ inf{P̄ µ : µ such thatD̄µ ≤ D}.

This will be a decreasing and convex function ofD as shown in Fig. 2. AsD → ∞,

P ∗(D) converges to an asymptotic value ofP(Ā) at a rate ofΘ
(

1
D2

)
[15]. The asymptotic

value, P(Ā) corresponds to the minimum power required to send at average rateĀ,

ignoring any delay constraints. WhenP (h, u) is given by (5), this is the minimum power

so that the channel has athroughput capacityof Ā/N bits per channel use [18].

We note that in the above definition we restricted our attention to stationary, Markov

policies. More generally, one can consider transmission policies that depend on the timen,

as well as the past history of buffer and channel states, i.e.un = µ(n, s1, . . . , sn, h1, . . . , hn).

However, in terms of definingP ∗(D) such policies are not needed [15]. In other words,

P ∗(D) also characterizes the performance that can be obtained by any such policy.
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Fig. 2. Examples of the optimal power/delay trade-offP ∗(D) for two different channels. In the type A channel, the

optimal power grows without bound as the delay approaches 1. In the type B channel the optimal power converges to

the limit of P ∗(1).

In the following it will also be useful to define the optimal delay/power trade-off by

D∗(P ) = inf{D̄µ : µ such thatP̄ µ ≤ P}.

Clearly, if P ∗(D) is strictly decreasing, thenD∗(P ) will simply be its inverse. Given the

above model of the buffer dynamics, all data must spend at least one time unit in the

buffer, henceD∗(P ) ≥ 1 for all P . The only way thatD∗(P ) = 1 is if the transmitter

used a policy such thatµ(Sn, Hn) ≥ An for all n, i.e. every bit is transmitted the time-slot

after it arrives. The minimum power required by such a policy is given by

P ∗(1) = EA,HP (H,A).

Assume that the arrival rate is constant, i.e.An = Ā for all n, and thatP (h, u) is given

by (5). In this case,P ∗(1) represents the minimum power needed for the channel to have

a delay-limited capacityof Ā/N bits per channel use [19].
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Depending on the fading distribution,P ∗(1) may or may not be finite. In particular,

note that since the arrival and channel processes are independent,

P ∗(1) = σ2EH

(
1

H

)
EAS(A/N).

From this it follows that for any bounded arrival process,P ∗(1) is finite if and only

if EH

(
1
H

)
< ∞. Therefore, every fading distribution can be classified as follows: a

distribution is defined to havepositive delay-limited capacity, if EH

(
1
H

)
<∞; otherwise,

the distribution is said to havezero delay limited capacity.

In the following, we will often place further restrictions on the behavior of the fad-

ing distribution near zero. In particular, we will consider the following two types of

distributions:

Definition 2: A channel is defined to be oftype Aif Hn has a finite mean andfH(0) >

0.

Definition 3: A channel is defined to be oftype Bif Hn has a finite mean andfH(h) =

Θ(hγ) ash→ 0 for someγ > 0.

For example, in a Rayleigh fading channelfH(h) is an exponential distribution with

fH(0) = 1
EH

; hence, this is a type A channel. A Ricean fading channel is also a type A

channel. A Nakagami fading channel will be of type A if the Nakagami fading figure,m

is less than 1. It will be type B whenm ≥ 1; in this caseγ = m−1. A Rayleigh channel

with m > 1 independent diversity branches will also be of type B withγ = m−1, when

either selection diversity or maximal ratio combining are used. It can be seen that a type

A channel will always have a zero delay-limited capacity, while a type B channel will

always have a positive delay-limited capacity.

There are several properties of these channels we will use, we state these in the

following two lemmas. The first lemma bounds the rate at which the channel gain’s

distribution function goes to zero ash→ 0.

Lemma 1:As h→ 0, for a type A channel,FH(h) = Θ(h) and for a type B channel,

FH(h) = Θ(hγ+1).
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This follows directly by writingFH(h) =
∫ h

0
fH(h̃) dh̃. For a type A channel, we

also use that the densityfH(h) is continuous, thusfH(h) > 0 for all h within some

sufficiently small neighborhood of0.

For a given fading density,fH(h), defineG(h) by

G(h) ≡
∫ ∞

h

1

h̃
fH(h̃) dh̃.

As h → 0, G(h) → E
(

1
H

)
, which is infinite for any channel with zero delay-limited

capacity. The next lemma characterizes how fast this quantity increases in the case of

type A channels.

Lemma 2:Let fH(h) be a type A fading density. Given anyht > 0, then there exists

a finite constantM2 such that for allh < ht,

G(h) ≥M1 ln
(

1
h

)
+M2,

whereM1 = inf{fH(h)|h ≤ ht} . Likewise, these exists a finite constantM̃2, such for

all h < ht,

G(h) ≤ M̃1 ln
(

1
h

)
+ M̃2,

whereM̃1 = sup{fH(h)|h ≤ ht} . Furthermore, forht small enough,M1 will be strictly

positive.

The proof is given in Appendix I. This implies that for a type A channel,G(h) grows

like ln
(

1
h

)
ash→ 0.

For either type of channel, letG−1(x) denote the inverse of the functionG(h). Since,

by assumptionfH(h) > 0 for all h > 0, G(h) will be strictly decreasing and approach

zero ash→∞. For a channel with zero delay-limited capacity, ash→ 0, G(h) →∞,

and soG−1(x) is defined for allx ∈ [0,∞). For a channel with positive delay-limited

capacityG(0) = E
(

1
H

)
is finite; in this case,G−1(x) is only defined forx ∈ [0, G(0)].

III. L OWER BOUNDS ON THE OPTIMAL CONVERGENCE RATE

In this section, we lower bound the asymptotic behavior ofD∗(P ) in the regime of

small delays (high powers). We first give a lower bound onD∗(P ) that becomes tight
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asP → P ∗(1). This bound holds for any channel distribution and arrival statistics that

satisfy the previous assumptions. We then examine this bound for type A and type B

channels and use this to bound the rate at whichD∗(P ) approaches 1 as the average

power increases toP ∗(1).

For anyP ≤ P ∗(1), D∗(P ) satisfies the following lower bound:

Proposition 1: Consider a system with a regular SNR functionS(r). For anyP ≤

P ∗(1),

D∗(P )− 1 ≥ FH

[(
S ′(0)

S ′(amax)

)
G−1

(
P

σ2EA(S(A/N))

)]
.

Note that the quantityσ2EAS(A/N) is the value ofP ∗(1) for a channel in whichHn =

1 for all n. In a channel with positive delay limited capacity, this satisfiesP
∗(1)

σ2EAS(A/N)
=

G(0), and so forP = P ∗(1) this bound is tight, i.e. it is equal to zero. Likewise, for

a channel with zero delay limited capacity,P ∗(1) = ∞. Hence, asP → ∞, the bound

approaches zero and is once again tight.

To prove this proposition, we consider a “fictitious system” which is identical to the

original system except that here all arriving data can be transmitted after waiting for 2

time-units without requiring any power (recall that all data must wait at least one time-

unit). However, to transmit the data after one time-unit still requires the same power as

in the original system. Therefore, the maximum delay in the fictitious system will be

no more than 2 time-units. Let̂D(P ) be the minimum average delay in this fictitious

system under any transmission policy with average power no greater thanP . Clearly, for

the same arrival and channel processes, we must haveD̂(P ) ≤ D∗(P ) for all P . We will

boundD̂(P ) and use this relationship to derive the desired lower bound onD∗(P ).

Under the assumption that all arriving data leaves after 2 time-slots, the buffer dynamics

in the fictitious system can be written as

Sn+1 = max(An − Un + An+1, An+1).

Also, at each timen an optimal policy will setUn ≤ An, since any other data in the

buffer will leave the system anyway without requiring any power. Therefore, an optimal
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policy for the fictitious system can be expressed as function of the current channel state,

Hn and the number of arrivalsAn. It follows that D̂(P ) is the solution to the following

optimization problem:

minimize
ζ:H×A7→R+

1 +
1

Ā
EH,A

{
(A− ζ(H,A))+

}
subject to:EH,AP (H, ζ(H,A)) ≤ P

ζ(h, a) ≥ 0, ∀h ∈ H, a ∈ A

Here the objective function correspond to the expected number of packets in the system

under the policyζ(·, ·) divided by the average arrival rate, which by Little’s law is equal

to the average delay. Note, we have also used the fact that the arrivals are i.i.d. This is

equivalent to finding a policyζ(·, ·) that solves:

maximize
ζ:H×A7→R+

EH,Aζ(H,A)

subject to:EH,A
σ2

H
S(ζ(H,A)/N) ≤ P

0 ≤ ζ(h, a) ≤ a, ∀h ∈ H, a ∈ A.

It can be seen that the constraints are convex and that the objective in linear inζ(h, a).

From the first order optimality conditions for this problem, it follows that the optimal

policy, ζ∗(h, a) is given by

ζ∗(h, a) = min
{
Nψ

(
Nh
λσ2

)
, a
}
, (6)

whereλ > 0 is a Lagrange multiplier chosen to satisfy the average power constraint and

ψ(x) = min{r ≥ 0 : S ′(r) ≥ x}. Note that for a regular SNR function,S ′(r) is strictly

increasing andS ′(0) > 0. Thus for allx ≥ S ′(0), ψ(x) will be the inverse ofS ′(r), and

for all x ≤ S ′(0), ψ(x) = 0. This implies that there exists a lower channel threshold,

hL ≡ λS ′(0)σ2/N, (7)

such that for allh ≤ hL, ζ∗(h, a) = 0. Likewise, for a regular SNR function,S ′(x)

grows without bound asx increases, and so for eacha ∈ A, there exists an upper
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channel threshold,

hU(a) ≡ λS ′(a/N)σ2/N, (8)

such that for allh ≥ hU(a), ζ∗(h, a) = a. Note that these thresholds only depend on the

average power constraint through the Lagrange multipliersλ. As P is increases,λ will

decrease and therefore so willhL andhU(a).

Under this policy, the resulting power allocation can be written as:

P (h, ζ∗(h, a)) =


0, if h ≤ hL,

σ2

h
S
(
ψ
(

Nh
λσ2

))
, if hL ≤ h ≤ hU(a),

σ2

h
S (a/N) , if h ≥ hU(a).

(9)

For example, in the case whereP (h, u) is given by (5), then the power allocation in (9)

can be written as

P (h, ζ∗(h, a)) =


0 if h ≤ hL,

N
λ
− σ2

h
if hL ≤ h ≤ hU(a),

σ2

h

(
2a/N − 1

)
if h ≥ hU(a),

(10)

which corresponds to the the well-known “water-filling” power allocation [20] whenever

h < hU(a); for h > hU(a), the transmitter inverts the channel to transmit at the constant

ratea. An example of this power allocation is shown in Figure 3

Using (9), the average power under policyζ∗(·, ·) satisfies

P =

∫ amax

amin

(∫ hU (a)

hL

σ2

h
S(ψ( Nh

λσ2 )) dFH(h) +

∫ ∞

hU (a)

σ2

h
S(a/N) dFH(h)

)
dFA(a)

≥
∫ amax

amin

∫ ∞

hU (a)

σ2

h
S(a/N) dFH(h), dFA(a)

≥ G(hU(amax))σ
2EAS(A/N).

Equivalently,

hU(amax) ≥ G−1

(
P

σ2EAS(A/N)

)
, (11)

where we have used thatG(h) is strictly decreasing inh.
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Fig. 3. Example ofP (h, ζ∗(h, a)) from (10); shown here are two curves corresponding the power allocation as a

function of the channel gain for two different values ofa with a1 < a2. The corresponding thresholdshL andhU (a)

are also indicated.

Recall that the policy in (9) achieveŝD(P )− 1. Therefore,

D̂(P )− 1 =
1

Ā
EH,A(A− ζ∗(H,A))+

=
1

Ā

(
Pr(H ≤ hL)Ā+ Pr(H > hL)EH,A

(
(A− ζ∗(H,A))+

∣∣H ≥ hL

))
≥ Pr(H ≤ hL)

= FH(hL)

= FH

(
S ′(0)

S ′(amax/N)
hU(amax)

)
.

Here, we have used that(A− ζ∗(H,A))+ is always non-negative and is equal toA for

H < hL, and we also used the definitions ofhL andhU(a) in (7) and (8).

Combining (11) and (12) and recalling thatFH(h) is decreasing, we get the bound in

Proposition 1.
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So far we have given a bound on the delay that is asymptotically tight as theP →

P ∗(1). In the next two corollaries we will use this bound to bound the rate at which

D∗(P ) approaches its asymptotic limit of 1 for both type A and type B channels.

Corollary 1: For a type A channel, asP → ∞, D∗(P ) − 1 = Ω
(
e−αP

)
, for any

α > (σ2fH(0)EA(S(A/N)))
−1.

The proof is given in Appendix II. The result of this corollary can equivalently be

expressed in terms of the power/delay trade-off, i.e. for a type A channel,P ∗(D) =

Ω
(
ln
(

1
D−1

))
asD → 1. Note that in this case the constantα is not needed.

Corollary 2: For a type B channel with parameterγ > 0, asP → P ∗(1) (from below),

D∗(P )− 1 = Ω
(
(P ∗(1)− P )

γ+1
γ

)
.

The proof is given in Appendix III. Notice that the exponentγ+1
γ

is decreasing inγ,

and so this bound will approach1 slower in channels with larger values ofγ.

IV. OPTIMAL AND SUB-OPTIMAL SEQUENCES OFTRANSMISSIONPOLICIES

In the previous section we used the policyζ∗(h, a) for the fictitious system to bound

the optimal delay/power trade-off for the original system. Notice that for any power

P < P ∗(1), the expected transmission rate under the policyU∗(h, a) will be less than

the average arrival rate, i.e. this policy will not stabilize the actual system and will result

in unbounded delays. In this section, we study the performance obtained by several

different types of policies that result in finite delays in the actual system. We then study

the behavior of sequences of these policies as the average delays approach 1. First we

consider a class of “channel threshold” polices in which the average power approaches

P ∗(1) as the delays approach 1. For type A and type B channels, we then show that a

sequence of these policies can achieve the same rate of convergence as the bounds given

in Corollaries 1 and 2. It follows that these bound are tight and that these simple policies

achieve the optimal convergence rate. We then consider a class of “bounded rate” policies

which also exhibit optimal performance for type A channels, but not for type B channels.

Finally, we consider two other sub-optimal policies which do not depend on the buffer
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size.

A. Channel Threshold Policies

The first type of policies we consider arechannel thresholdpolicies in which the

transmitter only transmits when the channel gain is greater than a given threshold; when

this occurs the transmitter empties the buffer. More precisely, we define a policyµk :

H× S → R+ to be a channel threshold policy with threshold,hk ≥ 0, if

µhk
(h, s) =

s, if h > hk,

0, if h ≤ hk.

For a given channel threshold policyµk, let qk = Pr(h ≤ hk) denote the probability that

the channel gain is below the threshold. Also, let

Σn = EAn

(
S

(
1

N

n∑
i=1

Ai

))
,

whereAn = (A1, . . . , An) denotes a sequence ofn i.i.d. random variables, each with

distribution FA(a). For n = 1, 2, . . . , Σn represents the the expected received SNR

required to transmit all the data that arrives duringn time-slots. The average power

and delay under such as policy is bounded in the following Proposition, whose proof is

given in Appendix IV.

Proposition 2: Let µk be a channel threshold policy with thresholdhk, then

D̄µk − 1 =
qk

1− qk
,

and for a regular SNR function,

P̄ µk ≤ σ2G(hk)

(
∞∑

n=1

qn−1
k (1− qk)Σn

)
,

with equality if the right-hand side is finite.

We define adecreasing sequenceof channel threshold policies{µk|k = 1, 2, . . .}

to be a sequence where the associated thresholdshk form a decreasing sequence with
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limk→∞ hk = 0. Clearly, ask increases, the average delay will decrease withD̄µk → 1

as k → ∞. Next, we characterize the rate at which this converges as a function of the

average power for a type A and B channel. For this we make one additional assumption

on the SNR functionS.

Definition 4: A regular SNR functionS(r) hasexponentially bounded growthif there

exists non-negative constantsM andκ such that for allr ≥ 0, S(r) ≤Mκr.

For example, whenS(r) is given by (3), it satisfies this definition withM = 1 and

κ = 2. For such a SNR function, then for alln = 1, 2, . . . , we have

Σn ≤Mκnamax/N ≡Mκ̃n. (12)

Corollary 3: For a type A channel, if the SNR function has exponentially bounded

growth, then for any decreasing sequence of channel threshold policies{µk}, asK →∞,

P̄ µk →∞ and D̄µk − 1 = O
(
exp(−αP̄ µk)

)
, for anyα < (σ2fH(0)EAS(A/N))

−1.

The proof is given in Appendix V. Recall that in Corollary 1, we showed thatD∗(P )−

1 = Ω (exp(−αP )) for any α > (σ2fH(0)EAS(A/N))−1. This corollary implies that a

sequence of decreasing channel threshold policies are nearly order optimal in the sense

that we can find policies whose exponentsα are arbitrarily close to the bound in Corollary

1. If instead, we consider the power/delay trade-off, then this corollary implies that for

any decreasing sequence of channel threshold policies,P̄ µk = O
(
ln
(

1
D̄µk−1

))
. In other

words, in terms of the power/delay trade-off, these policies are order optimal. Therefore

in the small delay regime, the optimal convergence rate ofP ∗(D) for type A channels

is Θ
(
ln
(

1
D−1

))
. Note that this is a much faster rate of change than the1

D2 behavior in

the large delay regime.

For type B channels we have:

Corollary 4: For a type B channel with parameterγ > 0, if the SNR function has

exponentially bounded growth, then for any decreasing sequence of channel threshold

policies{µk}, asK →∞, P̄ µk → P ∗(1) and D̄µk − 1 = O
((
P ∗(1)− P̄ µk

) γ+1
γ

)
.

The proof is given in Appendix VI. Comparing the result of this corollary to the bound

in Corollary 2, it follows that for a type B channel, decreasing sequences of channel
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threshold policies are order optimal. Therefore,D∗(P ) − 1 = Θ
(
(P ∗(1)− P )

γ+1
γ

)
as

P → P ∗(1) from below. Equivalently,P ∗(1)−P ∗(D) = Θ
(
(D − 1)

γ
γ+1

)
asD → 1. As

noted in Section III,γ+1
γ

is decreasing and approaches1 asγ increases. For example, these

results imply that in a Rayleigh fading channel as the number of independent diversity

branches are increased (leading to larger values ofγ), D∗(P ) will approach 1 at a slower

rate. For a large number of diversity branches, the rate will be approximately linear in

P ∗(1)− P . Of course,P ∗(1) also decreases with additional diversity branches.

B. Policies with bounded transmission rates

Under a channel threshold policy, since the transmitter empties the buffer whenever the

channel gain is greater than the threshold, the required transmission rate in a time-slot

can be arbitrarily large. In this section, we look at a sequence of policies with bounded

transmission rates. Such a policy may be of interest in a system with a limit on the peak

transmission rate; for example, such limits may be due constraints on the available coding

and modulation schemes. Next, we considerbounded rate channel threshold policies

where the maximum available transmission rate is limited to(amax + δ)/N for some

small valueδ > 0. In such a policy, the transmitter once again only transmits when the

channel gain is larger than a thresholdhk. However, given that the channel is greater

than this threshold, these policies setUn = An + δ, i.e. they transmit at mostamax + δ

bits, resulting in the desired maximum transmission rate. We denote such a policy by

φk(h, a), i.e.

φk(h, a) =

a+ δ, if h > hk,

0, if h ≤ hk.

Note that these policies do not base the transmission decision on onlyHn andSn, but can

be viewed as using the past history ofSn andUn. As noted in Section II, we permit such

a dependence though it is not needed for an optimal policy. Clearly, ifsn/N < An + δ

then there is not enough information in the buffer to transmit. In this case we can assume
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the transmitter sends extra “dummy” bits. This is clearly a poor choice from the view of

saving power, but is sufficient for our purposes.

As in Section IV-A, we again consider a decreasing sequence of policies{φk|k =

1, 2, . . .}, where the thresholdshk form a decreasing sequence withlimk→∞ hk = 0. We

first show that for a type A channel, such a sequence is also order optimal. In other words,

for type A channels, having a bounded transmission rate, does not effect the achievable

rate thatD∗(P ) converges to 1. However, for type B channels, such a sequence cannot

achieve the optimal convergence rate becauseP φk will not converge toP ∗(1) ask →∞.

This illustrates a basic difference between channels with positive and zero delay-limited

capacity.

For these results, we will use the following lemma which gives upper and lower bounds

on the average buffer delay under any policy for whichUn − An is an i.i.d. sequence.

This is the clearly the case with a bounded rate channel threshold policy, sinceUn−An

depends only onHn at each timen.

Lemma 3:For any policy where∆n = Un − An is an i.i.d. sequence, the average

buffer occupancy is bounded by

E{([−∆]+)2}
2E(∆)

≤ ES − Ā ≤ σ2
∆

2(E∆)
,

where[−∆]+ = max(−∆, 0) andσ2
∆ is variance of∆n.

Let Zn = Sn − An, and ∆n = Un − An. The queue dynamics in (2) can then be

rewritten as

Zn+1 = (Zn −∆n)+,

where by assumption{∆n} is an i.i.d. sequence. Therefore{Zn} is a Lindley process as

is the delay in a continuous-time GI/G/1 queue. The bounds in Lemma 3 are essentially

the same as Kingman’s upper and lower bounds on the average delay for such a GI/G/1

system [21].

Using this lemma, we have the following result for a type A channel. Note that here

we do not require the SNR function to be exponentially bounded.
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Proposition 3: For a type A channel, let{φk} be a decreasing sequence of bounded rate

channel threshold policies. Then ask →∞, P̄ φk →∞, andD̄φk−1 = O
(
exp(−αP̄ φk)

)
,

for anyα < (σ2fH(0)EA{S(A/N)})−1
.

The proof is given in Appendix VII. This implies that for type A channels, bounded

rate channel threshold policies can achieve the same order of convergence as a channel

threshold policy, which we have seen is essentially order optimal.

Next, we define afixed-rate, channel threshold policỹφk(h) to be a policy that transmits

at a fixed ratẽa/N , whenever the channel gain is greater thanhk, and sends nothing oth-

erwise. This differs from the previous bounded rate policies in that here the transmission

rate does not depend onAn. The following corollary of Proposition 3 gives a bound on

the rate of convergence for such policies, whenã > amax

Corollary 5: For a type A channel, let{φ̃k} be a decreasing sequence of fixed-rate,

channel threshold policies with̃a > amax. As k → ∞, P̄ φ̃k → ∞ and D̄φ̃k − 1 =

O(exp(−αP̄ φ̃k)) for anyα < (σ2fH(0)S(ã/N))−1.

The proof is given in Appendix VIII. In this corollary the constraint on the parameter

α will be smaller than in Proposition 3, unless the arrival process is constant (i.e.An = Ā

for all n.) Thus in general this bound does not imply than these policies are order optimal

in terms of the delay/power trade-off. However, in terms of the power/delay trade-off, we

can again ignore theα parameter so that these policies are order optimal in this sense.

Notice that these policies do not depend on the buffer occupancy at all; this illustrates

another significant difference between the small delay and large delay regimes; in the

large delay regime some buffer dependence is required for any order optimal policy [15].

Next we turn to type B channels. Notice that for a type B channel or any other channel

with a positive delay-limited capacity, a decreasing sequence of{φk} of bounded rate

channel threshold policies, with a fixed parameterδ > 0, will satisfy

lim
k→∞

P̄ φk = EA,HP (H,A+ δ) > P ∗(1).

Therefore any such sequence is clearly not order optimal in the small delay regime. The

problem here is that in the small delay limit the power wasted on transmitting extra
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“dummy” bits becomes significant for type B channels, while we could ignore this in

type A channels.

A better approach for such channels is ask increases to reduce both the channel

thresholdhk as well as the parameterδ = δk, with limk→∞ δk = 0. In this way as

k → ∞, P̄ φk → P ∗(1). However, as the following proposition states, such a sequence

of policies still do not achieve the optimal convergence rate for type B channels. Here,

for simplicity, we restrict ourselves to the case whereS(r) is given by (3).

Proposition 4: For a type B channel with parameterγ > 0 andS(r) given by (3), let

φk be a decreasing sequence of bounded rate channel threshold policies with decreasing

parametersδk, whereδk → 0. If as k →∞, P̄ φk → P ∗(1) from below, thenD̄φk − 1 =

Ω
((
P ∗(1)− P̄ φk

) 1
γ

)
.

The proof is given in Appendix IX. Note that sinceγ > 0, 1
γ

will be strictly less than

the optimal exponent ofγ+1
γ

given by Corollary 2, and so any decreasing sequence of

bounded rate channel threshold policies will not be order optimal for type B channels.

This illustrates a basic difference between type A and type B channels and suggests that

there is a larger class of order optimal policies for type A channels.

C. Sub-optimal policies

In this section, we consider two simple policies and show that they have suboptimal

convergence rates for type A channels (these policies are also clearly sub-optimal for

type B channels as they will not even converge toP ∗(1)). Throughout this section, we

will only consider the case whereS(r) is given by (3).

First, we considerfixed powerpolicies which do not depend on the buffer state. By

this we mean a policy in which the transmitter uses a fixed power,P̄k in each slot and

so transmitsu bits, whereP (h, u) = P̄k. Once again, if there are fewer thanu bits

available, we assume that the transmitter sends extra dummy bits. We denote such a

policy by νk(h), so that for allh ∈ H,

νk(h) = N log

(
1 +

hP̄k

σ2

)
, (13)
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where we have used thatS(r) is given by (3). Using such a policy, the average power

is clearly equal toP̄k.

Consider a sequence of fixed power policies,{νk}, where ask increases,̄Pk increases,

with limk→∞ P̄k = ∞. For such a sequence of policies it is also clear that the average

delay will decrease withk. The next proposition shows that in the limit, the average

delay approaches the minimum value of1; however, the rate of convergence is much

slower than the optimal rate ofexp(−αP ) for a type A channel.

Proposition 5: For a type A channel, let{νk}, be a sequence of fixed power poli-

cies with limk→∞ P̄k = ∞. As k → ∞, D̄νk − 1 = O
(
(log P̄k)

−1
)

and D̄νk − 1 =

Ω
(
(P̄k log P̄k)

−1
)
.

The proof is given in Appendix X. In this proof we again use Lemma 3 to upper and

lower bound the average delay under a fixed power policy. Notice that the upper bound of

(P̄k log P̄k)
−1 is much slower than the optimal convergence rate ofexp(−αP ) obtained

by a channel threshold policy, i.e. fixed power policies are not order optimal in the small

delay regime.

The second class of sub-optimal policies we consider are a sequence of “fixed water-

filling” policies. By this we mean policies that use a water-filling power (and rate)

allocation, once again independent of the buffer state. Letωk(h) denote such a policy,

where

ωk(h) =

0, if h ≤ σ2

`k
,

N log
(

h
σ2 `k

)
, otherwise.

Here `k denote the “water-level” used by the policy; this is chosen to satisfy a given

average power constraint,̄P ωk . To maximize throughput, for a backlogged system, it is

well-known that this is the optimal power allocation [22]. Also in the large delay regime,

the order optimal buffer threshold policies in [15] are based on a water-filling power al-

location. However, as stated in the following proposition, a water-filling power allocation

with no buffer dependence is not optimal in the small delay regime. Furthermore, this
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type of policy can not achieve a convergence rate faster than(P logP )−1, which is the

same as the bound for a fixed power policy in Proposition 5.

Proposition 6: For a type A channel, let{ωk} be a sequence of fixed water-filling

policies withlimk→∞ P̄ ωk = ∞. As k →∞, D̄ωk −1 = O
(
(log P̄ ωk)−1

)
, andD̄ωk −1 =

Ω
(
(P̄ ωk log P̄ ωk)−1

)
.

A sketch of the proof is given in Appendix XI.

V. CONCLUSIONS

In this paper we have analyzed the optimal power/delay trade-off for a single user

fading channel in the regime of small delays and large power. In this regime, the optimal

trade-off was shown to strongly depend on the behavior of the fading distribution near

zero. We focused on two broad classes of fading channels. For “type A” channels where

the fading density is strictly positive at zero, the average delay was shown to decrease at

a rate ofΘ(e−αP ) as the average power increases, whereα is a parameter that depends

on the arrival statistics and the fading density at zero. For “type B” channels, where the

fading density approaches zero likeΘ(hγ), the average delay was shown to decrease at

a rateΘ((P ∗(1)− P )
γ+1

γ ) as the average power approachesP ∗(1), the minimum power

required to achieve the minimum delay. In both cases, a simple channel threshold policy

was shown to be order optimal. For type A channels we also showed that a “bounded rate”

policy is also essentially order optimal; however, such policies are not optimal for type

B channels. Finally, we showed that a “fixed power” policy and a “fixed water-filling”

policy are not order optimal for either channel.

Here we have focused on a single user communicating over a memoryless fading

channel with only a long-term average power constraint. Potential directions for future

work include relaxing these modeling assumptions, for example considering multi-user

systems or channels with memory. Another possible direction is to consider models with

imperfect channel knowledge, in which case outages may occur requiring data to be

retransmitted.
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APPENDIX I

Proof of Lemma 1:We give a proof for the lower bound; the upper bound can be

derived in the same manner. Forh < ht, we have

G(h) ≥
∫ ht

h

1

h
M1 dh+

∫ ∞

ht

1

h
fH(h) dh

≥M1(ln(ht)− ln(h)) +

∫ ∞

ht

1

h
fH(h) dh

= M1 ln

(
1

h

)
+M2,

where,

M2 = M1 ln(ht) +

∫ ∞

ht

1

h
fH(h) dh

≤M1 ln(ht) +

∫ ∞

ht

1

ht

fH(h) dh

≤M1 ln(ht) +
1

ht

.

Here we used that forh ≥ ht, 1
h
≤ 1

ht
. From this it follows that|M2| < ∞. Also, from

the continuity offH(h), it follows that forht small enough,M1 must be greater than 0.

�

APPENDIX II

Proof of Corollary 1:From Lemma 1, for a type A channel,FH(h) = Θ(h) ash→ 0.

Using this in the bound from Proposition 1, we have

D∗(P )− 1 = Ω

(
G−1

(
P

σ2EA(S(A/N))

))
.

To complete the proof we will bound the rate at whichG−1(x) approaches zero asx→∞

for a type A channel. Leth = G−1(x), so thatx = G(h). Pick some constantht > 0

such thatM1 > 0 in Lemma 2. Asx increases,h decreases to zero. Thus there exists

somex′, such that for allx > x′, h < ht. And so, from Lemma 2, for allx > x′,

x = G(h) ≥M1 ln

(
1

h

)
+M2.
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Equivalently, forx > x′,

h ≥ exp
(
− x

M1
+ M2

M1

)
.

This implies thatG−1(x) = Ω
(
e−x/M1

)
as x → ∞. Combining this with the above

we have that asP → ∞, D∗(P ) − 1 = Ω
(
e−αP

)
, whereα = (M1σ

2EA(S(A/N)))
−1.

Finally, we note that in the above bound,M1 = inf{fH(h)|h ≤ ht} ≤ fH(0) and can be

made arbitrarily close to this value by choosinght small enough. This gives the desired

lower bound onα. Notice that if fH(h) is increasing ath = 0, then we can choose

α = (σ2fH(0)EA(S(A/N)))
−1; otherwise,α can be made arbitrarily close to this value,

but not equal to it. �

APPENDIX III

Proof of Corollary 2:This proof follows a similar argument as in Corollary 1. In this

case, since the channel is of type A, then from Lemma 1, we have thatFH(h) = Θ (hγ+1).

Therefore, combining this with Proposition 1 gives us,

D∗(P )− 1 = Ω

((
G−1

(
P

σ2EA(S(A/N))

))γ+1
)
. (14)

Let h = G−1(x), so thatx = G(h). Define,Ḡ(h) = G(0)−G(h), so that

Ḡ(h) =

∫ h

0

1

h̃
fH(h̃) dh̃,

and note that for a type B channel this integral will be finite. By assumption,fH(h) =

Θ(hγ) ash→ 0. From this it follows that,Ḡ(h) = Θ(hγ) ash→ 0. Therefore,

G−1(x) = Θ
(
(G(0)− x)

1
γ

)
,

asx→ G(0). Combining this with (14) yields

D∗(P )− 1 = Ω

((
G(0)− P

σ2EA(S(A/N))

) γ+1
γ

)
. (15)

Finally, using thatP ∗(1) = G(0)σ2EA(S(A/N)), we have

G(0)− P

σ2EA(S(A/N))
=

(
P ∗(1)− P

P ∗(1)

)
G(0).

Substituting this into (15), the desired bound follows. �
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APPENDIX IV

Proof of Proposition 2:Consider a given channel threshold policyµk. Under this

policy, each time-slot can be classified as either a feasible time-slot (ifH > hk) or a

non-feasible time-slot (ifH ≤ hk).4 Let Tm denote the number of time-slots between

the (m − 1)th andmth feasible slot, i.e. if the(m − 1)th feasible time-slot occurred at

time n, then themth feasible time-slot is at timen + Tm. Let for n = 1, 2, . . . , let Mn

denote the number of feasible time-slots that have occurred up to and including timen.

Then {Mn} is a renewal process and{Tm} is the sequence of inter-renewal times. For

a channel threshold policy the inter-renewal times will be geometrically distributed with

E(Tn) = 1
1−qk

, which is finite for all qk > 0. We next calculate the average delay and

average power for such a policy using renewal-reward theory [23].

To calculate the average delay, define a rewardRm to be the sum of the buffer

occupancy between the(m−1)th andmth renewals, i.e. if the(m−1)th renewal occurred

at timen, then

Rm =
n+Tm∑
l=n+1

Sl

= (Tm)An+1 + (Tm − 1)An+2 + · · ·An+Tm .

From renewal-reward theory it follows that the average buffer occupancy under policy

µk is given byS̄µk = ERm

ETm
, where

ERk = ETm(EATm (Tm(A1) + +(Tm − 1)A2 + · · ·ATm|Tm)

= ETm

(
Ā
2
(Tm)(Tm + 1)

)
=

Ā

(1− qk)2
.

Therefore,S̄µk = Ā
(1−qk)

and so by Little’s law,D̄µk = 1
1−qk

or equivalentlyD̄µk − 1 =

qk

1−qk
, as desired.

4Note a slot may be feasible and still result in no transmissions if the queue is empty.
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Next we calculate the average power. First note that if
∑∞

n=1 q
n−1
k (1 − qk)Σn = ∞,

the desired bound is trivially true. Therefore, we assume that
∑∞

n=1 q
n−1
k (1− qk)Σn <∞

in the following. In this case, we show that the given bound is met with equality. Now

define a rewardPm to be the power used at the end of themth renewal period, so that

P̄ µk = EPm

ETm
. Using that the arrival process and channel gain are independent we have

EPm = ETm(E(Pm|Tm))

= ETm

(
EH,ATm

(
P (H,A1 + · · ·+ ATm)

∣∣H > hk, Tm

))
= ETm

(
EH,ATm

(
σ2

H
S

(
1

N
A1 + · · ·+ ATm

) ∣∣∣∣H > hk, Tm

))
= σ2G(hk)

1− qk
ETm(ΣTm)

= σ2G(hk)
∞∑

n=1

qn−1
k Σn.

By assumption this is finite, so we can apply the renewal-reward theorem. Dividing by

ETm = 1
1−qk

the desired expression follows. �

APPENDIX V

Proof of Corollary 3:Let {µk} be a decreasing sequence of channel threshold policies,

and letS(r) be exponentially bounded byMκr. From Proposition 2, the average delay

for each policyµk satisfiesD̄µk − 1 = FH(hk)
1−qk

, and from lemma 1, for a type A channel,

FH(hk) = Θ(hK) ashk → 0. Therefore, there exists constantsMd > 0 andK1 > 0 such

that for all k > K1,

D̄µk − 1 ≤Mdhk. (16)

From Proposition 2, the average power of policyµk can be bounded by

P̄ µk ≤ σ2G(hk)

(
∞∑

n=1

qn−1
k (1− qk)Σn

)
. (17)



29

The final term in this bound satisfies
∞∑

n=1

qn−1
k (1− qk)Σn = (1− qk)

(
Σ1 +

1

qk

∞∑
n=2

qn
k Σn

)

≤ (1− qk)

(
Σ1 +

M

qk

∞∑
n=2

(qkκ̃)
n

)
,

whereκ̃ = κamax/N . Here we have used the bound in (12) for eachΣn, n ≥ 2. As k →∞,

it can be shown that the right-hand side of this bound converges toΣ1. It follows that

for any Σ̃ > Σ1 = EAS(A/N), there exists aK2 such that for allk > K2,
∞∑

n=1

qn−1
k (1− qk)Σn ≤ Σ̃.

Also, from Lemma 2, for allk > K2,

G(hk) ≤ M̃1 ln

(
1

hk

)
+ M̃2,

whereM̃1 = sup{fH(h)|h ≤ hk} ≥ fH(0). Using these in (17), we have that fork > K2,

P̄ µk ≤ σ2S̃
(
M̃1 ln

(
1
hk

)
+ M̃2

)
,

or equivalently,

hk ≤Mh exp
(
−αP̄ µk

)
,

whereMh = exp
(

M̃2

M̃1

)
andα = (σ2M̃1S̃1)

−1. Combining this with (16), we have that

for k ≥ max{K1, K2},

D̄µk − 1 ≤MdMh exp
(
−αP̄ µk

)
.

Hence,D̄µk − 1 = O
(
exp

(
−αP̄ µk

))
, whereα < (σ2fH(0)EAS(A/N))−1 and can be

made arbitrarily close by choosingK2 large enough. �
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APPENDIX VI

Proof of Corollary 4:Let {µk} be a decreasing sequence of channel threshold policies,

and letS(r) be exponentially bounded byMκr. Once again, from Proposition 2 and

Lemma 1,D̄µk − 1 = FH(hk)
1−qk

= Θ(hγ+1
k ) as k → ∞. Therefore, there exists positive

constantsMd andK1 such that for allk > K1,

D̄µk − 1 ≤Mdh
γ+1
k . (18)

Also, using Proposition 2,

P ∗(1)− P̄ µk ≥ σ2Σ1G(0)− σ2G(hk)

(
∞∑

n=1

qn−1
k (1− qk)Σn

)

= σ2S1(G(0)−G(hk)) + qkσ
2Σ1G(hk)− σ2G(hk)

(
∞∑

n=2

qn−1
k (1− qk)Σn

)
.

As in the proof of Corollary 2, let̄G(h) = G(0)−G(h) so that

P ∗(1)− P̄ µk

Ḡ(hk)
≥ σ2Σ1 +

qkσ
2S1G(hk)

Ḡ(hk)
−
σ2G(hk)

(∑∞
n=2 q

n−1
k (1− qk)Σn

)
Ḡ(hk)

. (19)

As shown in the proof of Corollary 2, for a type B channelḠ(hk) = Θ(hγ
k) ashk → 0.

Using this and thatqk = Θ(hγ+1
k ), it follows that ask →∞, the right-hand side of (19)

converges toσ2Σ1. Here, as in the proof of Corollary 3, we have used that the SNR

function is exponentially bounded to bound the last term in (19). Therefore, there exists

positive constants,Mp andK2 such that for allk > K2, P ∗(1) − P̄ µk ≥ M2(hk)
γ, or

equivalently,

hk ≤
(
MpP

∗(1)− P̄ µk
) 1

γ .

Combining this with (18), we have that for allk ≥ max{K1, K2},

D̄µk − 1 ≤MdM
1
γ
p

(
P ∗(1)− P̄ µk

) γ+1
γ ,

which implies thatD̄µk − 1 = O
((
P ∗(1)− P̄ µk

) γ+1
γ

)
, as desired. �
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APPENDIX VII

Proof of Proposition 3:Let {φk} be a decreasing sequence of bounded rate channel

threshold policies with a fixed parameterδ > 0.

The average power of such a policy is given by

P̄ φk = EA

{
EH

(
σ2 1

H
S

(
A+ δ

N

)∣∣∣∣H > hk, A

)}
= σ2G(hk)

1− qk
EA

{
S

(
A+ δ

N

)}
,

whereqk = Pr(H ≤ hk). By a similar argument as in the proof of Proposition 1, it can

be shown that as̄P φk increases,

hk = O
(
e−αP̄ φk

)
, (20)

whereα =
(
σ2K̃1EA

{
S
(

A+δ
N

)})−1

andK̃1 is the constant from Lemma 2. This satisfies

α < (σ2fH(0)EA {S (A/N)})−1 and can be made arbitrarily close by choosingδ small

enough.

Next we bound the average delay using Lemma 3. Applying Little’s law to the upper

bound from this lemma, we have

D̄φk − 1 ≤ σ2
∆

2(E∆)Ā
. (21)

Evaluating (21) for policyφk yields,

D̄φk − 1 ≤ (1− qk)qk(δ
2 + 2δĀ) + qkĀ2 − q2

k(Ā)2

2((1− qk)δ − (qk)Ā)(Ā)
.

From this it can be seen that̄Dφk − 1 = O(qk) as qk → 0. Also, from Lemma 1,

qk = Θ(hk). Hence, combining these with (20), we haveDφk − 1 = O
(
exp(−αP̄ φk)

)
.

�

APPENDIX VIII

Proof of Corollary 5:Let {φ̃k} be a decreasing sequence of fixed rate, channel threshold

policies with parameter̃a > amax.
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Following the same argument as in the proof of Proposition 3, we have

P̄ φ̃k = σ2G(hk)

1− qk
S (ã/N) ,

and so,

hk = O
(
e−αP̄ φ̃k

)
, (22)

whereα < (σ2fH(0)S(ã/N))
−1 and can be made arbitrarily close.

To bound the average delay under policyφ̃k, let φk be a related bounded rate channel

threshold policy with the same thresholdhk and with parameterδ = ã− amax. Consider

a fixed sample path of arrivals and channel states{an, hh}. Then for alln, φ̃k(hn) ≥

φk(hn, an). From this it follows that the buffer occupancy under the fixed rate policy is

always less than or equal to the buffer occupancy under the related bounded rate policy.

Therefore, we have

D̄φ̃k − 1 ≤ D̄φk − 1 = O(qk),

and soD̄φ̃k − 1 = O(exp(−αP̄ φ̃k)) as desired. �

APPENDIX IX

Proof of Proposition 4:Let {φk} be a decreasing sequence of bounded rate channel

threshold policies with decreasing parametersδk, and limk→∞ δk = 0. Then,

P ∗(1)− P̄ φk = σ2EH

(
1

H

)
EAS(A/N)− σ2G(hk)EAS

(
A+ δk
N

)
= σ2Ḡ(hk)EAS

(
A+ δk
N

)
− σ2EH

(
1

H

)[
EAS

(
A+ δk
N

)
− EAS (AN)

]
= σ2Ḡ(hk)EAS

(
A+ δk
N

)
− σ2E

(
1

H

)
EAS(A/N)

(
2δk/N − 1

)
.

In the last step we have used that by assumptionS(r) = 2r − 1.

From this it follows that a necessary condition forP̄ φk to approachP ∗(1) from below

is that ask →∞, (
2δk/N − 1

)
= O(Ḡ(hk)). (23)
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In other wordsδk must decrease fast enough, or the resulting sequence of policies will

require too much power. Note that
(
2δk/N − 1

)
= Θ(δk) as k → ∞, and for a type B

channel,Ḡ(hk) = Θ
(
(qk)

γ
γ+1

)
. Therefore, (23) is equivalent to

δk = O
(
(qk)

γ
γ+1

)
. (24)

For any sequence of policies, that satisfy (23), ask →∞,

P ∗(1)− P̄ φk = O
(
Ḡ(hk)

)
= O

(
Ḡ
(
F−1

H (qk)
))

= O
(
(qk)

γ
1+γ

)
,

where in the last step we used Lemma 1 for a type B channel. Equivalently,

qk = Ω
((
P ∗(1)− P̄ φk

) 1+γ
γ

)
. (25)

Next we lower bound the average buffer delay under such a policy. For this we use

the lower bound from Lemma 3 and Little’s law, which yields

D̄µk − 1 ≥ E(A2
n)qk

2
[
(1− qk)δk − qkĀ

]
Ā
.

If qk andδk satisfy (24), then it follows that ask →∞,

D̄µk − 1 = Ω
(
(qk)

1
γ+1

)
.

Finally, combining this with (25), we have

D̄µk − 1 = Ω
((
P ∗(1)− P̄ φk

) 1
γ

)
,

as desired. �

APPENDIX X

Proof of Proposition 5:First we prove the upper bound̄Dνk−1 = O
(

1
log P̄k

)
. Under a

fixed power policy,Un is a function only ofHn. Hence,{Un−An} is an i.i.d. sequence
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and so Lemma 3 applies. Using the upper bound from this lemma, along with Little’s

law gives us that

D̄νk − 1 ≤
σ2

A + σ2
νk(H)

2Ā
(
EH{νk(H)} − Ā

) ,
whereσ2

A andσ2
νk(H) are respectively the variances ofA andνk(H). Here we have used

thatUn andAn are independent under a fixed power policy.

Under a fixed power policy, using (13), the expected transmission rate is given by

EH{νk(H)} = EH

{
N log

(
1 +

HP̄k

σ2

)}
,

which is increasing withP̄k at a rate ofΘ(log(P̄k)).

Next we consider the variance,σ2
νk(H). It can be shown that as̄Pk increases, the variance

is increasing. However, asymptotically the variance is bounded, as stated in the following

lemma.

Lemma 4:Under any fixed power policy,νk,

σ2
νk(H) ≤

N

2
σ2

log(H),

whereσ2
log(H) is the variance of the random variablelog(H).

To see this note that

σ2
νk(H) =

1

2
EH,H̃

(
νk(H)− νk(H̃)

)
,

where H̃ is another random variable, independent ofH and identically distributed.

Substituting the expression forνk(h) from (13) yields

σ2
νk(H) =

1

2
EH,H̃

{
N log

(
1 + HP̄k

σ2

1 + H̃P̄k

σ2

)}
.

As P̄k →∞ this converges to

N

2
EH,H̃

{
log

(
H

H̃

)}
= N

2
σ2

log(H),

as desired. Also, it can be shown that for a type A channelσ2
log(H) <∞.
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Continuing with the proof of Proposition 5, it follows that

D̄νk − 1 ≤ Mf

EH {νk(H)} − Ā
,

whereMf = 1
2Ā

(σ2
a + N

2
σ2

log(H)) is a constant depending on the arrival and channel

statistics but not onk.

Finally, sinceEH {νk(H)} increases at rateΘ(log P̄k), the desired upper bound of

O
(
(log P̄k)

−1
)

follows.

Next we consider the lower bound for the convergence rate of a fixed power policy.

This follows from using the lower bound from Lemma 3. Using this lemma, the average

delay under the policyνk is lower bounded by

Dνk − 1 ≥ EH,A {((A− νk(H))+)2}
2Ā
(
EH{νk(H)} − Ā

) .

Once again the denominator will increase at rateΘ(log(P̄k)). To bound the numerator,

we use Markov’s inequality which states that for anyε > 0,

EH,A

{
((A− νk(H))+)2

}
≥ Pr(A− νk(H) > ε)ε2.

Using (13),

Pr(A− νk(H) ≥ ε) = Pr

(
H ≤ σ2(2(A−ε)/N − 1)

P̄k

)
=

∫ amax

amin

Pr

(
H ≤ σ2(2(a−ε)/N − 1)

P̄k

)
dFA(a).

Choosing someε < amax/2, this quantity can be bounded by

Pr(A− νk(H) ≥ ε) ≥
∫ amax

2ε

Pr

(
H ≤ σ2(2(a−ε)/N − 1)

P̄k

)
dFA(a)

≥ Pr

(
H ≤ σ2(2ε/N − 1)

P̄k

)
Pr(A ≥ 2ε)

= FH

(
σ2(2ε/N − 1)

P̄k

)
Pr(A ≥ 2ε).

From Lemma 1, it follows that for a type A channel,

Pr(A− νk(H) ≥ ε) = Θ

(
1

P̄k

)
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ask → ∞. Finally, combining these results we have thatDµk − 1 = Ω
(
(P̄k log P̄k)

−1
)

as desired. �

APPENDIX XI

Proof (sketch) of Proposition 6:This proof follows a similar argument as the proof

of Proposition 5, and so we only give a sketch of the main argument. Let{ωk} be a

sequence of fixed water-filing policies, such that ask →∞, the water-level̀ k (and hence

the average power) increases to infinity. First, using similar arguments as in the proof

of Lemma 2, it can be shown that under a fixed water-filling policy, the average power

P̄ ωk , increases likeΘ(`k) ask →∞.

As in the proof of Proposition 5, we use the bounds from Lemma 3 to bound the

average power. In this case, it can be shown that the average transmission rate,EH(ωk(H))

increases likeΘ(`k) ask →∞. As in the proof of Proposition 5, it can again be shown

that the the variance,σ2
ωk(H) is bounded. Finally to derive the lower bound, we again

boundEA,H((A− ωk(H))+)2 using Markov’s inequality and then show that forε small

enoughPr(A− ωk(H) ≥ ε) = Θ
(

1
`k

)
. Combining these the desired bounds follow.�
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