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Abstract

Energy is a constrained resource in mobile wireless networks. In such networks, com-
munication takes place over fading channels. By varying the transmission rate and
power based on the current fading level, a user in a wireless network can more effi-
ciently utilize the available energy. For a given average transmission rate, information
theoretic arguments provide the optimal power allocation. However, such an approach
can lead to long delays or buffer overflows. These delays can be reduced but at the
expense of higher transmission power. The trade-offs between the required power and
various notions of delay are analyzed in this thesis.

We consider a user communicating over a fading channel. Arriving data for this
user is stored in buffer until it is transmitted. We develop several buffer control prob-
lems which fit into a common mathematical framework. In each of these problems,
the goal is to both minimize the average transmission power as well as the average
“buffer cost”. In two specific examples, this buffer cost corresponds to the probability
of buffer overflow or the average buffer delay. These buffer control problems are an-
alyzed using dynamic programming techniques. Several structural characteristics of
optimal policies are given. The relationship of this model to the delay-limited capacity
and outage capacity of fading channels is discussed. We then analyze the asymptotic
performance in two cases – the probability of buffer overflow case and the average
delay case. In both cases, we bound the asymptotic performance and provide simple
policies which are asymptotically optimal or nearly optimal. Finally we extend this
analysis to a model with multiple users communicating over a multiple-access channel
to a common receiver. The single user results for the probability of buffer overflow
case are generalized to this multiple user situation. Extensions to other multi-user
models are also discussed.

Thesis Supervisor: Robert G. Gallager
Title: Professor of Electrical Engineering
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Notation

We use capital letters to denote random variables and small letters to denote sample

values. For a random variable, X, we denote its probability measure by πX . Thus, for

example, if X is discrete, we have πX(x) = Pr(X = x). If it is clear which probability

measure we are using, we will drop the subscript. The set of sample values of a

random variable X will be denoted by X .

The following is some notation which is often used:

β weighting factor

Γ(θ) parallel channel with gains corresponding to θ

Δμ(s) average drift in buffer state s using policy μ.

μ a control policy

θ a sequence of K channel states

An number of bits that arrived between time n − 1 and n

Ā average arrival rate in bits/block

b(s) buffer cost

b̄μ average buffer cost using policy μ

D̄μ average buffer delay under policy μ

Gn channel state at time n

K number of channel blocks per codeword

N number of channel uses per fading block

L buffer size

P (g, u) power to transmit u bits when channel gain is g

Pa(Ā) minimum average power to transmit ĀW/N bps.

P ∗(B) optimum power/delay curve.

P̄ μ average power using policy μ

15
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pμ
of steady state probability of buffer overflow under policy μ

Qg,g′ channel transition probability

Sn buffer state at time n

Un number of bits transmitted at time n

W bandwidth of continuous time channel



CHAPTER 1

Introduction

In this thesis we consider several resource allocation problems which arise in mo-

bile wireless communication networks. Examples of such networks include cellular

networks, wireless LAN’s, satellite networks, and packet-radio networks.1 Mobile

wireless networks are primarily deployed as access networks; that is, users commu-

nicate over the wireless network to gain access to a high speed back-bone network

which is typically wired. However there are cases, such as packet-radio networks,

in which an entire network may be wireless. The obvious advantage of a wireless

network is the ability to provide users with “anywhere, anytime access”. Addition-

ally, the infrastructure cost for building out a wireless network may be less than for

a wired alternative, particularly when considering “last mile” technologies. In some

situations, such as a military setting, there are clear reasons for not wanting to rely

on a fixed communication infrastructure. Finnaly, improvements in the capability

and size of portable communication and computation devices are helping to make

wireless networks more attractive.

In any communication network, many fundamental problems involve the man-

agement and allocation of resources. In a wired network, the crucial resources are

the nominal data rates2 available on each link in the network. Techniques such as

1In the literature, packet-radio networks are referred to by many different names including ad
hoc networks, peer-to-peer networks, and all-wireless networks.

2In most of the networking literature, what we refer to as nominal data rate is called bandwidth;
we reserve bandwidth for referring to the amount of frequency spectrum available for communication.

17



18 CHAPTER 1. INTRODUCTION

flow control, routing, and admission control are all centered around allocating these

resources. In this work we focus on resource allocation problems which are unique

to wireless situations. These problems are motivated by two characteristics of mobile

wireless communication. The first characteristic is the wireless channel itself. The

wireless channel is a time-varying multi-path channel; furthermore this channel gen-

erally must be shared among multiple users. These issues will be discussed in greater

detail in the following chapters. The second characteristic is that users in a mobile

wireless network typically rely on a battery with a limited amount of energy. As

a consequence it can be desirable to adjust the transmission rate and/or power to

conserve energy. On a wired point-to-point link, there is little reason to adjust the

transmission rate and power in this way.3 Based on these characteristics, we argue

that in a wireless network the critical resource is the energy or power transmitted by

the users rather than the nominal data rates on each link. Due to fading and the

ability to vary a user’s transmission rate, the nominal data rate on a link in general

will not even be well defined.

The resource allocation problems we consider concern how to efficiently allocate

power in a wireless network. We approach this by considering the following question:

what is the minimum power required for the users in a wireless network to obtain

acceptable service? It is worth mentioning some of the benefits of reducing the required

power. Reducing the needed power translates directly into either longer battery life

or smaller batteries. Additionally, reducing the transmitted power can reduce the

interference between users; this often results in being able to accommodate more

users in the network. Finally, lower transmitted power can reduce the probability

that the user is detected or intercepted, which is of particular importance in military

networks.

In any wireless network, a variety of aspects influence the required power, includ-

ing the over-all network topology, routing within the network, the multiple-access

technique, the modulation and coding which are used, and the power required by the

3On a wired link there are typically power constraints such as those due to regulatory concerns.
Such constraints usually restrict the average power over short time periods, for example the time to
send a single codeword. In such cases there is no savings from the user’s perspective for using less
than the maximum average power per codeword.
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electronics within the handset. We will not consider all of these issues in this work.

In particular, we focus on “single hop” situations, and ignore higher layer issues such

as the network topology and routing. We also ignore issues related to the power

required by the electronics within the handsets. It should be emphasized that these

other issues are equally if not more important in reducing the required power. We can

not ignore the higher layer issues completely, for design choices at one layer influence

the other layers; i.e., there is no separation theorem for the network layers. The issues

which we do address involve both physical layer topics as well as some network issues

such as buffer control and multiple-access. Indeed the possible interaction between

these layers is at the heart of this work. A theme we want to emphasize is that in

wireless networks this region of intersection is larger and more interesting than in

traditional wire-line networks.

By single hop situations we mean a transmitter or a group of transmitters that

are communicating directly to a receiver or a group of receivers. Initially we consider

only a single transmitter transmitting to a single receiver over a fading channel.

This models a single “link” in a wireless network and ignores any issues involving

interference from other users. In other words, such a model focuses on the time

varying nature of the channel and avoids issues related to sharing the channel between

multiple users. This is appropriate if we assume that the other users are scheduled

at a higher layer in such a way that their interference is minimal. Even if this is not

the case, we can regard this as a simplified model. This link model is studied in the

first six chapters. Issues related to multiple users will be considered in Chapter 7.

As noted above, we want to minimize the average transmission power required

for a user to attain acceptable service. Two key issues that need to be clarified are

what is meant by “acceptable service” and whether other constraints are placed on

the transmitter. Suppose acceptable service means to provide a given average rate

with small probability of error and there are no other constraints on the transmitter.

Then, at the link level, this problem is equivalent to finding the capacity of the fading

channel. Such problems have received much attention in the information theory liter-

ature ([BPS98] is a recent comprehensive survey of this work). For most applications,

the above assumptions are not true; acceptable service entails more than simply an

average rate with small probability of error, and there are other constraints on the



20 CHAPTER 1. INTRODUCTION

transmitter. In particular, there are often constraints relating to the delay experi-

enced by data, such as an average delay constraint or a maximum delay constraint.

There may also be constraints that limit the number of channel uses allowed per

codeword. We refer to all of these considerations as “delay constraints”; these are

discussd in more detail in the next chapter.

In fading channels, such delay constraints can limit the usefulness of many of

the standard capacity results. By “useful”, we mean that capacity gives a good

indication of the rates that are practically achievable. For example, in an additive

white Gaussian noise channel (with no fading), one can often send at rates near

capacity with an acceptable error rate and a tolerable delay. To send at rates near

capacity in a fading channel requires enough delay to average over the channel fading;

this can be longer than the tolerable delay. In such a case, a user must either use

more power than indicated by capacity arguments or accept a higher probability of

error corresponding to those cases when the fading is severe. Thus for a given error

probability, there is a trade-off between the average power used and the acceptable

delay.

Some of these issues have been addressed in work on outage capacity [OSW94]

and delay-limited capacity [HT98]. Both these works consider the situation where one

desires to send every codeword at a constant rate and each codeword is limited by

a strict delay constraint. These ideas are examined more closely in Chapter 3. For

traffic such as data, the above assumptions may not be appropriate. For example,

it may be either desirable or required to use code words that are much shorter than

the delay constraint, or an average delay constraint may be more appropriate. Also,

with bursty traffic it may not be desirable to transmit every codeword at a constant

rate. The majority of this thesis focuses on these cases.

We illustrate the possibilities in the above situation by considering a model as

shown in Fig. 1-1. Here data arrives from some higher layer application and is placed

into a transmission buffer. Data is periodically removed from the buffer, encoded

and transmitted over a fading channel. After sufficient information is received, the

data is eventually decoded and sent to a peer application at the receiver. By using

more power, data can be removed from the buffer at a faster rate, thus reducing the

delay. Furthermore, suppose that the transmitter can adjust its rate based on the
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Channel State Information

Fading

Application

Decoder/

Higher LayerHigher Layer
Application

ReceiverTransmitter
Encoder/

Channel

Figure 1-1: System model.

buffer occupancy. For example, as the buffer occupancy increases, the transmitter can

transmit at a higher rate to ensure that the delay constraint is satisfied, but again at

the cost of more power. We will see that adjusting the transmission rate in this manner

is usually preferable to a fixed rate transmission. Often, the transmitter in a wireless

network has some knowledge about the channel’s fading level. This knowledge can

also be used in choosing the transmission rate and transmission power. Once again

it is usually advantageous to do this if possible. We will consider several variations

of this buffer control problem. Analysis of these models will provide us with some

understanding of trade-off between the required power and delay in such channels.

We will also gain insight into the optimal buffer control strategies in these situations.

1.1 Related Work

As we have already stated, the problem of communicating reliably over a fading

channel has received much attention in the information theoretic literature; we will

summarize some of this work in Chap. 3 for single user channels and in Chap. 7 for

multi-user channels. We point out some other related work below.

In wireless networks, most of the work on resource allocation has been in the

multi-user setting and centered around “power control” problems in a cellular net-
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work. These problems are largely motivated by CDMA systems such as IS-95, where

competing users are treated as noise. Power control is necessary in such systems to

avoid the “near-far” problem in which one user’s received power is much higher than

another’s [IS993]. The emphasis of this work is on providing each user with a desired

Signal to Interference Ratio (SIR) which is assumed to indicate the quality of service

desired by the user. Here the SIR is the ratio of the power transmitted by a given

user to the interference power - which includes the transmitted power of the other

users as well as the background noise. This problem has been addressed in a single

cell setting [NA883], [Mit93]; in a multi-cell setting, combined power control and base

station assignment has also been studied [Han95], [Yat95]. Power control has been

considered for TDMA or FDMA systems to reduce co-channel interference [BE64] or

inter-cell interference [Zan92]. Finally, power control has also been addressed in the

context of multi-user receivers [TH99], [VAT99]. Again this work assumes that each

user requires a constant transmission rate - this is reflected in the fixed SIR require-

ment. For the models we consider, a user’s rate and thus the required SIR is allowed

to vary depending on the user’s buffer state as well as the channel conditions.

For the single user case, in [CC99] a model similar to that in Fig. 1-1 was studied

with the assumption that the transmitter can vary the transmission rate and power,

with the restriction that the received Eb/N0 must be constant at all times. Here N0

is the power spectral density of the additive noise and Eb is energy per bit, which

is the received power divided by the bit rate. Thus the required transmission power

is linear in the transmission rate. The assumption of constant Eb/N0 is appropriate

for systems with low spectral efficiency, i.e., systems operating in the power-limited

regime. The authors consider minimizing the average power for a given average delay

constraint. A dynamic programming formulation of this problem similar to that in

Chap. 5 is given.

Buffer control problems or, more generally, the control of queuing systems have

been researched extensively in the stochastic dynamic control literature; [Ber95] and

[Sen99] contain discussions of such problems and extensive bibliographies. The prob-

lems we examine can be considered a generalization of a service rate controlled queu-

ing system (cf. [Ber95], Sect. 5.2). In such systems it is assumed that there is a cost

q(μ) for using a given service rate μ, where q is a continuous, increasing function.
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The difference between this and the problem we consider is that in our case, the cost

depends on both the service rate and the channel’s fading state, which has uncon-

trollable dynamics. The mathematical structure underlying the results in Chap. 6 is

closely related to the buffer control problem addressed in [Tse94]. This work considers

buffer control for variable rate lossy compression and will be discussed in more detail

in Chap. 6.

1.2 Organization of Thesis

The remainder of this thesis is organized as follows. In Chapter 2 we discuss single

user fading channels and develop the model that is used in Chapters 3-6. We also

discuss the type of delay constraints that can arise in a wireless network. In Chapter

3 we discuss some of the information theoretic results for fading channels. In partic-

ular we discuss the work on delay-limited capacity, capacity vs. outage, and average

capacity. This work is discussed in a slightly different context than elsewhere and

several extensions are included. We also demonstrate the limitations of using these

approaches. In particular, we argue that they do not provide an adequate answer for

the type of situation depicted in Fig. 1-1. In Chapter 4, we develop several models

for the buffer dynamics in Fig. 1-1. One of these models can be viewed as a general-

ization of the delay-limited capacity and capacity vs. outage framework discussed in

Chap. 3. Another is derived from Telatar’s model for multiple-access communication

in [TG95]. Using these models, we formulate several buffer control problems to illus-

trate the trade-offs between the average power needed and some “buffer cost” which

is related to the user’s delay constraints. We consider two primary examples of such

buffer costs; these correspond to probability of buffer overflow and average delay. In

Chapter 5, we consider this problem from a dynamic programming point of view. We

prove some structural characteristics of the optimal policies. We also look at this

problem as a multi-objective optimization problem and show that all of the Pareto

optimal policies of interest can be found by solving a dynamic programming problem.

In Chapter 6 we analyze asymptotic versions of these problems as the delay constraint

becomes relaxed. We do such an analysis for both the probability of overflow and

average delay cases. In such cases we can find the limiting power and bound the rate
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at which this limit is approached. We also show that a class of “simple policies” are

asymptotically nearly optimal. Finally, in Chapter 7, we discuss extending these ideas

to models with more than one user. We study a multiple-access situation in detail.

For the probability of overflow case, we show that the single user results generalize

directly. Extensions to other multi-user situations are also discussed.



CHAPTER 2

Fading Channels and Delay

Constraints

In Chapters 3-6 we consider a single user communicating over a fading channel subject

to various delay constraints. In this chapter we will give some background both

on fading channels and delay constraints. First we discuss some features of fading

channels, with an emphasis on the model we will use in the remainder of this thesis.

We focus on single-user channels; models of multiple user channels will be discussed

in Chap. 7. Since there are many treatments of fading channels available in the

literature, we will not give a detailed exposition of this material. We also discuss the

type of delay constraints that can arise in a wireless environment. Again our goal is

to motivate the models we use in this thesis.

2.1 Fading Channels

The transmitted signal in a wireless network usually reaches the receiver via multiple

paths and these paths change with time due to the mobility of the users and/or the

reflectors in the environment. The changing strength of each path and the changing

interference between these paths result in fading. In this section we discuss models

for single user fading channels. Comprehensive references on fading channels include

[Jak74], [Ste92] and [Ken69]. Treatments of fading channels similar to this section

25
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g( ,t)τ

Z(t)

X(t) Y(t)

Figure 2-1: Continuous time channel model.

include [Gal99] and [Med95]. As noted above we focus on single user channels. Also,

we restrict ourselves to models in which both the transmitter and receiver have a

single antenna.

A fading channel is typically modeled as a randomly time-varying linear filter. Let

g(τ, t) be the impulse response of a realization of this filter at baseband,1 where this

represents the response of the channel at time t to an input τ seconds earlier. Since

we are looking at a baseband model, g(τ, t) will be complex valued. Let X(t) be the

baseband representation of the channel input. We assume that X(t) is band-limited

to the bandwidth [−W/2,W/2]. Thus this model corresponds to a passband system

with a bandwidth of W Hz. For a given realization g(τ, t), the received signal Y (t),

also at baseband, is given by

Y (t) =

∫
X(t − τ)g(τ, t)dτ + Z(t), (2.1)

where Z(t) is the baseband additive noise process. This is illustrated in Fig. 2-

1. We assume that Z(t) is a complex, circularly symmetric white Gaussian noise

process with (double-sided) power spectral density N0. In other words, the real and

imaginary parts of Z(t) are independent and identically distributed white Gaussian

processes with zero mean and power spectral density N0/2.

Since g(τ, t) is time varying with t, the bandwidth of the output will be larger than

the bandwidth of the input. Specifically the bandwidth of the output (at baseband)

1Of course, the actual channel will be a passband channel around some carrier frequency fc, but
for our purposes we will only deal with the baseband equivalent model. For a discussion of the
relationship between the baseband and passband models we refer to [Gal94b] and [Med95].
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will be equal to W/2 + BD/2, where BD/2 is equal to the bandwidth of the Fourier

transform of g(τ, t) with respect to t. In a wireless channel BD is referred to as the

Doppler spread and is related to the difference between the maximum and minimum

Doppler shift on the received paths. The Doppler shift for a specific path is given

by fcv
c

where fc is the carrier frequency, v is the speed at which the path length is

changing and c is the speed of light. For current commercial wireless systems the

maximum Doppler spread is on the order of 100 Hz, which is much less than the

bandwidth of these systems. We assume that W is chosen large enough to account

for any Doppler spreading. Using the sampling theorem both X(t) and Y (t) can be

expressed in terms of the orthonormal basis {φn(t)|n ∈ Z}, where

φn(t) =
√

W
sin(π(Wt − n)]

π(Wt − n)
.

Thus we can represent X(t) and Y (t) by the complex random sequences {Xn} and

{Yn} where, for example Xn = 〈X(t), φn(t)〉. These can be interpreted as complex

sampled time process with sample rate W .

For a given realization of the channel, {Xn} and {Yn} are related by

Yn =
∑
m

Xn−mgm,n + Zn (2.2)

where

gm,n =

∫ ∞

−∞

∫ ∞

−∞
φm(t − τ)g(τ, t)φn(t) dt dτ.

and Zn = 〈Z(t), φn(t)〉 is a complex circularly symmetric Gaussian random variable

with zero mean and EZnZ
∗
n = N0. Equation (2.2) can be interpreted as a discrete

time tapped delay line model of the channel. Note {Zn} is a sequence of i.i.d. random

variables.

The multi-path delay spread of a fading channel is the difference in propagation

delay between the shortest and longest path to the receiver. This depends on a

number of factors including the surrounding environment and the antenna height and

location. In typical cellular systems the multi-path delay spread can range from for a

few μsec to over 20 μsec. In a packet radio network the delay spreads may be much
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smaller. Let L denote the multi-path delay spread of the channel and assume that

the time reference is set at the receiver as the time at which the shortest delayed path

is received.2 Then we can assume that gm,n is approximately 0 for all m < 0 and all

m > LW .3

Let gn = [g0,n, g1,n, . . . , g�LW �,n]T be the sequence of channel taps at time n, and

let Xn = [Xn, . . . Xn−�LW �]T . The channel model in (2.2) can then be rewritten as

Yn = gT
nXn + Zn. (2.3)

Over intervals of interest, the vector sequence {gn} is often modeled as a realization

of a stationary random process, Gn. There are many models for the statistics of both

this process and the corresponding continuous time process in the literature (e.g. see

[Jak74] or [Ste92]). The appropriateness of these models depends upon factors such

as the environment and the motion of the users. A particular broad class of models

we will consider are referred to as Markov or state-space models. In this case, we

assume that {Gn} is a Markov chain4 with state space G ⊂ C
�LW �+1. We assume

that this Markov chain is stationary and ergodic with steady-state distribution πG.

The process {Gn} is assumed to be independent of the additive noise process {Zn}.
Also, we assume that conditioned on the previous state, the current state Gn is

independent of the channel inputs through time m. Thus for all m ≥ 1,

Pr(Gm ∈ B|Gm−1=gm−1, . . . ,G1=g1, Xm=x1, . . . , X1=x1)

= Pr(Gm ∈ B|Gm−1=gm−1)

for any measurable set B ⊂ G. We have mentioned two general characteristics which

are used to classify fading channels – the multi-path delay spread and the Doppler

spread. There are two other common characteristics which are the time/frequency

duals of these quantities – the coherence bandwidth and the coherence time. The

2This delay is changing with, but typically slow enough that it can be tracked and ignored.
3Actually slightly more than LW taps may be needed due to our choice of sampling functions,

[Med95] contains a more detailed discussion of this.
4More generally we could assume that {Gn} is determined by an underlying Markov chain An

with state space A. For example, this generalization would let us use an nth order Markov model
for {Gn}. We focus on the above simpler case mainly to simplify notation.
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coherence bandwidth is defined to be the reciprocal of the delay spread. This gives

a measure of the frequency band over which the fading will be highly correlated.

When W << 1/L, the fading can be considered flat, i.e. the magnitude of the

Fourier transform of g(τ, t) with respect to τ is approximately flat over the frequencies

[−W/2,W/2]. Such a channel is referred to as a flat or narrow band fading channel;

when W > 1/L, the channel is referred to as a wide band or frequency selective

fading channel. Notice that in the narrow band case, at each time n, there is only

one significant channel tap, i.e. gn = g0,n. We will primarily consider a flat fading

model, but we will at times also look at frequency selective fading channels. Our

motive for this is that the flat fading model is analytically easier to deal with, and

yet it captures some of the basic trade-offs that are present in the wide-band case. In

the narrow band case we denote the channel gain at time n by Gn. This is simply a

time-varying gain and phase shift. The channel model thus becomes

Yn = GnXn + Zn. (2.4)

The coherence time is defined to be the reciprocal of the Doppler spread; it is a

measure of how long the channel’s frequency response remains relatively constant. In

a 900 MHz cellular system, the coherence time can range from approximately 2 msec

for a user driving at 60mph to an arbitrarily large value for a user who is stationary.

At higher frequencies, systems will have larger Doppler spreads and smaller coherence

times. The coherence time is incorporated into the Markov channel model through

the transition probabilities of the Markov chain; the longer the coherence time, the

longer the memory in the Markov chain. As defined above, the coherence time is a

measure of the time-scale of “fast fading”5– this is fading which results from the time

varying interference between the signals received over different paths. In a wireless

channel there are also fading effects that occur on a slower time scale, for example due

to “shadowing” that occurs when a user enters a tunnel or moves behind an obstacle.

Such effects can also be incorporated into a Markov channel model by grouping states

5We want to emphasize that the name fast fading refers to the speed of the fading relative to the
slower fading effects. The fast fading experienced by a user walking may be slower than the slow
fading seen by a user driving.
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that correspond to a particular slow fading level; the transitions between these groups

will occur on a slower time-scale than transitions within the group.

Another way of modeling the coherence time is through the use of a block fading

channel model. In such a model, over each block of N consecutive channel uses

the channel gain is assumed to stay fixed; N is thus proportional to the channel’s

coherence time. For the narrow band block fading case, let Gm denote the channel

gain during the mth block of N channel uses. Let Xm = [X(m−1)N+1, . . . , XmN ]T ,

Ym = [Y(m−1)N+1, . . . , YmN ]T , and Zm = [Z(m−1)N+1, . . . , ZmN ]T . These are related

by:

Ym = GmXm + Zm (2.5)

We are still assuming that {Gm} is a Markov chain. This type of model is frequently

used to model a slowly fading channel (see for example [OSW94] or [CTB98]) and is

a generalization of the block interference channel introduced by McEliece and Stark

[MS84]. Such a model may be appropriate when the underlying system has a TDMA

or frequency hopping structure. This can also be used to model communication in

the presence of a pulsed jammer.6 Otherwise this model may simply be considered

an approximation of the Markov model in 2.4. In this case it appears to be somewhat

arbitrary to decide what portion of the coherence time is modeled by the block length

and what portion is modeled with the transition probabilities. The main reason for

making the block assumption is mathematical convenience. In general we will consider

the block fading model in (2.5). At times we will point out that we could assume

that N = 1 and account for all the memory with the Markov chain. At other times

having N >> 1 is more appropriate. Also, using a block fading model will facilitate

making connections with some previous work.

The block fading model in (2.5) can be considered a discrete time vector in-

put/vector output channel where the time samples occur at rate W/N . To avoid

confusion denote the N components of Xm by Xm,1, . . . Xm,N ; these corresponds to

inputs for a discrete time scalar channel with sample rate W . The components of Ym

and Zm will be denoted in a similar manner.

6Note the model in (2.5) is equivalent to a model where Ym = Xm +Wm, and Wm is a Markov
modulated additive noise processes. By equivalent we mean that the capacity of the two channels
are the same.
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Next we want to comment on the state space G and the steady-state distribution

πG for the fading process. In the narrow band case G will be a subset of C. For most

physically motivated channel models the cardinality of G will be infinite. For example,

with Rayleigh or Ricean fading G = C. We will not assume a particular fading

distribution but we do assume some additional structure on G and πG; in particular

we assume that either G is infinite and πG has a continuous density with respect to

Lebesgue measure on C or that G is finite. Such assumptions are mathematically

convenient and indeed most fading models in the literature satisfy such conditions.

While most physically motivated fading models have an infinite state space, at times

it is expedient to assume a finite state space model. Such a model can be used

to approximate a more general fading model, where the state space represents a

quantization of the true fading levels. The transition probabilities for this Markov

chain can then be chosen based on the particular fading environment. For example,

in [WM95] a finite state Markov model is used to accurately model a Rayleigh fading

channel. For calculation or simulation it is generally necessary to use a finite state

model. When considering the infinite state space model, we will at times make the

additional assumption that G is a compact subset of C. Again, this is mathematically

convenient and can be viewed as an approximation of a more general model.

In addition to the statistical description of the fading process, another important

characteristic of the channel model is the amount of channel state information (CSI)

that is assumed to be available to the transmitter and receiver. In commercial sys-

tems the transmitter and receiver often have some such state information. This can

be gained from pilot signals, training sequences, a signal received on a reverse link,

and/or some form of explicit feedback. Obtaining this information requires estimat-

ing the state of the channel from noisy observations. Clearly this estimate will be

better as the coherence time gets longer. Also when the the CSI is obtained from a

signal transmitted on a reverse link, this signal must be transmitted within the same

coherence time and coherence bandwidth.

We have already assumed that the receiver can track the delay of the various

received paths, this is a form of CSI. In general we will assume that the receiver

has perfect CSI, that is at each time n the receiver has perfect knowledge of the

current realization of Gn, both the phase and the gain. This is clearly an idealized
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assumption. In particular, in real systems it is often difficult to track the phase, which

changes at a much faster rate than the gain. Many wireless systems avoid tracking

the phase by using non-coherent modulation. On a typical fading channel with high

signal-to-noise ratio, non-coherent modulation will perform only slightly worse than

coherent modulation and does not require phase tracking [Gal99].

We must also specify the state information available at the transmitter. We will

focus on the two limiting cases, which are the case where the transmitter has perfect

state information and the case where there is no state information available. When

available, the transmitter can use this information to adjust the transmission power

and/or rate according to the fading conditions. The transmission rate can be adjusted

in a variety of ways including changing the constellation size, changing the coding

rate and changing the spreading factor in a spread-spectrum system. Many third

generation cellular standards have provisions for such rate adjustments. Though the

case of perfect transmitter state information is clearly not satisfied in a practical

system, it provides an upper bound on what improvement is possible when using

any state information. It also is an analytically simpler problem than dealing with

imperfect state information.

In summary the usual model we consider is a block fading channel model as in (2.5)

with flat fading. The fading sequence {Gm} is assumed to be a stationary ergodic

Markov chain. We assume that the receiver has perfect state information. Both the

case of perfect transmitter state information and no transmitter state information

will be considered. We will also comment at several places on the wide-band fading

case.

2.2 Delay Constraints:

In this section we take a closer look at the type of delay contraints that can arise in a

wireless network. We consider constraints which limit the overall delay experienced by

data in Fig. 1-1, including both the buffer delay and the delay from when data leaves

the buffer until it is decoded. We also consider other constraints on the transmitter

which can arise due to architectual considerations. Specifically we consider constraints

that may limit the number of channel uses over which one can send a codeword or,
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in the case of convolutional codes, a constraint length. As noted above we refer to

each of these as delay constraints. Delay constraints arise for a variety of reasons; we

classify these into two general categories: quality of service constraints and system

constraints. Each of these categories is discussed next.

Quality of service constraints: Quality of service (Q.O.S.) constraints are con-

straints that must be satisfied for the user to receive acceptable service.7 Such con-

straints could be an inherent characteristic of an application, such as real time voice,

or simply related to the price a user pays for service. We consider both maximum

delay constraints and average delay constraints. With a maximum delay constraint,

we assume that to get an acceptable quality of service, data must reach the higher

layer protocol at the receiver within D seconds from the time it arrives at the trans-

mission buffer. With an average delay constraint, we assume that the average total

delay8 from when data arrives at the transmission buffer until it reaches the higher

layer application at the receiver is less than D. Of course one way to insure that

the average delay is less than D seconds is to keep the maximum delay less than D

seconds, but this is typically an overly conservative approach.

There are several components to the overall delay including the time spent in the

buffer, the encoding time, the propagation time, the decoding time and any additional

processing time. The contribution of each of these components depends on the over-

all architecture. We illustrate some of the possibilities with the following example.

These issues will be developed further in Chap. 4.

Example: Consider the situation in Fig. 1-1 with the following assumptions. Data

arrives at a constant rate of R̄ bits per second and has a maximum delay constraint

of D seconds. This data is encoded into a block code. Before this block code can be

decoded, the entire codeword must be received at the receiver. Recall we are assuming

that there are W/N uses of the block fading channel per second, which corresponds

to W complex valued channel uses per second. To satisfy the delay constraint each

7We are only considering Q.O.S. constraints which are related to the delay experienced by data.
There may be other constraints such as delay jitter, but we ignore such issues.

8Of course to precisely define this quantity we need to specify a probabilistic model for the system;
this will be done in the latter chapters.
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codeword mus be sent in WD/N or fewer channel blocks which corresponds to WD

complex valued channel uses. For a given modulation scheme, this results in a limit

on the block length of the code. Not all decoding techniques require one to receive

the entire code word before decoding. For example if one uses a convolutional code

with a Viterbi decoder, a bit can typically be decoded after 4-5 constraint lengths

have been received [Vit79]. In this case these constraint lengths must be sent in WD

or fewer scalar channel uses. These constraints can be tightened further by taking

into account the buffering delay, the encoding time, the propagation delay and the

processing time of the decoder. For example suppose that data arrives at a constant

rate of R̄ bits/sec and is to be encoded into one of M codewords. Thus log M bits

are required to choose a codeword; assume that all of these bits must be accumulated

before a codeword is selected, this will take log M/R̄ seconds. Additionally let DP

denote the propagation delay and processing time per codeword. In this case each

codeword must be sent in fewer than W (D − log M/R̄ − Dp) channel uses to satisfy

the delay constraint.9 Again, not all encoding techniques require all of the data bits

to begin encoding; in these cases the above arguments would need to be adjusted

appropriately.

Networks usually carry a variety of different traffic types with a variety of different

service definitions. Conceivably one could use a different coding and modulation

strategy for each different service type, but such an approach would be overly complex.

If the same modulation and coding are required for each service type, then the number

of channel uses per codeword for all traffic would be constrained by the traffic with

the strictest delay requirements.

System constraints: Besides quality of service, there are other factors that may

constrain the number of channel uses one can use. These are related to the network

architecture and other design parameters. We provide several examples:

1. Interaction with higher level protocols: Even if an application does not require

a delay constraint for quality of service, higher layer protocols may require such

a constraint to function properly. For example, if a higher layer protocol, such

9To avoid buffer overflow, the time to send a codeword must also be less than or equal to log M/R̄.
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as TCP, is doing flow control, then excessive delays can be detrimental. For

another example, consider an ad-hoc packet radio network where connectivity

is frequently changing. In such a network, the higher layer protocols may re-

quire that the codeword length be short enough to be sent before the topology

changes.

2. Decoder complexity and memory: Decoder complexity and memory require-

ments usually increase with the block length for block codes or the constraint

length for convolutional codes. For example Viterbi decoding of a rate b/n,

constraint length K convolutional code requires 2b(K−1) comparisons per bit

[Vit79]. Iterative decoding of graph based codes such as low-density parity

check codes can achieve a much slower O(log n) growth in complexity per bit

with block length n. However, such codes require long block lengths, and the

entire codeword must be stored before decoding, thus requiring more memory,

and, of course, more delay.

3. Trade-offs between FEC and ARQ: For applications which require very low error

rates, such as data traffic, both forward error correction (FEC) and some form

of ARQ are usually used in a wireless channel. The reason for this is that for

a given complexity, ARQ strategies can provide a higher reliability than using

only forward error control [LDC83]. This can be implemented in several ways.

In the simplest setting the FEC is thought of as being at a lower layer than

the ARQ; thus this can be thought of as a special case of the first point above.

We describe a simple implementation. At the transmitter a CRC is added to a

given packet, then the packet plus CRC are encoded into a codeword. At the

receiver, the received codeword is decoded, then the CRC is checked. If this

check fails, then the packet is thrown out and the transmitter is requested to

repeat it. If longer codewords are used, the probability a packet is thrown out

decreases, but, when an error does occur, more bits will have to be repeated.

A simplified analysis of these trade-offs in [ZHG97] suggest that there is a

limit on the maximum codeword length one should use. This analysis does not

consider more elaborate hybrid ARQ strategies such as code-combining [Cha85]

or incremental redundancy [LY83] which do not disregard a codeword which is
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in error. We will give a simple model for such strategies in Sect. 4.3.

4. Adapting to channel fades: As in the above example, suppose that data is

arriving at a constant rate of R̄ and that fixed length block codes are used.

Additionally assume that the application has a maximum delay constraint of

D. Following the above example this can be translated into a constraint on the

number of channel uses per codeword. If the maximum number of channel uses

per codeword are used, then each codeword must have rate R̄. By using shorter

codewords, then some codewords may have rate less than R̄. This can be useful

during deep fades.

5. Adapting to bursty data: Again consider the above example, but assume that

data arrives in bursts. Depending on the encoding technique, shorter codewords

may be more flexible in adjusting to the arriving data. For example, suppose

that log M bits are required to choose a codeword. Then if fewer than log M

bits are in the buffer, either the transmitter must pad these bits with zeros or

wait for more bits to arrive. Of course, for a given code rate, using shorter

codewords reduces the number of bits per codeword.

Many of the constraints discussed above can be modeled by limiting the number

of channel uses over which a codeword can be sent. With such a constraint, standard

capacity results may not be meaningful. This has led to the introduction of ideas

such as capacity vs. outage [OSW94] for such situations. In the next chapter these

ideas are discussed in more detail.



CHAPTER 3

Capacity and Capacity vs Outage

In this chapter we discuss various definitions of capacity for the single user block fading

channel from Sect. 2.1. Specifically we consider the usual Shannon capacity as well as

outage capacity, delay-limited capacity and average capacity. These other notions of

capacity have been proposed for situations in which there is a delay constraint as in

Sect. 2.2; in such cases a compound channel model is often used. Initially we consider

the case where there is no CSI at the transmitter. Next the case of perfect CSI is

discussed. Finally extensions to frequency selective fading are also discussed. One

goal of this chapter is to summarize the previous work on these topics in a unified

framework. We also discuss some natural extensions of these ideas that have not

appeared in the literature. The model we study in the remainder of the thesis can be

viewed as a generalization of these concepts.

3.1 No Transmitter State Information

The narrow band block fading channel model from (2.5) is repeated below:

Ym = GmXm + Zm (3.1)

where Zm is a circularly symmetric Gaussian random vector with zero mean and

covariance N0IN . Here IN denotes the N × N identity matrix. The n-dimensional

proper complex Gaussian distribution with mean m ∈ C
n, and covariance matrix Q

37
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is denoted by CN (m,Q). Thus Zm ∼ CN (0, N0IN). Recall we are assuming that

each use of this vector channel corresponds to a block of N uses of an underlying

complex-valued discrete time channel, which in turn represents complex samples of

a continuous time baseband channel at rate 1/W . Assume that the input to this

channel must satisfy the long term average energy constraint,

lim
M→∞

1

NM

M∑
m=1

E(X†
mXm) ≤ P/W,

or equivalently

lim
M→∞

1

MN

M∑
m=1

tr(E(XmX†
m)) ≤ P/W.

Thus P represents average energy per second or average power used in the continuous

time channel. In this section we consider the case where there is no CSI at the

transmitter and perfect CSI at the receiver. Assuming perfect CSI at the receiver

is equivalent to modeling the channel output at time m as the pair (Gm,Ym). The

capacity of this channel is the maximum expected mutual information rate between

Xm and (Gm,Ym); this is given by [OSW94]:

CNT = EG

(
W log

(
1 +

|G|2P
NoW

))
bits/sec. (3.2)

where G is a random variable with distribution πG, the steady-state distribution of

{Gn}. Capacity is achieved by choosing Xm to be i.i.d. with distribution CN (0, P
W

IN).

For shorthand we use the notation

C(x) = W log

(
1 +

x

N0W

)
. (3.3)

Thus CNT = EG(C(|G|2P )). At various places in the literature this quantity is

sometimes referred to as the throughput capacity, the ergodic capacity or the Shannon

capacity of the channel, mainly to differentiate it from other notions of capacity

which we discuss next. We want to emphasize that CNT has the usual operational

significance of providing the maximum rate for which there exists codes whose rates



3.1. NO TRANSMITTER STATE INFORMATION 39

approach CNT with arbitrarily small probability of error. This is to be contrasted

with the other notions of capacity to be defined next.

As we stated above, when there is a delay constraint, this capacity expression

may not be useful. By “useful” we mean that the capacity gives a good indication of

the rates that are achievable with small probability of error. For example in a voice

grade telephone line, the channel capacity gives a good indication of the rate that

can be achieved by modern modems. The reason that capacity may not be useful in

the fading case is that there are two sources of randomness in such a channel – both

the randomness due to the noise and the randomness due to the fading. To approach

capacity on such a channel usually requires one to use codewords whose lengths are

long enough to average over both types of randomness. With respect to the fading,

this means that codewords must be long enough so that the time average mutual

information rate per codeword is, with high probability, near the ergodic average in

(3.2). The length of codeword needed to achieve this must span many coherence times

of the channel.1 Due to the delay constraint such code lengths may not be feasible.

In situations such as these, other notions of capacity have been proposed includ-

ing capacity vs outage, delay-limited capacity, and average capacity. Each of these

quantities is intended to provide a more meaningful performance measure than (3.2)

when delay constraints are present. These concepts can be defined by modeling the

channel over which a codeword is sent as a compound channel; we discuss such a

model next. We then look at each of these concepts and discuss when it is useful and

when it is not. In the following chapters we will look at a model which in one sense

is a generalization of these concepts.

We are still considering the narrow band block fading model from (3.1). Assume

that there is a delay constraint as in Sect. 2.2 which requires that a codeword be

sent over K channel blocks. This corresponds to KN scalar channel uses or KN/W

seconds. Let G1, . . . GK be the sequence of channel gains over such a set of K channel

blocks. Corresponding to such a sequence, define G to be a K × K diagonal matrix

whose ith diagonal term is Gi. The relationship between the input and output over

1Or if interleaving is used, the interleaving depth must span many coherence times.
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such a set of K channel blocks can be written in matrix form as

Y = GX + Z (3.4)

where

X =
[
X1 · · ·XK

]T
Y =

[
Y1 · · ·YK

]T
Z =

[
Z1 · · ·ZK

]T
.

Here, for example, the jth row of X corresponds to Xj. For i ∈ {1, . . . , N} letˆ

Xi = [X1,i · · ·XK,i]
T denote the ith column of X, likewise defineˆ

Yi andˆ

Zi to correspond to the ith column of Y and Z respectively. These are then related

by

ˆ

Yi = Ĝ

Xi +ˆ

Zi.(3.5)We can view this as another vector input/vector output channel. Note {̂
Zi} will be a sequence of i.i.d. random vectors with distribution CN (0, N0IK).

Since G is diagonal, (3.5) can in turn be viewed as a collection of K independent

parallel complex Gaussian channels; one channel corresponding to each block. This

is shown in Fig. 3-1. Equation (3.4) can be thought of as N uses of such a parallel

channel. An advantage of viewing (3.4) in this way is that the channel in (3.5) is

memoryless.

The parallel channel over which a particular codeword is sent will depend on

the channel states G1, . . . GK , which are random variables. This can be modeled

by viewing the channel as a compound channel. A compound channel is a family

of channels {Γ(θ) : θ ∈ Θ} indexed by some set Θ. A given codeword will then

be sent over one channel from this set, the channel staying constant for the entire

codeword.2 For a given block fading channel and a given delay constraint K we define

the compound channel {Γ(θ) : θ ∈ ΘK} as follows. Let ΘK be the set of all length

K sequences of channel states, {g1, . . . , gK} which occur with positive steady-state

2Compound channels have long been studied in the literature, see for example [Wol78].
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Figure 3-1: K parallel channel model.
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probability in the original channel. Thus ΘK can be considered a subset of C
K . For

each θ = {g1, . . . gK} ∈ ΘK we associate a channel Γ(θ), where Γ(θ) corresponds to a

parallel Gaussian channel as in Fig. 3-1 with gains {g1, . . . , gK}. Put another way, each

θ ∈ ΘK can be identified with a realization of G; the channel Γ(θ) is then the discrete

time memoryless vector channel in (3.5) corresponding to this particular realization

of G. Also, for each θ ∈ ΘK associate an a priori probability πθ corresponding to the

steady state probability the sequence {g1, . . . , gK} occurs in the original channel.3

The compound channel described above corresponds to the channel over which

a single codeword is sent. Because of the delay constraint, the codeword is sent

over K uses of the block fading channel in (3.1); this corresponds to N uses of

the compound channel. We want to emphasize that for more than N channel uses,

the correspondence between these two channels no longer holds. Several notions

of capacity have been defined for a compound channel with an a priori probability

distribution. We will discuss several of these next. First these quantities will be

defined as a maximum mutual information “rate”, where “rate” will be interpreted

differently in each case. To give these quantities operational significance a coding

theorem and a converse is required. To prove a coding theorem, i.e., achievablity

with arbitrarily small probability of error, requires one to be able to send arbitrarily

long codewords. However, for the compound channel to correspond to the original

block fading channel, codewords can be no longer than N channel uses. With this

restriction a coding theorem can not be proven. On the other hand if we allow

arbitrarily long codewords, then coding theorems can be proven for the compound

channel, but this no longer corresponds to the original channel. One approach to this,

as in [CTB99] is to consider a sequence of block fading channels indexed by block

length N = 1, 2, . . .. As N increases, for a fixed bandwidth, the coherence time of the

channel must also increase. Letting N → ∞, a coding theorem can be proven while

keeping the correspondence between the two channel models. Note in this way one

does not prove a coding theorem for the original channel but for a limiting channel

with arbitrarily large coherence time. Of course, in the actual channel the coherence

3Often when compound channels are studied in the literature, their is no a priori probability
distribution assumed on Θ. Some authors refer to a compound channel with an a priori probability
distribution as a Composite channel [EG98].
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time is fixed; thus this limiting operation is not physically realizable. The point we

are trying to make is that such a coding theorem is a much weaker statement than

the “usual” cases, such as a Gaussian channel without fading.

From a practical point of view, these capacities can be useful if N is large enough

relative to the block length required for reliable communication, but N is still small

relative to the coherence time of the channel. Again by useful we mean that these

quantities give a good indication of the rates that are achievable with acceptably

small probability of error. How large N must be for this to hold depends on the error

exponents for the compound channel; we will take a more precise look at these ideas

below.

3.1.1 Delay-limited Capacity

Consider an arbitrary compound channel, {Γ̃(θ) : θ ∈ Θ} where each channel Γ̃(θ) is

a memoryless channel with input X and output Y . Assume that the receiver knows

the state θ but the transmitter does not, and additionally assume that the input

probability distribution must be chosen from a set Π. In this case, the capacity of

the compound channel is given by [Wol78]:

C = sup
πX∈Π

inf
θ∈Θ

I(X; Y |θ) (3.6)

where for each input probability distribution πX , I(X,Y |θ) is the mutual information

between X and Y over the channel Γ̃(θ). Thus the capacity of the compound channel

is the maximum mutual information between X and Y regardless of which channel

Γ̃(θ) is chosen. By allowing arbitrarily long codewords, one can prove a coding the-

orem and a converse which shows that arbitrarily small probability of error (for any

channel Γ̃(θ)) can be attained if and only if one transmits at rates less than C over

the compound channel [Wol78].

For the compound channel {Γ(θ) : θ ∈ ΘK} defined above, let Π be the set of

probability distributions for X̂ ∈ C
K satisfying

tr(E(X̂X̂†)) ≤ KP/W, (3.7)
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i.e., Π is the set of input distributions which satisfy the average power constraint.

With this constraint set, consider the maximization in (3.6). Recall for any θ ∈
ΘK , the channel Γ(θ) is a memoryless Gaussian channel in (3.5) corresponding to a

particular realization of G. Let Gθ be the realization of G corresponding to θ. Assume

that we fix the input distribution to have covariance E(X̂X̂†) = Q which satisfies the

average power constraint. Then it is straightforward to show that using the input

distribution CN (0, Q) will maximize the mutual information between X̂ and Ŷ for

any θ ∈ ΘK . In other words the capacity achieving distribution must have the form

CN (0, Q). Using such an input distribution yields

I(X̂; Ŷ |Θ = θ) = log

(
det

(
IK +

1

No

GθQG†
θ

))
(3.8)

for any θ ∈ Θ. By Hadamard’s inequality,

det

(
IK +

1

N0

GθQG†
θ

)
≤

K∏
i=1

(1 + Qii|gi|2) (3.9)

where Qii and gi are respectively the ith diagonal terms of Q and Gθ. Equality is

attained in (3.9) when Q is diagonal. Thus the capacity achieving distribution Q will

be diagonal. Finally, assume that the channels in Θ have the following symmetry

property: for any Gθ and any permutation matrix U, then there exists a θ′ ∈ Θ such

that Gθ′ = UGθU
†. With this assumption it can be shown that the capacity achieving

distribution is CN (0, P
W

Ik) which results in

I(X̂; Ŷ |θ) = log

(
det

(
IK +

P

N0W
GθG

†
θ

))

= log

(
K∏

i=1

(
1 +

|gi|2P
N0W

))

=
K∑

i=1

C(|gi|2P )

where the second equality follows since Gθ is diagonal. Let Cθ = W
K

I(X̂; Ŷ |θ); this is

the average mutual information per second for the channel Γ(θ). Using this, we can
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write the capacity of the compound channel, CDL, as

CDL = inf{Cθ : θ ∈ Θ} (3.10)

In the context of block fading channels, CDL is referred to as the delay-limited capac-

ity4

There are several things we wish to note about this quantity. First, note that

CDL is simply the capacity of the channel corresponding to the worst sequence of K

fades in the block fading channel. Any realistic channel model will have Qg,g > 0 for

every state g ∈ G. In this case, CDL = inf{C(|g|2P ) : g ∈ G}. For most common

continuous state space fading models, such as Rayleigh or Ricean fading, 0 ∈ G; in

these cases CDL = 0. If we assume that the block fading model came from quantizing

a more general fading model, as discussed in the previous chapter, then the value of

CDL will depend on how we do this quantization. In the following we simply assume

that we are given a specific block fading model, but wish to emphasize that one must

always be careful if this model is intended to approximate a more general channel.

We again want to emphasize that there is no coding theorem with regard to

CDL for the original block fading channel, only for the compound channel when

N → ∞. Let Er(R, θ) be the random coding exponent for the channel Γ(θ) when the

input distribution is CN (0, P
W

IK) [Gal68]. Thus when a codeword with rate R bits

per second is sent over N channel uses of Γ(θ), the average probability of error per

codeword, perr(θ), is bounded by

perr(θ) <

⎧⎨
⎩e−NEr(R,θ) if R < Cθ

1 if R ≥ Cθ.
(3.11)

Suppose we desire an average probability of codeword error less than or equal to some

p > 0 for every channel Γ(θ). Then if R < CDL from (3.11) it follows that for N large

enough there exists such a code. Likewise the strong converse to the coding theorem

states that for R > Cθ, perr(θ) increases with N to 1. Thus for N large enough there

4The term delay-limited capacity was first used in [HT98] for the case were the transmitter has
perfect side-information. The delay limited capacity as we have defined it would coincide with the
one in [HT98] for the case of K = 1.
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exists such a code if and only if R < CDL. Assuming N is this large, then we can

make the same statement about the block fading channel with this value of N . Thus

we see, as hypothesized above, that CDL is meaningful for the block fading channel

provided that N is large enough.

3.1.2 Capacity vs. Outage

Up to this point, we have been assuming that the error criterion is the probability of

error for any channel Γ(θ) and have not used the a priori probabilities, πθ. A more

reasonable error criterion would be the probability of error averaged over the possible

realizations of Θ; denote this quantity by perr. Thus

perr =

∫
Θ

perr(θ) dπΘ(θ). (3.12)

As above assume that the input is chosen from the input distribution CN (0, P
W

Ik).

Using (3.11) for a transmission rate of R bits per second, we have

perr ≤
∫
{θ:R<Cθ}

e−NEr(R,θ) dπΘ(θ) +

∫
{θ:R≥Cθ}

1 dπΘ(θ) (3.13)

The event {R ≥ Cθ} is referred to as an outage. Thus the second term above gives

the probability of an outage occurring. For a given rate R, if we let N → ∞ then

the first term above will go to zero and the probability of an outage is approximately

an upper bound on the probability of error. Also, for any channel Γ(θ) such that

R > Cθ, the probability of block error, Perr(θ) → 1 as N grows. Thus for large N the

average probability of error is approximately the probability of outage. For a given

probability of outage, q, the capacity vs. outage probability q, Cq is defined as

Cq = sup {R : Pr (Cθ ≤ R) ≤ q} (3.14)

This is the maximum mutual information rate that be sent over any channel Γ(θ)

except a subset with probability less than q. In other words, Cq is the capacity of the

compound channel {Γ(θ) : θ ∈ Θq}, where Θq = {θ : Cθ > R} and πΘ(Θq) > 1 − q.

Let πmin = min{πθ : θ ∈ ΘK}. Note if q ≤ πmin, then Cq = CDL. Thus we have
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CDL = limq→0 Cq.

The capacity vs. outage probability is related to the notion of ε-capacity of a

channel. The ε-capacity of a channel is defined to be the supremum of all rates R

such that there exists a sequence of block codes with rate R and block length n,

where for n large enough, the average probability of error is less than or equal to ε.

For a discrete memoryless channel the ε-capacity is equal to the usual capacity for

all ε ∈ (0, 1). For the composite channel {Γ(θ) : θ ∈ Θ}, the ε-capacity is identical to

the capacity vs. outage probability ε as we have defined it above. This is shown in

[CTB98], using techniques from [VH94].

As with delay limited capacity, capacity per outage probability is only meaningful

for the original block fading channel if N is large enough. Specifically N must be

large enough to disregard the first term of (3.13). How “large” N must be for this to

hold depends on the values of Er(R, θ). As R → Cθ, Er(R, θ) → 0. Thus channels

with Cθ near R will tend to have a higher probability of error. Note what happens as

we let K grow. As K → ∞, we have Cθ → CNT almost surely, by the strong law of

large numbers. Thus, as shown in Fig. 3-2, as K gets large, for an outage probability

ε, Cε will approach CNT . In this case, with high probability a channel will have Cθ

near R, and the first term in (3.13) will no longer be negligible (for a given value of

N). The above argument is somewhat complicated by the fact that as K → ∞, the

Er(R, θ) will tend to increase.

If the channel has a short coherence time, then N may not be large enough for

capacity vs. outage or delay limited capacity to be meaningful. In this case, the best

we can do is bound the maximum achievable rate for a given probability of error, η.

For example, one could attempt to optimize the right hand side of (3.13) to lower

bound this rate. This appears to be a difficult problem. Note the right hand side of

(3.13) is increasing in R, and thus the solution of the above optimization will be less

than Cη.

Similarly, an upper bound on the achievable rate for a given N and a given al-

lowable probability of (block) error can be attained from any lower bound on the

probability of error. For example, suppose we have a lower bound on the probability

of error, perr(θ), given that we send at a rate of R over channel Γ(θ), i.e., a function
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Prob(C  > x)θ Prob(C  > x)θ
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Figure 3-2: Illustration of the effect of K. The figure on the left represents the compli-
mentary distribution function of Cθ when K is small. The figure on the right represents
the case where K is large.


(θ,N,R) such that

perr(θ) > 
(θ,N,R) (3.15)

Any reasonable bound, 
(θ,N,R) will be increasing with R. In this case, the solution

of the optimization problem:

maximize R

subject to:
∑
θ∈Θ

πθ
(θ,N,R) ≤ η
(3.16)

gives an upper bound on the rate that can be achieved with probability of error less

than η. An example of such a lower bound on the probability of error is the sphere

packing bound [Gal68].

3.1.3 Average capacity

With delay limited capacity, the assumption is that it is required to send each code-

word at a given rate R regardless of the channel realization. With capacity vs. outage

probability q, the assumption is that it is required to send each codeword at rate R

over every channel realization except a subset with probability less than q. Over this
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subset no information is received. In many situations, it may not be necessary to

send a constant rate per codeword. For example, through the use of unequal error

protection, instead of an outage when the channel is bad one could assume fewer bits

get received reliably. Thus depending on the channel realization a variable number

of bits are successfully received per codeword. The third notion of capacity we wish

to consider for the compound channel {Γ(θ) : θ ∈ ΘK} will apply to such situations.

We refer to this as the average capacity of the channel; in [EG98] a similar quantity

is referred to as the expected capacity. This quantity is intended to indicate the max-

imum expected rate averaged over all channel realizations. Somewhat more precisely,

let R(θ) be the rate that is reliably received given that a codeword is sent over the

channel Γ(θ). The average capacity indicates the maximum of
∫

Θ
R(θ) dπΘ(θ), over

all such rates R(θ). For the case of no transmitter CSI, the average capacity arises

from taking a “broadcast approach” [Cov72] to communicating over the compound

channel. We illustrate this with a simple example.

Example: Assume that G = {g, g̃} with |g| > |g̃| and that K = 1 so that Θ = G. Also

assume that the receiver uses a different decoder depending on the value of G, where

G is a random variable with distribution πG. This channel can be thought of as a

degraded Gaussian broadcast channel with one “user” corresponding to each decoder.

Let R1 indicate the rate at which data is reliably received when G = g and let R2 be

the rate at which data is reliably received when G = g̃. From [Cov72] it follows that

the capacity region of such a channel is the set of rates (R1, R2) such that for some

α ∈ [0, 1],

R1 < C(α|g|2P )

R2 < C(α|g|2P ) + C

(
(1 − α)|g̃|2P (N0W )

α|g̃|2P + N0W

)
.

(3.17)

The average capacity of this channel would be the maximum of πG(g)R1 + πG(g̃)R2

over all rates (R1, R2) which lie in this capacity region.

The above example can be directly extended to larger channel state spaces. Ex-

tending this to cases where K > 1 requires more work. In this case the channel is
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no longer a degraded broadcast channel, but a parallel Gaussian broadcast channel.

Such channel’s have been looked at in [Tse98] and [WY00]. These results could be

helpful in finding the average capacity of the compound channel {Γ(θ) : θ ∈ Θ} in

such cases. We will not consider this here. Once again this quantity will only be

useful for the block fading channel if N is large.

We have considered three notions of capacity for the block fading channel with a

delay constraint of K channel blocks. Which of these notions is appropriate depends

on the nature of the delay-constraint. For example if the delay-constraint arises

because an application requires a fixed rate of R bits per K channel blocks, then delay-

limited capacity or capacity vs. outage is more appropriate. If the delay constraint

arises due to complexity or other system requirements, then average capacity may be

more appropriate.

3.2 Perfect Transmitter State Information

Next we consider the case where both the transmitter and the receiver have perfect

CSI. In this case the transmitter can adjust the transmission rate and/or energy

according to the CSI. More precisely, the encoding and decoding for such a channel can

depend not only on the given message sequence but on the channel state information.

First we consider the capacity for the block fading channel in (3.1) with no delay

constraint. We still assume that the input to the channel must satisfy the average

energy constraint

lim
M→∞

1

MN

M∑
m=1

tr(E(XmX†
m)) ≤ P/W

where N is the number of scalar channel uses in each block. In [Gol94] it is shown

that the capacity of this channel is the solution of the following optimization problem:

maximize
P :G
→R+

EGC(|G|2P (G))

subject to: EGP (G) ≤ P̄
(3.18)

where P (g)/W is the average energy per second or power used when Gn = g and G is

a random variable with distribution πG. We denote the solution to this optimization
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problem by CT . The optimal power allocation for a user to achieve capacity has the

form [Gol94]:

P (g)/W =

[
1

λ
− N0

|g|2
]+

(3.19)

where λ is chosen so that EGP (G) = P̄ . This allocation has the structure of the

classic “water-filling” power allocation for communication over a colored Gaussian

noise channel [Gal68]; here,however, power is allocated over the channel state space.

With such an allocation a user transmits at a higher power when the channel is good

and a lower power when the channel is bad. We note that this allocation depends only

on the steady-state distribution of {Gn}. It has been shown that CT can be achieved

by using either a “single-codebook, variable power scheme” [CS98] or a “multiplexed

multi-rate, variable power” transmission scheme [Gol94]. In either case approaching

capacity again requires the use of codewords long enough to take advantage of the

ergodic properties of the fading process {Gn}. Thus, with a delay constraint, such an

approach may not be feasible. We next discuss the delay constrained case when the

transmitter has perfect state information.

Assume that we are constrained to send a codeword over K blocks of the block

fading channel. Once again this can be modeled as if each codeword must be sent

over N uses of the composite channel {Γ(θ) : θ ∈ ΘK} where ΘK denotes the set of

all sequences of channel states, {g1, . . . , gK} that can occur over K blocks. Recall,

each channel Γ(θ) is a discrete memoryless channel defined by (cf. (3.5))

ˆ

Yn = Gθ̂

Xn +ˆ

Zn(3.20)where Gθ is a K×K diagonal matrix with diagonal entries corresponding

to θ = {g1, . . . , gK}. We still assume that there is an a priori probability distribution

πΘ(θ) defined on ΘK . The difference now is that the transmitter can adjust the

transmission rate and power based on the sequence of channel gains {g1, . . . , gK}.
We will discuss precisely how this is done in the following. In this context we will

again consider the notions of delay-limited capacity, capacity vs. outage and average
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capacity. As in the previous section these quantities will be defined in terms of mutual

information rates for the compound channel. Again proving a coding theorem requires

allowing arbitrarily long codewords, in which case the compound channel no longer

corresponds to the original block fading channel. For large enough N these quantities

will give a useful indication of the rates that are achievable for the original block

fading channel. For large N , the assumption of perfect CSI at the transmitter is also

more reasonable.

3.2.1 Delay-limited Capacity and Capacity vs. Outage

As before, both delay-limited capacity and capacity vs. outage are based on the

assumption that the user requires a fixed rate of R bits/sec in each group of K

channel blocks for which an outage does not occur. For a block code this means

that KNR/W bits are encoded into one of 2KNR/W codewords, which is transmitted

over the K channel blocks or equivalently over N uses of the compound channel

{Γ(θ) : θ ∈ ΘK}. Thus in this case the transmitter can vary the transmission rate

and or power depending on the CSI but must satisfy this short term rate constraint.

Let P : ΘK 
→ R
K , denote a power allocation, where P(θ) = (P1(θ), . . . , PK(θ))

and Pi(θ) represents the energy used by the i-th component ofˆ

Xn for the channel Γ(θ). In other words Pi(θ) is the ith diagonal term of E(̂

X X†). Consider a given θ = {g1, . . . , gK} and a given P. Let Cθ(P) be the

maximum mutual information rate over the channel Γ(θ), such that the average power

of each component ofˆ

Xn is given by P(θ). Then

Cθ(P) =
1

K

K∑
i=1

C(Pi(θ)|gi|2)

where we have divided by K so that this corresponds to mutual information per second

in the original block fading channel. This is attained with the input distribution

CN (0, Q) where Q is a diagonal matrix whose ith entry is Pi(θ).

Assume that the transmitter can choose any power allocation from some set Π.

The delay-limited capacity of the compound channel is defined to be
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sup
P∈Π

inf
θ∈Θ

Cθ(P). (3.21)

Once again, this is the maximum rate that can be sent reliably over the compound

channel regardless of which channel is chosen.

For a given power allocation P, let

Cq(P) = sup{R : Pr(Cθ(P) ≤ R) ≤ q}. (3.22)

where the probability measure is πΘ. This is the capacity vs. outage probability q

for the compound channel with a fixed power allocation P. The capacity vs. outage

probability q for the compound channel, when any power allocation from the set Π

can be chosen is defined as

Cq(Π) = sup
P∈Π

Cq(P). (3.23)

As before this corresponds to the ε-capacity of the compound channel. Also the

delay limited capacity is still equal to the capacity vs. outage probability 0. These

quantities will be meaningful for the block fading channel provided that N is large

enough. How large N must be again requires considering the error exponents of the

channels Γ(θ).

The above optimizations are over all power allocations in the set Π. We want to

make a few comments about which power allocation should reasonably belong to Π.

First every P ∈ Π needs to satisfy the average power constraint. By this we mean

that

Eθ

(
1

K

K∑
i=1

Pi(θ)

)
≤ P̄ . (3.24)

Recall that if θ = {g1, . . . , gK}, then in the original channel model the gi’s occur se-

quentially in time. Thus if we allowed any power allocation which satisfied the average

power constraint, this would require the transmitter to have non-causal knowledge of

the channel states. Such a model has been looked at in [CTB98] but does not seem to

be practical in most situations.5 A more reasonable set would be the set of all causal

5A situation where this model is applicable is if the blocks represent different frequency bands,
for example in a multi-carrier system.
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power allocations, i.e., the power allocations, P = (P1, . . . , PK) such that

Pi(θ) = Pi(g1, . . . , gi) ∀i = 1, . . . , K (3.25)

However, this restriction makes the above optimizations more difficult. We will look

at an indirect solution to this problem for the case of delay-limited capacity next.

Specifically, we assume we have a given rate, R and are using block codes. We then

find the minimum average power constraint P̄ , such that the delay limited capacity of

the channel with average power constraint P̄ is R. This problem will be formulated

as a finite horizon dynamic programming problem.

3.2.2 Optimal causal power allocation.

Recall, we are assuming that a block code is used which must be transmitted in

K blocks. Any power allocation, P = (P1, . . . Pk) which results in a delay-limited

capacity of R, must satisfy

1

K

K∑
i=1

C(|gi|2Pi(θ)) ≥ R ∀ θ ∈ Θ. (3.26)

Thus the minimum average power needed for a delay limited capacity of R is the

solution of:

minimize
1

K

∫
θ

(
K∑

i=1

Pi(θ)

)
dπθ(θ)

subject to
K∑

i=1

C(|gi|2Pi(θ)) ≥ KR ∀ θ ∈ Θ

Pi(θ) ≥ 0 ∀ θ ∈ Θ, i = 1, . . . K

P causal.

(3.27)

Let ui(θ) = C(|gi|2Pi(θ)) so that ui(θ) denotes the mutual information rate

sent over the ith block of the channel sequence θ. We want to write the above
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optimization problem in terms of these variables6. Let u = (u1, . . . , uk) and let

P (g, u) = 1
|g|2 C

−1(u), where

C−1(u) = N0W
(
2u/N − 1

)
.

This is the inverse of C(·) given in (3.3). With these definitions we have Pi(θ) =

P (gi, ui(θ)) and (3.27) can be rewritten as:

minimize
1

K

∫
Θ

(
K∑

i=1

P (gi, ui(θ))

)
dπΘ(θ)

subject to
K∑

i=1

ui(θ) ≥ KR ∀ θ ∈ Θ

ui(θ) ≥ 0 ∀ θ ∈ Θ

u causal

(3.28)

By u being causal we mean that ui(θ) only depends on g1, . . . , gi.

This optimization problem is equivalent to a discrete time, finite horizon, dynamic

programming problem which we describe next. This dynamic programming problem

has a finite horizon of K steps, each time step corresponding to a channel block. The

state space of this problem is [0, KR] × G. The first coordinate of the state denotes

how much mutual information remains to be transmitted and the second coordinate

denotes the channel state. Initially, the first coordinate of the state will be KR.

The control choice, un at each time n < K, is the amount of mutual information

to be transmitted over that block. For a given control choice, the cost incurred is

proportional to the power needed to transmit that amount of mutual information.

Specifically, if the state at time n < K is (x, g) and control un is used then the state

transitions to (x − un, g′) with probability Qg,g′ and the cost 1
K

P (g, un) is incurred.

Additionally, at time K if the state is (x, g), a terminal cost of 1
K

P (g, x) is incurred

if x > 0 and no cost otherwise. This insures that no outage occurs. The goal is

to choose controls to minimize the aggregate expected cost from any given starting

6The reason for this reformulation is to put this problem into a similar form to the problems that
will be considered in later chapters.
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state. This problem can be solved via dynamic programming. Let J1(KR, g) be the

optimal cost when starting in state (KR, g). Then EG(J1(KR,G)) is the solution to

(3.28), i.e., the minimum average power needed for a delay limited capacity of R.

The optimal controls used at each stage correspond to the optimal power allocation.

We illustrate this approach with the following example.

Example: As a simple example of the above problem consider the case where K = 2

and |G| < ∞. Let J2(x, g) be the terminal cost incurred if the final state is (x, g).

Then we have:

J2(u, g) =
N0W

|g|2
[
exp

( u

W

)
− 1
]
. (3.29)

Let J1(RK, g′) denote the optimal cost at time n = 1 given that the state is (RK, g′).

From the dynamic programming algorithm, J1(RK, g′) is given by the solution of the

following non-linear program:

J1(RK, g′) = inf
0≤u≤RK

N0W

|g′|2
[
exp

( u

W

)
− 1
]

+
∑
g∈G

Qg′,g
N0W

|g|2
[
exp

(
RK − u

W

)
− 1

]
(3.30)

This is a minimization of a strictly convex function over the convex set [0, RK], and

thus it has a unique optimum. The value of u achieving this optimum is given by:

u∗ =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 if
∑

g Qg′,g

(
|g′|2
|g|2
)

exp
(

RK
W

)
< 1

RK if
∑

g Qg′,g

(
|g′|2
|g|2
)

exp
(−RK

W

)
> 1

RK
2

+ W
2

ln
(∑

g Qg′,g
|g′|2
|g|2
)

otherwise.

(3.31)

The corresponding optimal power allocation at time n = 1 is then given by:

N0W

|g′|2
[
exp

(
u∗

W

)
− 1

]
. (3.32)

This solution can be extended for other values of K, but as K gets large the

optimization problems become more difficult and one would most likely turn to an

approximate solution. We note that even for larger values of K the optimization at

each step will be a convex problem. We can also modify this problem so that the
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solution gives an average power and an outage probability, η. We do this by allowing

an additional control choice in the final stage. Namely, we allow the option of choosing

P = 0, and incurring a cost of β if xK > 0. The optimal cost will correspond to the

minimum of the average power plus β times the probability of outage. Assume that

for a given choice of β, the solution to the dynamic programming problem results in

an average power of P̄ and an outage probability of η. It follows that the capacity

per outage probability η for this channel with average power constraint P̄ is R. By

changing β we can get different outage probabilities.

This dynamic programming formulation only applies to block codes. Suppose

we use convolutional codes where a constraint length must be sent in K blocks.

Then it is more appropriate to require that the average rate over every window of

K blocks is equal to R. In this case a different dynamic programming formulation

is required. Additionally if one assumes that the overall code length is much larger

than the constraint length, then an infinite horizon, average cost problem would be

more appropriate. For example, again suppose that K = 2, then one can again

formulate the problem on the state space [0, RK] × G. The control in each state will

still represent the mutual information rate transmitted in that state. If the current

state is (x, g) then, for the zero outage case, the control choice must satisfy u > x. If

control u is chosen we transition to state (2R−u, g′) with probability Qg,g′ and incur

cost P (g, u). We can then consider the infinite horizon, average cost problem with

these dynamics. For larger values of K, we would have to increase the dimension

of the state space to K where the components of the state represented the mutual

information transmitted in the previous K−1 channel blocks, along with the channel

state. The resulting problem will quickly become intractable.

Note that we could also further restrict the set of allowable power allocations

to be only those allocations which depend only on the current channel state. Such

allocations are a subset of the causal allocations, and restricting to such a subset

analytically simplifies the optimization and also leads to a practically simpler scheme.

Also recall that the optimal power allocation without a delay constraint is in this set.

This suggests that for large K such a restriction may be reasonable. Such an allocation

would also be appropriate for convolutional codes. On the other hand suppose that

K is not large and Qg,g > 0 for every state g ∈ G. In this case, for zero outage
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probability, the optimal power allocation which depends only on the current channel

state corresponds to

P (g) =
1

|g|2C−1(R) (3.33)

where R is still the short term rate constraint. This power allocation is referred to

as “inverting the channel” and may result in a much higher average power than the

optimal allocation without a delay constraint.

3.2.3 Average Capacity.

Now we consider average capacity for the case where the transmitter has perfect CSI.

This applies when the transmitter has a constraint on the number of channel uses per

codeword, but does not have a short term rate constraint. Thus the transmitter can

vary the code rate depending on the CSI. The average capacity is intended to indicate

the maximum average rate that can be transmitted. With no transmitter CSI, the

average capacity was defined by using a broadcast model. With perfect CSI at both

the transmitter and receiver, the situation is much simpler; here the transmitter can

simply choose a code rate depending on the channel realization.

Let R̄(θ) be the average transmission rate for the channel Γ(θ). Thus KNR̄(θ)/W

bits are encoded and transmitted during the K channel blocks corresponding to θ.

Suppose we fix a power allocation P as above, then Cθ(P) is the maximum rate at

which one can reliably communicate over channel Γ(θ). In other words we must have

R(θ) < Cθ(P) for all θ ∈ ΘK .

Motivated by this we define the average capacity of compound channel {Γ(θ) :

θ ∈ Θ} to be

sup
P∈Π

EθCθ(P). (3.34)

This is the maximum expected mutual information rate that can be attained using

any power allocation in Π. As above Π is the set of allowable power allocations. Once

again Π could be all power allocations which satisfy the average power constraint and

are causal, or it could be defined to be some other set. Suppose Π contains only power

allocations P such that Pi(θ) is a function of only the current channel state, i.e., for

θ = {g1, . . . gK}, Pi(θ) = Pi(gi). Additionally assume that all P ∈ Π must satisfy
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an average power constraint. In this case (3.34) is equivalent to the maximization in

(3.18). The power allocation P which achieves this maximum will have the form

Pi(θ) = P ∗(gi) for all i, (3.35)

where P ∗ is the optimal water-filling power allocation as in (3.19). Even if Π contains

any causal P which satisfies the average power constraint, then (3.35) is still the

optimal power allocation. This means that with perfect transmitter CSI, the average

capacity is equal to the usual Shannon capacity (3.18). However, these two quantities

have a different operational significance. Average capacity indicates the maximum

expected rate, where codewords can have variable rates. On the other hand, for the

Shannon capacity, codewords have a fixed rate. Approaching the average capacity

requires N to be large, while approaching the Shannon capacity requires K to be

large.

We have discussed causality issues with regard to the power allocation. For average

capacity when K > 1, there may also be a causality issue with regard to R̄(θ); this

depends on some architectural details, such as how data is encoded and decoded. To

achieve the average capacity, we must have R̄(θ) = Cθ(P) for all θ ∈ ΘK . Assume that

data is to be encoded into a block code with rate R̄(θ) by choosing one of KNR̄(θ)/W

codewords at the start of the K channel blocks. In this case, the rate of the code must

be known at the start of the first block, i.e., based only on the first channel state. If

we restrict ourselves to such a model, then we can not use the above rate allocation

unless K = 1. Instead we need to specify a rate R̄(θ) which is only a function of g1.

Once we specify R̄(θ) then we can consider the channel as having a short term rate

constraint and optimize the power allocation as in the previous section. One could

modify the dynamic program from Sect. 3.2.2 for this case. Specifically assume that

an initial stage 0 is added in which one starts in state (0, g), where g is the initial

channel state. In this stage, the allowable control actions correspond to choosing a

rate R̄ > 0; for a given control choice, the state transitions to (KR̄, g) with probability

one and a cost of −λR̄ is incurred. From here on the problem proceeds as in Sect.

3.2.2. Let J0(0, g) be the minimum aggregate cost starting in state (0, g). Then

EJ0(0, g) will be the average power used minus λ times the average transmission rate.
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This average transmission rate is the optimal rate for this average power constraint.

We also note that if the transmission rate is required to be chosen in this manner, it

is again meaningful to allow outages.

Still assume that a block code is used, but instead of selecting the codeword at the

start of the given block, suppose that codewords are formed sequentially. By this we

mean that the code rate R̄(θ) is determined by a function R(θ) : ΘK 
→ R
K , where

R(θ) = (R1(θ), . . . , RK(θ)) and Ri(θ) = Ri(g1, . . . gi). The portion of the codeword

sent over the i-th block of channel sequence θ only depends on
∑i

j=1 Rj(θ)N/W of the

encoded bits. Thus R̄(θ) = 1
K

∑K
i=1 Ri(θ). Letting N → ∞ and using such a scheme

one could again approach the average capacity by using the optimal power allocation

as in (3.35) and letting Ri(θ) = C(|gi|2P ∗(gi)). However, for finite N there is a

difficulty with such a scheme. For codewords formed in this fashion, bits transmitted

in earlier channel blocks will have more redundancy than bits transmitted in later

blocks.7 For example the bits transmitted over the last block are essentially only

encoded into a codeword of length N . If N is not large enough to average over the

additive noise then these bits may not be received reliably. This suggests that the

average rate should be larger than C(|gi|2P ∗(gi)) for small i and become less than

C(|gi|2P ∗(gi)) as the block number increases. One way to get around this problem is

to use a convolutional code instead of a block code.

3.3 Frequency selective fading

In this section we comment on when and how the results of the previous sections can

be extended to channels with frequency selective fading. From Sect. 2.1, recall that

for a frequency selective channel the delay spread L is larger then 1/W or equivalently

the channels coherence bandwidth is less than W . In this case the sampled channel

model is (cf. (2.2)):

Yn =

�LW �∑
m=0

Xn−mGm,n + Zn

7In the limiting case as N → ∞ this is not an issue since one can essentially send a separate
codeword over each channel block.
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where the fading process Gn = [G0,n, G1,n, . . . , G�LW �,n]T is still modeled as a Markov

chain. The results of the previous two sections can easily be extended to such a

channel if one assumes that the channel has block fading and is also block memoryless.

In this case block fading means that Gn stays fixed for blocks of N channel uses then

changes to a new value. By block memoryless we mean that the received signal in

each block depends only on the transmitted signal in that block. This assumption is

not generally satisfied for a frequency-selective fading channel. If the channel has a

delay spread of L, then after the channel changes state, the signals transmitted in the

previous block will arrive for L more seconds and thus effect the received signal in the

next block. If the coherence time is much larger than the delay spread this effect may

be negligible and the block memoryless assumption can be considered a reasonable

approximation. Also if the system has a TDMA structure, and the block time equals

the dwell time, then this assumption is again reasonable. We will only look at the

block memoryless case in the following. Without this assumption, it is more difficult

to generalize the above results. Some work in this direction can be found in [Med95]

and [GM99].

Each channel realization g = [g0, . . . , g�LW �] can be thought of as a sequence of

time samples at rate W . This sequence has a discrete time Fourier transform:

(Fg)(f) =

�LW �∑
n=0

gnej2πnf 1
W

for |f | ≤ W/2. Let G be a random vector with the steady-state distribution of

{Gn}. Then for each f ∈ [−W/2,W/2], |FG(f)|2 is a random variable, depending

on the realization of G. Consider the case where there is no transmitter CSI but

perfect CSI at the receiver. Assume that for any two distinct frequencies, f1 and f2

in [−W/2,W/2], that |FG(f1)|2 and |FG(f2)|2 are identically distributed. In other

words, the fading in any narrow frequency band is identically distributed. With this

assumption, the capacity of the block fading channel is given by [Gal94a]:

CNT = WEG

∫ W/2

−W/2

log

(
1 +

P |(FG)(f)|2
N0W

)
df bits/sec. (3.36)
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This is attained using i.i.d. Gaussian inputs with distribution CN (0, P
W

). In a similar

way, one can generalize the other results in Sect. 3.1 to the case of frequency selective

fading.

Next we consider the case of perfect CSI at both the transmitter and receiver. In

this case the transmitter can allocate power over the frequency band [−W/2,W/2]

according to the channel’s frequency response, (Fg). Let P (f,g, P̄ (g)) denote a

power allocation when the channel state is g, which uses average power P̄ (g), i.e.

P̄ (g) =

∫ W/2

−W/2

P (f,g, P̄ (g)) df.

Let P ∗(f,g, P̄ (g)) denote the power allocation which maximizes the mutual informa-

tion rate sent in this channel state with average power P̄ (g)/W . As in (3.19), P ∗ is

given by a “water filling” allocation:

P ∗(f,g, P̄ ) =

[
1

λ
− N0W

|(Fg)(f)|2
]+

where λ is chosen so that the average power is P̄ (g). Let

CWB(g, P̄ (g)) = W

∫ W/2

−W/2

log

(
1 +

P ∗(f,gP̄ (g))|(Fg)(f)|2
N0W

)
df. (3.37)

This is the capacity of a time-invariant channel with impulse response g and average

power constraint P̄ (g). The capacity of the block fading channel with perfect trans-

mitter side-information is the solution of the optimization problem [Gol94], [TH98]:

maximize
P̄ :G
→R+

EGCWB(G, P̄ (G))

subject to: EGP̄ (G) ≤ P̄
(3.38)

Note the similarity of this to the optimization in (3.18). In a similar manner, the

other results in Sect. 3.2 can be generalized to frequency selective fading channels.
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3.4 Summary

In summary we have looked at block fading channels where the receiver has perfect

state information. We looked at both the case where the transmitter has perfect

CSI and where it has no CSI. The capacity of channels where the transmitter has

only partial state information or delayed state information have been looked at in

the literature, for example see [CS98] or [Vis98]. The above ideas also apply to these

situations in an analogous manner.

Our main emphasis has been on cases where there is a delay constraint which

limits the number of channel blocks over which a codeword can be sent. We formu-

lated a compound channel model for these situations and discussed various notions

of capacity for this model. We emphasized that these “capacities” constitute much

weaker statements about the block fading channel than typical capacity statements.

In particular they require the coherence time of the fading channel to be large rela-

tive to the error exponents of the compound channels but small relative to the delay

constraint. If this is not the case, then we can still attempt to bound the average

rate that is achievable for a given probability of error and a given power constraint.

Equivalently we can lower bound the required average power, for a given rate and

probability of error. In the following sections, it will be more convenient to think of

these results in this way.

Each notion of capacity we considered is intended to signify the maximum “rate”

for which there exist codes of that rate whose error probabilities are arbitrarily small.

But in each case “rate” is interpreted differently. For example with delay-limited

capacity, one is interested in the maximum constant rate per codeword; with average

capacity one is interested in the maximum expected rate per codeword. Which notion

of capacity is appropriate depends on the Q.O.S. required by the higher layer appli-

cation. Each of these definitions only considered the “rate” of a single codeword. In

the next chapter we will consider a model in which entire sequences of codewords are

considered. This allows us to consider a much larger class of Q.O.S. requirements.
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CHAPTER 4

Buffer Models

Recall the situation in Fig. 1-1; this is repeated in Fig. 4-1 below. For this situation

we are interested in minimizing the power required to provide a user with acceptable

service while satisfying some delay constraints as in Sect. 2.2. The work in the pre-

vious chapter provides an answer to this question if (1) any delay constraints can be

mapped into a limit on the number of channel blocks that can be used per codeword,

(2) the number of channel uses per block is large, and (3) the acceptable service

required by a user can be stated in terms of either a constant rate or average rate

per codeword. In this chapter we shall consider several models which relax each of

these assumptions to various degrees. These models involve a buffer as in Fig. 4-1

and allow us to consider a larger class of service requirements. We illustrate this with

an example:

Example: Consider the situation where an application generates data at a constant

rate of R bits per second with the following two delay constraints – due to a sys-

tem constraint a codeword must be sent in only K blocks, and, to provide acceptable

quality of service, data must be received within a maximum delay of D seconds where

D >> KN/W . For example a user could be transmitting a video sequence which is

generated at a constant rate R and transmitted in codewords which are sent over K

blocks. At the receiver this sequence is to be stored in a playback buffer and then

shown after a delay of D seconds. Our goal is then to find the minimum amount of

power needed to transmit this sequence within these constraints. When the transmit-

65
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Fading

Application

Decoder/

Higher LayerHigher Layer
Application

ReceiverTransmitter
Encoder/

Channel

Figure 4-1: System model.

ter has perfect state information, the above constraints cannot be adequately modeled

in any of the frameworks from the previous chapter. For example if we require a con-

stant rate R per codeword, then the Q.O.S. constraint will be met, but this is more

conservative than necessary. On the other hand, if we require only an average rate

per codeword, then the higher layer Q.O.S. constraint may be violated. The buffer

models which we consider below allow us to model such a situation as well as several

others.

The remainder of the chapter will be spent describing several such models for

the situation in Fig. 4-1. The difference between these models is in the types of

constraints considered as well as the specific model of the transmitter/encoder and

the buffer dynamics. In each case we will assume that the fading channel is a block

fading channel as defined in Sect. 2.1. Furthermore we will primarily focus on the case

where the transmitter has perfect CSI. Also, in each case we use a discrete time model

of the buffer where the time between two adjacent samples corresponds to one block

of N channel uses of the block fading channel. In other words, time n corresponds to

the start of the nth block.
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4.1 Mutual Information Model

The model we consider in this section can be thought of as a generalization of the

capacity vs. outage framework discussed in the previous chapter. As noted above, we

will consider a discrete time model for the system in Fig. 4-1. Between time n−1 and

n assume that An bits arrive from the higher layer application and are placed into

the buffer. At each time n the transmitter removes Un bits from this buffer; encodes

them into a codeword and transmits this codeword over the next channel block. Thus

the transmission rate during this block is UnW/N bits per second. At the end of the

block, the codeword is decoded and the bits are sent to the higher layer application

at the receiver. Note we are assuming that each codeword is sent in N channel uses

and that the entire codeword is received before it is decoded. In the notation of the

previous chapter this correponds to K = 1. In the following sections, we will consider

relaxing some of these assumptions.

Assume that the arrival process {An} is a stationary ergodic Markov chain with

steady-state distribution πA. Conditioned on An, we assume that An+1 is independent

of Zm, Gm, and Um, for all m ≤ n. Denote the steady-state expected arrival rate by

Ā. Let Sn denote the number of bits in the buffer at time n−, i.e. just before the

start of the nth block. The dynamics of the buffer are then given by:1

Sn+1 = min{max{Sn + An+1 − Un, An+1}, L} (4.1)

where L is the buffer size. This is illustrated in Fig. 4-2. We assume that the

transmitter can choose Un based on the buffer state Sn and the channel state Gn and

the arrival state An.2

We also assume that the transmitter can adjust the transmission power during

the block. If u bits are to be transmitted during a channel block when the fading

state is g, the transmission power used is the minimum power required so that the

1Since Un is chosen based on Sn, it will always satisfy Un ≤ Sn. Thus the max is not really
necessary in (4.1). We include this for clarification.

2More generally, Un could be chosen based on the sequence of buffer, channel and arrival states
up to time n. However, for the Markov decision problem considered below there is no benefit in
allowing this generality.
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Figure 4-2: Buffer dynamics.

mutual information rate during the channel block is equal to uW/N bits/sec. This

quantity is denoted by P (g, u). Thus

C(|g|2P (g, u)) = uW/N (4.2)

and therefore

P (g, u) =
1

|g|2C−1(uW/N)

=
N0W

|g|2 (2u/N − 1).

(4.3)

As in the previous chapter, this can be considered a reasonable approximation on the

amount of power required provided that N is large enough to transmit near capacity

with acceptably small probability of error.

For the receiver to reliably receive the transmitted message, it is beneficial for it

to know the transmission rate and power used by the transmitter. At time n this

depends on Gn, Sn and An. Thus, if the receiver knows Gn, Sn, An, it can calculate

the transmission rate and power that the transmitter is using. By assumption, the

receiver knows Gn. If the arrival rate An is a constant then the receiver can simply

calculate the buffer state at each time n and thus will have knowledge of Sn and

An. With random arrivals, some additional overhead may be required to convey this

information. We assume that the receiver has this knowledge available.

Next we examine the following two situations. In the first case, we consider min-

imizing the long term average power while keeping the probability of buffer overflow
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small. In the second case, we consider minimizing the long term average power while

keeping the average buffer delay small. As in Sect. 3.2.2, each of these situations

is formulated in a Markov decision framework, except here this will be an infinite

horizon, average cost setting. In the next chapter, we will consider the solution to

such problems; here we simply give a formulation. Denote the buffer state space by

S. At various places we will either assume that S = {0, 1, . . . , L} or S = [0, L], de-

pending on which is mathematically more convenient. We consider a Markov decision

problem with state space S × G × A, or if the arrival process is memoryless we can

simply consider S × G to be the state space. At each time n, the possible control

action corresponds to the number of bits transmitted, Un. A given control action u

in state (s, g, a) will incur a cost P (g, u). A control policy is a sequence of functions

{μ1, μ2, . . .}, where μn : S × G × A 
→ R
+ specifies Un as a function of Sn, Gn and

An. The expected long term average power under such a policy is

lim sup
M→∞

1

M
E

(
M∑

n=1

P (Gn, μn(Sn, Gn, An))

)
. (4.4)

As stated above, we are interested in minimizing this quantity, while either avoiding

buffer overflows or keeping average delay small. Each of these cases is examined next.

4.1.1 Probability of overflow

In this case we want to minimize (4.4) while avoiding buffer overflows. For a constant

arrival rate overflows can be completely avoided by constraining the allowable policies

to those such that μ(s, g, a) > s+ Ā−L for all states (s, g, a). With variable arrivals,

overflow can not be avoided in general. Instead of constraining the controls so that

the buffer will not overflow, we consider allowing the buffer to overflow while incurring

an additional cost when this occurs – we refer to this as a “buffer cost”. By incurring

a larger buffer cost, less average power is required. In the following chapters the

trade-off between this buffer cost and the average power needed is considered. Note

that allowing a buffer overflow is similar to allowing an outage to take place. This
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additional cost is defined as:

b(s, a, u) =

⎧⎨
⎩1 if s + a − u > L,

0 otherwise.
(4.5)

The time average cost corresponding to this term is

lim sup
M→∞

1

M
E

(
M∑

n=1

b(Sn, An+1, Un)

)
.

Under suitable assumptions on the policy3, this is equal to the steady-state probability

the buffer overflows.

When the buffer overflows at time n, anywhere between 1 and An bits will be lost.

The above cost term assigns the same cost to any overflow regardless of the number

of bits which are lost. For some applications it may make more sense to have a cost

that is proportional to the number of bits lost, i.e.,

b(s, a, u) = (s + a − u − L)+. (4.6)

In this case the time average cost will correspond to the time average number of bits

lost due to overflow. Which of these costs is more appropriate depends on the nature

of the higher layer application.

Instead of (4.5) or (4.6), at times we will consider an additional cost term defined

by:

b(s) = 1L(s) =

⎧⎨
⎩1 if s = L,

0 otherwise.
(4.7)

the time average cost corresponding to this term corresponds to the steady-state

probability that the buffer is in state L. This is an upper bound on the probability

the buffer overflows and will be approximately equal for large buffers. The cost given

by (4.7) depends only on the buffer state, while (4.5) and (4.6) depend on the buffer

state, the control action, and the arrival process. This makes (4.7) easier to work

3We will be more precise about this in the following chapter.
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with in some cases. Also note that for a constant arrival rate, if the cost in (4.7) is

multiplied by Ā, this will be an upper bound for (4.6).

A special case of the above situation is when the arrival rate is constant, i.e.,

An = Ā for all n. In this case the buffer size, L, can be chosen so that a buffer

overflow will correspond to a maximum delay requirement being exceeded. This can

be used to model the situation in the example at the start of this chapter. The

total delay experienced by a bit in Fig. 4-1 is the sum of the delay until a given bit

leaves the buffer plus the delay until it is decoded once it leaves the buffer. Assume

that the delay after leaving the buffer is given by N/W + Dp, where N/W is the

time required to transmit the entire codeword and Dp accounts for the propagation

delay and processing time. Recall, we are assuming that the entire codeword must be

received before any bits are decoded. If this assumption is not true, then the above

arguments will need to be modified; this will be discussed more in the next section.

With the above assumptions, by keeping the delay in the buffer less than D −
(N/W + Dp), it can be guaranteed that the total delay will be less than D. If the

buffer size is chosen so that

L = Ā

(
D − N/W − Dp

N/W

)
, (4.8)

the event of the buffer overflowing at time n will correspond exactly to the delay of

the bit at the head of the buffer being larger than D − N/W − Dp. Thus

Pr(buffer overflows) = Pr(Delay in Buffer > D − N/W − Dp).

Note that we are considering delay in terms of a continuous time model as in Fig. 4-2

with a constant arrival rate. When the arrival rate is variable, the event of a buffer

overflow no longer corresponds to a maximum delay constraint being violated. In this

case we simply assume that the system has a limited buffer, and the user wishes to

avoid losing data due to buffer overflows.
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4.1.2 Average Delay

In this case we want to minimize (4.4) while also keeping the average delay small. For

a given control policy, let D̄B indicate the time average delay of a bit in the buffer.

The overall average delay experienced by a bit in Fig. 4-1, is then D̄B + N/W + DP

where N/W is still the length of time it takes to transmit each codeword, and DP is

the processing and propagation delay.4 We assume that these last two terms are fixed

and thus focus on the average delay in the buffer. Here we assume that the buffer

size L → ∞ so that no bits are lost due to overflow. In this case the buffer dynamics

are given by5:

Sn+1 = max{Sn + An+1 − Un, An+1}. (4.9)

As in the previous section, a buffer cost b(s) is defined to account for the average

delay. In this case assume that

b(s) = s/Ā. (4.10)

The time average cost due to this term is

1

Ā

(
lim sup
M→∞

1

M
E

(
M∑

n=1

Sn

))
. (4.11)

By Little’s law this is equal to the time average delay in the buffer. The trade-off

between this quantity and the average power needed will be considered.

We conclude this section with a couple of comments about this buffer cost. Let S̄

denote Ā times the quantity in (4.11). Thus S̄ is the time average buffer occupancy

in the discrete time system. If we assume that arrivals occur as in Fig. 4-2, then S̄

will be slightly larger than the time average number in the actual continuous time

system. This is shown in Fig. 4-3. This figure shows a sample path of the arrivals in

the continuous time system, AC(t), assuming a constant arrival rate. The equivalent

arrivals in the discrete time system, AD(t) and a sample path of the departures D(t)

are also shown. From Little’s law it follows that the average delay in the continuous

4Again we are assuming a block code is used and that the entire codeword must be received
before it is decoded.

5Again, Un ≤ Sn so the max is not really necessary
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Bits

Figure 4-3: Difference between average buffer size in continuous time and discrete time
model.

time system will be slightly less than S̄/Ā. If we assume that the actual arrival rate

is a constant rate of Ā per second then, from Fig. 4-3 we see that the average number

in the continuous time system will be S̄ − Ā/2, and thus the average delay in the

continuous time system will be S̄/Ā − 1/2.

Finally, note that for S̄/Ā to be equal to the average buffer delay, we are assuming

that no bits are lost due to overflows. When L → ∞ this is true. With a finite L,

if we constrain the control policies to avoid overflows, then S̄/Ā is still proportional

to the average buffer delay. If we do allow overflows, then S̄/Ā will only give a lower

bound on the average delay.

4.2 Model Variations

In the previous section, we assumed that each codeword is sent over one block of a

block fading channel as in (2.5). Furthermore, we assumed that the power needed

to transmit u bits reliably during a block with the fading state g is given by P (g, u)

as defined in (4.3). This is the minimum power such that the mutual information

rate during that block is uW/N bits per second. In this section, we take a closer

look at these assumptions and discuss modifications of the model which allow these

assumptions to be relaxed.
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4.2.1 Other Power Functions

First we look at the assumption that the required power is given by (4.3). For this

to give a good indication of the required power, the number of scalar channel uses,

N , per block needs to be large relative to the error exponent of the channel. The

analysis in the following chapters depends only on a few characteristics of the cost

function P (g, u). Any cost function which has these characteristics is defined to be

good. Specifically,

Definition: A function P : G×R
+ 
→ R

+, such that P (g, u) gives the power needed

to transmit u bits during a block when the channel state is g, is defined to be a good

power function if it can be written as:

P (g, u) =
P̃ (u)

|g|2

where P̃ (u) depends only on u and is a monotonically increasing, strictly convex

function of u.

The function P (g, u) defined in (4.3) is clearly a good power function. Consider

a model as in the previous section where P (g, u) is not given by (4.3) but is any

other good power function. The analysis in the following chapters will apply to such

a model as well. We give some examples next:

Bound on required power: Still assume that each codeword has to be transmitted

over a single block of N channel uses during which the fading state g remains constant.

We will define P (g, u) to be an upper bound on the power required to send u bits

with average probability of error less than η. To do this, we use a random coding

bound [Gal68]. Specifically consider a code with average power P (g, u)/W and 2u

codewords. Each codeword is a sequence of N complex symbols. From the random

coding bound, there exists such a code whose average probability of error6 Pe, after

6Here Pe is the probability of error averaged over the possible messages. By multiplying this
bound by 4, one can get a bound which applies to the probability any codeword is in error (cf.
[Gal68]).



4.2. MODEL VARIATIONS 75

transmission over a complex Gaussian channel with gain g and noise variance N0 is

bounded by

Pe ≤ exp(ρu − NE0(ρ, |g|2P (g, u)) (4.12)

for any ρ ∈ (0, 1]. Here

E0(ρ, |g|2P (g, u)) = ρ ln

(
1 +

|g|2P (g, u)

N0W (1 + ρ)

)
. (4.13)

From this it follows that if

P (g, u) =
N0W (1 + ρ)

|g|2
(
e(u/N−ln η/ρ) − 1

)
(4.14)

then, for any ρ ∈ (0, 1], this gives an upper bound on the power required as desired.

Also it is clearly a good power function. Of course optimizing over ρ would give a

tighter bound, i.e.

P (g, u) = inf
ρ∈(0,1]

N0W (1 + ρ)

|g|2
(
e(u/N−ln η/ρ) − 1

)
(4.15)

but this bound will not necessarily be convex in u and thus not a good power function.

In a similar manner, other power functions could be derived via other bounds on

the probability of error. For example, a lower bound on the probability of error can

be used to find a lower bound on the required power. Any such bound which results

in a good power function could be used in the following.

Specific Modulation/Coding Scheme: Suppose the transmitter is using a spe-

cific modulation/coding scheme which allows us to vary both the transmission rate

and power. Let P (g, u) be the power required for this transmission scheme to trans-

mit acceptably at rate u when the channel gain is g. If P is a good power function,

the following results will also apply to this modulation/coding scheme. In this case,

these results provide the minimum average power needed for this particular modula-

tion/coding scheme. A specific example of such a modulation/coding scheme is the

variable rate trellis coded M-QAM proposed in [GV97]. In this case, an approximation
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for the amount of transmission power required is given by

P (g, u) =
N0W

|g|2
(
2

u+2r
N

)
Kc, (4.16)

where r is related to the rate of the convolutional code used and Kc is a constant

that depends on the coding gain and the required bit error rate. Once again this is

clearly a good power function.

Next we argue that in a certain sense any reasonable scheme which allows one

to vary the tranmission power and rate will “almost” have a good power function.

Suppose we can choose between M different modulation/coding schemes for transmit-

ting each codeword, and each codeword is sent over a single channel block. The ith

modulation and coding scheme allows us to send one of 2ui
codewords over a block.

Assume that u1 < u2 < · · · < uM . To get an adequate probability of error with the

ith coding scheme, the SNR7 at the receiver is required to be σi. Thus when the

ith coding scheme is used and the channel state is g, the transmission power must

be P i = σi

|g|2 N0W . Let P̂ (g, ū) be the minimum average power required to transmitt

at ū bits on average when the channel state is g. We argue that P̂ (g, ū) is convex

and increasing. For any reasonable modulation and coding scheme, the σi’s will be

increasing in i. Thus P̂ (g, ū) is increasing in ū. Assume ū is in [0, uM ]. To show

that P̂ is convex in ū assume that to transmitt at average rate ū in a given channel

state g, the transmitter is allowed to randomly use any of the M coding schemes.

In other words, we use the ith scheme with probability pi, so that
∑

piu
i = ū. Let

P̂ (g, ū) be the minimum average power to transmit ū bits in this way. It can then

be seen that P̂ (g, ū) will be convex. Thus P̂ has all of the characteristics of a good

power function, except, it is convex but not strictly convex. Also in this case ū is the

expected transmission rate, instead of the actual number of bits transmitted. Despite

these differences, the arguments in Chap. 6 can be modified to apply in this case.

7signal power divided by noise power
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4.2.2 Wide-band Fading

Now we look at relaxing the assumption that the fading is flat. Assume that this is

not the case and that each codewords is sent over a frequency selective fading channel.

As in Sect. 3.3, we will assume that this is a block memoryless fading channel. Also

we still assume that each codeword is sent over one block. Recall, in this case the

channel state is a vector g ∈ C
�LW �. As in Sect. 4.1, we define P (g, u) to be the

minimum average transmission power required so that the mutual information rate

during the channel block is equal to uW/N bit/sec; only now the channel is frequency

selective. Thus,

CWB(g, P (g, u)) = uW/N

where CWB(·, ·) is given in (3.37). For any g �= 0, CWB(g, P ) is an increasing and

strictly concave function of P . Thus the inverse function, C−1
WB(g, x) is well defined,

where this is the inverse with respect to the P variable. Therefore setting

P (g, u) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

C−1
WB(g, uW/N) if g �= 0

0 if g = 0 and u = 0

∞ otherwise

(4.17)

yields the desired function. Like a good power function, this function is strictly

convex and monotonically increasing in u for all g �= 0. Most of the results in the

following only rely on this structure and thus apply for the wide-band case as well.

The exception is the results in Ch. 5 that describe the structure of the optimal policy

with respect to the channel gain. Such results only apply for the narrow band case.

4.2.3 More Than One Channel Block per Codeword:

In this section we look at the assumption that each codeword is transmitted over

only one block of a block fading channel. For this to be true each codeword must be

sent in N scalar channel uses, and N/W must be less than the channel’s coherence

time. The constraint on the number of channel uses per codeword could be due to a

system constraint as in Sect. 2.2. If there is such a system constraint and it is less

than the channel’s coherence time, then we can assume that the block length in the
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channel model is determined by this constraint. On the other hand, if any constraint

on the number of channel uses per codeword is larger than the channel’s coherence

time, then this model is not adequate. For example, if the system’s bandwidth is

30kHz, and the coherence time is 2 msec, then we must have N < 60 for the above

model to hold. If a larger block size is desired then the fading will change during

the transmission of the codeword. One way to model this is to assume that each

codeword is sent over K > 1 channel blocks. We look at two ways to model such an

assumption.

1. The first possibility is to assume that at the start of each group of K chan-

nel blocks u bits are removed from the buffer and encoded into a codeword.

This codeword is then transmitted over the group of K channel blocks. Let

G1, G2, . . . GK denote the sequence of channel states during the K channel

blocks. Due to causality considerations as in Sect. 3.2, the code rate must

be chosen based only on the realization of the first channel state, G1. During

the next K − 1 channel blocks, the code rate is fixed and the transmitter can

only adjust the transmission power depending on the channel states G2, . . . , GK .

Consider a discrete time buffer model as in Sect. 4.1, but now let the time sam-

ples correspond to groups of K channel blocks. For a given control choice of

u bits, the power required to transmit these bits reliably is a random variable

that depends on the realization of G2, . . . , GK . Let P (g, u) be the minimum

expected power required for the average mutual information rate over the next

K channel blocks to be uW/NK bits per sec given that G1 = g. This can

be found by solving a finite horizon dynamic programming problem as in Sect.

3.2.2. Defined in this way P (g, u) is not exactly a good power function, but it

is strictly convex and increasing in u for all g �= 0. As noted in Sect. 4.2.2, this

is enough for most of the following results to apply.

2. The second possibility is that during each channel block Un bits are encoded into

a portion of a codeword; K channel blocks later, these bits are decoded at the

receiver. For example if a convolutional code is used, then K could represent the

number of channel blocks necessary for sufficient number of constraint lengths

to be received. In this case, we still assume that the transmission power used
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during a block is the minimum power so that the mutual information rate

during that block is uW/N , i.e. this is still given by P (g, u) as in (4.3). Thus

the power used during a block depends only on the number of bits encoded

during the block and the channel gain during the block. In this case, the only

necessary modification to the discussion in Sect. 4.1 is that after leaving the

buffer, the delay until a bit is decoded will now be KN/W + DP instead of

N/W + DP .

4.3 Fixed Number of Codewords

In this section we look at a different model of the situation in Fig. 4-1. For the

models in Sect.’s 4.1 and 4.2, each codeword takes a fixed number of channel uses

to transmit. The code rate is varied by varying the number of codewords used over

this fixed length of time. In this section, we look at a model where one of a fixed

number of codewords is chosen, but the length of time to transmit each codeword is

variable. This can be thought of as a simple model of a system using a hybrid ARQ

protocol as discussed in Sect. 2.2. In such a system the length of time to transmit a

codeword depends on the number of re-transmission requests, where re-transmissions

contain additional redundancy. We are again interested in minimizing both the long

term average power and either probability of buffer overflow or average delay.

We still consider a discrete time model for the buffer in Fig. 4-1, where each

time slot corresponds to N channel uses of a block fading channel. In this case we

do not need to assume that N >> 1, indeed we may assume that N = 1. In the

following, a model for the situation in Fig. 4-1 is developed in which the buffer and

encoder/decoder are replaced by a second buffer, whose occupancy corresponds to

the reliability required by the data.

Assume that data arrives in fixed size packets of log M bits.8 As above we denote

the number of bits that arrive between time n−1 and n by An, where {An} is still an

ergodic Markov chain. From the fixed size packet asumption, at each time n, An will

8This assumption is made primarily for mathematical convenience; if we allowed an arbitrary
number of bits to arrive at each time, we would have to deal with the situation where fewer than
log M bits remained in the buffer.
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be a multiple of log M . Once again, we assume that {An} is independent of the fading

process and the additive noise. The arriving packets are placed into a transmission

buffer of size L̂ packets. Periodically a packet is removed from the buffer and encoded

into one of M codewords of infinite length. The transmitter then begins sending

this codeword over the block fading channel. While transmitting the codeword, the

transmitter can adjust the transmission energy by scaling the input symbol by an

adjustable gain. Once the receiver can decode the message with acceptable probability

of error, the transmitter stops transmitting the current codeword. The transmitter

then proceeds to encode and transmit the next packet in the buffer.

The length of time to transmit a codeword is a random variable that depends on

the channel gains and the transmission power used. This will be modeled using ideas

from [TG95]9. Specifically, assume a random coding ensemble in which codewords

are chosen from a Gaussian ensemble. Each input symbol is chosen independently

from a CN (0, 1) distribution. We allow the transmitter to adjust the transmission

energy at the start of each block. Let
√

Pi be the gain used during the ith block, so

that the transmitted signal for each channel use during the ith block appears to be

chosen from a CN (0, Pi) distribution. As in the previous section, assume that the

receiver knows the current gain,
√

P n, used by the transmitter. As in Sect. 4.2.1, if a

codeword is decoded after K blocks, there is the following random coding bound on

the ensemble probability of error, for any ρ ∈ (0, 1]:

Pe ≤ exp

(
ρ ln M − N

K∑
i=1

Eo(ρ, |gi|2Pi)

)
, (4.18)

where

Eo(ρ, |gi|2Pi) = ρ ln

(
1 +

|gi|2Pi

N0W (1 + ρ)

)
(4.19)

and {gi} is the sequence of channel gains. Suppose there is a maximal allowable

average error probability of η. This error probability is achieved if the codeword is

9In [TG95] these ideas where used to model a multi-access communication situation.



4.3. FIXED NUMBER OF CODEWORDS 81

decoded after K blocks where

N
K∑

i=1

Eo(ρ, |gi|2Pi) ≥ ρ ln M − ln η (4.20)

for some fixed10 ρ ∈ (0, 1]. Thus once (4.20) is satisfied, the transmitter can stop

transmitting the current codeword. Since the transmitter has perfect CSI, it will know

when this occurs. Without perfect CSI, some form of feedback from the receiver is

needed to notify the transmitter when to stop transmitting. As in [TG95], (ρ ln M −
ln η) can be considered the demand of a codeword once it enters the encoder and

NEo(ρ, |gi|2Pi) as the service given to that codeword in the ith time step.

Let S̃n be (ρ ln M − ln η) times the number of packets in the buffer at time n

plus the remaining amount of “service” required by the current codeword. We make

the approximation that when a codeword receives its service, the next codeword

immediately begins service. Practically, one would wait to begin transmitting the

next codeword until the next channel use. If the typical service time of a codeword is

many channel uses this effect will be small. With this approximation and assuming

that L̂ → ∞, the process {S̃n} evolves according to11:

S̃n+1 = max{S̃n + Ãn+1 − Ũn, Ãn+1} (4.21)

where Ãn = (ρ ln M − ln η) An

log M
and Ũn = NEo(ρ, |Gn|2Pn). We think of (4.21) as

the dynamics of a new discrete time buffer with arrival process {Ãn} and departure

process {Ũn}. As stated above, the contents of this buffer corresponds to the amount

of reliability or error exponent required by the packets in the original buffer plus the

remaining reliability required by the codeword being transmitted. Note at any time

n, � S̃n

(ρ ln M−ln η)
� is the number of packets in the original buffer plus the current packet

that is being transmitted. Thus the contents of the original buffer at any time n will

be � S̃n

(ρ ln M−ln η)
� − 1.

10One would naturally like to some how choose the “optimum” ρ ∈ (0, 1]. For the Markov
decision problem in the next section ,this corresponds to the ρ which yields the minimum weighted
combination of average delay and average power. Note varying ρ changes both the arrival process
and the amount of energy needed; Such an optimization appears to be difficult to do analytically.

11As in the previous section the max. in (4.21) is not really necessary
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In the above case, it was assumed that L̂ → ∞. When L̂ is finite, let L̃ =

(ρ ln M − ln η)(L̂ + 1), and change (4.21) to

S̃n+1 = min{max{S̃n + Ãn+1 − Ũn, Ãn+1}, L̃}. (4.22)

This can again be considered the dynamics of a new discrete time buffer with arrival

process {Ãn} and departure process {Ũn}. In comparing this to the original buffer

a further approximation is necessary. Specifically, when a overflow occurs in (4.22),

only a portion of the arriving packet will be lost, while in the original system the

entire packet would be lost. Thus � S̃n

(ρ ln M−ln η)
� − 1 will only be an upper bound on

the buffer contents in the original system.

Again, we assume that at each time n, the transmitter can choose Ũn based

on the current channel state, Gn, buffer state, S̃n, and source state Ãn. Since

Ũn = NEo(ρ, |Gn|2Pn), a given choice of Ũn = u when Gn = g requires Pn =
N0W (1+ρ)

|g|2
(
e( u

Nρ
) − 1

)
. Motivated by this, define P (g, u) to be:

P (g, u) =
N0W (1 + ρ)

|g|2
(
e( u

Nρ
) − 1

)
. (4.23)

As in the previous section this can be interpreted as the power cost for transmitting

at rate u/N during a channel block when the fading state is g. Note P (g, u) is a good

power function as defined in Sect. 4.2.

In the above context we are interested in minimizing the long term average power

as in 4.4 while either avoiding buffer overflows or keeping average delay small. As

in Sect. 4.1, these problems can be formulated in a Markov decision framework with

state space S ×G ×A, only now S is the state space of the new buffer process, {S̃n}.
We again introduce an additional buffer cost given by either b(s) or b(s, a, u). This is

given by (4.5), (4.6) or (4.7) for the probability of overflow case, or by (4.10) for the

average delay case. The average power in (4.4) for a given policy, corresponds to the

average power needed for the decoding rule discussed above. One could also look at

other decoding rules as in [TG95], in particular the error and erasure decoding rule

is sensible for the hybrid ARQ model.
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4.4 Other possibilities

In this section we briefly mention some other possible variations of the situation in

Fig. 4-1. We have a buffer cost term, b(·) corresponding to either average delay or

probability of buffer overflow. This term could be modified to correspond to some

other general quality of service measure. We have only considered the case of perfect

transmitter CSI. Models with imperfect CSI could be considered. In these cases actual

transmission rate could be modeled as a random variable depending on the channel

realization. One way to model this is by taking a broadcast approach as discussed

in Ch. 3. Finally the models in the preceding section could be combined in various

ways. For example, the transmitter could vary both the number of codewords and

the length of time over which they are transmitted.

4.5 Summary

To summarize, we have looked at several different models of the situation in Fig. 4-1.

In each case we are interested in minimizing the long term average power while also

reducing a buffer cost, which corresponds to either average delay or probability of

buffer overflow. In each case we also assumed that there was “system constraint”

which either limited the number of channel uses per codeword or limited the number

of codewords. These problems were all viewed in a common Markov decision setting.

In the next two chapters, we will analyze such problems.
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CHAPTER 5

Optimal Power/Delay Policies

In the previous chapter several models of the situation in Fig. 4-1 were formulated.

Each of these models was centered around a buffer control problem with many com-

mon characteristics. In this chapter we begin to analyze such problems. The analysis

in this chapter will apply to any of the situations described in Ch. 4 that fit into the

“generic” framework described below.

Let {Sn} be the state of a discrete time buffer with dynamics

Sn+1 = min{max{Sn + An+1 − Un, An+1}, L}, (5.1)

where L may be infinite. This buffer is controlled by varying the transmission rate

Un based on the state (Sn, Gn, An) ∈ S × G × A. The sequences {Gn} and {An}
are independent and both are stationary ergodic Markov chains with uncontrollable

dynamics. At each time n, a power cost of P (Gn, Un) is incurred for a given control

choice Un, where P (·, ·) is a good power function as in Sect. 4.2.1. Additionally at

each time n a buffer cost b(Sn) is incurred. In this chapter we assume that b(s)

depends only on s and is an increasing, convex function of s. Note this holds for b(s)

given by (4.7) or (4.10) but not by (4.5) or (4.6). In the following sections we place

additional restrictions on this model as needed.

Recall that a control policy is a sequence of functions, {μn} with μn : S×G×A 
→
U , where U is the set of allowable control actions and Un = μn(Sn, Gn, An) for all

85
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times n. For a given control policy, the time average power used is given by1

lim sup
M→∞

1

M
E

(
M∑

n=1

P (Gn, μn(Sn, Gn, An))

)
. (5.2)

Likewise, the time average buffer cost is given by:

lim sup
M→∞

1

M
E

(
M∑

n=1

b(Sn)

)
. (5.3)

We are interested in minimizing each of these quantities. In general there is a

trade-off between these two objectives, i.e., both can not be minimized at the same

time (except in the degenerate case where the arrival rate and channel state are fixed

for all time). To understand this trade-off, we consider a weighted combination of

these two criteria. Specifically for β > 0 we seek to find the policy {μn} which

minimizes:

lim sup
m→∞

1

m

(
m∑

n=1

E(P (Gn, μn(Sn, Gn, An)) + βb(Sn))

)
. (5.4)

The problem of minimizing (5.4) over all policies {μi} is a Markov decision problem.

Specifically it is an infinite horizon, average cost per stage problem or more simply an

average cost problem. A policy which minimizes the above cost is referred to as an

optimal policy. Such problems can be solved via dynamic programming techniques.

For a given β, the solution to this problem gives the minimum weighted sum of

the average power and average buffer cost. The constant β can be interpreted as a

Lagrange multiplier associated with a constraint on the average buffer cost.

To begin, in the next section we give some background on Markov decision theory

and dynamic programming. In Sect. 5.2 we show some structural characteristics of

both the relative gain and the optimal policies for the above average cost problem.

In both Sect. 5.1 and 5.2 we assume that the underlying state space is finite. In Sect.

5.3 we look at how the solution to (5.4) changes as β is varied.

1The expectation in (5.2) and (5.3) is taken with respect to the joint distribution of the random
variables involved. In general this value can depend on the initial state (S0, G0, A0); as discussed in
the next section, for the problem of interest this is not the case.
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5.1 Some Markov Decision Theory

In this section we review some results of Markov decision theory which are used in the

following. These are well known results; the reader is referred to [Ber95] or [Gal96]

for more discussion and proofs. In this section and the next we restrict ourselves to

problems with finite state and control spaces. Given the finite state space assumption,

without loss of generality we can assume that A ⊂ {0, . . . L}, S = {Amin, . . . , L} and

U = {0, . . . L} where Amin = inf A. Also, we assume that G ⊂ C with |G| < ∞; thus

we are restricting ourselves to models with narrow band fading.2 By assuming finite

state spaces, the mathematics are greatly simplified. For some of the models discussed

in the previous chapter this is a natural assumption, while in other cases it is clearly an

approximation. Let Qa,a′ = Pr(An+1 = a′|An = a) and Qg,g′ = Pr(Gn+1 = g′|Gn = g).

If a policy {μi} has the form μi = μ for all i, it is called a stationary policy. We

refer to such a stationary policy simply as the policy μ. For an average cost problem

with a finite state and control space it is known that there always exists a stationary

policy which is optimal. For the given average cost problem, we can consider the

related α-discounted problem, where α ∈ (0, 1). In the α-discounted problem the

future cost is discounted. In this case, one seeks to find the policy which minimizes:3

lim
m→∞

E

(
m∑

n=0

αn(P (Gn, μ(Sn, Gn, An)) + βb(Sn))

)
. (5.5)

A Blackwell optimal policy is a stationary policy μ which is optimal for all α-discounted

problems with α ∈ (ᾱ, 1) where0 < ᾱ < 1. A Blackwell optimal policy exists for any

finite state Markov decision problem, and a Blackwell optimal policy is also an optimal

policy for the average cost problem.

All states in a Markov decision problem are said to communicate if for any two

states (s, g, a) and (s′, g′, a′), there exists a stationary policy μ such that (s, g, a) will

eventually be reached from (s′, g′, a′) under this policy. From the assumption that

2Some of the following results clearly do not rely on this assumption and hold in other cases as
well.

3In the finite state space case, the per stage cost P (g, u) + βb(s) is bounded, and thus the limit
in (5.5) exists.
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{Gn} and {An} are independent and ergodic Markov chains, it follows that all states

communicate in the Markov decision problem under consideration. Several results

hold for finite state average cost problems with this property. First, the optimal cost

in (5.4) does not depend on the initial state. We denote this optimal cost by J∗.

Second, for every Blackwell optimal policy μ∗, there is a function w : S ×G ×A 
→ R

such that for all (s, g, a) ∈ S × G ×A,

J∗ + w(s, g, a)

= P (g, μ∗(s, g, a)) + βb(s) +
∑

g′∈G,a′∈A
Qa,a′Qg,g′w(f(s − μ∗(s, g, a), a′), g′, a′)

= inf
u∈U

(
P (g, u) + βb(s) +

∑
g′∈G,a′∈A

Qaa′Qgg′w(f(s − u, a′), g′, a′)

)
.

(5.6)

We have denoted min{max{x + a, a}, L} by f(x, a) so that the buffer dynamics are

Sn+1 = f(Sn − Un, An+1). Equation (5.6) is Bellman’s equation for this problem

and w is called a relative gain vector. Finally, for finite state problems in which all

states communicate, there always exists a solution to Bellman’s equation which is a

unichain policy, that is under such a policy the resulting state process {(Sn, Gn, An)}
is a Markov chain with a single recurrent class plus possibly one or more transient

classes.

In the α-discounted problem (5.5), the optimal cost depends on the initial state.

Let J∗
α(s, g, a) denote this cost when S0 = s, G0 = g, and A0 = a. It can be shown

that a stationary policy is optimal for the α-discounted problem if and only if it

satisfies:

J∗
α(s, g, a)

= P (g, μ(s, g, a)) + βb(s) + α
∑

g′∈G,a′∈A
Qa,a′Qg,g′J

∗
α(f(s − μ(s, g, a), a′), g′, a′)

= inf
u∈U

(
P (g, u) + βb(s) + α

∑
g′∈G,a′∈A

Qa,a′Qg,g′J
∗
α(f(s − u, a′), g′, a′)

)
.

(5.7)

This is Bellman’s equation for the discounted problem. The dynamic programming

operator T is defined to be a map from functions on the state space to itself, i.e.,
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T : R
S×G×A 
→ R

S×G×A. For any such function J , TJ is defined to be the right hand

side (5.7) with J∗
α replaced by J . Let T k be the composition of k copies of T . Then,

for any bounded function J defined on the state space it can be shown that:

lim
k→∞

T kJ = J∗
α. (5.8)

Thus the value of the above limit does not depend on which function J is initially

choosen. Furthermore J∗
α is the unique bounded fixed point J of the equation J =

TJ . Starting with an arbitrary function J and successively calculating TJ, T 2J, . . . is

referred to as value iteration. This provides a method for calculating the solution to

(5.7).

Finally we note that if all states communicate then the optimal cost of the dis-

counted problem is related to the optimal cost of the average cost problem by:

J∗ = lim
α→1

(1 − α)J∗
α(s, g, a) ∀(s, g, a) ∈ S × G ×A. (5.9)

Furthermore for any fixed state (s∗, g∗, a∗) let

w(s, g, a) = lim
α→1

(J∗
α(s, g, a) − J∗

α(s∗, g∗, a∗)) . (5.10)

Then w is a relative gain vector, i.e., it satisfies Bellman’s equation (5.6) for the

average cost problem.

5.2 Structural results4

Our goal in this section is to prove several structural characteristics of both the

optimal cost and optimal policy for the Markov decision problem described above.

In this section we still assume that the state and control spaces are finite. For some

of these results we will need to make some additional assumptions on the problem.

First we discuss a required set of assumptions we will make about the channel process

{Gn} and the arrival process {An}; these rely on the notion of a stochastic order

4This section can be skipped without loss of continuity.
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relation. Next we prove several characteristics about the optimal cost J∗
α of the

discounted problem as well as the relative gain vector of the average cost problem.

Some structural characteristics of the optimal policies are then developed.

5.2.1 Stochastic Order Relations

We are assuming that both the channel process {Gn} and the arrival process {An} are

independent, stationary ergodic Markov chains, i.e., each consists of a single class of

states which is both recurrent and aperiodic. In order to prove some of the results in

the following section, we place an additional restriction on these processes; we require

that they be stochastically monotone. To define this property we first give a definition

of a stochastic ordering of two random variables- a more detailed discussion of these

ideas can be found in [Ros95].

Consider two real valued random variables X, Y defined on a common probability

space. Then X is said to be stochastically larger than Y if Pr(X > a) ≥ Pr(Y > a) for

all a ∈ R. It can easily be shown that X is stochastically larger than Y if and only if

E(f(X)) ≥ E(f(Y )) for all non-decreasing functions f : R 
→ R [Ros95]. In particular,

note if f(x) = x and X is stochastically larger than Y , then EX ≥ EY . Likewise, it

can be shown that X is stochastically larger than Y if and only if E(g(Y )) ≥ E(g(X))

for all g : R 
→ R which are non-increasing.

A real valued Markov chain {Xn} is defined to be stochastically monotone if

Pr(Xn > a|Xn−1 = x) is a non-decreasing function of x for all n and all a. In

other words, Xn conditioned on Xn−1 = x is stochastically larger than Xn condi-

tioned on Xn−1 = y, for x > y. Thus if {Xn} is stochastically monotone and f is

non-decreasing, then E(f(Xn)|Xn−1 = x) is a non-decreasing function of x.

At some places in the following we will assume that either the arrival process or the

channel process is stochastically monotone, where we define a channel process {Gn}
to be stochastically monotone if {|Gn|} is. Intuitively this means that the probability

of a deep fade is no higher, given that the channel is good, than when it is already

bad. Most realistic channel models satisfy this condition. Note that a memoryless

process is always stochastically monotone. Thus a special case of the following is

when the fading and arrival rate are memoryless.
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5.2.2 Monotonicity of J∗
α

In this section we will prove several lemmas describing the structure of the optimal

cost function, J∗
α, of the α-discounted problem. Specifically we will show that with

certain assumptions J∗
α(s, g, a) is monotonic in each variable when the other variables

are fixed. Specifically we show that J∗
α(s, g, a) is non-decreasing in s, and a and non-

increasing in |g|. These results correspond to the intuition that it is less desirable

for the buffer occupancy to be large, the channel to be in a deep fade or the arrival

rate to be large. Note from (5.10) that the relative gain w(s, g, a) of the average cost

problem will also have these characteristics.

First we show monotonicity in the buffer occupancy.

Lemma 5.2.1 J∗
α(s, g, a) is non-decreasing in s for all g ∈ G and all a ∈ A.

PROOF. We will prove this lemma by an induction argument. Specifically consider

a bounded function J0 defined on the state space, which is non-decreasing in s for

all g ∈ G and a ∈ A. For k = 1, 2, . . . let Jk(s, g, a) be the result of the k-th stage

of the value iteration algorithm for the α-discounted problem starting with J0, i.e.

Jk = T kJ0 = TJk−1. Thus

Jk(s, h, a) =

min
u

(
P (g, u) + βb(s) + α

∑
g′∈G,a′∈A

Qa,a′Qg,g′Jk−1(f(s − u, a′), g′, a′)

)
(5.11)

From (5.8), it follows that J∗
α = limk→∞ Jk. We show that if Jk−1(s, g, a) is non-

decreasing in s for all g and a, then the same must be true of Jk(s, g, a). Thus by

induction, J∗
α = limk→∞ Jk must satisfy the lemma. Let u be a control which achieves

the minimum in (5.11) for a given state (s, g, a), with s �= 0. Now consider applying

this same control in state (s−1, g, a). Then P (g, u) will be the same. By assumption

b(s − 1) ≤ b(s), and by the induction hypothesis the last term in (5.11) will be less

than or equal to the corresponding cost in state (s, g, a). Since Jk(s − 1, g, a) is the

minimum over all choices of u, then we must have Jk(s − 1, g, a) ≤ Jk(s, g, a) as

desired. �
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Lemma 5.2.2 If the fading process, {Gn} is stochastically monotone, then J∗
α(s, g, a)

is non-increasing in |g|. For those states where the optimal control is to transmit at

some non-zero rate, J∗
α is strictly decreasing in |g|.

PROOF. Again let Jk = T kJ0. Assume that Jk−1(s, g, a) is non-increasing in |g| for

all s and a. Since {Gn} is stochastically monotone, it follows that

∑
g′∈G

Qg,g′Jk−1(f(s − u, a′), g′, a′)

is non-decreasing in |g| for all s, u, a′. Using this it follows, as in lemma 5.2.1 that

Jk = TJk−1 is non-increasing in |g| and thus by induction J∗
α will also be.

To prove the second statement, note that the optimal cost must satisfy Bellman’s

equation, i.e., for all (s, g, a),

J∗
α(s, g, a) =

min
u

(
P (g, u) + βb(s) + α

∑
g′∈G,a′∈A

Qa,a′Qg,g′J
∗
α(f(s − u, a′), g′, a′)

)
.

(5.12)

Only the first and third terms on the right hand side depend on g and each of these

terms is non-increasing in |g|. Furthermore if u > 0, then P (g, u) will be strictly

decreasing in |g|. Now following a similar argument to the proof of lemma 5.2.1,

consider two states: (s, g, a) and (s, g̃, a) with |g| > |g̃|. Assume that the optimal

control for state (s, g̃, a) is u > 0. Consider applying this same control in (s, g, a).

Then this results in a value on the right hand side of Bellman’s equation which is

strictly less than J∗
α(s, g̃, a) and thus we have the desired result. �

Lemma 5.2.3 If the arrival process, {An} is stochastically monotone, then J∗
α(s, g, a)

is non-decreasing in a for all s ∈ S and all g ∈ G.

PROOF. Again we prove this by induction using value iteration. Let Jk = TKJ0 and

assume that Jk−1(s, g, a) is non-decreasing in a. From this assumption and lemma

5.2.1 it follows that for a given u, g′ and s, Jk−1(f(s−u, a′), g′, a′) is a non-decreasing
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function of a′. Thus, since {An} is stochastically monotone,

∑
a′∈A

Qa, a
′Jk−1(f(s − u, a′), g′, a′)

is non-decreasing in a. The remainder of the proof follows the same line of reasoning

as in the previous two cases. �

5.2.3 Structure of Optimal policies

We will now prove some structural characteristics of the optimal policy. Showing

these results requires some additional restrictions. First we show that when the

arrival process is memoryless, the optimal policy is always non-decreasing in the

channel gain; in other words under the optimal policy one always transmits at the

highest rate when the channel is best. Next we show that when no overflows occur,

the optimal policy is non-decreasing in the buffer state.

Monotonicity in |g| with memoryless fading.

When the fading is memoryless, then we have Qg,g′ = πG(g′) for all g and g′

Lemma 5.2.4 If {Gn} is memoryless, then every Blackwell optimal policy μ∗(s, g, a)

is non-decreasing in |g|.

PROOF. Let μ∗(s, g, a) be a Blackwell optimal policy. We know that μ∗(s, g, a) must

satisfy Bellman’s equation for the α-discounted problem when α is close enough to 1,

i.e., we have for all (s, g, a):

J∗
α(s, g, a) = (TJ∗

α)(s, g, a) = P (g, μ∗(s, g, a)) + βb(s)+

α
∑

g′∈G,a′∈A
πG(g′)Qa,a′J∗

α(f(s − μ∗(s, g, a), a′), g′, a′)

To simplify notation, define

Ĵα(s, u) � α
∑

g′∈G,a′∈A
πG(g′)Qa,a′J∗

α(f(s − u, a′), g′, a′).
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Note that, by the memoryless assumption, Ĵα(s, u) does not depend on g.

To establish a contradiction, assume that there exist two states (s, g, a) and

(s, g′, a) with |g| < |g′| such that μ∗(s, g, a) > μ∗(s, g′, a). Consider using μ∗(s, g, a)

in state (s, g′, a), then from Bellman’s equation (5.7) we have:

P (g, μ∗(s, g, a)) + Ĵα(s, μ∗(s, g, a)) ≤ P (g, μ∗(s, g′, a)) + Ĵα(s, μ∗(s, g′, a)).

Similarly, we have

P (g′, μ∗(s, g′, a)) + Ĵα(s, μ∗(s, g′, a)) ≤ P (g′, μ∗(s, g, a)) + Ĵα(s, μ∗(s, g, a))

These inequalities imply:

P (g, μ∗(s, g, a)) − P (g, μ∗(s, g′, a)) ≤ P (g′, μ∗(s, g, a)) − P (g′, μ∗(s, g′, a))

Recall that since P is a good power function, P (g, u) = 1
|g|2 A(u) where A(u) is an

increasing function of u. The above inequality can then be written as:

1

|g|2 (A(μ∗(s, g, a)) − A(μ∗(s, g′, a))) ≤ 1

|g′|2 (A(μ∗(s, g, a)) − A(μ∗(s, g′, a)))

Since |g| < |g′|, and μ∗(s, g, a) > μ∗(s, g′, a) this inequality can only be true if A(u)

is decreasing, which gives us the desired contradiction. �
Note that if the fading had memory, then the term Ĵ defined above would depend

on g and the above arguments would not apply.

Monotonicity in s with no overflows.

In this section we consider the case where buffer overflows do not occur. For example

assume that |g| > 0 for all g ∈ G, a << L for all a ∈ A and b(s) is given by (4.7).

Then by choosing β large enough, the optimal policy will never allow the buffer to

reach state L. In this case we show that the optimal policy is always non-decreasing

in the buffer state s. The reason for assuming no overflows is to avoid having to

deal with the edge effects which occur when the buffer overflows. We first show a

convexity property of the optimal α-discounted cost, J∗
α(s, g, a) in s.
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A function f : S 
→ R is defined to be convex if for all s ∈ {1, . . . L − 1},

f(s + 1) + f(s − 1) ≥ 2f(s). (5.13)

Note that if f : R 
→ R is convex, then its restriction to S will also be. The following

lemma provides alternative characterizations of convexity.

Lemma 5.2.5 Let f : S 
→ R be a function defined on S = {0, . . . , L}; then the

following are equivalent:

I. f is convex.

II. f(s + 1) − f(s) is non-decreasing in s.

III. f(s) + f(t) ≥ f(
⌈

s+t
2

⌉
) + f(

⌊
s+t
2

⌋
) for all s, t ∈ S.

PROOF. That III implies I is straightforward. We first show that I implies II. Then

we show that II implies III.

Assume that I, is true. From (5.13) it follows that

f(s + 1) − f(s) ≥ f(s) − f(s − 1)

for all s ∈ {1, . . . , L − 1}. Iterating this, II follows.

Assume that II is true, we will show that III must be true by an induction

argument. First note that III is true with equality for all s, t ∈ S with |s − t| ≤ 1.

Assume that III is true for all s, t ∈ S with |s − t| ≤ d for some d ∈ {1, . . . L}, we

then show that III must be true for any s, t with |s − t| = d + 1.

Assume s̃, t̃ ∈ S with s̃ = t̃ + (d + 1). From II,

f(s̃) − f(s̃ − 1) ≥ f(t̃ + 1) − f(t̃)

and thus

f(s̃) + f(t̃) ≥ f(t̃ + 1) + f(s̃ − 1)
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Note |s̃ − 1 − (t̃ + 1)| = d − 1 and thus by the induction hypothesis,

f(t̃ + 1) + f(s̃ − 1) ≥ f(

⌈
s + t

2

⌉
) + f(

⌊
s + t

2

⌋
).

Therefore combining the previous two inequalities we have that III holds for all s, t

such that |s − t| ≤ d + 1. �

Lemma 5.2.6 If no overflows occur, then for all g ∈ G, a ∈ A, J∗
α(s, g, a) is convex

in s.

PROOF. Let Jk = T kJ0 and where J0(s, g, a) is any function which is convex in s

for all g, a. Once again we prove the lemma by induction. Assume that Jk−1 has the

desired convexity property; we show that Jk also has this property.

For any s ∈ {1, . . . L−1}, let us+1 be the optimal control choice for Jk(s+1, g, a),

i.e.,

Jk(s + 1, g, a) =P (g, us+1) + βb(s + 1)

+ α
∑

g∈G,a∈A
Qg,g′Qa,a′Jk−1(f(s + 1 − us+1, a

′), g′, a′).

Likewise let us−1 be the optimal control choice for Jk(s − 1, g, a). Then
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Jk(s + 1, g, a) + Jk(s − 1, g, a)

= P (g, us+1) + P (g, us−1) + βb(s + 1) + βb(s − 1)

+ α
∑

g∈G,a∈A
Qg,g′Qa,a′ (Jk−1(f(s + 1 − us+1, a

′), g′, a′) + Jk−1(f(s − 1 − us−1, a
′), g′, a′))

≥ P (g,

⌊
us+1 + us−1

2

⌋
) + P (g,

⌈
us+1 + us−1

2

⌉
) + 2βb(s)

+
∑

g∈G,a∈A
Qg,g′Qa,a′

(
Jk−1

(⌊
f(s + 1 − us+1, a

′) + f(s − 1 − us−1, a
′)

2

⌋
, g′, a′

)

+ Jk−1

(⌈
f(s + 1 − us+1, a

′) + f(s − 1 − us−1, a
′)

2

⌉
, g′, a′

))

where the last inequality follows from the convexity of P , b and Jk−1 and the previous

lemma. Recall that f(x, a) = min{max{x + a, a}, L}; assuming that x ≥ 0 and no

overflows occur, f(x, a) = x + a. Thus

⌊
f(s + 1 − us+1, a

′) + f(s − 1 − us−1, a
′)

2

⌋
= s + a′ −

⌈
us+1 + us−1

2

⌉

= f(s −
⌈

us+1 + us−1

2

⌉
, a′)

and similarly

⌈
f(s + 1 − us+1, a

′) + f(s − 1 − us−1, a
′)

2

⌉
= f(s −

⌊
us+1 + us−1

2

⌋
, a′)

Combining this with the above inequalities we have

Jk(s + 1, g, a) + Jk(s − 1, g, a)

≥ P (g, �us+1 + us−1

2
�) + P (g, �us+1 + us−1

2
�) + 2βb(s)

+
∑

g∈G,a∈A
Qg,g′Qa,a′

(
Jk−1(f(s − �us+1 + us−1

2
�, a′), g′, a′)

+ Jk−1(f(s − �us+1 + us−1

2
�, a′), g′, a′)

)
≥ 2Jk(s, g, a)
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Thus we have the desired convexity of Jk. �

Lemma 5.2.7 Assuming that no overflows occur, there exists a Blackwell optimal

policy μ∗(s, g, a) which is non-decreasing in s for all a ∈ A and all g ∈ G.

PROOF. Let μ∗(s, g, a) be a Blackwell optimal policy. We know that μ∗(s, g, a) must

satisfy Bellman’s equation for the α-discounted problem when α is close enough to 1,

i.e., we have for all (s, g, a):

J∗
α(s, g, a) = (TJ∗

α)(s, g, a)

= P (g, μ∗(s, g, a)) + βb(s)

+ α
∑

g′∈G,a′∈A
Qg,g′Qa,a′J∗

α(f(s − μ∗(s, g, a), a′), g′, a′)

To establish a contradiction assume the lemma is not true. Then given any Black-

well optimal policy there must exist two states (s, g, a) and (s + 1, g, a) such that

μ∗(s, g, a) > μ∗(s + 1, g, a). For this value of g and a, let

Ĵα(s − u) � α
∑

g′∈G,a′∈A
Qg,g′Qa,a′J∗

α(f(s − u, a′), g′, a′). (5.14)

Consider using μ∗(s + 1, g, a) in state (s, g, a), then using Bellman’s equation (5.7)

for J∗(s, g, a) we have

P (g, μ∗(s, g, a)) + Ĵα(s − μ∗(s, g, a))

≤ P (g, μ∗(s + 1, g, a)) + Ĵα(s − μ∗(s + 1, g, a)).

Similarly, we have

P (g, μ∗(s + 1, g, a)) + Ĵα(s + 1 − μ∗(s + 1, g, a))

≤ P (g, μ∗(s, g, a)) + Ĵα(s + 1 − μ∗(s, g, a)).

We now argue that one of these inequalities can be assumed to be strict. If not then

we can form a new Blackwell optimal policy μ̃∗ by setting μ̃∗(s + 1, g, a) = μ(s, g, a)
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and setting μ̃∗ = μ∗ for every other state. If after doing this, there are no states

(s̃, g̃, ã) and (s̃ + 1, g̃, ã) such that μ∗(s̃, g̃, ã) > μ∗(s̃ + 1, g̃, ã), then the lemma is

proved. Otherwise, we repeat the above procedure until a pair of states is found in

which one of the above inequalities is strict.

Combining these inequalities we get

Ĵα(s + 1 − μ∗(s + 1, g, a)) − Ĵα(s − μ∗(s + 1, g, a))

< Ĵα(s + 1 − μ∗(s, g, a)) + Ĵα(s − μ∗(s, g, a)).
(5.15)

Note from the previous lemma, J∗
α(s, g, a) is convex is s. Therefore J∗

α(s+1, g, a)−
J∗

α(s, g, a) is a non-decreasing function of s. Thus, from (5.14) it follows that Ĵα(x +

1) − Ĵα(x) is non-decreasing in x. From (5.15), it follows that s − μ∗(s + 1, g, a) <

s−μ∗(s, g, a) but this contradicts the assumption that μ∗(s + 1, g, a) < μ∗(s, g, a). �

Policies with overflows

In this section we look at some characteristics of policies for which overflows occur.

Assume that under a given policy, Pr(Sn+1 = L|(Sn, Gn, An) = (s, g, a)) = 1 for some

state (s, g, a). In other words, from state (s, g, a) the buffer will be full in the next

time step with probability one. Denote the set of all states (s, g, a) with this property

by Ωof . Recall that, in this chapter. we assume that b(s) only depends on s, and thus

does not depend on the number of bits lost due to overflow. This implies that the

optimal control for any state (s, g, a) ∈ Ωof is μ∗(s, g, a) = 0. For an α-discounted

problem, there exists an optimal policy with the characteristic that if (s, g, a) ∈ Ωof

then any state (s′, g, a) such that s ≤ s′ will also be in Ωof . To see this note that since

it is optimal to transmit nothing in state (s, g, a), we have for all controls u ∈ U :

P (g, u) +
∑

g′∈G,a′∈A
Qg,g′Qa,a′J∗

α(f(s − u, a′), g′, a′)

≥ P (g, 0) +
∑

g′∈G,a′∈A
Qg,g′Qa,a′J∗

α(L, g′, a′)
(5.16)

From lemma 5.2.1, J∗
α(f(s − u, a′), g′, a′) is non-decreasing in s and therefore the

left-hand side of (5.16) is non-decreasing in s. Thus it is also optimal to transmit
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nothing in state (s′, g, a). Similarly if {Gn} and {An} are stochastically monotone

and (s, g, a) ∈ Ωof , then any state (s′, g′, a′) such that s ≤ s′, |g| ≥ |g′|, and a ≤ a′

will also be in Ωof . This follows from lemma 5.2.2 and lemma 5.2.3.

Consider the case where the arrival process is constant, i.e., An = Ā for all n.

In this case if the buffer overflows with some positive probability then Ωof must be

non-empty. Furthermore the only way that the buffer overflows is if it first enters

some state in Ωof . Finally consider the limiting case where the buffer size is Ā + 1

and the arrival rate is again a constant. In this case the buffer state space can be

assumed to be {Ā, Ā + 1}. Using the above results we can give a fairly complete

characterization of the optimal policy in this case. Specifically when the buffer state

is Ā, the channel state is partitioned into a set GĀ and its complement GC
Ā

, such that

for every g ∈ GĀ the optimal policy transmits at rate Ā and every g ∈ GC
Ā

the optimal

policy is to transmit nothing. Similarly for the buffer state Ā + 1, the channel states

are partitioned into two sets GĀ+1 and GC
Ā+1

where again for every state g ∈ GĀ+1, the

optimal policy is to transmit at rate Ā + 1 and for every g ∈ GC
Ā+1

the optimal policy

is to transmit nothing. From the above discussion GĀ+1 ⊂ GĀ. Additionally if the

fading process is stochastically monotone, then there exists some state gĀ ∈ G such

that GĀ = {g ∈ G : |g| > |gĀ|} and similarly there exists a state gĀ+1 corresponding

to the set GĀ+1. Restricting attention to the set of states in GĀ note that the power

allocation used over these states will correspond to inverting the channel (cf. (3.33)).

5.2.4 More general state spaces

In the analysis of this section we only considered problems with finite state spaces.

The reason for the finite state assumption was to simplify the arguments; it is not

necessary for many of these results to hold. In this section we comment briefly on

how these results can be extended to more general state spaces.

First consider the case, where S = {0, 1, 2, . . .} and both G and A are finite. Then

by using the “approximating sequence” techniques in [Sen99], the above results can be

generalized to countable buffer state spaces. The idea here is to consider a sequence

of problems with finite buffers of size L, and let L → ∞. Under suitable assumptions,

the relative gains, optimal costs and optimal policy of the finite state space problems

will converge to the corresponding quantities for the problem with countable buffer
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state space.

For a general average cost problem (without a finite state space), additional as-

sumptions are needed to assure the existence of a stationary policy which is optimal.

In [HLL96] some such assumptions are provided for general state spaces. Typically

such problems are approached by considering a sequence of α-discounted problems

and letting α → 1. With suitable assumptions, it can be argued that the optimal

policy of the discounted problems converge to an optimal policy for the average cost

problems. Such assumptions typically involve some type of compactness of the un-

derlying state space and some degree of continuity for the the optimal policy and the

optimal discounted cost.

5.3 Optimum power/delay curve

For a given choice of β, the minimum of (5.4) over all policies gives the minimum of the

average power plus β times the average buffer cost. Assume that the stationary policy

μ∗ minimizes (5.4) for a given β. Let P̄ μ∗
and b̄μ∗

be the corresponding average power

and average buffer cost, as given in (5.2) and (5.3) respectively. Then P̄ μ∗
must be the

minimum average power over all policies for which the average buffer cost under the

policy is less than or equal to b̄μ∗
. Let B be the subset of R

+ such that for every B ∈ B
there exists some policy μ (with finite average power) for which the average buffer

cost is less than or equal to B (note B is clearly a convex set). For any B ∈ B, define

P ∗(B) to be the minimum average power such that the average buffer cost is less than

B. Thus, by the above argument, P ∗(b̄μ∗
) = P μ∗

. Since the buffer cost is typically

related to some measure of delay, we refer to P ∗(B) as the (optimum) power/delay

curve. In this section we will examine some properties of this curve. First we prove

the following proposition about the structure of P ∗(B) under the assumption that

the buffer state space S and control space U are R
+. In particular, this means that

no overflows occur.

Proposition 5.3.1 If S = U = R
+ then the optimum power/delay curve, P ∗(B), is

a non-increasing, convex function of B ∈ B. Except for the degenerate case where

channel and arrival processes are both constant, it is a decreasing and strictly convex

function of B.
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PROOF. That P ∗(B) is non-increasing is obvious. We show that it is convex. Let

B1 and B2 be two average buffer costs in B with corresponding values P ∗(B1) and

P ∗(B2). We want to show that for any λ ∈ [0, 1],

P ∗(λB1 + (1 − λ)B2) ≤ λP ∗(B1) + (1 − λ)P ∗(B2). (5.17)

We will prove this using sample path arguments. Let {Gn(ω)}∞n=1 and {An(ω)}∞n=1 be

a given sample path of channel states and arrival states. Let {U1
n(ω)} be a sequence

of control actions corresponding to the policy which attains P ∗(B1). Let {S1
n(ω)} be

the corresponding sequence of buffer states. Likewise define {U2
n(ω)} and {S2

n(ω)}
corresponding to P ∗(B2). As noted previously we can assume that U i

n(ω) ≤ Si
n(ω)

for i = 1, 2, for all ω, and for all n. Now consider the new sequence of control actions,

{Uλ
n (ω)}, where for all n,

Uλ
n (ω) = λU1

n(ω) + (1 − λ)U2
n(ω).

Let {Sλ
n(ω)} be the sequence of buffer states using this policy. Assume at time n = 0,

Sλ
0 (ω) = S1

0(ω) = S2
0(ω) = 0 for all sample paths, ω. By a simple recursion, it follows5

that for all n, Sλ
n(ω) = λS1

n(ω) + (1 − λ)S2
n(ω). Thus,

lim
m→∞

1

m

m∑
n=1

Eb(Sλ
n(ω)) = lim

m→∞
1

m

m∑
n=1

Eb(λS1
n(ω) + (1 − λ)S2

n(ω))

≤ lim
m→∞

1

m

m∑
n=1

E
(
λb(S1

n(ω)) + (1 − λ)b(S2
n(ω))

)
= λB1 + (1 − λ)B2,

(5.18)

where the expectation is taken over all sample paths. The inequality in the second

line above follows from the assumption that b(s) is convex in s. From the convexity

of P (h, u) in u, we have for all n

P (Gn(ω), Uλ
n (ω)) ≤ λP (Gn(ω), U1

n(ω)) + (1 − λ)P (Gn(ω), U2
n(ω)).

5Note this is where the assumption that no overflows occur is used.
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Again, summing and taking expectations we have

lim
m→∞

1

m

m∑
n=1

EP (Gn(ω), Uλ
n (ω)) ≤ λP ∗(B1) + (1 − λ)P ∗(B2). (5.19)

Thus we must have P ∗(λB1 + (1 − λ)B2) ≤ λP ∗(B1) + (1 − λ)P ∗(B2) as desired.

The final statement in the proposition will follow from the results in the next

section. �.

Note that varying β and finding the optimal policy for each value can provide

different points on the power/delay curve. It is natural to then ask if all values of

P ∗(B) can be found in this way, with an appropriate choice of β. One way of viewing

this problem is as a multi-objective optimization problem [Saw85]. By this we mean

an optimization problem with a vector valued objective function c : X 
→ R
n. In our

case c has two components corresponding to the average delay and average power.

For such problems, a feasible solution, x is defined to be Pareto optimal if there exists

no other feasible x̂ such that c(x̂) < c(x), where the inequality is to be interpreted

component-wise. It can be seen that the points {(P ∗(B), B) : B ∈ B} are a subset

of the Pareto optimal solutions for this problem.6 In general one can not find every

Pareto optimal solution by considering minimization of scalar objectives k′f where

k ∈ R
n. If P ∗(B) is strictly convex as in the above proposition, it follows that every

point on P ∗(B) (and thus every interesting Pareto optimal solution) can be found by

solving the minimization (5.4) for some choice of β.

5.3.1 Lower bound on average buffer cost

Next we lower bound the average buffer cost over all policies μ. Since b(s) is non-

decreasing with the buffer state space, b(s) will be minimized if the transmitter sets

Un = Sn = An for all n. With such a policy, the transmitter empties the enitire buffer

at each stage. This results in

b̄μ = EAb(A),

6Assume that {P ∗(B) : B ∈ B} is not the entire set of Pareto optimal solutions, then for any
remaining Pareto optimal point (P̃ , B̃) it must be that P ∗(B̃) ≤ P̃ . Thus these other Pareto optimal
solutions are not very interesting for us.
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where A is a random variable with distribution πA, the steady-state distribution of

{An}. This bound is tight if (1) b(s) is strictly increasing and (2) inf{|g| : g ∈ G} > 0.

If the second requirement is not satisfied then the above policy will require infinite

transmission power. When these requirements are satisfied the power required for the

above policy is given by

EG,AP (G,A)

where G ∼ πG and A ∼ πA. In this case B = {B : B ≥ EAb(A)} and P ∗(EAb(A)) =

EG,AP (G,A). When An = Ā for all n, then EG,AP (G,A) = EGP (G, Ā); we denote

this quantity by Pd(Ā). For the model in Sect. 4.1 this corresponds to the minimum

average power such that the channel will have a delay-limited capacity of ĀW/N . For

channels whose delay-limited capacity is zero (i.e., requirement (2) does not hold),

Pd(Ā) must then be infinite for any Ā > 0. Finally note that for b(s) given by (4.10),

EAb(A) = 1, this is the minimum delay any bit can experience in the discrete time

model.

5.3.2 Lower Bound on Average Power

In this section we look at a lower bound on the average power required by any policy.

Clearly one can minimize the average power by transmitting nothing, in which case

the average power will be zero. If the buffer is finite, then the average buffer cost for

such a policy will simply be b(L). Thus P ∗(B) = 0 for all B ≥ b(L). Now assume

that the buffer is infinite and that b(s) → ∞ as s → ∞. In this case we can ask what

is the minimum average power needed over all policies such that the average buffer

cost is finite.

Since there are no overflows, the long term average transmission rate must be Ā

to keep the average buffer cost finite. Define Pa(Ā) to be the solution to

minimize
Ψ:G
→R+

EP (G, Ψ(G))

subject to : E(Ψ(G)) ≥ Ā
(5.20)

We have restricted Ψ to be only a function of the channel state G in this optimization.

For the model of Sect. 4.1 this corresponds to the minimum power required so that
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Figure 5-1: Example of power/delay curve.

the average capacity of the channel is ĀW/N (cf. Sect. 3.2.3). The quantity Pa(Ā)

is the minimum average power needed to transmit at average rate Ā with no other

constraints. Thus Pa(Ā) is a lower bound to P ∗(B) for all B ∈ B. If both the channel

and arrival processes are constant, then Pa(Ā) = Pd(Ā); in this case, the power delay

curve is a horizontal line. When the the channel and arrival processes are not both

constant, Pa(Ā) < Pd(Ā). In the next chapter we will consider this bound in more

detail.

5.3.3 An example

We conclude this section with an example. Figure 5-1 shows the power/delay curve

for a channel with memoryless fading and two states (|G| = 2); in one state |g|2 = 0.3

and in the other state |g|2 = 0.9. The sequence of channel states is i.i.d. and each

state is equally likely. The arrival process has a constant rate of Ā = 5 and the

power needed to transmit u bits is given by P (g, u) = 10
|g|2 (e

u/10 − 1). To calculate
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the optimal policy, we discretize the buffer state space and allowable control actions.

Using dynamic programming techniques, P ∗(D) can be obtained computationally

(within a small error margin) for various choices of β; the computed values of P ∗(D)

are indicated in the figure. For this example Pd(Ā) = 14.42 and Pa(Ā) = 9.55. Pa(Ā)

is indicated by a horizontal line in the figure.

5.4 Summary

In this chapter we began to analyze the buffer control problems formulated in Ch.

4. Specifically we considered the average cost Markov decision problem with per

stage cost P (h, u) + βb(s). In the first part of the chapter we demonstrated several

characteristics of the relative gain and optimal policies for such problems. In the

second part of the chapter we considered the behavior of the optimal solution as β

varies.



CHAPTER 6

Asymptotic Analysis

In this chapter, we analyze several asymptotic versions of the Markov decision prob-

lems from Ch. 4. For example, assume that the buffer cost corresponds to probability

of overflow (i.e., b(s, a, u) is given by (4.5)). For this case we consider the optimal

solution for a given β as the buffer size L goes to infinity. One can often explicitly find

the optimal cost of the Markov decision problem in these asymptotic regimes. Our

approach to such problems is closely related to that in [Tse94], where buffer control

problems for variable rate lossy compression are studied. The underlying mathemat-

ical structure of the problem in [Tse94] is very similar to the type of problem we are

interested in here. First we will consider the case mentioned above where the buffer

cost corresponds to probability of overflow and we let the buffer size go to infinity. In

this case we find the limiting value of the optimal cost and bound the rate at which

this limit is approached. We will also give a simple buffer management scheme which

exhibits convergence rates near these bounds. We will then discuss a similar set of

results when the buffer cost corresponds to average delay instead of overflow prob-

ability or maximum delay. In this case we consider the asymptotic performance as

the average delay grows. Thus these results characterize the tail of the power/delay

curve, P ∗(D) as D → ∞. First we need to establish some notation and preliminary

results.

107
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6.1 Preliminaries

We again consider the generic buffer control problem as outlined at the start of Ch. 5.

However, in this chapter we make several different assumptions which are discussed

in the following. First, we allow the buffer cost term to depend on a and u as in

(4.5). Next, we assume that the arrival process, {An} is memoryless. This simplifies

much of the following analysis. Also, in this chapter we assume that the buffer state

space is either [0, L] or all of R
+. Likewise, we assume that the control choice can

be any real value. Note that such an assumption is appropriate for the model from

section 4.3, since the buffer state represents the amount of “error exponent” to be

transmitted, and there is no reason to constrain this quantity to be an integer. For a

model as in section 4.1, this assumption is not quite as natural, since the buffer size

represents the number of bits to be transmitted. One could think of this real valued

buffer as an approximation in this case. If the typical number of bits per codeword

is large, such an approximation is reasonable. We will also assume that the channel

state space G is a compact subset of C and that the arrival state space A is a compact

subset of R
+. Let Amin = inf A and Amax = supA (by the compactness assumption

such quantities exist and are in A). Let P be a good power function as in Sect. 4.2.

Recall in (5.20) we defined Pa(Ā) to be the solution to the following optimization

problem:

minimize
Ψ:G
→R+

EP (G, Ψ(G))

subject to : E(Ψ(G)) ≥ Ā
(6.1)

where Ψ is a rate allocation, denoting the rate transmitted as a function of the channel

state. The quantity Pa(Ā) is the minimum average power needed to transmit at

average rate Ā. Assume that P is given by (4.3) and thus corresponds to transmitting

at capacity. In this case the above problem is the inverse of the optimization for

finding the channel’s average capacity as in Sect. 3.2.3. Namely for a given rate Ā,

the capacity of this channel with average power constraint Pa(Ā) will be Ā. This is

achieved with a water-filling rate and power allocation (cf. (3.35)). Let ΨĀ be this

rate allocation. This rate allocation is the almost surely unique solution to the above

problem and has the following characteristics: (i) it is a function only of |g|, (ii) it is
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a continuous and non-decreasing function of |g| for all Ā > 0, and (iii) for any g ∈ G,

ΨĀ(g) is a continuous and non-decreasing function of Ā. For any other good power

function, the optimal rate allocation will also have these characteristics. This can be

seen by introducing Lagrange multipliers and solving the above nonlinear program.

Next we prove some results about of Pa(Ā).

Theorem 6.1.1 If P is a good power function then Pa is monotonically increasing

and strictly convex.

PROOF. First we show that P is strictly convex. Let A1 and A2 be two distinct

average rates and let Ψ1 and Ψ2 be two optimal rate allocations such that for j = 1, 2:

P(Aj) = EP (G, Ψj(G)) (6.2)

where G ∼ πG. For any λ ∈ [0, 1], define Ψλ = λΨ1 + (1 − λ)Ψ2. Then

EΨλ(G) = (λ)A1 + (1 − λ)A2 (6.3)

Since P (g, u) is a good power function and hence strictly convex in u we have:

P (g, Ψλ(g)) < λP (g, Ψ1(g)) + (1 − λ)P (g, Ψ2(g)) (6.4)

Combining the above yields:

λP(A1) + (1 − λ)P(A2) > EP (G, Ψλ(G)) ≥ P(λA1 + (1 − λ)A2) (6.5)

The last inequality follows from the definition of P. This shows that P is strictly

convex.

Next we show that P is increasing. Let A1 and A2 be two average rates such that

A1 < A2. Let Ψ2 be an optimal rate allocation corresponding to A2 as above and let

α = A1/A2. Form a new allocation, Ψα by setting Ψα = αΨ2. Then

EΨα(G) = αA2 = A1 (6.6)



110 CHAPTER 6. ASYMPTOTIC ANALYSIS

Since P (g, u) is a good power function it is decreasing in u, and so

P (g, Ψα(g)) ≤ P (g, Ψ2(g)) for all g ∈ G (6.7)

with equality only in those state g for which Ψ2(g) = 0. Thus we have:

P(A1) ≤ EP (G, Ψα(G)) < P(A2) (6.8)

i.e. P is decreasing. �
Now we will define some additional notation that will be useful. Since the arrival

process is assumed to be memoryless stationary policy μ will only depend on the

buffer state and the channel state. That is μ : S × G 
→ R, where μ(s, g) denotes the

number of bits transmitted in state (s, g). In the following we only consider stationary

policies. We show that, at least asymptotically, such a policy is optimal so there is

no loss in making such an assumption. 1

For a given policy μ the sequence of combined buffer, channel and arrival states

{(Sn, Gn, An)} form a Markov chain.2 We will assume in the following that under

every policy μ, this Markov chain is ergodic; in other words it has a unique steady-

state distribution πμ
(S,G,A) which represents the asymptotic distribution of (Sn, Gn, An)

under any initial distribution3. For a given steady-state distribution, let πμ
S be the

marginal distribution on the buffer state space; in other words, πμ
S = πμ

(S,G,A) ◦ T−1,

where T is the natural projection from S × G ×A onto S. Let SμL , G, A be random

variables whose joint distribution is the steady-state distribution of (Sn, Gn, An) under

policy μ.

Conditioned on the buffer being in state s ∈ S we will denote the average power

1If the state space of the average cost problem was finite, then as in the previous chapter, we
know that there always exists a stationary policy which is optimal. As noted in Sect. 5.2.4, for a
problem with an infinite state space, this is not necessarily true without additional assumptions.

2Since the state space of this process is uncountable, there is some question as to whether we
should call {(Sn, Gn, An)} a Markov chain. Some authors reserve the term Markov chain for discrete
time Markov processes whose state space is either countable or finite, while others allow more general
state spaces as in this case.

3The existence of stationary measures and ergodicity for Markov chains with general state spaces
is discussed in [Fel57] and [Doo90]. If the stochastic transition kernel for the Markov chain satisfies
some mild regularity conditions, then a stationary measure will exist.
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used in this state by P̄ μ(s), i.e., P̄ μ(s) = E(P (G,μ(S,G)|S = s). The time average

power under policy μ will be denoted by P̄ μ, this is given by (5.2). From the assumed

ergodicity,

P̄ μ = ESP̄ μ(S) =

∫
S

P̄ μ(s)dπμ
S(s) (6.9)

Similarly b̄μ is defined to be the average buffer cost under policy μ as in (5.3).

Again, by the assumed ergodicity we have

b̄μ = Eb(S,A, μ(S,G))

When it is clear which control strategy we are referring to, we will drop the μ from

the above notation.

6.2 Probability of overflow

In this section we consider the case where the buffer cost corresponds to probability

of overflow or, with a constant arrival rate, to the probability that a maximum delay

constraint is violated. In Ch. 4 several different cost functions were proposed for

this case; these are given in (4.5)-(4.7). The results in this section will apply to any

of these formulations. Let pμ
of denote the steady-state probability that the buffer

overflows under policy μ. Thus when b(s, a, u) is given by (4.5), b̄μ = pμ
of ; note that

this is a lower bound on the average cost for the either of the other cost functions

in (4.6) or (4.7). When b(s) is given by (4.7), b̄μ = πμ
S(L); multiplying this by Amax

gives an upper bound each of the possible cost functions.

The total average cost in (5.4) corresponding to a policy μ is P̄ μ + βb̄μ. We study

this cost as L → ∞. To be more precise, consider a sequence of buffer state spaces

S1,S2, . . ., where SL = [1, L] is a buffer of size L. Let μL be a control policy when

the buffer state space is SL. Then P̄ μL + βb̄μL is the corresponding average cost. We

are interested in what can be said about the sequence of average costs as L → ∞.

For large enough β, as L → ∞, one would expect that under a good policy

b̄μL would go to zero. Given that the buffer does not overflow, then Pa(Ā) is the

minimum average power required to transmit at a rate of Ā bits per time unit. This
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suggests that Pa(Ā) is a reasonable guess for the limit of P̄ μL + βb̄μL under optimal

policies. For β large enough it can be shown that Pa(Ā) is a lower bound on the

optimal cost for every value of L. To see this note that if the buffer overflows with

probability pμL

of , then at most pμL

of Amax bits are lost on average due to overflow. Thus

the average transmission rate must be greater than or equal to Ā − pμL

of Amax. So we

have P̄ μL ≥ Pa(Ā − pμL

of Amax). A lower bound on the average cost of the Markov

decision problem (for any of the above choices for b(·)) is then

Pa(Ā − pμL

of Amax) + βpμL

of . (6.10)

If we assume that Pa is differentiable4 at Ā, then, since Pa is convex, it is lower

bounded by the first two terms of its Taylor series about Ā. Thus we have:

Pa(Ā − pμL

of Amax) ≥ Pa(Ā) + P ′
a(Ā)(−pμL

of )Amax. (6.11)

If β > AmaxP ′
a(Ā), it follows that Pa(Ā) is a lower bound on the average cost of the

Markov decision problem for every value of L.

In the following we will show that this bound is indeed achievable in the limit

as L → ∞. A more interesting question will be to look at the rate at which this

limit is approached. Such an approach is motivated by work in [Tse94] on variable

rate lossy compression. We will now take a few moments to discuss this work and its

relationship to our problem.

6.2.1 Variable Rate Lossy Compression

In variable rate lossy compression one is interested in compressing blocks of real valued

data. Each block of data is first quantized and then the resulting reproduction vector

is losslessly encoded using a fixed to variable length code. In [Tse94] the following

version of this problem is considered. The data is generated by a source which is

modulated by a Markov chain. The statistics of the source depend on the state of

the Markov chain. After quantizing and encoding, the resulting codeword is placed

4Since Pa is convex it is differentiable almost everywhere with respect to Lebesgue measure. At
those points where it is not differentiable a similar statement can be made using a sub-gradient.
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into a buffer. The data in this buffer is then transmitted over a link with a fixed

rate. Additionally, based on the buffer size and the state of the source, the quantizer

is allowed to change. When a courser quantizer is used, on average fewer bits will

enter the buffer but at the expense of more distortion. One can formulate a Markov

decision problem in this framework, where the average cost consists of a weighted

sum of the average distortion and the probability that the buffer overflows.

By identifying distortion with power and the state of the source with the state of

the channel, one can see similarities between this problem and ours. In both cases

one is interested in minimizing a function which is decreasing in the buffer drift, while

keeping the buffer from overflowing. The development in the following two sections is

patterned after that in chapter 2 of [Tse94]; in these sections we prove similar results

for the problem at hand. First we give bounds on the rate of convergence of the cost.

Then we show that a sequence of simple policies has a convergence rate near this

bound.

6.2.2 A Bound on the Rate of Convergence

If β is chosen large enough as above, then the only way we could get P̄ μL + βb̄μL →
Pa(Ā) is if both P̄ μL → Pa(Ā) and b̄μL → 0. In this section we deal with each of

these terms separately. Assume that b(s, a, u) is given by (4.5). Given that pμL

of → 0,

we bound the rate at which P̄ μL → P(Ā). Since the cost in (4.5) is a lower bound

for each of the other cost, this bound also applies for these costs.

The notation used in this section is the same as in the previous sections with the

addition of the superscript μL to denote that this quantity corresponds to the case

where the buffer state space is SL and the control policy μL is used. For example,

SμL
n will denote the buffer size at time n under policy μL.

In this section, we restrict ourselves to admissible sequences of policies, these are

defined next.

Definition: A sequence of stationary policies {μL} is admissible if it satisfies the

following conditions:

1. Under every policy μL, (SμL
n , Gn, An) is an ergodic Markov chain.
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2. There exists an ε > 0, a δ > 0 and an M > 0 such that for all L > M and for

all s ∈ SL

Pr(A − μL(SμL , G) > δ|SμL = s) > ε

where5 SμL , G, A are random variables whose joint distribution is the steady-

state distribution of (Sn, Gn, An) under policy μL.

We have already discussed the first assumption. The second assumption means

that for large enough buffers, there is a positive steady-state probability that the

transmission rate will be less than the number of bits that arrive in the next time

step no matter what the buffer occupancy is. If Pr(G = 0) > ε and Amin > δ then

this assumption must be satisfied by any policy that uses finite power. If this is not

the case, then this is a restriction on the allowable policies.

We also assume in the following that at x = Ā, the first and second derivatives

of Pa(x) exist and are non-zero. Recall, Pa(x) is a strictly convex and increasing

function of Ā. For such a function, the first and second derivatives of Pa(x) exist and

are non-zero at every point except for a set with measure zero6. Thus, this is not a

very restrictive assumption.

The following notation is used to compare the rate of growth of two sequences

{an} and {bn}:

• an = o(bn) if limn→∞ an

bn
= 0,

• an = O(bn) if lim supn→∞
|an|
|bn| < ∞,

• an = Ω(bn) if bn = O(an),

• an = Θ(bn) if an = O(bn) and an = Ω(bn)

We are now ready to give the bound on the rate of convergence of the average

power and the overflow probability. We state it in the following theorem.

5This notation will be used through out this section.
6This follows from Lebesgue’s theorem which states that a monotonic function is differentiable

almost everywhere [RN55].
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Theorem 6.2.1 For any admissible sequence of policies, {μL}, the rate of conver-

gence of the average power required and the buffer fullness probability have the follow-

ing relationship: if pμL

of = o(1/L2), then P̄ μL − Pa(Ā) = Ω(1/L2).

Note this theorem says that for each choice of β, the total cost, P̄ μL + βpμL

of can

not converge to Pa(Ā) faster than 1/L2. Before proving this theorem, we first prove

the following two lemmas. For i ∈ SL, let ΔμL(i) = E(A−μL(SμL , G)|SμL = i). This

is the drift of the buffer in state i ignoring any overflows. Since {An} is memoryless,

we then have ΔμL(i) = Ā − E(μL(SμL , G)|SμL = i).

Lemma 6.2.2 For any stationary policy μ,

0 ≤
∫
S

Δμ(s) dπμ
S(s) ≤ Amaxp

μ
of

Recall we are interested in sequences of policies for which pμL

of → 0. This lemma

implies that the drift averaged over the buffer state space must converge to zero for

such a sequence of policies.

PROOF. To prove this lemma we will use a decomposition argument that will be

used several more times. Let us define two new processes En and Fn which are related

to the buffer state process Sn. Let Fn = An −Un−1; this represents the net change in

the buffer size between time n− 1 and time n disregarding any overflows. Let En be

the cumulative number of bits that have been lost due to buffer overflow up till time

n, i.e., En =
∑n−1

i=0 [Si + Ai+1 −Ui −L]+ Assuming that the buffer is empty at n = 0,

we then have:

Sn =
n∑

m=1

Fm − En (6.12)

And thus

lim
n→∞

1

n
ESn = lim

n→∞
(E

1

n

n∑
m=1

Fm − E
1

n
En)

We consider each of these terms separately. Since Sn is bounded, we have limn→∞ E
1
n
Sn =

0. We can think of Fn as a reward gained at time n by the Markov chain {Sn, Gn, An}.
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Since we are assuming that the Markov chain {Sn, Gn, An} is ergodic it follows that,

lim
n→∞

E
1

n

n∑
m=1

Fm = E(A − μ(S,G))

=

∫
S

Δμ(s) dπμ
S(s)

(6.13)

Finally we consider the En term. This term is clearly non-negative and there is a

one-to-one correspondence between when En increases and when the buffer overflows.

In these cases En increases by at most Amax bits. Thus we have that

0 ≤ lim
n→∞

E
1

n
En ≤ Amaxp

μ
of (6.14)

Combining these results yields the desired relationship. �

Lemma 6.2.3 Let M , ε and δ be as in the definition of admissibility. For every

admissible sequence of buffer control schemes {μL}, it holds that for all L > M there

exists a sL ∈ SL such that

∫
s>sL

ΔμL(s) dπμL

S (s) ≤ −εδ2

4L
+ Amaxp

μL

of .

In Theorem 6.2.1, we are interested in a sequence of policies such that pμL

of =

o(1/L2). This lemma implies that for large enough L, the average drift over the “tail

end” of the buffer will be negative for such a sequence of policies.

PROOF. Assume L > M . Without loss of generality we can assume that m = 2L/δ

is an integer. Consider partitioning SL into the following m segments of length δ/2:

[0, δ/2], (δ/2, δ], . . . , ((m − 1)δ/2, L]. Let ((c − 1)δ/2, cδ/2] be one of these segments

which has the maximum probability with respect to πμL

S . Therefore,

πμL

S (((c − 1)δ/2, cδ/2]) ≥ 1

m
=

δ

2L
. (6.15)
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Let sL = cδ/2. Now we define a new process Ŝn by

Ŝn = max{Sn, sL}. (6.16)

This process represents the projection of original buffer process Sn on the set [sL, L].

Let Fn and En be defined as in the decomposition of Sn in (6.12). We now want

to come up with a related decomposition of Ŝn. Let F̂n be defined by

F̂n =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Fn if Fn ≥ 0 and Ŝn−1 > sL,

max(0, Fn + Sn−1 − sL) if Fn ≥ 0 and Ŝn−1 = sL,

Ŝn − Ŝn−1 if Fn < 0.

(6.17)

Thus F̂n is the net change in Ŝn between times n − 1 and n, ignoring overflows. The

desired decomposition of Ŝn is then

Ŝn =
n∑

m=1

F̂n − En. (6.18)

As in Lemma 6.2.2 we have:

lim
n→∞

E
1

n
Ŝn = 0

lim
n→∞

E
1

n

n∑
m=1

F̂m =

∫
S

lim
l→∞

E(F̂l |Sl−1 = s) dπμL

S (s)

lim
n→∞

E
1

n
En ≤ Amaxp

μL

of

Where liml→∞ E(F̂l |Sl−1 = s) is the steady-state expected value of F̂n conditioned

on Sn = s.

Using these in the decomposition of Ŝn yields:∫
S

lim
l→∞

E(F̂l |Sl−1 = s) dπμL

S (s) ≤ Amaxp
μL

of (6.19)

Now we want to relate liml→∞ E(F̂l |Sl−1 = s) to changes in the original process.
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We consider three cases:

1. First when Sl−1 > sL, the upward changes in both chains are equivalent, while

the size of the downward transitions in the Ŝ chain may be smaller, so that

lim
l→∞

E(F̂l|Sl−1 = s) ≥ lim
l→∞

E(Fl|Sl−1 = s) = ΔμL(s), ∀ s > sL. (6.20)

2. Next assume that Sl−1 ∈ ((c− 1)δ/2, cδ/2] (recall that sL = cδ/2). In this case

F̂l is non-negative and F̂l ≥ Fl − δ/2. Thus, for all s ∈ ((c − 1)δ/2, cδ/2]

E(F̂l|Sl−1 = s) ≥ δ/2 Pr(F̂l > δ/2|Sl−1 = s) (6.21)

≥ δ/2 Pr(Fl > δ|S−1l = s). (6.22)

The inequality (6.21) follows from Markov’s inequality. Taking the limit and

using the assumption that μ is admissible we have

lim
l→∞

E(F̂l|Sl−1 = s) ≥ lim
l→∞

δ/2 Pr(Fl > δ|Sl−1 = s) ≥ δε

2
. (6.23)

3. Finally when Sl−1 ≤ (c − 1)δ/2 we have

lim
l→∞

E(F̂l|Sl−1 = s) ≥ 0 (6.24)

Now combining all these into (6.19) we get:

∫
((c−1)δ/2,cδ/2]

εδ

2
dπμL

S (s) +

∫
s>sL

ΔμL(s) dπμL

S (s) ≤ Amaxp
μL

of . (6.25)

Using (6.15) we have ∫
((c−1)δ/2,cδ/2]

εδ

2
dπμL

S (s) ≥ εδ2

4L
. (6.26)

Substituting this into (6.25) yields the desired relationship. �
Combining the results of the previous two lemmas we get the following corollary.
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Corollary 6.2.4 Let M , ε and δ be as in the definition of admissibility. For every

admissible sequence of buffer control schemes {μL}, it holds that for all L > M

∫
s≤sL

ΔμL(s) dπμL

S (s) ≥ εδ2

4L
− Amaxp

μL

of ,

where sL is as defined in lemma 6.2.3.

Thus for a sequence of policies with pμL

of = o(1/L2), if L is large enough, the

average drift over the initial part of the buffer will be non-negative.

We are now ready to prove Theorem 6.2.1. To prove this theorem we will first

relate P̄ μL − Pa(Ā) to a function of the drifts. Then we will use the previous two

lemmas to relate this function to pμL

of .

PROOF. Assume we have a sequence of admissible buffer control schemes, {μL},
such that pμL

of = o(1/L2). For a given L, the average rate we are transmitting at when

Sn = s is Ā−ΔμL(s). Therefore a lower bound on the average power used conditioned

on Sn = s is Pa(Ā − ΔμL(s)). Averaging over the buffer state space yields

P̄ μL ≥
∫
S
Pa(Ā − ΔμL(s)) dπμL

S (s) (6.27)

Via a first order Taylor expansion of Pa(x) around x = Ā, Pa(x) can be written as:

Pa(x) = Pa(Ā) + (x − Ā)P ′
a(Ā) + Q(x − Ā) (6.28)

The remainder term Q(x) has the following properties which all follow from the strict

convexity and monotonicity of Pa(x):

1. Q(x) is convex,

2. For x �= 0, Q(x) > 0 and Q(0) = 0,

3. Q′(x) > 0 for x > 0, Q′(x) < 0 for x < 0, and Q′(0) = 0.
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Combining (6.27) and (6.28), we now have:

P̄ μL − Pa(Ā) ≥ P ′
a(Ā)

∫
S
(−ΔμL(s)) dπμL

S (s) +

∫
S

Q(−ΔμL(s)) dπμL

S (s). (6.29)

To prove the theorem we will show that (6.29) is Ω(1/L2); thus P̄ μL −Pa(Ā) must

be also. We can bound the first term in (6.29) by noting that P ′
a(Ā) > 0 (since Pa is

increasing) and then using Lemma 6.2.2 to get

−P ′(Ā)Amaxp
μL

of ≤ P ′(Ā)

∫
S
(−ΔμL(s)) dπμL

S (s) ≤ 0 (6.30)

From this it follows that

|P ′(Ā)

∫
S
(−ΔμL(s)) dπμL

S (s)| = o(1/L2). (6.31)

The second term in (6.29) requires a little more work. Assume that L > M so

that Lemma 6.2.3 applies. Let sL be defined as in that lemma and let VL = (sL, L].

Since Q is non-negative, we have

∫
S

Q(−ΔμL(s)) dπμL

S (s) ≥
∫

VL

Q(−ΔμL(s)) dπμL

S (s). (6.32)

The right hand side can further be bounded as∫
VL

Q (−ΔμL(s)) dπS(s) =

∫
VL

Q (−ΔμL(s))) dπμL

S (s) + (1 − πμL

S (VL))Q(0)

≥ Q

(∫
VL

−ΔμL(s) dπμL

S (s)

)
.

(6.33)

Here we have used that Q(0) = 0 and the convexity of Q. From Lemma 6.2.3 we have

for L > M : ∫
VL

−ΔμL(s) dπμL

S (s) ≥ εδ2

4L
− Amaxp

μL

of (6.34)
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Again recall that pμL

of = o( 1
L2 ); thus there exists constants B > 0 and M ′′ ≥ M such

that for L > M ′′ we have: ∫
VL

−ΔμL(s) dπμL

S (s) ≥ B

L
> 0 (6.35)

Using the fact that Q(x) is increasing for x > 0, we have, for L > M ′′,

Q

(∫
VL

−ΔμL(s) dπμL

S (s)

)
≥ Q

(
B

L

)
. (6.36)

Now, by taking the second order Taylor series of Q(x) around x = 0 and noting that

Q(0) = Q′(0) = 0 and Q′′(0) > 0 we see that

Q

(
B

L

)
=

1

2

(
B

L

)2

Q′′(0) + o(1/L2) = Ω

(
1

L2

)
(6.37)

Using (6.32), (6.33), (6.36), and (6.37) we have:

∫
S

Q(−ΔμL(s))dπμL

S (s) = Ω

(
1

L2

)
(6.38)

Thus we have a bound for the second term in (6.29). Combining this with our bound

for the first term in (6.31), we see that P̄ μL − P(R̄) = Ω(1/L2) and the proof is

complete. �

6.2.3 A Nearly Optimal Simple Policy

In this section we will show that when the fading and arrival processes are memoryless

one can achieve performance near the bound in Thm. 6.2.1 by using a simple control

strategy. This control strategy involves dividing the buffer in half. When the buffer

is more than half full, one control policy will be used, and when the buffer is less

than half full, another policy is used. Conditioned on the buffer occupancy being in a

given half, the control policy will only be a function of the channel state. The policy

used in the upper half of the buffer will have a negative drift and in the lower half,

the policy will have a positive drift. Thus such a policy tends to regulate the buffer
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Figure 6-1: A simple policy with drift υ.

to be half full. Some intuition as to why this may be desirable is provided by the

following arguments. Clearly we don’t want the buffer to get too full; the fuller the

buffer, the more likely an overflow. On the other hand keeping the buffer too empty

is not desirable when it comes to minimizing the power cost. To see this note that

to minimize the average power one would like to use a policy which transmits at a

higher rate when the channel is good and a lower rate when the channel is bad. But,

if the the buffer is too empty then there may not be enough bits stored up to take

advantage of a sequence of good channel states.

We emphasize that in this section in addition to the arrival process being memo-

ryless we are also assuming that the channel processes is; i.e., both {Gn} and {An}
are sequences of i.i.d. random variables. In this section, we assume that b(s) is given

by (4.7) so that b̄μ = πμ
S(L). As noted above, multiplying this by Amax gives an upper

bound on any of the other costs. From this observation it follows that the results in

this section hold for any of these other costs.

In the following we will first describe the type of policy we will consider in more

detail. Our goal is to prove that nearly optimal convergence rates can be attained

with such a policy. We will first prove several lemmas which will aid us in proving

this claim. These arguments are based on similar results in [Tse94].

Simple Policy: Consider partitioning the buffer state space into two disjoint sets

[L/2, L] and [0, L/2). Let ψ1 : G 
→ R
+ and ψ2 : G 
→ R

+ denote two rate allocations

which are only functions of the channel state. For a given υ > 0, we will define a



6.2. PROBABILITY OF OVERFLOW 123

simple policy with drift υ to be a policy μ with the form:7

μ(s, g) =

⎧⎨
⎩ψ1(g) if s ∈ [L/2, L]

ψ2(g) if s ∈ [0, L/2)

where EG(ψ1(G)) = Ā + υ and EG(ψ2(G)) = Ā − υ. Thus the drift in any state

s ≤ L/2 will be −υ and the drift in any state s > L/2 will be υ. This is illustrated

in Figure 6-1. At times, we will refer to this as the simple policy (ψ1, ψ2)

Since the channel and arrival process are memoryless the random variables {An+1−
ψ1(Gn)} are i.i.d. and likewise the random variables {An+1 −ψ2(Gn)} are i.i.d. Thus,

when using a simple policy, while the buffer occupancy stays in a given half the

buffer process, {Sn} will be a random walk (ignoring any edge effects). In analyzing

the overflow probability, we will use some results about random walks which are

summarized next.

Random Walks: We will state some basic results concerning random walks; we

refer to [Gal96] for proofs and further discussion. Let {Xi}i≥1 be a sequence of i.i.d.

random variables with E|X1| < ∞. The stochastic process, {Sn}∞n=0 is a random walk

starting at x if S0 = x and for n ≥ 1 Sn = Sn−1 + Xn. We will be interested in the

first time a random walk crosses one of two thresholds, a and b. Specifically for a

given a > x and b < x, let N = inf{n : Sn ≥ a or Sn ≤ b}. Wald’s identity gives the

following relationship between the expected time till a threshold is crossed and the

expected value of the random walk at that time:

E(SN) − x = E(X1)E(N) (6.39)

We now state some asymptotic rates related to this problem. We focus on the case

where EX1 < 0 and we let a → ∞.8. Let γ(r) = ln E(eX1r) be the semi-invariant

moment generating function of X1. We will assume that γ(r) is finite in an open

interval I containing 0 and that it has a root for some r∗ > 0. From the convexity of

7Of course if at some time n, Sn < L/2 and ψ1(Gn) > Sn then the transmitter will only transmit
at rate Sn. Note in this case the actual power used will be less than P (Gn, ψ1(Gn))

8Of course similar results hold if EX1 > 0
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γ(r) it follows that this will be the unique positive root of γ(r). Then the following

are true:

Pr(SN ≥ a) = Θ(e−r∗(a−x)) (6.40)

Pr(SN ≤ b) = Θ(1) (6.41)

Using these relationships we can prove the following lemma which gives the rate

of convergence of the fullness probability for a sequence of simple policies.

Lemma 6.2.5 Let {μL} = {(ψ1
L, ψ2

L)} be a sequence of simple policies with drifts

{υL}, where υL → 0 as L → ∞. Let M∗ = supL sups∈SL,g∈G,a∈A{|a − μL(s, g)|}
denote the maximum change in the buffer size in one time step for any policy. We

assume that for L large enough, M∗ << L. Let r∗(υL) be the unique positive root of

the semi-invariant moment generating function of A − ψ1
L(G). Then we have:

πμL

S (L) = o

(
exp(−1

2
r∗(υL)L)

)

Before proving this lemma, we give a sketch of some of the general ideas behind the

proof. Consider a renewal process, where renewals occur every time that Sn = L.

Let TL denote the average inter-renewal time. Then we have πμL

S (L) = 1/TL. We

will try to estimate TL. Figure 6-2 illustrates a typical sample path of Sn between

renewals. As shown in this figure, once the buffer is in state L it will typically return

to the region near the middle of the buffer and spend a lot of time near the middle

before finally returning to L. Suppose we look at the buffer process once it first

enters [L/2, L/2 + M∗] and try to find the expected time for the buffer to reach L

from this point. Starting in [L/2, L/2 + M∗] the buffer process can be modeled as

a random walk until it crosses either L or L/2. From Wald’s identity the time until

this happens is ≈ 1
υL

and the probability it crosses L first will be ≈ exp(−L
2
r∗(υL))

If it first crosses L/2, it will eventually return to [L/2, L/2 + M∗] again. Once Sn

enters [L/2, L/2 + M∗] again, it can be modeled by another random walk and the

same argument holds. Thus we can make the following approximation, we can think

of this as a series of independent trials, where each trial has a probability of success of

exp(−L
2
r∗(υL)). Thus the expected number of trials until a success is ≈ exp(L

2
r∗(υL)).



6.2. PROBABILITY OF OVERFLOW 125

nS

n

L

L/2

L/2-M

L/2+M*

*

Figure 6-2: Sample path of Sn between renewals events.

Ignoring the time to get back if the buffer crosses L/2, the average length of each trial

is ≈ 1
υL

. Thus the expected total time until a success will be ≈ exp(L
2

r∗(υL))

υL
. Using

this as an approximation for TL, we get that πμL

S (L) ≈ υL exp(−L
2
r∗(υL)) which is

o(exp(−L
2
r∗(υL))) as desired.

In the following proof we will show that the above argument can be made precise.

PROOF. The proof of this lemma will make use of the fact that while the buffer

process stays in [L/2, L] it behaves as a random walk. We will now explicitly define

this random walk. Define {W i
n} to be a random walk starting at i ∈ [L/2, L], where

W i
n = W i

n−1 + (An − ψ1
L(Gn−1)) and W i

0 = i. Also let us define the stopping time

N i = inf{n > 0 : W i
n ≥ L or W i

n < L/2}. Thus if S0 = i, we will have Sn = W i
n for

all n < N i and N i will be the first time that either the buffer becomes full or the

buffer occupancy becomes less than L/2. Finally let ηi denote the distribution of the
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random variable W i
N i . Note that,

ηi

([
L

2
− M∗,

L

2

))
= 1 − ηi ([L,∞)) . (6.42)

Now we are ready to prove the lemma. Assume that L is large enough so that

M∗ << L. As discussed above we consider a renewal process where renewals occur

every time Sn = L, and we let TL denote the expected inter-renewal time. Denote

the residual life of the renewal process at time n by Vn. We can then use the random

walk {WL
n } to write TL as:

TL = E(NL) +

∫
[L
2
−M∗, L

2
)

E(VNL|SNL = i) dηL(i) (6.43)

≥
∫

[L
2
−M∗, L

2
)

E(VNL|SNL = i) dηL(i) (6.44)

≥
(

inf
{0<i≤M∗}

E(Vn|Sn =
L

2
− i)

)
ηL

([
L

2
− M∗,

L

2

))
(6.45)

The expected residual time given that the buffer state is s ∈ [0, L/2) is the sum

of the expected time to re-enter [L/2, L] plus the expected residual time once the

process re-enters [L/2, L]. Let Qn be the length of time from time n until Sn first

enters [L/2, L] again. Then we have for all k ∈ (0,M∗],

E(Vn|Sn = L/2 − k) = E(Qn|Sn = L/2 − k) + E(Vn+Qn|Sn = L/2 − k) (6.46)

≥ E(Vn+Qn|Sn = L/2 − k) (6.47)

≥ inf
{0≤i≤M∗}

E(Vn|Sn = L/2 + i) (6.48)

As in (6.43), the expected residual time given the buffer is in state L/2 + i for
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i ∈ [0,M∗] can be expressed using the random walk {W
L
2
+i

n } as

E(Vn|Sn = L/2 + i) = E(N
L
2
+i) +

∫
[L
2
−M∗, L

2
)

E(V
N

L
2 +i|SN

L
2 +i = j) dη

L
2
+i(j) (6.49)

≥ E(N
L
2
+i) +

(
inf

{0<j≤M∗}
E(Vn|Sn =

L

2
− j)

)
η

L
2
+i

([
L

2
− M∗,

L

2

))
(6.50)

Minimizing over i yields:

inf
{0≤i≤M∗}

E(Vn|Sn = L/2 + i) ≥ inf
{0≤i≤M∗}

E(N
L
2
+i)

+

(
inf

{0<j≤M∗}
E(Vn|Sn =

L

2
− j)

)
inf

{0≤i≤M∗}
η

L
2
+i

([
L

2
− M∗,

L

2

)) (6.51)

Substituting this into (6.46), we have:

E(Vn|Sn =L/2 − k) ≥ inf
{0≤i≤M∗}

E(N
L
2
+i)

+

(
inf

{0<j≤M∗}
E(Vn|Sn =

L

2
− j)

)
inf

{0≤i≤M∗}
η

L
2
+i

([
L

2
− M∗,

L

2

)) (6.52)

We can again minimize over k ∈ (0,M∗]; doing this, then using (6.42) and simplifying

the resulting expression yields:

inf
{0<i≤M∗}

E(Vn|Sn =L/2 − i) ≥ inf{0≤i≤M∗} E(N
L
2
+i)

sup{0≤i≤M∗} η
L
2
+i ([L,∞))

(6.53)

Finally we can substitute this back into (6.43) to get:

TL ≥ inf{0≤i≤M∗} E(N
L
2
+i)

sup{0≤i≤M∗} η
L
2
+i ([L,∞))

ηL

([
L

2
− M∗,

L

2

))
(6.54)

Now we can bound each of these terms. First note

inf
{0≤i≤M∗}

E(N
L
2
+i) ≥ 1 (6.55)
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Thus for L large enough,

inf
{0≤i≤M∗}

E(N
L
2
+i) ≥ 1

υL

(6.56)

The remaining terms can be bounded using the results we stated about random walks.

Using (6.41) we have:

ηL([
L

2
− M∗,

L

2
)) = Θ(1), (6.57)

and from (6.40) we have:

sup
{0≤i≤M∗}

η
L
2
+i ([L,∞)) = Θ(exp(−r∗(υL)

L

2
)). (6.58)

Thus we have that TL = Ω
(

exp(r∗(υL)L/2)
υL

)
and therefore

πμL

S (L) = O (υL exp(−r∗(υL)L/2))

= o (exp(−r∗(υL)L/2))

as desired.9 �
Recall, at the start of this chapter Ψx : G 
→ R

+ was defined to be the optimal

solution to (6.1), i.e., the (a.s.) unique rate allocation with average rate x and average

power Pa(x). Also recall, when P (g, u) corresponds to transmitting at capacity, Ψx

corresponds to a water-filling rate allocation. A simple policy (ψ1, ψ2) with drift υ,

is defined to be optimal if ψ1 = ΨĀ+υ and ψ2 = ΨĀ−υ. We will show that using a

sequence of optimal simple policies can achieve nearly the optimal convergence rate

in Th. 6.2.1. Before proving this we prove Lemma 6.2.6 below. This lemma help us to

relate changes in υL to the changes in r∗(υL) when an optimal simple policy is used.

Lemma 6.2.6 Let r∗(υ) denote the unique nonzero root of the semi-invariant mo-

ment generating function of A − ΨĀ+υ(G) (for υ �= 0). Assume that for all υ in a

9By a slightly more elaborate proof one can strengthen the above result to show that πμL

S (L) =
Θ (υL exp(−r∗(υL)L/2)), but this will not be useful for us here.
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neighborhood of 0, that d2

dυ2 Eer∗(υ)(A−ΨĀ+υ(G)) exists and that10

d2

dυ2
Eer∗(υ)(A−ΨĀ+υ(G)) = E

d2

dυ2
er∗(υ)(A−ΨĀ+υ(G)).

Then,
dr∗(υ)

dυ

∣∣∣∣
υ=0

=
2

Var(A − ΨĀ(G))
.

PROOF. From the definition of r∗(υ) we have:

Eer∗(υ)(A−ΨĀ+υ(G)) = 1 (6.59)

Differentiating this equation twice with respect to υ, and using the above assumption,

we have, for all υ in a neighborhood of 0,

E
d2

dυ2
er∗(υ)(A−ΨĀ+υ(G)) = 0.

Letting S(υ) = dr∗(υ)
dυ

then,

E
d2

dυ2
er∗(υ)(A−ΨĀ+υ(G)) = Eer∗(υ)(A−ΨĀ+υ(G))

{(
(A − ΨĀ+υ(G))S(υ)

− r∗(υ)

(
d

dυ
ΨĀ+υ(G)

))2

+ (A − ΨĀ+υ(G))

(
d

dυ
S(υ)

)

− 2S(υ)

(
d

dυ
ΨĀ+υ(G)

)
− r∗(υ)

(
d2

dυ2
ΨĀ+υ(G)

)}

= 0

10As an example of when these assumptions will hold, assume that |A| < ∞ and |G| < ∞. In
this case if the second derivative of ΨĀ+υ(g) with respect to υ exists and is continuous at υ = 0 for
all g, then the above assumptions hold. When P (g, u) corresponds to transmitting at capacity, this
will be true for all but a finite number of values of Ā. These values correspond to those rates Ā for
which the “water level” 1

λ in some state g is exactly equal to No

|g|2 (cf. (3.19)).
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Next we evaluate this at υ = 0. In doing this, note that for υ = 0, the random

variable A − ΨĀ(G) is zero mean, and thus r∗(0) = 0. Additionally note that since

EΨĀ+υ(G) = Ā + υ

then d
dυ

ΨĀ+υ(G) = 1 and d2

dυ2 Ψ
Ā+υ(G) = 0. Thus we have

S(0)2Var(A − ΨĀ(G)) − 2S(0) = 0. (6.60)

This equation has two roots, corresponding to the two roots of ln(Eer(A−ΨĀ(G))) = 0.

The root S(0) = 0 corresponds to the root of the log moment generating function

that is always at zero, and the root at 2
Var(A−ΨĀ(G))

corresponds to the non-zero root,

as desired. �
We are now ready to prove that that there exists a sequence of simple policies

with nearly optimal convergence rates. We state this in the following proposition:

Proposition 6.2.7 For any K ≥ 2, there exists a sequence of simple policies {μL},such
that πμL

S (L) = o(1/LK) and P̄ μL − Pa(Ā) = O( ln2 L
L2 ).

PROOF. Let {μL} be a sequence of optimal simple policies (ΨĀ+υL , ΨĀ−υL) with

associated drifts υL = KVar(ΨĀ(G)) ln L
L

, for some K ≥ 2. Such a sequence of policies

satisfies the assumptions of Lemma 6.2.5, and thus we have:

πμL

S (L) = o (exp (−r∗(υL)L/2)) (6.61)

Taking the first two terms of the Taylor series of r∗(υL) around υL = 0 we have:

r∗(υL) = r∗(0) +
dr∗(υL)

dυL

∣∣∣∣
υL=0

· υL + O(υ2
L) (6.62)

Using Lemma 6.2.6 and the fact that r∗(0) = 0 this simplifies to:

r∗(υL) =
2υL

Var(ΨĀ(G))
+ O(υ2

L) (6.63)
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Using the given choice of υL we have:

r∗(υL) =
2K ln L

L
+ O

(( ln L

L

)2)
(6.64)

Substituting this into (6.61) along with our choice of υL yields:

πμL

S (L) = o

(
exp

(
−K ln L + O

(
(ln L)2

L

)))
(6.65)

= o

(
1

LK

)
(6.66)

Thus we have the desired rate of convergence of the overflow probability. Next we

consider the rate of convergence of P̄ μL − Pa(Ā) using this same sequence of simple

policies. Since we are using optimal simple policies we have:

P̄ μL ≤ πμL

S ([L/2, L))Pa(Ā + υL) + πμL

S ([0, L/2))Pa(Ā − υL) (6.67)

Here the inequality arises due to the edge effects that can occur when the buffer is

too empty. Expanding Pa(x) by its first order Taylor series around x = Ā yields:

P̄ μL ≤πμL

S ([L/2, L])(Pa(Ā) + P ′(Ā)(υL) + O(υ2
L))

+ πμL

S ([0, L/2))(Pa(Ā) + P ′(Ā)(−υL) + O(υ2
L))

=Pa(Ā) + P ′(Ā) (πμL

S ([L/2, L])υL − πμL

S ([0, L/2))υL) + O(υ2
L)

(6.68)

From Lemma 6.2.2 we have that

πμL

S ([L/2, L])υL − πμL

S ([0, L/2))υL ≤ ĀπμL

S (L) (6.69)

and using (6.65) we have:

πμL

S ([L/2, L])υL − πμL

S ([0, L/2))υL = o

(
1

LK

)
. (6.70)
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Substituting this into (6.68) along with our choice for υL yields:

P̄ μL − Pa(Ā) ≤O

(
1

LK

)
+ O

(
(ln L)2

L2

)

=O

(
(ln L)2

L2

)

Thus we have the desired rates of convergence of the average powers and of the

overflow probability, proving this proposition. �
We conclude this section with several comments. First as a means of comparison

suppose we use the same power control policy for every state in the buffer. In this case,

it can be shown that if the overflow probability decays faster than 1
L
, then the average

power must decay to the optimal power at a rate slower than 1
L
. Thus adjusting the

power allocation based on the queue size enables one to essentially square the rates

of convergence. The above simple policy achieves most of this gain.

In Ch. 4 we noted that for the receiver to reliably receive the transmitted signal,

it must know the transmission rate and power used by the transmitter. When the

transmission policy depends on the buffer state at the transmitter, some overhead

may be required to convey this information to the receiver (unless the arrival rate is

constant). For the simple policies defined above this overhead is only 1 bit, indicating

in which half of the buffer the current buffer state lies.

Next note that this proposition seems to suggest that by choosing K large, one

can get the very fast convergence of the overflow probability and still essentially the

same convergence rate of the power. The issue here is that the larger K is, the larger

L will need to be before the asymptotic convergence rate on the power is meaningful.

Finally consider the same sequence of simple policies as in Prop. 6.2.7 but with

K ∈ (0, 2). Following through the proof in this case yields πμL(L) = o( 1
LK ) and

P̄ μL − Pa(Ā) = O( 1
LK ).

6.3 Average Buffer Delay

In this section we consider the case where the buffer is infinite and the buffer cost

is given by (4.10), i.e., S = [0,∞) and b(s) = s/Ā. In this case the time average
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buffer cost, b̄μ, for a given policy μ corresponds to the time average buffer delay.

Additionally, assuming that {(Sμ
n , Gn, An)} is ergodic,

b̄μ =
ESμ

Ā

which by Little’s law is equal to the expected steady-state delay in the buffer. We de-

note this quantity by D̄μ to emphasize that we are considering the average delay case.

In this section we look at the asymptotic performance attainable by any sequence of

policies {μk} such that D̄μK → ∞, i.e., a sequence of policies with increasing average

delay. For such a sequence of policies we are interested in what can be said about the

corresponding sequence of average powers, P̄ μk .

From Sect. 5.3.2, since no buffer overflows occur, Pa(Ā) is a lower bound on P̄ μ for

any policy μ such that D̄μ < ∞. Furthermore, from the strict convexity of Pa(Ā), if

P̄ μ = Pa(Ā), then it must be that μ(s, g, a) = ΨĀ(g) for all (s, g, a) ∈ S×G×A except

for possibly a set with measure zero. With such a policy, the average drift in each

buffer state will be zero, and thus D̄μ = ∞. Thus we have shown that Pa(Ā) is strictly

less than P̄ μ for all policies with finite average delay. Clearly one can find a sequence

of policies {μk} with D̄μk → ∞, such that P̄ μK → Pa(Ā). We examine the rate at

which this limit is approached. Specifically, we show that P̄ μK −Pa(Ā) = Θ(( 1
Dμk

)2).

To do this we follow a similar approach as we did in the previous section. First, we

bound the rates at which these quantities can converge; then we give a sequence of

simple schemes which show this bound is tight. Before doing this we make a few

comments on how this section relates to some of our prior work.

In the previous section we looked at the asymptotic behavior of the buffer control

problem as L → ∞ with b(s) given by (4.7). For a constant arrival rate, this corre-

sponded to the probability a maximum delay constraint was violated. Thus letting

L → ∞ corresponds to loosening this maximum delay constraint. In this section, we

consider a sequence of problems where each problem has an average delay requirement.

Again we are interested in the performance as the delay requirement is loosened. In

the context of a Markov decision problem with per stage cost P (g, u) + βb(s), the

analysis in this section corresponds to studying a sequence of problems with a cor-

responding sequence {βk} where βk → 0 as k → ∞. In other words, as k grows the
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average delay term is given less weight in the total cost. The average cost of the kth

problem will be P̄ μk + βkD̄
μk ; in this section we study the behavior of the costs P̄ μk

and D̄μk . This analysis can also be viewed in the context of the optimum power/delay

curve, P ∗(B), defined in Sect. 5.3. Recall P ∗(B) corresponds to the minimum average

power required so that the average buffer cost is no more than B. The results in this

section characterize the “tail” behavior of P ∗(B) as B → ∞ for the case where b(s) is

given by (4.10). Specifically it follows that P ∗(B) converges to Pa(Ā) at rate Θ( 1
B2 )

(cf. Fig. 5-1).

6.3.1 A Bound on the Rate of Convergence

We bound the rate at which P̄ μK → Pa(Ā) for any sequence of policies {μk} such

that D̄μk → ∞. We are still assuming that the arrival process is memoryless, but in

this section we do allow the channel process to have memory. As in Sect. 6.2, we only

consider admissible sequences of policies. For the average delay case these policies

are defined next.

Definition: A sequence of buffer control policies {μk} is admissible if it satisfies the

following assumptions:

1. For all k, D̄μk < ∞, and limk→∞ D̄μk = ∞.

2. Under each policy μk, {(Sμk
n , Gn, An)} forms an ergodic Markov chain.

3. There exists an ε > 0, a δ > 0 and a M > 0 such that for all k > M and for all

s ≤ 2E(Sμk),

Pr(A−μk(S
μk , G) > δ|Sμk=s) > ε

where Sμk , G, A are random variables whose joint distribution is the steady

state distribution of (Sn, Gn, An) under policy μk.

We are interested in sequences of policies for which D̄μk → ∞. The first assump-

tion says a sequence of policies is admissible only if the average delay of these policies

has the desired behavior. The second assumption is the same as that made in Sect.
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6.2. The third assumption is also similar to one made in Sect. 6.2. Here this as-

sumption means that for large k and any buffer state s < 2E(Sμk), there is a positive

steady state probability that the next buffer state is bigger than s + δ. Once again

if Pr(G = 0) > ε and Amin > δ then this must be satisfied. We still assume that at

x = Ā, the first and second derivatives of Pa(x) exist and are non-zero.

As in the probability of overflow case (cf. Lemma 6.2.3), for any admissible se-

quence of policies {μk} the average drift over the tail of the buffer will be negative

(for k large enough). This is stated in the following lemma.

Lemma 6.3.1 Let M , δ and ε be as given in the definition of an admissible sequence.

For any admissible sequence of buffer control schemes {μk}, for all k > M , there exists

an sk ∈ S such that ∫
s>sk

Δμk(s) dπμk

S (s) ≤ −εδ2

16E(Sμk)

PROOF.11 Let M , δ and ε be as in the definition of admissibility and assume that

k > M . Let Fn = An − Un−1; this represents the net change in the buffer occupancy

between time n − 1 and n. Thus, assuming the buffer is empty at time 0, we have12

Sn =
n∑

m=1

Fm. (6.71)

By assumption as n → ∞, (SμK
n , Gn, An) reaches steady-state. Thus the Markov

inequality implies

lim
n→∞

Pr(Sn ≥ 2E(Sμk)) ≤ 1

2
, (6.72)

and so

lim
n→∞

Pr(Sn < 2E(Sμk)) >
1

2
. (6.73)

Let m = 4E(Sμk)/δ where we can take δ to divide 2E(Sμk). Consider partitioning

[0, 2E(Sμk)) into the following m segments: [0, δ/2), [δ/2, δ), . . . , [(m−1)δ/2, 2E(Sμk)),

11The proof of this lemma follows a similar line of reasoning to Lemma 6.2.3. We refer the reader
to the proof of Lemma 6.2.3 for a more detailed discussion.

12Note, since the buffer is infinite, we do not have to consider overflows as in Lemma 6.2.3.



136 CHAPTER 6. ASYMPTOTIC ANALYSIS

where each segment has a length of δ/2. Let [(c−1)δ/2, cδ/2) be one of these segments

which has the maximal probability with respect to πμk , so that

πμk

S ([(c − 1)δ/2, cδ/2)) ≥ 1

2m
=

δ

8E(Sμk)
. (6.74)

Let sk = cδ/2 and define the process {Ŝn} by

Ŝn = max{Sn, sk}. (6.75)

Thus Ŝn is equal to Sn restricted to [sk,∞). Let F̂n = Ŝn − Ŝn−1 be the net change

in Ŝn, so that

Ŝn =
n∑

m=1

F̂m. (6.76)

Thus

lim
n→∞

E
1

n
Ŝn = lim

n→∞
E

1

n

n∑
m=1

F̂m. (6.77)

By assumption D̄μk < ∞; therefore limn→∞ ESn < ∞. Furthermore, Ŝn ≤ Sn +sk

for all n and so, E(Ŝn) ≤ E(Sn) + sk < ∞. Thus,

lim
n→∞

E
1

n
Ŝn = 0 (6.78)

As in Lemma 6.2.3, the quantity F̂n can be considered a reward gained at time n− 1

by the ergodic Markov chain {(Sn, Gn, An)}. Thus we have

lim
n→∞

E
1

n

n∑
m=1

F̂m =

∫
S

lim
l→∞

E(F̂l|Sl−1=s) dπμ
S(s) a.s. (6.79)

Here liml→∞ E(F̂l|Sl−1=s) is the steady-state expected value of F̂ conditioned on

S = s. Using (6.78), (6.79), and (6.77) yields:

∫
S

lim
l→∞

E(F̂l|Sl−1=s) dπμ
S(s) = 0 (6.80)
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Next we relate this to changes in the original process by considering three cases:

1. First when Sl−1 ≥ sk, then F̂l ≥ Fl and thus

lim
l→∞

E(F̂l|Sl−1=s) ≥ lim
l→∞

E(Fl|Sl−1=s) = Δμ(s), ∀ s ≥ sk. (6.81)

2. Next when (c− 1)δ/2 ≤ Sl−1 < cδ/2 = sk, F̂l is nonnegative and F̂l ≥ Fl − δ/2.

Thus,

E(F̂l|Sl−1=s) ≥ δ/2 Pr(F̂l > δ/2|Sl−1=s) (6.82)

≥ δ/2 Pr(Fl > δ|Sl−1=s). (6.83)

Here (6.83) follows from the Markov inequality. Next taking the limit and using

that μ is admissible we have: ∀ s ∈ [(c − 1)δ/2, cδ/2),

lim
l→∞

E(F̂l|Sl−1=s) ≥ lim
l→∞

δ/2 Pr(Fl > δ|Sl−1=s) ≥ εδ

2
. (6.84)

3. Finally, when Sl−1 < (c − 1)δ/2, F̂l is also non-negative, and thus

lim
l→∞

E(F̂l|Sl−1=s) ≥ 0, ∀ s < (c − 1)δ/2 (6.85)

Combining (6.81), (6.84), and (6.85) into (6.80) yields:

∫
((c−1)δ/2,cδ/2]

εδ

2
dπμ

S(s) +

∫
s>sk

Δμ(s) dπμ
S(s) ≤ 0. (6.86)

The first term can be bounded using (6.74):

∫
((c−1)δ/2,cδ/2]

εδ

2
dπμ

S(s) ≥ εδ2

16E(Sμk)
(6.87)

Substituting this into (6.86) yields the desired result. �
We are now ready to prove the following bound on the rate of convergence.
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Theorem 6.3.2 Any admissible sequence of buffer control policies μk must satisfy

P̄ μk − Pa(Ā) = Ω((1/D̄μk)2).

The proof of this will follow a similar line of reasoning to the proof of Thm. 6.2.1.

We refer the reader to that proof for a more detailed discussion. Recall, in the proof

of Thm. 6.2.1, Lem. 6.2.2 and Lem. 6.2.3 were used. Here, in place of Lem. 6.2.2 we

will use the fact that for any policy μ which has ES < ∞,∫
S

Δμ(s) dπμ
S(s) = 0. (6.88)

This follows since the buffer size is infinite and thus no bits are lost due to overflow.

In place of Lem. 6.2.3 we use Lem. 6.3.1.

PROOF. Let {μk} be a sequence of admissible policies. For the kth policy, the

average transmission rate conditioned on being in state s is E(μk(S
μk , G)|Sμk=s) =

Ā − Δμk(s). Thus the average power used when the buffer is in state s is lower

bounded by Pa(Ā − Δμk(s)). Averaging over the buffer state space we have:

P̄ μk ≥
∫
S
Pa(Ā − Δμk(s)) dπS(s) (6.89)

Via a first order Taylor expansion around x = Ā, Pa(x) can be written as:

Pa(x) = Pa(Ā) + P ′
a(Ā)(x − Ā) + Q(x − Ā) (6.90)

where the remainder term Q(x) has the following properties: (i) Q(x) is strictly

convex, (ii) for x �= 0, Q(x) > 0 and Q(0) = 0, and (iii) Q′(x) > 0 for x > 0,

Q′(x) < 0 for x < 0, and Q′(0) = 0. These all follow from the strict convexity and
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monotonicity of Pa. Substituting this into (6.89) yields:

P̄ μk − Pa(Ā) ≥ P ′
a(Ā)

∫
S
(−Δμk(s)) dπS(s) +

∫
S

Q(−Δμk(s)) dπS(s) (6.91)

=

∫
S

Q(−Δμk(s)) dπS(s), (6.92)

where we have used (6.88). Let sk be as defined in Lem. 6.3.1 and assume that k > M

so that the lemma applies. Then we have

P̄ μk − Pa(Ā)

≥
∫

s>sk

Q (−Δμk(s)) dπS(s)

=

∫
s>sk

Q (−Δμk(s)) dπS(s) + πS([0, sk])Q(0)

≥ Q

(∫
s>sk

−Δμk(s) dπS(s)

)

≥ Q

(
εδ2

16ESμk

)
(6.93)

We have again used the convexity and monotonicity properties of Q along with the

result of Lem. 6.3.1. Finally, expanding Q in a Taylor series around 0, and using that

Q(0) = Q′(0) = 0 we have:

P̄ μk − Pa(Ā) ≥ 1

2
Q′′(0)

(
εδ2

16ESμk

)2

+ o

((
εδ2

16ESμk

)2
)

. (6.94)

That Q′′(0) exists and is non-zero follows from the assumption that the second deriva-

tive of Pa(x) exists and is non zero at x = Ā. Thus we have P̄ μk − Pa(Ā) =

Ω(( 1
E(Sμk )

)2). Using Little’s law, this gives us P̄ μk − Pa(Ā) = Ω((1/D̄μk)2) as de-

sired. �



140 CHAPTER 6. ASYMPTOTIC ANALYSIS

6.3.2 An Optimal Sequence of Simple Policies

As in Sect. 6.2.3, we now look at the performance of a sequence of simple control

strategies. The strategies we are interested in, again involve dividing the buffer into

two parts. Intuitively, such strategies are desirable for the same reasons as in the

case of a maximum delay constraint. That is, it is not desirable for the buffer be too

full, since this will make the average delay large; it is also not desirable for the buffer

to be too empty, because there may not be enough bits to take advantage of a good

channel state.

In this case, we show that when the fading and arrival process are memoryless, a

sequence of simple policies can exactly achieve the bound given in Thm. 6.3.2. Thus

this bound is tight when the fading and arrival processes are memoryless. Note this is

stronger than what was proved in Sect. 6.2.3; in that section, the sequence of simple

policies only had a nearly optimal convergence rate.

First we describe the type of simple policies considered for the average delay case.

Then we show that these policies can achieve the optimal convergence rate. Again

since the arrival process is memoryless, a policy is only a function of Sn and Gn.

Simple Policy: For a given υ ∈ (0, Ā), partition the buffer state space into two

disjoint sets: [1/υ,∞) and [0, 1/υ]. Let ψ1 : G 
→ R
+ and ψ2 : G 
→ R

+ be two rate

allocations which are only functions of the channel state. We define a simple policy

with drift υ, to be a policy μ with the form:13

μ(s, g) =

⎧⎨
⎩ψ1(g) if s ∈ [1/υ,∞)

ψ2(g) if s ∈ [0, 1/υ]

where EG(ψ1(G)) = Ā + υ and EG(ψ2(G)) = Ā − υ. We refer to a simple policy

as optimal if ψ1 = ΨĀ+υ and ψ2 = ΨĀ−υ, where Ψx is still the rate allocation with

average rate x which achieves Pa(x).

While the buffer occupancy either stays less than 1/υ or stays greater that 1/υ,

13More generally, we could partition the buffer into the sets [0,K/υ) and [K/υ,∞) where K > 0.
These sets could then be used in the definition of a simple policy. The following results still hold
with such a generalization.
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the buffer process will again be a random walk. The analysis in this section will use

another result about random walks which is summarized next.

More on random walks. We want to give another result concerning random walks.

In this case we are interested in bounding the steady-state probability that a random

walk restricted to the positive axis exceeds a given value.

Let {Xi}i≥1 be a sequence of i.i.d. random variables with −∞ < EX1 < 0. Assume

that γ(r) = ln E(eX1r) has a root r∗ > 0. Let {Sn} be the process defined by S0 = 0,

and for n ≥ 1, Sn = (Sn−1 + Xn)+. Thus Sn is a random walk restricted to the

positive axis. Assume that Sn → S in distribution, where S is a random variable

with the steady-state distribution. Then we have:

lim
n→∞

Pr(Sn > i) = Pr(S > i) ≤ e−r∗i ∀i > 0. (6.95)

When Sn represents the waiting time in a G/G/1 queue, this result is known as

Kingman’s bound. We refer to [Gal96] for a proof.

Using this result, we prove the following lemma which gives a bound on the average

delay for an optimal simple policy.

Lemma 6.3.3 For an optimal simple policy, μ, with drift υ, the average delay satis-

fies:

D̄μ ≤ 1/υ

Ā
+

er∗(υ)η(υ)

Ār∗(υ)
(6.96)

where η(υ) is a non-negative function such that η(υ) → 0 as υ → 0 and r∗(υ) is the

unique positive root of γ(r) = ln(EA,G[e(A−ΨĀ+υ(G))r]).

There are two main ideas in the following proof. First, Little’s law is used to relate

the average delay to the average buffer occupancy. Second, (6.95) is used to bound

the probability that the buffer occupancy is large.

PROOF. From Little’s law we have:

D̄μ =
E(S)

Ā
, (6.97)



142 CHAPTER 6. ASYMPTOTIC ANALYSIS

where E(S) is the expected buffer occupancy in steady-state. This can be written as

the integral of the complimentary distribution function of S, i.e.

E(S) =

∫ ∞

0

Pr(S > s) ds. (6.98)

Upper bounding Pr(S > s) by 1 for s ≤ 1/υ, yields:

E(S) ≤ 1/υ +

∫ ∞

0

Pr(S > s + 1/υ) ds. (6.99)

For all υ ≥ 0, let

η(υ) = sup{ΨĀ+υ(g) − ΨĀ−υ(g) : g ∈ G}.
We show that η(υ) is non-negative and converges to zero as υ → 0. As noted at

the start of this chapter, Ψx(g) is a continuous function of |g| for all x ≥ 0. Recall

G is assumed to be compact, thus Ψx(g) will be bounded for all x. Therefore, η(υ)

is also bounded. Likewise, since Ψx(g) is non-decreasing in x for all g, η(υ) will

be non-negative. Finally, for all g, Ψx(g) is continuous in x; therefore, for all g,

{ΨĀ+υ(g) − ΨĀ−υ(g)} converges monotonically to 0 as υ → 0. Thus, by Dini’s

theorem [Dud89], limυ→0 η(υ) = 0.

Next we bound Pr(S > s + 1/υ). Consider a second buffer process {S̆n} defined

as follows. This second process only uses the policy ΨĀ+υ and is restricted to stay

in [1/υ,∞) for all time. Specifically, let Ŭn = ΨĀ+υ(Hn) and let S̆n+1 = max{S̆n +

An+1 − Ŭn, An+1, 1/υ}. We assume that this buffer process and the original buffer

process observe the same sequence of channel and source states. Furthermore assume

that at time 0, S̆0 = max{S0, 1/υ}. We claim that for all n ≥ 0, S̆n ≥ Sn − η(υ).

This will be shown by induction on n. By assumption S̆0 ≥ S0 ≥ S0 − η(υ). Assume

at time n, S̆n ≥ Sn − η(υ), we will show that this holds for time n + 1. Consider the

following two cases:
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Case 1: Sn > 1/υ. In this case Ŭn = Un, and thus,

S̆n+1 ≥ max{S̆n − Ŭn + An+1, An+1}
≥ max{Sn − η(υ) − Un + An+1, An+1}
≥ max{Sn − Un + An+1, An+1} − η(υ)

= Sn+1 − η(υ)

Case 2: Sn ≤ 1/υ. In this case S̆n ≥ 1/υ ≥ Sn and Ŭn ≤ Un + η(υ). Thus

S̆n+1 ≥ max{S̆n − Ŭn + An+1, An+1}
≥ max{Sn − (Un + η(υ)) + An+1, An+1}
≥ max{Sn − Un + An+1, An+1} − η(υ)

= Sn+1 − η(υ).

Thus we have S̆n ≥ Sn − η(υ) for all n ≥ 0. From this it follows that for all n ≥ 0

and all s, Pr(Sn > 1/υ + s) ≤ Pr(S̆n > 1/υ + s − η(υ)). Letting n → ∞ we have

Pr(S > 1/υ + s) ≤ Pr(S̆ > 1/υ + s − η(υ))

where S and S̆ are random variables with the steady-state distributions for the re-

spective processes. Note, the process {S̆n} is a random walk restricted to [1/υ,∞).

Therefore using (6.95) we have

Pr(S̆ > 1/υ + s − η(υ)) ≤ e−r∗(υ)(s−η(υ))

and thus,

Pr(S > 1/υ + s) ≤ e−r∗(υ)(s−η(υ)).
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Substituting this into (6.99) and carrying out the integration yields:

E(S) ≤ 1/υ +

∫ ∞

0

e−r∗(υ)(s−η(υ)) ds (6.100)

= 1/υ +
er∗(υ)η(υ)

r∗(υ)
(6.101)

Finally, substituting this into (6.97) gives the desired result. �
Now we prove that any sequence of optimal simple policies whose drifts converge

to zero will achieve the bound in Thm. 6.3.2.

Theorem 6.3.4 Let {μk} be a sequence of optimal simple policies with drifts {υk},
such that υk → 0 as k → ∞. Then we have P̄ μk − P(Ā) = O(( 1

D̄μk
)2).

PROOF. Let {μk} be a sequence of optimal simple policies as stated in the theorem.

We show that D̄μk = O( 1
υk

) and P̄ μk − Pa(Ā) = O((υk)
2). The desired result then

follows directly. First we show that Dμk = O( 1
υk

).

From Lem. 6.3.3 we have:

D̄μk ≤ 1/υk

Ā
+

er∗(υk)η(υk)

Ār∗(υk)
(6.102)

The first term on the right hand side is clearly O(1/υk). We focus on the second

term. To bound the growth of this term, first note that Lemma 6.2.6 still applies.

Thus we have:
dr∗(υ)

dυ

∣∣∣∣
υ=0

=
2

Var(A − ΨĀ(G))
. (6.103)

Taking the Taylor series of r∗(υ) around υ = 0 and using this lemma we have

r∗(υ) = 0 + Λυ + o(|υ|) (6.104)

where Λ = 2
Var(A−ΨĀ(H))

. From Lem. 6.19 we have that η(υ) → 0. Thus, it follows

that

r∗(υ)η(υ) = Λη(υ)υ + o(|υ|).
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With these expansions we have

er∗(υk)η(υk)

Ār∗(υk)
=

eΛη(υk)υk+o(υk)

Ā(Λυk + o(υk))
. (6.105)

Now since:

lim
k→∞

υke
Λη(υk)υk+o(υk)

Ā(Λυk + o(υk))
=

1

ĀΛ
(6.106)

it follows that:
er∗(υk)η(υk)

Ār∗(υk)
= O(1/υk) (6.107)

and therefore D̄μk = O(1/υk) as desired.

Next we show that P̄ μk − Pa(Ā) = O((υk)
2). This follows from the same type of

argument as in Prop. 6.2.7. For the simple policy μk, the average power is

P̄ μk = πμk

S ((1/υk,∞))Pa(Ā + υk) + πμk

S ([0, 1/υk])Pa(Ā − υk) (6.108)

Taking the Taylor series of P(x) around x = Ā we have

P̄ μk = Pa(Ā) + P ′
a(Ā)(πμk

S ((1/υ,∞))υk − πμk

S ([0, 1/υ])υk) + O((υk)
2) (6.109)

Now πμk

S ((1/υ,∞))υk − πμk

S ([0, 1/υ])υk will be less than or equal to the average

drift due to edge effects when the buffer is near empty. Thus πμk

S ((1/υ,∞))υk −
πμk

S ([0, 1/υ])υk ≤ 0 and therefore P̄ μk − Pa(Ā) = O((υk)
2) as desired. �

6.3.3 Summary and Further Directions

In this chapter we considered two asymptotic versions of the buffer control problem

from Ch. 4. First we examined the case where the buffer cost corresponded to the

probability of buffer overflow. In this case we analyzed the problem as the buffer

size L gets large. Next we analyzed the case where the buffer cost corresponded to

average delay. We analyzed the problem as the average delay grew. In both cases our

analysis consisted of the following two parts:

1. The rate at which the average power converged to Pa(Ā) was bounded given
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that the average buffer cost was changing at a given rate and the arrival process

was memoryless.

2. A sequence of simple policies was demonstrated to have either the optimal or

the nearly optimal convergence rate when the fading and arrival process where

memoryless.

Note when bounding the convergence rate, we did not assume memoryless fading.

To conclude this chapter we discuss several directions in which this work can be

extended.

Finite Buffer and average delay: Suppose that we have a finite buffer and are

interested, first, in avoiding buffer overflows and, second, in keeping the average delay

small. A simple policy as in Section 6.2 is asymptotically good for avoiding buffer

overflows and minimizing the power. Recall, these simple policies divide the buffer

in half and use different policies in each half. One can get the same asymptotic

performance by dividing the buffer into unequal portions. By putting the threshold

closer to the front of the buffer, the average delay is reduced. This can be shown

using similar arguments to those in Sect. 6.3.

Fading and Arrivals with Memory: As noted above, we have only proved that

a simple policy is optimal or nearly optimal for the case where the fading process is

memoryless. Suppose this process has memory and a simple policy is used. In this

case, conditioned on the buffer staying in a given region, the buffer process will no

longer be a random walk, but a Markov modulated random walk. Large deviation

bounds similar to those for random walks exist for Markov modulated random walks

[Gal96]. Using these bounds, the proofs in Sect. 6.2.3 and Sect. 6.3.2 can probably

be extended to the case where the fading processes have memory. Throughout this

chapter we have assumed memoryless arrivals. It is likely that the results in this

chapter can also be extended to the case were the arrival process has memory.



CHAPTER 7

Multiple Users

In the previous chapters we have considered a single user communicating over a fading

channel. The main problem examined was how to allocate resources over time in order

to optimally trade-off the needed power with some buffer cost. In addition to fading,

another inherent difficulty in wireless communications is that there are generally many

users who must share the available communication resources. With multiple users,

the problem becomes how to allocate resources both over time and between the users.

We look at such problems in this chapter. Again the goal will be to understand the

trade-offs between minimizing the required power and also minimizing some buffer

cost for each user.

In a wireless network, if multiple users transmit at the same time, their respective

signals may interfere with each other. A common way to avoid such situations is

to divide the available resources into orthogonal channels, for example by TDMA or

FDMA. Different users are then assigned to distinct channels so that when multiple

users transmit, they will not interfere with each other. If we assume that such an

assignment is done as part of a higher layer protocol, then each user can effectively

be treated as a single user in a fading channel and the previous results apply. With

a large number of users, there may not be enough channels to assign one to each

user. To overcome this, in many systems, these channels are reused by users who are

spatially far enough apart so that the interference between their signals is weak. For

example in FDMA cellular systems, the same frequency slot is re-used in non-adjacent

cells. In such situations the interfering users are often viewed as part of the additive

147
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noise. In this case, once again, each user can be treated as a single user in a fading

channel.

In many cases, a fixed assignment of users to orthogonal channels may not be de-

sirable. When users are transmitting bursty data it may be desirable to dynamically

allocate resources between users. Performing such a dynamic allocation is often sim-

pler if the resources are not divided into orthogonal channels; this is one advantage

of a CDMA system, such as IS-95. Also, assigning users to orthogonal channels is

generally not optimal from a minimum power perspective. In a military setting, LPI

considerations may make other approaches, such as spread spectrum, more desirable.

Finally in a non-cellular architecture, such as a packet-radio network, it is difficult to

ensure that users with the same channel stay spatially separated. If we do not sepa-

rate users in the above fashion, then the single user model of the previous chapter is

not applicable. Instead, multiple user or network models must be considered. These

situations will be addressed in the current chapter.

While considering multiple-user models, we still assume that routing and some

scheduling decisions are done at a higher network layer. This is done for two reasons

- to keep the model manageable and because this is typically the way a practical

network would be designed and operated. Specifically, we assume that we are given

a set of transmitters, a set of receivers, and a statistical description of the traffic

each transmitter has to send to each receiver. This traffic description consists of

a stochastic model of the arrival process and any delay constraints for this link.

We will assume that this traffic corresponds to “link” flows in the network. These

flows are determined by a higher layer routing protocol and depend on the network

architecture and the end-to-end traffic requirements of each user. Architecturally it

may make sense to do some scheduling at a higher layer. For example, in a wireless

environment, a user can not both send and receive data in a single frequency band at

the same time. The transmitted power will be much greater than any received power.

Due to the time-varying nature of the channel, one can not build a good enough echo-

canceler to remove the transmitted power. Once again, this problem can be avoided

by assigning each user one channel in which to transmit and an orthogonal channel

in which to receive; here each of these channels may be shared by many other users.

If we assume that this scheduling is done by a higher layer protocol, then the set of
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traffic requirements given above corresponds to the traffic requirement for one such

channel; in this case, the set of transmitters and set of receivers will be disjoint sets.

As an example of the above situation consider a conventional cellular system. The

only routing decision in such systems is assigning users to base stations. For each

base-station, the up-link traffic from the users to the base-station is assigned to one

orthogonal channel and down-link traffic to another. For example, in IS-95 systems,

these “channels” are disjoint 1.32 MHz segments of bandwidth, which are separated

by a guard-band of 45MHz. In a packet-radio network, these routing and scheduling

decisions can be much more involved [Kas99].

We look at the problem of minimizing the total power needed to satisfy the given

traffic requirements. As in the single user case, if the traffic requirements consist only

of required long term average rates, this problem is equivalent to characterizing the

capacity region of the network of users. The capacity region of a general network is

unsolved, but many special cases of such networks have been well studied. Examples

include the multiple-access channel and the degraded broadcast channel. In this

chapter we primarily consider the multiple-access channel. In Sect. 7.1 we formulate

a buffer control model for a multiple-access situation. In Sect. 7.2 we show that the

asymptotic analysis from Sect. 6.2 can be extended to the multiple-access model. In

Sect. 7.3 other multi-user situations are briefly discussed.

7.1 Buffer Control Model for Multiple-Access Chan-

nel

The multiple-access channel models the situation in which there are multiple trans-

mitters communicating to a single receiver. This is an appropriate model for the

reverse link in a cellular network if the out of cell interference is considered part of

the additive noise. It may also be an appropriate model in a packet-radio network

if the higher layer scheduling algorithm insures that simultaneous transmissions to

other receivers contribute little interference. In this section we consider extending the

buffer control models from Chapter 4 to this situation. First we discuss this channel

model in more detail as well as some of the known capacity results for this channel.
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Then we discuss a buffer model for this situation and formulate a Markov decision

problem to illustrate the trade-off between average power and some buffer cost such

as average delay or probability of overflow.

7.1.1 Channel Model

We consider a Gaussian multiple-access channel with M users communicating to a

single receiver. In this chapter, we will only consider a narrow-band, block fading

model of the multiple-access channel. Extensions to wide-band, block memoryless

channels follow as in the single user case. We consider a discrete-time, baseband

model of this channel. As in Sect. 2.1, we assume each channel use represents a

complex sample of a continuous time channel with samples taken at rate W . The

transmitted signal of each user is multiplied by a time-varying gain which models the

fading. Over each block of of N channel uses the channel gain of each user is fixed.1

For m ∈ Z, n ∈ {1, . . . N}, let X i
m,n represent the ith user’s transmitted signal during

the nth channel use of the mth block.2 The received signal Ym,n is then given by:

Ym,n =
M∑
i=1

Gi
mX i

m,n + Zm,n (7.1)

where Gi
m represents the fading experienced by user i during the mth channel block

and {Zm,n : m ∈ Z, n ∈ {1, . . . N}} is a set of i.i.d. circularly symmetric Gaussian

random variables with zero mean and EZm,nZ
∗
m,n = N0.

The channel can again be represented as a vector input/vector output channel (cf.

(2.5))

Ym =
M∑
i=1

Gi
mXi

m + Zm (7.2)

where Ym = [Ym,1, . . . Ym,N ]T , Xi
m = [X i

m,1, . . . X
i
m,N ]T and Zm = [Zm,1, . . . Zm,N ]T .

The model in (7.2) is to be thought of as a discrete time model where samples occur at

1As in the single user case, we assume that time is measured at the receiver.
2Throughout this chapter we will use superscripts to denote different users and subscripts to

denote time samples. To avoid confusion, the ith power of x will be denoted (x)i.
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rate W/N . We assume that for each i, {Gi
m} takes values in the state space Gi ⊂ C.

Let Gm = (G1
m, . . . , GM

m ) be a random vector representing the joint fading state

during the mth block. We assume that {Gm} is a stationary ergodic Markov chain

with state space
∏

i Gi ⊂ C
M which determines the joint fading state of the M users

during the mth block. We do not assume that the components of Gm are independent

or identically distributed. For users separated by many wavelengths, independence

would be a reasonable assumption, but it is not necessary for the following arguments.

Conditioned on Gm−1, Gm is assumed to be independent of each user’s input signal

and the additive noise prior to time m. Let πG denote the steady-state distribution

of {Gm}. This channel will be referred to as a block fading, multiple-access channel.

We assume that the receiver has perfect channel state information, i.e., at time n

it knows Gn. Assume that each user i is subject to an average power constraint of

P̄ i, i.e.,

lim
K→∞

1

KN

K∑
k=1

E((Xi
k)

†Xi
k) ≤ P̄ i/W

where P̄ i represents the average power used in the continuous time channel. If the

transmitters have no CSI, then the capacity region of the channel is the set of rate

vectors (R1, . . . , RM) which satisfy:

∑
i∈Q

Ri ≤ EGC

(∑
i∈S

|Gi|2P̄ i

)
∀Q ⊂ {1, . . . ,M} (7.3)

where G = (G1, . . . , GM) is a random variable with distribution πG, and Ri is the rate

of user i in bits per second. As in the previous chapters, C(x) = W log(1+ x
NoW

). The

set of rate vectors satisfying (7.3) form a bounded polyhedron in R
M . The subset of

these rate vectors for which the constraint corresponding to Q = {1, . . . ,M} is tight

is called the dominant face of the capacity region. Rate vectors on the dominant face

have the property that, given any rate vector x in the capacity region, there exists a

rate vector y on the dominant face such that y ≥ x. The dominant face itself will be

an M − 1 dimensional bounded polyhedron.

With multiple users, there is a new issue to be considered with regard to the trans-

mitters’ state information. Specifically, does a transmitter have knowledge only of its
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own channel state or does it have knowledge of the joint channel state. If the channel

state is learned via a pilot signal, the former assumption would be appropriate. If the

channel state is learned via feedback from the receiver, the latter may be appropriate.

This may require more overhead on the feedback link. We refer to this second case as

complete state information. We will focus on this latter case; it appears to be more

tractable and it is an upper bound over what is attainable with only local knowledge.

With perfect, complete state information, the transmitter can again adjust its

power and rate based on the joint fading state. A joint power allocation for the M

users is a map P :
∏

i Gi 
→ R
M , where P(g) = (P 1(g), . . . , PM(g)) and P i(g) is the

average power used by the ith user when the joint fading state is g. For a given power

allocation, let CM(P) be the set of rates (R1, . . . , RM) such that

∑
i∈Q

Ri ≤ EGC

(∑
i∈Q

|Gi|2P i(G)

)
∀Q ⊂ {1, . . . ,M} (7.4)

Assume that user i has an average power constraint of P̄ i. Let Λ denote the set of

all power allocations which satisfy these average power constraints, i.e. Λ = {P :

EG(P i(G)) ≤ P̄ i}. In [TH98] it is shown that the capacity region of the channel with

complete state information is given by:

CM =
⋃
P∈Λ

CM(P). (7.5)

This capacity region is not a polyhedron, but the union of the polyhedrons CM(P).

Likewise, assume we restrict Λ to be the set of power allocations such that P i(g) =

P i(gi) for all i and which satisfy the average power constraint. In this case (7.5) is

the capacity region of the channel with only local state information.

As in the single user case, to achieve a rate vector near the boundary of either

the capacity region in (7.3) or in (7.5), usually requires the use of codewords long

enough to average over a typical fading realization3. When delay constraints limit

3Another interesting way of approaching any rate in these capacity regions is if the number of
users get large [HT95]. In this case one can average over the different users, instead of over the
fading realization. We will not consider this here.



7.1. BUFFER CONTROL MODEL FOR MULTIPLE-ACCESS CHANNEL 153

Decoder/

User 2 Higher

Layer Application
User 2 Higher

User 2

Layer Application
User 1 Higher

Access
Fading

MultipleUser 1

User 1 Higher

Layer Application

Layer Application

Channel

Transmitter
Encoder/

Transmitter
Encoder/

Receiver

Figure 7-1: Model for 2 user multiple-access system.

the codeword lengths, once again these capacity regions may not give a meaningful

indication of the achievable performance. In such cases, capacity vs. outage and delay-

limited capacity have been considered for the block fading, multiple-access channel.

For example, the delay-limited capacity of such channels has been looked at in [HT98].

Both delay-limited capacity and capacity vs. outage for the multiple-access case are

natural extensions of the ideas in Ch. 3. As in the single user case, the usefulness

of these concepts strongly depends on the time scale of the fading and the quality of

service required by the users. For more general classes of service requirements and

fading time scales, we consider a generalization of the single user buffer model from

Ch. 4.

7.1.2 Buffer model

In this section we generalize the single user buffer model to the multiple-access case.

We only consider a model with two users; the generalization to more than two users

follows directly. The situation we wish to model is illustrated in Fig. 7-1. Each user

is receiving data from some higher layer protocol. The data is put into a transmission

buffer, each user having its own buffer. Each user can remove some data from its

own buffer, encode it and transmit it over a block fading multiple-access channel as

defined in the previous section. After sufficient delay this data can be decoded and

sent to corresponding peer processes at the receiver.
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Once again, we consider a discrete time model for this system where the time

between two adjacent samples corresponds to one block of N channel uses of the

block fading channel and thus N/W seconds. Between time n− 1 and n assume that

Ai
n bits arrive from user i’s application and are placed into user i’s buffer which has

size Li. Let U i
n be the number of bits taken out of user i’s buffer at the start of the

nth time slot and let Si
n denote the occupancy of the buffer at the start of this block

(before the U i
n bits are removed). Thus for i = 1, 2, user i’s buffer dynamics are given

by:4

Si
n+1 = min{max{Si

n + Ai
n − U i

n, A
i
n}, Li}. (7.6)

We refer back to Fig. 4-2 for an illustration of this.

Let An = (A1
n, A

2
n) be the joint arrival process. In this chapter, as in Ch. 6 we

assume that the arrivals are memoryless5 with state space A1 × A2, that is {An} is

an i.i.d. sequence with Ai
n ∈ Ai for all n and i = 1, 2. Assume that for i = 1, 2 Ai is

a compact subset of R
+. Let Ai

max = supAi, Ai
min = inf Ai, and let (Ā1, Ā2) = EAn.

We are interested in situations where the transmitter can adjust the transmission

rate and power based on its knowledge of the current state. We will model this

system so that the state at time n is the 4-tuple (S1
n, S

2
n, G1

n, G2
n) consisting of both

users’ buffer occupancies as well as both users’ channel states (since we are assuming

memoryless arrivals, we don’t need to include (A1
n, A

2
n) in the state). Assume that

each user as well as the receiver have perfect and complete CSI. Also assume that each

user has complete knowledge of the joint buffer state. In other words, each transmitter

knows both its own channel and buffer state as well as those of the other user. Again,

this is only one of several assumptions that may be appropriate depending on the

over all architecture and clearly it is an idealized assumption. Note that with a

constant arrival rate and perfect channel state information, each transmitter could

calculate the other’s buffer state for all time, by simply knowing the other user’s

transmission policy. Without this assumption, gaining this knowledge would require

each user to forward its buffer state to the receiver and then for the receiver to relay

4As in the single user case, if U i
n ≤ Si

n for all n then the max is not needed.
5While we assume that {An} is memoryless, we do not need to assume that the processes {A1

n}
and {A2

n} are independent of each other. The reason for the memoryless assumption is primarily to
simplify notation not due to any mathematical necessity.
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this information to the other user. Equivalently, we can assume that the receiver has

complete state information, makes the control decisions and forwards this information

to the transmitters. This corresponds to centralized control by the receiver. These

issues are discussed more in Sect. 7.2.5 below.

In the above context, we again want to analyze the trade-off between the average

power needed and some other cost corresponding to delay or probability of buffer

overflow. In the next section, we discuss possible “power costs” for such problems.

Then in Sect. 7.1.4, we consider possible “buffer costs” and formulate a Markov

decision problem.

7.1.3 Power Cost

Recall that in the single user case, if u bits are transmitted when the channel state is g,

then the user incurs a cost of P (g, u), which represents the amount of power required

for the user to reliably transmit those bits in the given channel state. We initially

considered P (g, u) to be the amount of power required for the mutual information

between the transmitted message and the received message over the block to be

greater than u. This corresponds to requiring uW/N to be less than the capacity of

the Gaussian channel with gain g and average power constraint P . We subsequently

generalized to other choices of P (g, u) which had similar characteristics. We follow

the same program for the multiple-access case.

For a given joint channel state (g1, g2), suppose that for i = 1, 2, user i transmits

ui bits in a given block using average power P i. As in the single user case, assume

that (P 1, P 2) must be chosen so that the pair (u1W/N, u2W/N) lie in the multiple-

access capacity region of the complex Gaussian channel with channel gains (g1, g2)

and average power constrains (P 1/W,P 2/W ). In other words, (u1, u2) must satisfy

∑
i∈Q

uiW/N ≤ C

(∑
i∈Q

|gi|2P i

)
∀Q ⊂ {1, 2}. (7.7)
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Figure 7-2: Set of all (P 1, P 2) that satisfy the constraints in (7.8).

These constraints can equivalently be written as:

∑
i∈Q

|gi|2P i ≥ C−1

(∑
i∈Q

uiW/N

)
∀Q ⊂ {1, 2}. (7.8)

From this it is obvious that the set of all (P 1, P 2) which satisfy these constraints is

an unbounded polyhedron6– an example is shown Fig. 7-2. We will refer to the edge

of this polyhedron corresponding to the constraint

|g1|2P 1 + |g2|2P 2 = C−1((u1 + u2)W/N)

as the minimum power face of this polyhedron. This face has the characteristic that

for any pair (P 1, P 2) within the polyhedron, there exists a (P̃ 1, P̃ 2) on the minimum

power face, such that P̃ i ≤ P i for i = 1, 2. Note that for any (P 1, P 2) on the minimum

power face, (u1, u2) will lie on the dominant face of the corresponding capacity region.

Also if (P 1, P 2) is at one of the corner points of this polyhedron, then (u1, u2) will lie

at a corner point of the corresponding capacity region.

In the single user case, we set P (g, u) to be the minimum power such that uW/N

is less than the corresponding capacity. With two users, any point on the minimum

6As shown in [TH98], the set of received powers that satisfy these constraints is a contra-
polymatroid. If h1 �= h2, then the set of transmitted powers will not be a contra-polymatroid.
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power face could be considered a “minimum” pair of powers. In the following we

choose the pair which minimizes a convex combination of the two user’s powers; this

minimum convex combination of the powers will be denoted by P (g1, g2, u1, u2). That

is for some λ ∈ [0, 1], let

P (g1, g2, u1, u2) = min
P 1,P 2

λP 1 + (1 − λ)P 2

subject to:
∑
i∈Q

|gi|2P i ≥ C−1

(∑
i∈Q

uiW/N

)
∀Q ⊂ {1, 2}.

(7.9)

Notice, when λ = 1/2, P (g1, g2, u1, u2) is proportional to the minimum sum power

required for user i to transmit reliably at rate uiW/N . Since (7.9) is a linear program,

a solution (P 1, P 2) can always be found in which (P 1, P 2) are at a corner point of the

polyhedron (7.8). Thus (u1, u2) will lie on a corner point of the dominant face of the

resulting capacity region; such a rate pair can be achieved via stripping and without

the need for joint decoding or rate-splitting. Also, notice that the corner point in

which the solution lies depends only on λ, g1, and g2. In particular, if λ = 1/2,

then the solution is always to decode the user with the better channel first. From

the perspective of the user with the better channel, this requires more power than

the other corner point. For an arbitrary λ, user 1 will be decoded first only when

|g1|2 ≥ λ
1−λ

|g2|2, thus as λ increases, user 2 will be decoded first more frequently.

Notice that the right hand side of each of the constraints in (7.9) is convex and

increasing in the pair (u1, u2). From this observation the following proposition follows

directly.

Proposition 7.1.1 P (g1, g2, u1, u2) is strictly convex in (u1, u2), and if u1 < ũ1 and

u2 < ũ2 then P (g1, g2, u1, u2) < P (g1, g2, ũ1, ũ2).

Extending the results of Ch. 6 will rely only on these characteristics. Thus the follow-

ing derivations also apply to other definitions of P with these same characteristics.

Therefore, any function P which satisfies Prop. 7.1.1 is defined to be a good power

function for the multiple-access case. Next we discuss some other possible candidates

for P (g1, g2, u1, u2).
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The following is one example of another power function which is also good. This

example corresponds to dynamic allocation of bandwidth between users. Specifically,

assume that during each block of N channel uses a ζ1 ∈ [0, 1] is chosen. One user

is allowed to transmit using a bandwidth of ζ1W and the other user is allowed to

transmit using the disjoint bandwidth of (1− ζ1)W . Let P (g1, g2, u1, u2) be the min-

imum convex combination of the power needed for the expected mutual information

between user i and the receiver to be uiW/N in this situation. In other words, for

some γ ∈ (0, 1)

P (g1, g2, u1, u2) = min
P 1,P 2,ζ1

γP 1 + (1 − γ)P 2

subject to: uiW/N ≤ ζ iW log

(
1 +

|gi|2P i

ζN0W

)
∀i ∈ {1, 2}

ζ1 + ζ2 = 1, ζ i ∈ [0, 1]

(7.10)

Note that the quantities of the left-hand side of the constraints in (7.10) are strictly

concave and increasing functions of P 1 and P 2. From this it again follows that P

is a good power function. This formulation also holds if instead we assume that the

available time-slot is dynamically allocated between users. Recall if ζ1 is fixed for all

time slots, then, as stated in the introduction, the problem decouples into two single

user problems.

In the formulation in (7.10) we are still assuming that the mutual information

during a slot is a good indication of the rate at which data can be reliably transmitted

- as we have argued previously, this will be true provided the number of degrees of

freedom available to each user is large. When ζ1 is small enough, then the number

of degrees of freedom available to the first user will also be small. This seems to

indicate a problem with the above formulation. One way to avoid this is to assume

that instead of sharing the available bandwidth during each block, user 1 is allowed

to transmit in a block with probability ζ and otherwise user 2 is allowed to transmit.

Thus when ever a user is transmitting, he can use the entire slot, and therefore has all

of the degrees of freedom available. In this case, u1 and u2 are the expected number

of bits transmitted by each user under such a randomized policy. The results in the

following section can be modified to hold with this generalization.



7.1. BUFFER CONTROL MODEL FOR MULTIPLE-ACCESS CHANNEL 159

One common situation that does not result in a good power function is the follow-

ing. Suppose that each user is constrained to use a single user Gaussian codebook.

Furthermore, assume the the receiver is constrained to receive and decode each user

separately, treating the other user as noise. This models a situation in which CDMA

is used with single user detectors and single user decoding. Let P (g1, g2, u1, u2) be

the minimum total power needed for the mutual information rate between user i and

the receiver to be uiW/N in this situation. In other words,

P (g1, g2, u1, u2) = min
P 1,P 2

P 1 + P 2

subject to: u1W/N ≤ W log

(
1 +

|g1|2P 1

N0W + |g2|2P 2

)

u2W/N ≤ W log

(
1 +

|g2|2P 2

N0W + |g1|2P 1

) (7.11)

For a given sum power P̄ and joint channel state (g1, g2), the set of rates (u1, u2) for

which there exists a solution to (7.11) with P (g1, g2, u1, u2) ≤ P̄ , will always have the

structure shown in Fig. 7-3. From this it follows that (7.11) does not define a good

power function.

Next consider the situation in (7.11) but assume that the transmitters can use

a randomized policy as discussed above. Now let P (g1, g2, u1, u2) be the minimum

total power needed for the expected mutual information rate between user i and the

receiver to be uiW/N using a randomized policy, when the channel state is (g1, g2)

From Fig. 7-3, it is apparent that when a randomized policy is allowed, this problem

reduces to (7.10). In other words, with single user detectors, only one user should

optimally transmit during each block.7

As in the single user case, P can also be defined to correspond to a given variable

rate modulation scheme or a given bound on the power needed for a fixed probability

of error. For example, suppose the channel is to be dynamically allocated between the

two users as in (7.10). However, now assume than when a given user is transmitting, a

7This means that using a randomized allocation with FDMA or TDMA is always “better” than
using CDMA, with single user detectors/decoding. Of course, one reason for using a CDMA systems
is to avoid having to do the scheduling required for dynamic allocation. Also, we are only considering
flat fading channels, and thus don’t see the multi-path diversity advantages of a CDMA system.
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u1

u2

Figure 7-3: The shaded region in this figure indicates the “capacity region” corresponding
to (7.11) with a fixed total power.

variable rate modulation scheme is used which has a good single user power function.

In this case, defining the multi-user power function as in (7.10) results in a multi-user

good power function.

Finally, one could consider a model with a fixed number of codewords, as in Sect.

4.3, where each codeword takes a variable length of time to transmit. There are several

difficulties in extending the model from Sect. 4.3 to this situation, i.e., a model where

each transmitter stops transmitting a given codeword when enough “exponent” has

been received. We will not consider such models in the following, but wish to point

out some of these difficulties. First, the amount of exponent required depends on

the decoding method. If joint decoding is used, then there are three error exponents,

corresponding to the three possible error types [Gal85] and one of the exponents

depends on both users’ transmitted signals. This makes any natural extension of the

single user model difficult. If stripping is used instead of joint decoding, then there

are only two error exponents – one corresponding to each user. However, in this case

the amount of exponent received during a block depends upon the stripping order.

From the above discussion, to minimize the sum power, it would be desirable to vary

the stripping order from block to block, depending on the channel gains - but this

can not be done until a user is decoded. One possible way around this is to split

each user into two “virtual users”– one corresponding to each stripping order. In this
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case some of the ideas in [Yeh00] may be useful. Finally with stripping, the second

user’s codeword can not be decoded until after the first user’s codeword is decoded.

Thus the delay experienced by the second user depends not only on its “transmission

rate” but on the other user’s action. This is further complicated by the fact, that the

codewords from each user will, in general, not be block synchronized.

Now we define the analogue to Pa(Ā) (cf. (5.20)) for the multiple-access case. Let

ψ1 and ψ2 be functions from G1 ×G2 to R
+. These functions are to be interpreted as

rate allocations which only depend on the joint channel state. For any good power

function P let

Pa(Ā
1, Ā2) = min

ψ1,ψ2
EGP (G, ψ1(G), ψ2(G))

subject to: EGψ1(G) = Ā1

EGψ2(G) = Ā2.

(7.12)

The solution to this optimization problem is the minimum convex combination of

power needed for each user i to transmit at average rate Āi, without any delay con-

straints. Some characteristics of the function Pa(Ā
1, Ā2) are summarized next.

Proposition 7.1.2 Pa(Ā
1, Ā2) is a strictly convex function of Ā1, Ā2 and if Ā1 < Ã1

and Ā2 < Ã2 then Pa(Ā
1, Ā2) < Pa(Ã

1, Ã2).

These follow from the corresponding properties of P (g1, g2, u1, u2) by similar argu-

ments to those in Ch. 6 (cf. Thm. 6.1.1).

7.1.4 Buffer cost & Markov decision formulation

Let S i denote the buffer state space of user i. We assume that at each time n,

each user i chooses U i
n based on a stationary policy μi : S1 × S2 × G1 × G2 
→ R

+.

Let µ = (μ1, μ2) denote the joint policy of the two users. Under such a policy, the
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expected time average power8 is given by

lim sup
m→∞

1

m

m∑
n=1

E(P (G1
n, G

2
n, μ1(S1

n, S
2
n, G1

n, G2
n), μ2(S1

n, S
2
n, G1

n, G2
n))). (7.13)

This quantity is denoted by P̄µ. To simplify the notation we will often write an

expression such as (7.13) as

lim sup
m→∞

1

m

m∑
n=1

E(P (Gn,µ(Sn,Gn)))

where Sn = (S1
n, S

2
n). As in the single user case, we are interested in minimizing this

quantity but also in minimizing some measure of delay or buffer overflow.

Let bi : S i 
→ R
+ be the “buffer cost” for user i. As in the single user case, we

assume that bi(s) is a non-decreasing, convex function of s. We could also consider

a buffer costs which are a function of s, a and u, as in Ch. 4, but for the sake of

simplicity, we restrict our attention to costs which only depend on s. For a given

policy µ, the expected time average buffer cost for user i is given by

lim sup
m→∞

1

m

m∑
n=1

Ebi(Si
n). (7.14)

We denote this quantity by b̄µ,i. Again, the two prototypical examples are

bi(s) = 1Li(s) =

⎧⎨
⎩1 if s = Li

0 otherwise
(7.15)

and bi(s) = s/Āi. In the first case b̄µ,i corresponds to the fullness probability of user

i’s buffer and in the later case b̄µ,i corresponds to the average buffer delay (assuming

Li → ∞). Once again, there is a trade-off between minimizing the average power in

(7.13) and the average buffer costs for each user. This can be thought of as a multi-

8More precisely we should say “the expected time average convex combination of the user’s
transmitted powers”, but we will shorten this when it is clear that we are referring to the convex
combination of the transmitted power.
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objective optimization problem with three objective functions - or by considering

each users power separately, a problem with four objectives. We consider a Markov

decision problem, where the cost is a weighted combination of these objectives. In

other words, we want to find a policy µ which minimizes

lim sup
m→∞

1

m
E

(
m∑

n=1

P (Gn,µ(Sn,Gn)) + β1b1(S1
n) + β2b2(S2

n)

)
(7.16)

where β1 > 0 and β2 > 0 are weighting factors.9 This is the sum of the average power

used plus β1 times the average buffer cost of user 1 plus β2 times the average buffer

cost of user 2.

Much of the analysis in Ch. 5 can be repeated for this problem. For example, if the

state space is finite and no overflows occur, then it can be shown that there must exist

an optimal policy such that each user’s transmission rate will be non-decreasing in its

own buffer state, if the other user’s buffer state is fixed. Also an optimal power/delay

curve for the multi-access problem can be defined as in Sect. 5.3. In this case we

define P ∗(B1, B2) to be the minimum of P̄µ over all policies such that b̄µ,i ≤ Bi for

i = 1, 2. When both user’s have infinite buffers it can be shown that this is a convex

function of (B1, B2) and non-increasing, meaning that if Bi ≥ B̂i, for i = 1, 2, then

P ∗(B1, B2) ≤ P ∗(B̂1, B̂2). Thus every point on this surface can be found by solving

(7.16) for some choice of β1 and β2; these correspond to all the Pareto optimal points

of interest.

7.2 Asymptotic Analysis for Multiple-Access Model

In this section, we analyze an asymptotic version of the multiple-access buffer control

problem. Specifically, we show that the results from Sect. 6.2 can be generalized to

the multiple-access case. Recall, in Sect. 6.2 we considered the single user problem

where the buffer cost corresponded to probability of buffer overflow; we examined the

limiting case as L → ∞. Here, we consider the multiple-access model, where again

each user’s buffer cost corresponds to probability of overflow and we let both user’s

9as in the single user case these can also be interpreted as Lagrange multipliers.
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buffer sizes grow. More precisely, assume that user i has a buffer of size Li and bi(s)

is given (7.15). We then let L1 → ∞ and L2 → ∞ while keeping L1/L2 = α. To

simplify notation, let L2 = L and thus L1 = αL; the above limits will then be denoted

by L → ∞.

Let SL = [0, L] indicate a buffer state space of size L. Thus when user i has a

buffer of size Li, S i = SLi . Let µL be a policy for the buffer state space SL1 × SL2 .

The average cost under this policy is P̄µL + β1b̄µL,1 + β2b̄µL,2. In this section we look

at the behavior of this quantity as L → ∞.

Assume that under every µ, the resulting Markov chain {(S1
n, S

2
n, G1

n, G2
n)} is er-

godic. Thus, there is a unique steady-state distribution on the joint state space; this

is denoted by πµ
S,G. Let πµ

S denote the marginal steady-state distribution on the joint

buffer state space and let πµ
Si denote the marginal steady-state distribution for user

i’s buffer.10 Then, b̄µL,i = π
µL

Si (Li). Let P̄µ(s) denote the average power used when

the joint buffer state is s = (s1, s2) under policy µ, i.e.,

P̄µ(s) = E (P (G,µ(S,G))|S = s) .

where (S,G) ∼ πµ
S,G. Thus

P̄µ =

∫
SL1×SL2

P̄µ(s) dπS(s).

As in the single user case, if β1 and β2 are large enough, Pa(Ā
1, Ā2) is a lower

bound to the average cost for all L and all policies.11 In other words,

P̄µ + β1π
µL

S1 (L1) + β2π
µL

S2 (L2) ≥ Pa(Ā
1, Ā2)

As L → ∞ this bound is achievable. Following Sect. 6.2 we bound the rate at

which this quantity can be approached and then demonstrate a sequence of strategies

whose rate is near this bound. Before doing this we establish some useful notation

10It would be more consistent with our previous notation to denote this by πµ
SLi

, but the above
notation is somewhat more compact.

11In the following it will always be assumed that β1and β2 are large enough for this to hold.
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and preliminary results.

7.2.1 Preliminaries

The notation and results in this section deal primarily with vectors in R
2. These

ideas extend to higher dimensional Euclidean space in a direct manner.

The vector (1, 1)′ is denoted by e, the zero vector is denoted by 0, and the Eu-

clidean norm on R
2 is denoted by || · ||. Let x = (x1, x2)′ and y = (y1, y2)′ be two

vectors in R
2. We write x < y if and only if x1 < y1 and x2 < y2. This relation

partially orders R
2. This ordering is compatible with addition on R

2, i.e., if x < y

then x + z < y + z for any z ∈ R
2. Also note that if x > 0 and y > 0 then x′y > 0,

where x′y = x1y1 + x2y2 is the usual inner product in R
2. Related notation such as

x ≤ y is taken to have the obvious meaning.

Another order relation on R
2 will be useful. Define x ≺ y if and only if x′e < y′e.

This relation linearly orders R
2 and is also compatible with addition. If x < y then

x′e < y′e, while the converse is not always true.

The notion of a projection of a vector onto a closed, convex subset of R
2 will also

be useful. Specifically, Let C be such a subset and let x ∈ R
2 be an arbitrary vector.

A vector y ∈ C is the projection of x onto C if ||x − y|| = inf{||x − w|| : w ∈ C}.
This is a well defined operation as stated in the following theorem:

Theorem 7.2.1 Let C be a closed, convex subset of R
2. For all x ∈ R

2, there exists

a unique vector y ∈ C such that y is the projection of x onto C.

This is one part of the projection theorem for convex sets. We refer to [Ber99] for a

proof. Note that when C is a subspace, this is the finite dimensional version of the

Hilbert space projection theorem.

7.2.2 Bound on rate of convergence

For P̄µL + β1π
µL

S1 (L) + β2π
µL

S2 (αL) → Pa(Ā
1, Ā2), it must be that both P̄µL →

Pa(Ā
1, Ā2) and β1π

µL

S1 (L) + β2π
µL

S2 (αL) → 0. As in the single user case, we bound

the overall rate of convergence by considering these terms separately. We restrict

ourselves to the following class of admissible buffer control policies.
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Definition: A sequence of stationary policies, {µL} is admissible if it satisfies the

following conditions:

1. Under every policy µL, {(Sn,Gn)} is an ergodic Markov chain.

2. There exists an ε > 0, a δ > 0 and a M > 0 such that for all L > M and for all

(s1, s2) ∈ SL × SαL:

Pr
(
(A − µL(s1, s2,G))′e > δ|SµL = (s1, s2)

)
> ε.

where A ∼ πA, and SµL and G are random variables whose joint distribution

is π
µL
S,G, the steady-state distribution of {(Sn,Gn)} under the policy µL.

The second requirement means that for large enough L, there is a positive steady-

state probability that the sum of the buffer states increases for any joint buffer state.

This generalizes the definition of an admissible sequence of policies considered in Sect.

6.2. If Pr(G = 0) > ε and Amin > 0, the above condition will hold for any L.

Recall, we are assuming that the arrival process {An} is memoryless, but, in this

section, we do allow the channel process to have memory. Also, we assume that at

x = (Ā1, Ā2) both ∇Pa(x) and ∇2Pa(x) exist.

The bound on the rate of convergence is given in the following theorem:

Theorem 7.2.2 For any admissible sequence of policies {µL}, the rate of conver-

gence of the average power required and the buffer overflow probability have the fol-

lowing relationship: if β1π
µL

S1 (L) + β2π
µL

S2 (αL) = o((1/L)2), then P̄µL − P(Ā1, Ā2) =

Ω((1/L)2).

Before proving Thm. 7.2.2 we first prove the following two lemmas. These lemmas

are analogous to the corresponding lemmas in Sect. 6.2 which were used in the proof of

the Thm. 6.2.1. For s ∈ SL1 × SL2 , let ΔµL(s) = (Ā1, Ā2) − E(µL(SµL ,G)|SµL = s).

This is the expected drift in both buffers when the joint buffer state is s and any

overflows are ignored. The first lemma bounds the average of ΔµL(s) over the joint

buffer state space.
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Lemma 7.2.3 For any stationary policy, µ,

0 ≤
(∫

SL1×SL2

Δµ(s) dπµ
S (s)

)
≤ (A1

maxπ
µ
S1(L

1), A2
maxπ

µ
S2(L

2))

PROOF. Let Sn = (S1
n, S

2
n) denote the joint buffer process. Likewise, let Un =

(U1
n, U2

n) be the number of bits transmitted. Consider the following decomposition of

Sn. Let Fn = An−Un−1 be the net change in the buffer occupancy, ignoring overflows,

between time n−1 and n. For i = 1, 2, let Ei
n =

∑n−1
m=0[S

i
m +Ai

m+1−U i
m−Li]+; this is

the total number of the ith user’s bits lost due to overflows up till time n. Assuming

that the buffer is empty at n = 0, we have

Sn =
n∑

m=1

Fm − (E1
n, E

2
n), (7.17)

and thus

lim
n→∞

1

n
ESn = lim

n→∞

(
E

1

n

n∑
m=1

Fm − E
1

n
(E1

n, E
2
n)

)
. (7.18)

By similar arguments to those in the proof of Lemma 6.2.2, it follows that:

lim
n→∞

1

n
ESn = (0, 0), (7.19)

lim
n→∞

1

n
E

n∑
m=1

Fm =

∫
SL1×SL2

Δµ(s) dπµ
S (s), (7.20)

and,

0 ≤ lim
n→∞

E
1

n
(E1

n, E
2
n) ≤ (A1

maxπ
µ
S1(L

1), A2
maxπ

µ
S2(L

2)). (7.21)

After substituting these into (7.18), the desired relationship follows. �
The next lemma bounds the drift, averaged over an appropriate “tail” region of

the buffer. From this lemma it follows that if β1π
µL

S1 (L) + β2π
µL

S2 (αL) = o((1/L)2),

then [ΔµL(s)]′e averaged over this tail region must eventually become negative (recall

we assume that L1 = L and L2 = αL).

Lemma 7.2.4 Let {µL} be an admissible sequence of policies, and let M , ε and δ
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be as in the definition of admissibility. Then for all L > M , there exists a sL ∈
(0, L1 + L2] such that

∫
{s:s′e>sL}

[ΔµL(s)]′e dπ
µL
S (s) ≤ −εδ2

4(L1 + L2)
+ A1

maxπ
µL

S1 (L1) + A2
maxπ

µL

S2 (L2).

PROOF. Assume that L > M . Without loss of generality, assume that δ divides

L1 + L2 = (1 + α)L. Consider partitioning the joint buffer state SL1 × SL2 into

m = 2(L1 + L2)/δ disjoint regions as follows. The first region is Q1 = {s : s′e ≤ δ/2}
and for i = 2, 3, . . . , m, the ith region, Qi will be given by Qi = {s : (i−1)δ/2 < s′e ≤
iδ/2}. Let c be the index of a region which has maximal probability with respect to

π
µL
S , so that

π
µL
S (Qc) ≥ 1

m
=

δ

2(L1 + L2)
. (7.22)

Let sL = cδ/2. Consider the convex set {s : s′e ≥ sL} ∩ (SL1 × SL2). Define the new

process {Ŝn} to be the projection of {Sn} onto this set (cf. Thm. 7.2.1). Figure 7-4

illustrates these steps.

Let Fn and (E1
n, E

2
n) be defined as in the previous lemma. Let F̂n be defined by:

F̂n =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Fn if Ŝ′
n−1e > sL and Ŝ′

ne > sL

Fn + Sn−1 − Ŝn−1 if Ŝ′
n−1e = sL and Ŝ′

ne > sL

Ŝn − Ŝn−1 otherwise.

(7.23)

Thus F̂n is the net change in Ŝn ignoring any overflows when S′
ne > sL. Let

(Ê1
n, Ê

2
n) =

∑n
m=1 F̂m − Ŝn, so Êi

n is the number of bits lost due to overflow by the

ith component of the Ŝn process until time n. Thus we have

lim
n→∞

E
1

n
Ŝn = lim

n→∞
E

1

n

n∑
m=1

F̂n − lim
n→∞

E
1

n
(Ê1

n, Ê
2
n) (7.24)
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LS
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2

L
2

δ/2 δ . . .

Figure 7-4: This figure illustrates some steps in the proof of Lemma 7.2.4. On the left,
the partitioning of SL1 ×SL2 into the m regions, {Qi} is illustrated. On the right a sample
trajectory of the Sn process is shown as a dashed line and a sample trajectory of the
Ŝn process is shown as a solid line. The shaded region, is the convex set {s : s′e ≥
sL} ∩ (SL1 × SL2).



170 CHAPTER 7. MULTIPLE USERS

Once again, using similar arguments to the proof of Lemma 6.2.3, we have:

lim
n→∞

E
1

n
Ŝn = 0 (7.25)

lim
n→∞

E
1

n

n−1∑
m=0

F̂n =

∫
SL1×SL2

lim
l→∞

E(F̂l|Sl−1 = s) dπ
µL
S (s) (7.26)

lim
n→∞

E
1

n
Êi

n ≤ Ai
maxπ

µL

Si (Li) for i = 1, 2. (7.27)

Here, liml→∞ E(F̂l|Sl−1 = s) is the steady state expected value of F̂n conditioned on

Sn−1 = s. Using these in (7.24) yields,

∫
SL1×SL2

lim
l→∞

E(F̂l|Sl−1 = s) dπ
µL
S (s) ≤ (A1

maxπ
µL

S1 (L1), A2
maxπ

µL

S2 (L2)). (7.28)

Therefore,∫
SL1×SL2

lim
l→∞

E(F̂l|Sl−1 = s)′e dπ
µL
S (s) ≤ A1

maxπ
µL

S1 (L1) + A2
maxπ

µL

S2 (L2). (7.29)

Next we bound liml→∞ E(F̂l|Sl−1 = s)′e in three different cases. These corresponds

to s being in one of three different regions of the buffer state space.

1. First assume s′e > sL. In this case, if F′
ne ≥ 0 then F′

ne =ˆ

F′
ne, and if F′

ne < 0 then F′
ne ≤ˆ

F′
ne. Thus

lim
l→∞

E(F̂l|Sl−1 = s)′e ≥ lim
l→∞

E(Fl|Sl−1 = s)′e = [ΔµL(s)]′e. (7.30)

2. Next assume s ∈ Qc (recall c = 2sL/δ). In this case F̂′
le is a non-negative random

variable and F′
le < F̂′

le + δ/2. Thus

E(F̂l|Sl−1 = s)′e = E(F̂′
le|Sl−1 = s) (7.31)

≥ δ/2 Pr(F̂′
le > δ/2|Sl−1 = s) (7.32)

≥ δ/2 Pr(F′
le > δ|Sl−1 = s). (7.33)
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The first inequality is due to the Markov inequality. Taking the limit and using that

µ is admissible we have

lim
l→∞

E(̂

Fl|Sl−1 = s)′e ≥ liml→∞ δ/2 Pr(F′
le > δ|Sl−1 = s) ≥ δε

2
.(7.34)

3. Finally, for all s such that s′e ≤ (c − 1)δ/2,

lim
l→∞

E(F̂l|Sl−1 = s)′e ≥ 0. (7.35)

Substituting each of these bounds into (7.29) yields:

∫
Qc

δε

2
dπ

µL
S (s) +

∫
{s:s′e>sL}

[ΔµL(s)]′e dπ
µL
S (s) ≤ A1

maxπ
µL

S1 (L1) + A2
maxπ

µL

S2 (L2)).

(7.36)

Finally, using π
µL
S (Qc) ≥ δ

2(L1+L2)
the desired relationship follows. �

We are now ready to prove Theorem 7.2.2. The basic ideas of the proof generalize

those of the single user case.

PROOF. Assume that {µL} is a sequence of admissible policies, such that β1π
µL

S1 (L)+

β2π
µL

S2 (αL) = o(1/L2). Since π
µL

Si (Li) is non-negative for i = 1, 2, it follows that for

any α1 > 0 and α2 > 0, α1π
µL

S1 (L) + α2π
µL

S2 (αL) is also o(1/L2). In particular, this is

true when α1 = A1
max and α2 = A2

max.

For each policy µL, the average transmission rate when Sn = s is (Ā1, Ā2)−ΔµL(s).

Therefore,

P̄µL(s) ≥ Pa((Ā
1, Ā2) − ΔµL(s)).

Thus, the over-all average power is lower bounded by

P̄µL ≥
∫
SL1×SL2

Pa((Ā
1, Ā2) − ΔµL(s)) dπμL

S (s). (7.37)

The first order Taylor expansion of Pa(x) around x = (Ā1, Ā2) is

Pa(x) = Pa(Ā
1, Ā2) + [∇Pa(Ā

1, Ā2)]′(x − (Ā1, Ā2)) + Q(x − (R̄1, R̄2)). (7.38)
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The remainder function Q(x) has the following characteristics: (1) it is convex; (2)

for x �= 0, Q(x) > 0, while G(0) = 0; and (3) ∇Q(x) = 0 if and only if x =

0. These follow from the strict convexity and monotonicity of Pa. Also note that

∇Pa(Ā
1, Ā2) > 0; this follows from Prop. 7.1.2.

Combining (7.37) and (7.38) yields

P̄µL − Pa(Ā
1, Ā2) ≥[∇Pa(Ā

1, Ā2)]′
∫
SL1×SL2

(−ΔµL(s)) dπ
µL
S (s)

+

∫
SL1×SL2

Q(−ΔµL(s)) dπ
µL
S (s).

(7.39)

Lemma 7.2.3 can be used to bound the first term on the right hand side as

−[∇Pa(Ā
1, Ā2)]′(A1

maxπ
µL

S1 (L), A2
maxπ

µL

S2 (αL))

≤ [∇Pa(Ā
1, Ā2)]′

∫
SL1×SL2

(−ΔµL(s)) dπ
µL
S (s) ≤ 0.

(7.40)

Here we used the fact that x > 0 and y > 0 imply x′y > 0 (see Sect. 7.2.1). Thus, it

follows that
∣∣∣[∇Pa(Ā

1, Ā2)]′
∫
SL1×SL2

(−ΔµL(s)) dπ
µL
S (s)

∣∣∣ = o((1/L)2).

Let sL be as defined in Lemma 7.2.4 and let VL denote the corresponding convex

set {s : s′e ≥ sL} ∩ (SL1 × SL2). Using the convexity and non-negativity of Q, the

second term in (7.39) can be bounded as:

∫
SL1×SL2

Q(−ΔµL(s)) dπ
µL
S (s) ≥ π

µL
S (VL)

∫
VL

1

π
µL
S (VL)

Q(−ΔµL(s)) dπ
µL
S (s) (7.41)

≥ π
µL
S (VL)Q

(∫
VL

−ΔµL(s)

π
µL
S (VL)

dπ
µL
S (s)

)
(7.42)

≥ Q

(∫
VL

−ΔµL(s) dπ
µL
S (s)

)
. (7.43)

Let xL =
∫

VL
−ΔµL(s) dπ

µL
S (s). Taking the second order Taylor series of Q(x)

around x = 0 we have:

Q(xL) =
1

2
x′

L∇2Q(0)xL + o(||xL||2). (7.44)
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Since Q is strictly convex, ∇2Q(0) is positive definite, and therefore has positive

real eigenvalues, λ1, λ2. Assuming (without loss of generality) λ1 ≤ λ2, we have:

x′
L∇2Q(0)xL ≥ λ1||xL||2.

Note that by Lemma 7.2.4, we have for L > M

x′
Le ≥ εδ2

4(L + αL)
− A1

maxπ
µL

S1 (L) − A2
maxπ

µL

S2 (αL)). (7.45)

By assumption A1
maxπ

µL

S1 (L)+A2
maxπ

µL

S2 (αL)) = o((1/L)2). Thus there exists constants

B > 0 and M̃ > M such that for L > M̃ ,

x′
Le ≥ B

L
≥ 0. (7.46)

It follows that for L > M̃ , ||xL||2 ≥ 1
2

(
B
L

)2
, and therefore

G(xL) ≥ λ1
1

2

(
B

L

)2

+ o

((
1

L

)2
)

= Ω

((
1

L

)2
)

. (7.47)

Combining (7.47) with (7.41) thru (7.43) shows that the second term in (7.39) is

Ω((1/L)2). We showed earlier that the first term in (7.39) is o((1/L)2). Thus, we

have P̄µL − P(R̄1, R̄2) = Ω((1/L)2) as desired. �

7.2.3 A nearly optimal simple policy

In this section we show that, as in the single user case, if the fading is memoryless

then there exists a sequence of “simple” policies which achieve convergence rates near

the bound in Thm. 7.2.2. To begin, we generalize the notion of a simple policy as

defined for one user. A natural way to do this is described in the following. Consider

partitioning the joint buffer state space, SL1 × SL2 into the four disjoint sets:

V ll = [0, L1/2) × [0, L2/2), V lu = [0, L1/2) × [L2/2, L2],

V ul = [L1/2, L1] × [0, L2/2), V uu = [L1/2, L1] × [L2/2, L2].
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S1

2S

L

V V

V V

ll lu

uuul

1

2

L /22

LL /21

Figure 7-5: This figure illustrates a two user simple policy. The arrows illustrate the drifts,
(Ā1, Ā2) − E(Ψxx(G)), in each region V xx.

Corresponding to each set, V xx, define a rate allocation ψxx : G1 × G2 
→ R
2 which

depends only on the joint channel state. For a given (υ1, υ2) such that 0 < υi < Āi

for i = 1, 2 define a simple policy with drift (υ1, υ2) to be a policy µ such that

µ(g, s) = ψxx(g) if s ∈ V xx,

and

E(ψll(G)) = (V̄ 1 − υ1, V̄ 2 − υ2), E(ψlu(G)) = (V̄ 1 − υ1, V̄ 2 + υ2),

E(ψul(G)) = (V̄ 1 + υ1, V̄ 2 − υ2), E(ψuu(G)) = (V̄ 1 + υ1, V̄ 2 + υ2).

The rate allocation under a simple policy depends only on the joint channel state and

on which of the regions V xx the buffer process is in. The expected drift in each buffer

state is toward the “center” of the joint buffer. Figure 7-5 illustrates such a policy.

While in one of the sets V xx, the buffer process under a simple policy is again a

random walk; only now it is a random walk in the plane. Following the development
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for the single user case, we would now like to bound the rate of convergence of the

overflow probability for a sequence of such simple policies. This presents the following

difficulty. In the single user case, we bounded the overflow probability by considering

a renewal process, where renewals occurred every time the buffer occupancy reached

L. The reciprocal of the inter renewal time is then πμL

S (L). In the multiple user case,

the event of the buffer process reaching the boundary, is no longer a renewal event.

Therefore we can’t bound the fullness probability in the same way.

We avoid the above difficulty by considering a special class of simple policies.

Specifically, define a simple policy to be separable if there exist real-valued functions

ψu,1, ψu,2, ψl,1, and ψl,2 , each defined on G1 × G2, such that

ψll(g) = (ψl,1(g), ψl,2(g)), ψlu(g) = (ψl,1(g), ψu,2(g)),

ψul(g) = (ψu,1(g), ψl,2(g)), ψuu(g) = (ψu,1(g), ψu,2(g)).

Note with such a policy, each user’s rate allocation is determined by only the joint

channel state and the user’s own buffer state. Thus each user’s individual buffer

process behaves as if it were determined by a single user simple policy. However,

a user’s transmission power will depend not only on it’s own buffer state and the

joint channel state, but also on the other user’s buffer state. One might think that

restricting our attention to such policies would limit the attainable performance. In

the following, we show that a separable sequence of policies can attain performance

near the bound in Thm. 7.2.2. Thus, at least asymptotically, the effect of requiring

the policy to be separable is minor. The performance attainable by such a sequence

is stated in the following proposition. Note this is the same growth rate that was

attainable in the single user case.

Proposition 7.2.5 For any K ≥ 2, there exists a sequence of separable simple poli-

cies, {µL}, such that β1π
µL

S1 (L) + β2π
µL

S2 (αL) = o((1/L)K) and P̄µL − P(Ā1, Ā2) =

O( ln2 L
(L)2

).

PROOF. First we construct a sequence of policies. Then we show that this sequence

has the desired performance.
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Let Ψ∗ = (Ψ∗,1, Ψ∗,2) : G1×G2 
→ R
2 be a rate allocation with average rate (Ā1, Ā2)

which achieves Pa(Ā
1, Ā2) (cf. (7.1.2)). For a given (υ1, υ2) ∈ (0, Ā1) × (0, Ā2), let

Ψu,1 =

(
Ā1 + υ1

Ā1

)
Ψ∗,1, Ψu,2 =

(
Ā2 + υ2

Ā2

)
Ψ∗,2,

Ψl,1 =

(
Ā1 − υ1

Ā1

)
Ψ∗,1, Ψl,2 =

(
Ā2 − υ2

Ā2

)
Ψ∗,2.

This determines a separable, simple policy with drift (υ1, υ2).

Consider a sequence of such policies {µL} indexed by L where for i = 1, 2,

υi
L =

KVar(Ψ∗,i(G)) ln L

Li
.

Assume that L is large enough so that υi
L < Āi. We use a subscript L to denote the

component functions described above corresponding to policy µL, e.g. Ψu,1
L . As noted

above, since each policy µL is separable we can think of each user’s buffer process as

being governed by a single user, simple policy. Thus we can apply Lemma 6.2.5 for

each user. This yields, for i = 1, 2

π
µL

Si (Li) = o

(
exp(−1

2
r∗,i(υi

L)Li)

)
, (7.48)

where r∗,i(υi
L) is the unique positive root of the semi-invariant moment generating

function of Ai − Ψu,i
L (G).

For any g ∈ G1 × G2, note that Ψu,1 =
(

Ā1+υ1

Ā1

)
Ψ∗,1(g) is a continuous and

differentiable function of υ1. Using this observation, it can be shown that

dr∗,1(υ)

dυ

∣∣∣∣
υ=0

=
2

Var(Ψ∗,1(G))
. (7.49)

Note this is exactly the same result given in Lemma 6.2.6, and it is proved in the

same way. The corresponding result also holds for r∗,2(x).
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Using (7.49), we have

r∗,1(υ1
L) = r∗,1(0) +

dr∗,1(υ)

dυ

∣∣∣∣
υ=0

· υ1
L + O((υ1

L)2) (7.50)

=
2υ1

L

Var(Ψ∗,1(G))
+ O((υ1

L)2), (7.51)

where we have used that for υ1 = 0, r∗,1(υ1) = 0. Using the given choice of υ1
L we

have

r∗,1(υ1
L) =

2K ln L

L
+ O

((
ln L

L

)2
)

. (7.52)

Substituting this into (7.48) yields

π
µL

S1 (L) = o

(
exp

(
−K ln L + O

(
(ln L)2

L

)))

= o

((
1

L

)K
)

.

(7.53)

Similarly, for the second user, we have

r∗,2(υ2
L) =

2K ln L

αL
+ O

((
ln L

αL

)2
)

(7.54)

and thus

π
µL

S2 (αL) = o

((
1

L

)K
)

(7.55)

Therefore,

β1π
µL

Si (L) + β2π
µL

S2 (αL) = o

((
1

L

)K
)

, (7.56)

and we have the desired rate of convergence of the overflow probability. Next we show

that the total power for this sequence of policies also converges at the desired rate.

Under the Lth policy, for any joint buffer state s ∈ V ll and any joint channel
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state, g, we have

Ψll(g) − Ψ∗(g) =

[
−υ1

L/Ā1 0

0 −υ2
L/Ā2

]
Ψ∗(g).

This can be rewritten as

Ψll(g) = Ψ∗(g) + UΔµL(s), (7.57)

where

U =

[
−Ψ∗,1(g)/Ā1 0

0 −Ψ∗,2(g)/Ā2

]
, (7.58)

and ΔµL(s) = (υ1
L, υ2

L)′ is the average drift in state s. The power used in this state

is then P (g, Ψll(g)). Expanding P (g,u) in a Taylor series in u about u = Ψ∗(g) we

have

P (g, Ψll(g)) = P (g, Ψ∗(g)) + [∇uP (g, Ψ∗(g))]′UΔµL(s) + o((υ1
L)2 + (υ2

L)2). (7.59)

Taking the expected value over the fading state, we have for any s ∈ V ll,

P̄µL(s) = Pa(Ā
1, Ā2) + v′ΔµL(s) + o((υ1

L)2 + (υ2
L)2), (7.60)

where v′ = EG([∇uP (G, Ψ∗(G))]′U). Exactly the same expression holds for a buffer

state in any of the other sets V xx. In these cases of course, ΔµL(s) will be the

appropriate drift for the region under consideration.

Next taking the expected value with respect to the buffer state, we have

P̄µL − Pa(Ā
1, Ā2) = v′

(∫
SL1×SL2

ΔµL(s) dπ
µL
S (s)

)
+ o((υ1

L)2 + (υ2
L)2). (7.61)

Recall from Lemma 7.2.3,

0 ≤
∫
SL1×SL2

ΔµL(s) dπµL
s (s) ≤ (A1

maxπ
µL

S1 (L), A2
maxπ

µL

S2 (αL)). (7.62)
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Thus the first term in (7.61) is o
((

1
L

)K)
. Using our choice for (υ1

L, υ2
L), the second

term in (7.61) is O

((
(ln L)

L

)2
)

. Therefore we have

P̄µL − P(Ā1, Ā2) = O

((
ln L

L

)2
)

(7.63)

as desired. �
To summarize, we have considered a two user multiple-access model, where the

buffer cost of each user corresponds to probability of buffer overflow. If each user has a

constant arrival rate, this corresponds to the probability a maximum delay constraint

is violated. We have shown that the single user results generalize to this situation.

Specifically, we bounded the rate at which a weighted combination of the average

power and each user’s overflow probabilities converge as the buffer sizes increase.

We have also shown that using a separable simple policy is asymptotically nearly

optimal when the fading is memoryless. Let us reiterate some of the assumptions

that were made in this section: First, each user had a memoryless arrival process.

However, different users may have different arrival process and the processes of the

two users can be correlated. Also the buffer size of each user can be different, as long

as they increase proportionally. With constant arrival rates, this corresponds to each

user having a different maximum delay constraint. Finally, in proving the bound on

the rate of convergence, the sequence of joint channel states {Gn} was allowed to

have memory. In proving that a simple policy was nearly optimal we assumed that

{Gn} was an i.i.d. sequence, Again, the individual components, G1
n and G2

n, were not

assumed to be either independent of identically distributed.

7.2.4 Generalizations

Now we comment on several generalizations of this model:

1. First consider a model with more than 2 user’s communicating over a multiple-

access channel. For M users, the power cost will be a map P (g1, . . . , gM , ui, . . . , uM)

which gives the minimum convex combination of power required for each user i

to transmit at rate uiW/K when the joint fading state is (g1, . . . , gM). A good
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power function P will be convex and increasing in (u1, . . . , uM). Theorem 7.2.2

generalizes directly to this case and so does Prop. 7.2.5. A separable simple

policy will still be defined by dividing each user’s buffer in half; this results in

partitioning the joint buffer state space into 2M subsets of R
M .

2. Next one could consider generalizing the buffer cost. In the previous section, we

looked at the case were the buffer cost corresponded to the probability of buffer

overflow. We conjecture that the single user results for average delay should

also generalize to the multiple-access model. An even more interesting situation

would be to allow different user’s to have different buffer costs. For example

one user could have an average delay constraint and one user a maximum delay

constraint. This may correspond to a situation in which one user is transmitting

real-time traffic, while another is transmitting data.

3. Finally we could consider the fading process, the arrival process, or both to have

memory; in other words we could assume that {Gn} and/or {AN} is a stationary

ergodic Markov chain. As noted above, the bound in Thm. 7.2.2 was proven

under the assumption the arrivals are memoryless but the fading process had

memory. The memoryless assumption was made for both the fading and arrival

processes in proving Prop. 7.2.5. We conjecture that these assumptions are not

needed for this proposition to hold. As in the single user case, generalizing this

proof involves considering Markov modulated random walks.

7.2.5 Required overhead

We want to make a few comments on the overhead required to implement the multi-

user policies discussed above. A general policy for M users requires knowledge of

the joint channel state and the joint buffer state. Using a simple policy still requires

knowledge of the joint fading state, but only 1 bit of information per user about the

joint buffer state. In either case, some amount of communication overhead is required

to convey this information to the necessary locations. As the number of user’s gets

large, this overhead may become prohibitive. In this section we look at these issues

in more detail.
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The first issue to be addressed is where information is initially known. This

depends on the overall architecture. First consider the channel state information.

As we have mentioned previously, this information may be estimated in a variety of

different ways. Each transmitter could estimate its own channel state, using either a

pilot signal broadcast by the receiver or data derived measurements from information

received on a reverse link. Of course, for the channel state to be learned in this way,

the reverse signal needs to be transmitted in the same coherence time and coherence

bandwidth in which the forward communication will take place. Alternatively, the

receiver could estimate the transmitter’s channel state based on either a training

sequence or data derived measurements.12 Regarding the buffer state information,

each transmitter has access to it’s own buffer state. If each user has a constant

arrival rate, then any user’s buffer state can be calculated by any location which has

access to the joint channel state. If there are random arrival rates or imperfect state

information, then the buffer state information must be communicated. In this case,

simple policies clearly require much less overhead than an arbitrary policy.

The next issue is where does information need to be in order to implement the

control policy. Once again the answer to this may vary with the overall architecture.

First note every transmitter needs to know its own control actions, that is the power

and rate at which to transmit. In general the receiver also needs to know the control

action of each transmitter to reliably decode. Thus one approach is to communicate

the necessary channel and buffer state information to each transmitter as well as

the receiver, then each location can calculate the current control action. For each

transmitter to calculate its control action, it is not generally necessary for the trans-

mitter to know the complete state description. For example, assume that each user

has identical and independent fading and identical buffer requirements. Additionally

assume that |G| = m and that a simple policy is used. Then the transmitter only

needs to know the number of users in each fading state, with buffer states in each of

the two portions. For a large number of users this information could be encoded using

a Huffman code, which could further reduce the required overhead. An alternative

is to communicate the necessary state information to the receiver; the receiver then

12Another important issue is the amount of overhead required for a training sequence and/or a
pilot signal. We don’t address this here.
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calculates the control action of each user and forwards this decision to the user. If

there are only a small number of control choices and many different joint states result

in the same control action, then this approach could require less overhead.

7.3 Future Directions

We conclude this chapter by mentioning two other directions in which the model in

this chapter could be extended.

Other Multi-User Situations: The multi-access channel studied in this chapter is

a specific example of a multi-user network. We briefly discuss extending these results

to other multi-user networks. Note that the asymptotic analysis in Sect. 7.2 only

required that P (g,u) be a good power function, where g is a vector representing the

channel gains for each user and u is a vector of transmission rate. For other multi-user

situations in which a function P can be defined with these characteristics, the above

analysis can be repeated. For example, suppose a single transmitter is broadcasting to

two users, where each user is receiving data from different applications and the data

for each user is stored in a separate buffer at the transmitter. Let P (g1, g2, u1, u2)

be the minimum power required to send u1 bits to user 1 and u2 bits to user 2 when

their respective channel gains are g1 and g2. Then if P is a good power function the

above analysis will also apply to this situation.

More generally one could consider an arbitrary single hop network. In other

words, suppose that there is a set of M transmitters and N receivers. Suppose each

transmitter has to send data to each receiver. This data arrives at each transmitter

according to a given random process and is stored in a buffer; a separate buffer being

used for each receiver. Let u ∈ R
NM be a vector representing the transmission rate

between each pair of transmitters and receivers, and let g ∈ C
NM be the vector

representing the channel gains between each pair of transmitters and receivers. Let

P (g,u) be the minimum total power required to send at rate u when the channel

gains are g. Then if P is a good power function, the above analysis can again be

repeated. Of course as MN gets large it becomes increasingly difficult to get all of

the needed state information. A variation of this type of model is to assume that each
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transmitter has a single shared buffer, instead of a separate buffer for each receiver.

In this case the analysis from the previous section would have to be modified.

Incomplete state information: The model in the preceding section assumes that

both users have complete state information. In many cases a more realistic assumption

would be to assume that each user has only local knowledge; in other words, each

user only knows its own buffer occupancy and channel gain. With this assumption,

the actual amount of mutual information received from each user in a block will be

a random variable depending on the other users’ actions. One way to model this

situation is to assume that a random number of bits are reliably received. A second

way to model this is to assume that each user chooses its transmission power and

rate, so that independent of the other users’ actions, this rate can be received. In

either case, if the average power required is given by a function P with appropriate

properties, then the above analysis should be able to be modified to apply here.
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CHAPTER 8

Conclusions

8.1 Summary

In this thesis we have considered several simple models of communication over fading

channels subject to delay constraints. Our emphasis has been on understanding the

possible trade-offs between the average power needed to communicate reliably and

some cost related to the delay incurred. The first part of this thesis was primarily

concerned with modeling issues. First we discussed models of fading channels; here

we focused on a narrow-band block fading model. Various notions of capacity for such

channels were discussed. In particular, we considered in detail several definitions of

capacity which arise by viewing the channel as a compound channel, such as the

delay-limited capacity. Some extensions of these ideas were provided, in particular

for the case where the transmitter has causal channel state information. We argued

that these compound channel formulations are only of limited use for the problems

we consider. Next several buffer models were developed. In each case, we looked at

situations where the transmitter can vary the transmission rate and power based on its

knowledge of the channel state, the buffer state and the arrival state. In this setting

we formulated a Markov decision problem where the per-stage cost is a weighted

combination of two terms; one term corresponding to the average transmission power

used, and the other term is intended to model a quantity related to delay.

In Chapter 5 we demonstrated some structural characteristics of the optimal policy

185
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for the aforementioned Markov decision problem. We also discussed the behavior of

the optimal solution as the relative weighting of the two cost components is varied.

Next, in Chapter 6, we considered asymptotic versions of this problem. We analyzed

two cases in detail. First we considered the case where the buffer cost corresponds

to probability of buffer overflow. We considered such problems as L → ∞ where L

is the buffer size. For a constant arrival rate, this case corresponds to a maximum

delay constraint. Next we looked at the case where the buffer cost corresponds to

average buffer delay. Here we considered such problems as the average buffer delay

became infinitely large. In both of these cases we bounded the rate that the average

costs converge to their limiting values. We also demonstrated a sequence of simple

buffer control policies with nearly optimal convergence rates. Finally, in chapter 7,

we considered problems with more than one user. Here, we focused on a multiple-

access situation with two users, where each user had a buffer cost corresponding to

probability of buffer overflow. The single user results from Chap. 6 were generalized

for this case.

8.2 Further Directions

In the previous chapters, we have mentioned several directions in which this work

could be extended. We will not repeat these here, but rather discuss some broader

architectural issues related to this work. The problems addressed in this thesis lie

at the boundary of physical layer and higher network layer issues. Specifically issues

such as the modulation and coding rate are generally addressed at the physical layer,

while buffer control would generally be thought of as a higher layer issue. From an

architectural point of view there are many advantages to separating network layers.

However, as this work makes clear, in a mobile wireless network the boundaries be-

tween these layers may not necessarily have the same characteristics as in a fixed

wire-line network. One way to think about this is to ask what is a good “black box”

abstraction for higher layers to have of the physical layer in such a network. In a

wired point-to-point network, this abstraction is typically that the physical layer is a

“packet pipe” which can deliver packets at a fixed rate, fixed delay and some small

probability of error. In a wireless network, this pipe can potentially have a variable
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rate, a variable delay and/or a variable probability of error. Furthermore these can be

thought of as parameters that the next layer can adjust along with the transmission

power. With such a physical layer, network issues such as routing and flow control

may need to be thought about from a new perspective, particularly in a packet-radio

network or another all-wireless network architecture.
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