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Abstract. We consider scheduling and resource allocation for the downlink in a CDMA
based wireless network. The scheduling and resource allocation problem is to select a subset
of the users for transmission and for each of the users selected, to choose the modulation and
coding scheme, transmission power, and number of codes used. We refer to this combination
as the physical layer operating point (PLOP). Each PLOP consumes different amounts of
code and power resources. The resource allocation task to pick the “optimal” PLOP taking
into account both system-wide and individual user resource constraints that can arise in
a practical system. In this paper, we tackle this problem as part of a utility maximization
problem framed in earlier papers that includes both scheduling and resource allocation.
Using an information theoretic model for the achievable rate per code results in a tractable
convex optimization problem. By exploiting the structure of this problem, we give algorithms
for finding the optimal solution with geometric convergence. We also use insights obtained
from the optimal solution to construct low complexity near optimal algorithms that are
easily implementable. Numerical results comparing these algorithms are also given.

1 Introduction

Efficient scheduling and resource allocation are essential for enabling high-speed wireless data services. A
variety of wireless scheduling approaches have been purposed that opportunistically exploit the temporal
variations of wireless channels to improve system performance, e.g. [1–9]. These approaches attempt
to transmit to users during periods when they have good channel quality (and can support higher
transmission rates), while maintaining some form of fairness.

We consider wireless scheduling for systems in which the transmitter can simultaneously transmit to
multiple users in each scheduling interval by using CDMA. In this setting, in addition to deciding which
users to schedule, the available physical layer resources, such as bandwidth and power, must be divided
among the users. Examples of such systems include the High Speed Downlink Packet Access (HSDPA)
approach developed for W-CDMA or the 1x-EVDV architecture for CDMA2000. In these systems, the
physical layer resources and information rate assigned to a user are specified by selecting the number of
spreading codes, the fraction of transmission power, and the modulation and coding scheme (MCS). We
refer to a combination of these as the physical layer operating point (PLOP).

The main problem to be addressed is to specify the optimal PLOP at each scheduling instant, which in
turn specifies the vector of transmission rates for each user. Moreover, this problem must be solved once
every time-slot (e.g. 2msec in HSDPA), and so requires a computationally efficient solution. We consider
this in the context of the gradient-based scheduling framework presented in [2], where the objective is to
choose the transmission rate vector that has the largest projection onto the gradient of the total system
utility. The utility is a function of each user’s throughput and is used to quantify fairness. Several such
gradient-based scheduling algorithms have been studied for TDM systems, e.g. [1, 11].

The problem considered here can be viewed as finding the maximum weighted sum throughput for
a downlink channel, where the weights are determined by the gradient of the utility. Our solution is
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general in that it also applies to other scheduling algorithms which provide these weights in a different
manner. Maximizing the weighted sum capacity for the downlink channel has been considered from
an information theoretic perspective in [12, 13]. This work assumes the use of information theoretic
(multi-user) coding/decoding and focuses on the long-term average throughputs.3 In [13] several sub-
optimal strategies are also considered. Here, we restrict ourselves to CDMA systems where all users are
orthogonalized; this is similar to one of the sub-optimal approaches in [13]. However, our focus is on
the performance in a specific fading state, which leads to simpler algorithms. We also take into account
additional “per-user constraints” that are imposed by the capability of each mobile in a practical system.4

In Section 2, we begin by formulating the scheduling and resource allocation problem. Using an
analytical formula relating the rate, power, codes, and SINR, we obtain an analytically tractable problem
with nice convexity properties. In Sect. 4 we consider these properties in detail. Based on the structure of
this problem, we then develop a dual algorithm for determining the optimal PLOP. We obtain analytical
formulae for many quantities of interest, for others we have to resort to a numerical search. However
these numerical searches are in a single dimension (due to the dual formulation) rather than over the
multidimensional PLOP space. Also, thanks to the convexity of the problem, these algorithms converge
geometrically fast. Along the way we obtain key structural properties of the optimal solution that help
speed up the numerical searches as well as help design low complexity near-optimal solutions.

2 Gradient-based scheduling and resource allocation problem

We consider the downlink of a wireless communication system with K users. The channel conditions are
time-varying and modeled by a stochastic channel state vector et = (e1,t, . . . , eK,t), where ei,t represents
the channel state of the ith user at time t. Associated with each channel state vector is a rate-region
R(et) ⊂ RK

+ , which indicates the set of feasible transmission rates rt = (r1,t, . . . , rK,t).
Our point of departure is the gradient-based scheduling framework in [2]. In this framework, at

each scheduling instant a rate vector rt ∈ R(et) is selected that has the maximum projection onto
the gradient of a system utility function U(Wt) =

∑K
i=1 Ui(Wi,t), where, for each user i, Ui(Wi,t) is a

increasing concave utility function of the user’s average throughput, Wi,t, up to time t. In other words,
the scheduling and resource allocation decision is the solution to

max
rt∈R(et)

∇U(Wt)T · rt = max
rt∈R(et)

∑

i

U̇i(Wi,t)ri,t. (1)

Similar, scheduling rules can be developed when the utility depends on other parameters such as buffer
size or packet delay.

We note that (1) must be re-solved at each scheduling instant because of changes in both the channel
state and the gradient of the utility. The solution depends on the state dependent capacity region R(et),
which we assume is known.5 In this paper, we consider a model for this region that is appropriate for
a CDMA system, such as HSDPA or 1xEVDV. We model this capacity region as being parameterized
by two sets of physical layer parameters: the number of spreading codes, ni and the transmission power
pi assigned to each user i. Each choice of these parameters specifies a PLOP, and must satisfy system
constraints on the total number of spreading codes (

∑
i ni ≤ N) and the total available power (

∑
i pi ≤ P )

as well as per user constraints on the number of codes that can be assigned to each user i (ni ≤ Ni).
We assume that the channel state ei for user i indicates the user’s received signal to interference

plus noise ratio (SINR) per unit power, where we have suppressed the dependence on t for convenience.
Assuming that all spreading codes are mutually orthogonal (so that the only interference is from other
cells), user i’s SINR per code is given by SINRi = pi

ni
ei. We assume that the achievable rate per code,

ri

ni
= Γ (ζi ·SINRi), where Γ corresponds to the Shannon capacity for a Gaussian noise channel with the

given SINR, i.e., Γ (x) = B log(1 + x), where B indicates the symbol rate (i.e., the chip rate/spreading
factor), and ζi ∈ (0, 1] is a scaling factor that can be used to model the “gap from capacity” in a practical

3 In the special case of maximizing the equal weight sum capacity in a flat fading channel, the information theoretic
optimal approach is to transmit to only one user in each time-slot [12] and hence, multi-user decoding is not required.
However, this is not true if the users are not weighted equally or for other channel models, such a multiple antenna
channel. It also does not hold when additional per user constraints are present, as is the case here.

4 Moreover, these constraints may vary from mobile to mobile. For example, the initial mobile devices for HSDPA can
receive up to 5 spreading codes, while future devices may be able to receive up to 15 spreading codes.

5 While, in a practical system, the exact channel state will not be perfectly known at the transmitter, some estimate of it
is usually available, for example, via channel quality feedback.



system. This is a reasonable model for systems that use sophisticated coding techniques, such as Turbo
codes. Redefining ei to be eiζi, the rate region is then given by

R(e) =

{
r ≥ 0 : ri = niB log

(
1 +

piei

ni

)
, ni ≤ Ni ∀i,

∑

i

ni ≤ N,
∑

i

pi ≤ P

}
. (2)

Notice that in (2), we allow the number of codes per user to take on a non-integer value. Of course, in
a practical system these must be integer valued. However, we show that, in most cases, the solution to
this relaxed problem results in integer values for ni.

By defining wi := U̇(Wi)B
ln 2 , we can rewrite the optimization problem in (1) as

V ∗ := max
(n,p)∈X

V (n,p) [Primal problem]

subject to:
∑

i

ni ≤ N,
∑

i

pi ≤ P,
(3)

where V (n,p) :=
∑

i wini ln
(
1 + piei

ni

)
, X := {(n,p) ≥ 0 : ni ≤ Ni ∀i}, n is a vector of code

allocations, p is a vector of power allocations, w is the vector of wi’s, and e is the vector of ei’s. Note
that the constraint set X is convex. It can also be verified that V is concave in (n,p).

In a practical systems there may also be several additional per user constraints, such as:
i) peak power constraints:

pi ≤ Pi, ∀i.
ii.) maximum SINR (per code) constraints:

SINRi =
piei

ni
≤ Si ⇔ pi ≤ Si

ni

ei
, ∀i.

iii.) maximum rate per code constraints:

ri

ni
= ln

(
1 +

piei

ni

)
≤ (R/N)i ⇔ pi ≤ (e(R/N)i − 1)

ni

ei
∀i.

iv.) maximum rate constraints:

ri = ni ln
(

1 +
piei

ni

)
≤ Ri ⇔ pi ≤ (eRi/ni − 1)

ni

ei
∀i.

These constraints can arise due to various implementation considerations. For example, a constraint
on the rate per code is imposed by the maximum rate of the available modulation and coding schemes.
A maximum rate constraint arises because there is only a finite amount of data available to send to
each mobile at any time. All of the above constraints can be viewed as special cases of a per user
power constraint with the form pi ≤ eisi(ni)ni for all i, where si is also dependent on the parameters
Pi, Si, ei, Ri, (R/N)i. We primarily focus on a SINR type of per-user power constraint, where si(ni) ≡ si

does not depend on ni. This corresponds to a limit on the SINR or rate per code. A further special case
of this constraint is si(ni) ≡ si = ∞ which corresponds to no per-user power constraints.

With the per user power constraints, the constraint set X is further restricted to

X := {(n,p) ≥ 0 : ni ≤ Ni, pi ≤ si(ni)ni/ei ∀i} .

Note that for a SINR type of per-user power constraint, this set remains convex.
Additionally, there may also be a constraint on the maximum number of users M scheduled in a

time-slot.6 We will prove later that such a constraint will in most cases automatically be satisfied by the
optimal solution as long as M − 1 users can fully utilize the available code budget, i.e. the sum of the
Ni’s for any subset of M − 1 users is greater than or equal to N .

6 For example, in HSDPA such a constraint arises because the system can not schedule more users than the number of
control channels.



3 The dual problem and convex optimization

We begin considering the solution to (3). Note that if
∑

i Ni ≤ N , then since n ln(1 + x/n) is increasing
in n, the optimal code allocation must be ni = Ni for all i. In this case, we are left with just a power
optimization problem which can be easily solved. Henceforth, we will assume this is not the case, i.e.,∑

i Ni > N .
We solve the optimization problem by looking at the dual formulation. Define the Lagrangian,

L(p,n, λ, µ) for the primal problem (3) by

L(p,n, λ, µ) =
∑

i

wini ln
(

1 +
piei

ni

)
+ λ

(
P −

∑

i

pi

)
+ µ

(
N −

∑

i

ni

)
. (4)

Based on this we can define the dual function

L(λ, µ) := max
(n,p)∈X

L(p,n, λ, µ). (5)

The dual problem is then given by:

L∗ := min
(λ,µ)≥0

L(λ, µ) [Dual problem]. (6)

Also, with some further abuse of notation, we define

L(λ) := min
µ≥0

L(λ, µ) = min
µ≥0

max
(n,p)∈X

L(p,n, λ, µ). (7)

From standard convex programming (e.g. Prop. 5.1.2 and 5.1.3 of [14]), we have:

Proposition 1. The dual function L(λ, µ) is convex over the set {(λ, µ) ≥ 0} and V ∗ ≤ L(λ) ≤ L(λ, µ)
for all λ, µ ≥ 0.

Also, it can be shown that this problem satisfies Slater’s condition [14], and thus we have:

Proposition 2. There exists at least one Lagrange multiplier and there is no duality gap. The set of
Lagrange multipliers is equal to the set of optimal dual solutions. Furthermore, (p∗,n∗), (λ∗, µ∗)) is an
optimal primal solution – Lagrange multiplier pair if and only if

(p∗,n∗) ∈ X ,
∑

i

n∗i ≤ N,
∑

i

p∗i ≤ P Primal Feasibility (8)

(λ∗, µ∗) ≥ 0 Dual Feasibility (9)
(p∗,n∗) = arg max

(n,p)∈X
L(p,n, λ∗, µ∗) Lagrangian Optimality (10)

λ∗(P −
∑

i

p∗i ) = 0, µ∗(N −
∑

i

n∗i ) = 0 Complementary Slackness (11)

4 Structure of the primal and dual problems

We give several properties of the dual problem in (6) and the corresponding primal problem in (3).

4.1 Computing the dual function

To begin, we compute the dual function, L(λ, µ) in (5) for a given λ and µ. To do this, we first optimize
the Lagrangian (4) over p, for a fixed λ, µ, and n. We then optimize over n to obtain the value of the
dual function. For the first step we have:

Lemma 1. For a fixed feasible n and any λ ≥ 0 and µ ≥ 0, the feasible power allocation p∗ that
maximizes L(p,n, λ, µ) is given by

p∗i =
ni

ei
s∗

(wiei

λ
, si(ni)

)
, (12)

where, s∗
(

wiei

λ , si(ni)
)

:=
[
min

{(
wiei

λ − 1
)
, si(ni)

}]+
, and [x]+ = max(0, x).



This follows directly from the Kuhn-Tucker conditions for the optimization problem. Note the solution
is similar to a “water-filling” power allocation across the users [15]. Substituting (12) into Lagrangian,
we have

L(p∗,n, λ, µ) =
∑

i

(winih(wiei, si(ni), λ)− µni) + λP + µN, (13)

where
h(wiei, si(ni), λ) = ln

(
1 + s∗

(wiei

λ
, si(ni)

))
− 1

wiei
s∗

(wiei

λ
, si(ni)

)
.

With a SINR type per-user power constraint, h(wiei, si(ni), λ) does not depend on ni. In this case, the
Lagrangian can be easily optimized over n, yielding:

Lemma 2. With a SINR type per-user power constraint, the vector of code allocations, n∗ that maximizes
(13) is given by

n∗i =
{

0, wih(wiei, si, λ) < µ,
Ni, µ < wih(wiei, si, λ). (14)

If µ = wih(wiei, si, λ), every choice of ni such that 0 ≤ ni ≤ Ni maximizes the Lagrangian.

Substituting this back into the Lagrangian, we have:

Lemma 3. With a SINR type per-user power constraint, the dual function is given by

L(λ, µ) =
∑

i

[µi(λ)− µ]+ Ni + µN + λP, (15)

where
µi(λ) = wih(wiei, si, λ). (16)

4.2 Optimizing the dual function

Next we turn to optimizing the dual function. First we consider optimizing over µ, then we consider
optimizing over λ. To begin, we sort the users in decreasing order of µi(λ) in (16). Using this ordering,
let j∗ be the smallest integer such that

∑j∗

i=1 Ni ≥ N, and let N ′
j∗ := N −∑j∗−1

i=1 Ni. Then we have:

Lemma 4. With a SINR type per-user power constraint,

L(λ) := min
µ≥0

L(λ, µ) =
j∗−1∑

i=1

µi(λ)Ni + µj∗(λ)N ′
j∗ + λP, (17)

and the minimizing µ is given by µ∗(λ) := µj∗(λ).

Note that µj(λ) ≥ µj+1(λ) by the above ordering. Thus µ∗(λ) is a threshold; any user i with µi(λ) >
µ∗(λ), gets its full code allocation, and those with µi(λ) < µ∗(λ) get none.

Remark: When wi ≥ wj , ei > ej , and si ≥ sj then µi(λ) ≥ µj(λ), for all λ. Thus user i will be always
be given a full code allocation before allocating any codes to user j. Furthermore, assume the scheduling
rule is to simply maximize the total throughput. In this case, packing users into the code budget in order
of their ei’s is optimal.

We next consider optimizing L(λ) over λ ≥ 0. For this we have:

Lemma 5. With a SINR type per user power constraint, L(λ) is convex in λ.

Since L(λ) is a univariate convex function, it can be easily minimized numerically using a bisection
type of search with a geometric convergence rate. Also note that, from (12), if λ > wiei, then user i will
be allocated zero power. Therefore, the optimal λ must be in the interval [0,maxi wiei]. This provides a
starting point for any numerical search. As λ decreases from its maximum value, users will initially receive
a positive code allocation based on the ordering of wiei. Let n0 denote the resulting code allocation. A
simple check can be done to see if n0 is optimal.



4.3 Finding a Lagrangian Optimal Primal Solution

Next, we examine finding primal values (n∗,p∗) such that

(n∗,p∗) = arg max
(n,p)∈X

L(p,n, λ, µ∗(λ)), (18)

for a given λ > 0. Here µ∗(λ) is given in Lemma 3. Given the optimal λ = λ∗, then from Prop. 2, such a
(n∗,p∗) will be optimal for the primal problem if they also satisfies primal feasibility and complimentary
slackness. We give a procedure for finding such a pair in the following. If the optimal λ is not found, we
also use this procedure to find a candidate feasible ñ. This can serve two purposes. First, we can also
construct a primal feasible p̃ corresponding to ñ. From Prop. 1,

V ∗ − V (ñ, p̃) ≤ L(λ)− V (ñ, p̃).

We can use this as a stopping criteria in the algorithms discussed below. The other use for ñ is to find a
subgradient for L(λ) which can aid in searching for the optimal λ; this will be discussed in the following.

It can be shown that a solution to (18) is equivalent to finding

n∗ = arg max
{n≥0:ni≤Ni ∀i}

∑

i

[µi(λ)− µ∗(λ)]+ni, (19)

and setting p∗ as in Lemma 1. If there is only one user i such that µi(λ) = µ∗(λ), there will be exactly
one solution to (19) which satisfies

∑
n∗i = N ; this can be found by again sorting the users based on

µi(λ) in (16). The desired solution is then to set n∗i = Ni for all i < j∗, n∗j∗ = N ′
j∗ , and n∗i = 0 for

all i > j∗, where j∗ and N ′ are as in Lemma 4. Note that at optimality, if µ∗(λ∗) > 0, then to satisfy
complementary slackness, it must be that

∑
n∗i = N . Even if µ∗(λ∗) = 0, an optimal solution satisfying∑

n∗i = N can still be constructed, however some users will be allocated zero power. Also note that n∗i
in (19) is always an integer allocation.

A scalar d ∈ R is a subgradient of L(λ) at λ if

L(λ̃) ≥ L(λ) + (λ̃− λ)d ∀ λ̃ ≥ 0.

For an arbitrary λ, a solution to (18) that also satisfies
∑

n∗i = N can be used to find a subgradient of
L(λ).

Proposition 3. Let (n̂, p̂) satisfy (18) for a given λ and
∑

n̂i = N . Then P −∑
i p̂i is a subgradient

of L(λ) at λ.

When there is a unique n∗ that satisfies the conditions of this proposition, it can be shown that L(λ)
is differentiable and so it has only one subgradient (its derivative). When there is a tie and more than
one µj(λ) = µ∗(λ), then there will be multiple n∗ that optimize (19) and satisfy

∑
n∗i = N . However,

for the optimal λ∗, every such n∗ may not result in a power allocation that is feasible and satisfies
complimentary slackness. For an arbitrary λ, different choices in n∗ will result in different subgradients
for L(λ). Next we consider resolving such ties.

Let Iλ denote the set of users involved in a tie for a given λ, i.e., for all i ∈ Iλ, µi(λ) = µ∗(λ).
The objective in (19) will not depend on ni, for i ∈ Iλ. First we consider resolving this tie to find the
maximum subgradient of L(λ) at λ. It follows from Lemma 3 that this is the solution to the following
linear program:

max
{ni|i∈Iλ}

Pres −
∑

i∈Iλ

s∗
(wiei

λ
, si

) ni

ei
[LPmax]

subject to: 0 ≤ ni ≤ Ni, i ∈ Iλ∑

i∈Iλ

ni = Nres

Here, Pres and Nres are the residual power and codes available for the users in the tie. The minimum
subgradient can also be found via a linear program given by

min
{ni|i∈Iλ}

Pres −
∑

i∈Iλ

s∗
(wiei

λ
, si

) ni

ei
. [LPmin]



subject to the same constraints as in LPmax.
In either of these cases, the structure of the linear program permits a simple greedy solution. Specif-

ically, given an ordering of the users in Iλ, we define a greedy code allocation for that ordering to be one
which sequentially takes each user in the ordering and assigns that user the maximum possible codes
until all Nres codes are assigned.

Lemma 6. The code allocation that solves LPmax (LPmin) is given by a greedy code allocation based
on ordering the users in Iλ in increasing (decreasing) order of s∗

(
wiei

λ , si

)
1
ei

.

Let n̂ (ň) be the greedy code allocation for LPmax (LPmin). Finding both of these solutions involves
a sort of Iλ, and thus each have a complexity of O(|Iλ| log(|Iλ|)). Typically, if a tie occurs, only a small
number of users will be involved. Indeed, assuming the parameters wi and ei are independently chosen
according to an absolutely continuous distribution, then with probability one a tie will not involve more
than two users.

If the optimal solution to either LPmax or LPmin is zero, then the corresponding code allocation
must be optimal. If the solution to LPmax is negative, then all the subgradients of L(λ) at λ are
negative. Likewise, if the solution to LPmin is positive, then all the subgradients are positive. However,
if the solution to LPmax is positive and the solution to LPmin is negative, then L(λ) will have a zero
subgradient at λ; a feasible code allocation corresponding to this zero subgradient will be primal optimal.
Assuming this is true, there must exist an α ∈ [0, 1] such that

α

(∑

i∈Iλ

s∗
(wiei

λ
, si

) n̂i

ei

)
+ (1− α)

(∑

i∈Iλ

s∗
(wiei

λ
, si

) ňi

ei

)
= Pres.

Solving for α and setting ñi = αn̂i + (1− α)ňi, for all i ∈ It will gives a primal optimal code allocation.
A special case of the above construction is when

Ni ≥ Nres, ∀ i ∈ Iλ. (20)

This implies that the per-user code constraints will be inactive for any solution to LPmax or LPmin.7 In
this case, the solution to LPmax and LPmin will involve one user each and the above combination will
involve only these two users.

Lemma 7. For a SINR type power constraint, an optimal code allocation can be found with the following
properties:
1. For the case of Ni = N at most two users will be scheduled.
2. If (20) holds or at most two users are involved in a tie, then at most dN/Nmine + 1 users will be

scheduled, where Nmin := mini Ni. All but two users will have their full code allocation.

Using typical parameter values for a HSDPA system, this implies that the number of users to be scheduled
will be on the order of 1-4.

4.4 Optimizing over the powers

Finally, we consider finding the optimal power allocation, p, in the primal problem given a fixed code
allocation n, i.e., we want to solve

V ∗(n) := max
{p≥0:pi≤eisi(ni)ni ∀i}

V (n,p) (21)

subject to
∑

i pi ≤ P . This can be solved by finding λ∗(n) using a dual formulation and then computing
the optimal p∗(n) as in Lemma 1. The optimal λ can be shown to satisfy:

Lemma 8. A given λ is the solution to the dual problem of (21) if and only if

λ =

∑
i niwi1{ wiei

1+si(ni)
≤λ<wiei}

P −∑
i

ni

ei
si(ni)1{λ<

wiei
1+si(ni)

} +
∑

i
ni

ei
1{ wiei

1+si(ni)
≤λ<wiei}

.

Based on this lemma, we can develop an iterative search for finding the optimal λ for a given code
allocation. The algorithm has a complexity of O(M log M) due to a required sort of the M users with
positive code allocations.
7 In practical system, this condition will often be satisfied. For example, in a HSDPA system with N = 15 and Ni = 15,

10, or 5 (the same value for all i), then whenever only two users are involved in a tie, this condition will be satisfied.



5 Algorithms

In this section we discuss algorithms for solving (3). First, we present several variations of optimal
algorithms all with a geometric convergence rate. We also discuss several suboptimal algorithms with
lower complexity.

5.1 Optimal Algorithm

The optimal algorithms we consider are all based on finding the dual optimal solution, L∗ in (6), by
solving minλ≥0 L(λ), where L(λ) is defined in (7). By strong duality this gives us the optimal primal
value, V ∗, and, given the dual optimal (λ∗, µ∗), the primal optimal (p∗,n∗) are given by optimizing the
Lagrangian as discussed in Sect. 4.3.

For a SINR type per-user power constraint, L(λ) is given by Lemma 4. We have shown that this
is a univariate convex function, and so can be minimized using a convex search technique. To begin,
we consider a bisection method, where at the kth iteration, the algorithm identifies a range [λLB

k , λUB
k ]

known to contain the optimal λ∗. We also identify an estimate of λ∗ given by λk ∈ [λLB
k , λUB

k ]. These
parameters are updated from iteration to iteration, by considering a candidate λcand

k in either [λLB
k , λk] or

[λk, λUB
k ], and then updating these parameters, depending on the relative values of L(λ). Choosing λcand

k

as the midpoint of the larger sub-interval ensures geometric convergence to the optimal dual solution.
Each iteration requires evaluating L(λ); using Lemma 4, this has a complexity of O(K log(K)) due to
the required sort based on µi(λ). As discussed in Section 4.2, we can use the points λmin = 0 and
λmax = maxi wiei to begin our search. This provides a basic optimal algorithm; next we discuss several
enhancements, which further exploit the structure of the problem.

The first enhancement we consider is based on initially checking if the code allocation n0 discussed in
Section 4.2 is optimal. If so, we need simply calculate the optimal primal power allocation, p∗(n0) and
we are done. If n0 is not optimal, this provides a tighter upper-bound on λ for beginning our search.

The next enhancement we consider is evaluate a feasible primal solution nk = n∗(λk) as in Section
4.3, for each iteration k. This serves two the following two purposes:

1. Stopping Criterion: It can be used for a stopping criteria. Two possibilities are:
a.) Calculate a primal feasible pk = p∗(nk), as in Section 4.4 and stop when the primal value and

the dual value are sufficiently close.
b.) Calculate a power allocation pk as given by Lemma 1 and stop when |P−∑

i pi,k| < ε. From Prop.
3, this stopping criteria checks if the subgradient is near zero. Note that pk is different from p∗(nk).

2. Update λk: The second use for nk is as a guide for picking the next λcand
k . Once again there are

several possibilities; we give two that correspond to the cases (a.) and (b.) above.
a.) For case (a.), we consider λcand

k = λ∗(n∗(λk)), where λ∗(n) is the optimal λ for the given code
allocation, and n∗(λ) is the optimal code allocation for the given λ. If λcand

k ∈ [λLB
k , λUB

k ], we can consider
it instead of the bisection point of a sub-interval.8 Evaluating this map using the iteration discussed after
Lemma 8 has a complexity of O(M log M).

b.) For case (b.), we can use the subgradient dk = P −∑
i pi,k to aid in choosing the next candidate

λ. In particular, if dk < 0 then the optimal λ must lie in [λ∗k, λUB
k ], and if dk > 0 then the optimal λ

must lie in [λLB
k , λ∗k].

Combining these steps, we have an optimal algorithm with the basic structure shown in Fig. 1. The
stopping criterion check and updating steps can be performed in either of the ways discussed above.

5.2 Suboptimal Algorithms

We briefly mention two sub-optimal approaches. The first, we refer to as a truncated optimal algorithm
begins by generating several initial code allocations based on packing the code budget using different
heuristic sort metrics, (e.g., ordering the users based on wiei). Given the set of initial feasible code
allocations, we then select the allocation with the maximum primal value. This allocation is then updated
by applying the optimal algorithm in Fig. 1 for a fixed number of iterations; in the following simulations,
we used only 1 iteration.

The second sup-optimal approach we refer to as the greedy baseline algorithm. This algorithm is based
on splitting the scheduling decision and the resource allocation into two parts. First a scheduling order for
the users is found, using some heuristic sort metric. Given the scheduling order, the resource allocation

8 Geometric convergence can still be guaranteed by only considering λcand
k is chosen such that it is sufficiently in the

interior [λLB
k , λUB

k ] so the current interval will be reduced by a given percentage.



1. IF n0 is optimal, THEN END.

2. Initialize λLB
0 , λUB

0 , λ0.

3. Set k = 0, nk = n∗(λ0), and Choose pk.

4. WHILE Stopping Criterion fails DO
i k = k +1;

ii Update λk and thereafter update λLB
k andλUB

k ;

iii Calculate nk = n∗(λk).

5. END WHILE

Figure 1. Basic structure of optimal algorithm.

is then done by taking each user in order and choosing a PLOP that maximizes the transmission rate
the user can receive, using the residual power and codes that are available.

6 Numerical Results

In this section we provide simulation results for the optimal and sub-optimal algorithms discussed above.
We consider a single cell system with 40 users and other parameters chosen to match a HSDPA system;
in particular, we set N = 15, Ni = 5, and P = 11.9W . As in [1], we assign each user a utility of the
form Ui(Wi) = 1

α (Wi)α, where α ≤ 1 is a fairness parameter. When α = 0, we set Ui(Wi) = log(Wi);
this corresponds to a proportional fair rule. We then simulate the combined scheduling and resource
allocation algorithms using a realistic single cell model that includes both large-scale and small-scale
fading. In Table 1, we give several performance metrics for each algorithm and for different choices of the
fairness parameter α. Shown are the time average utility, the time-average log utility (this can be used
to compare the throughputs of different utility functions), the average number of users M scheduled per
time-slot, the average number of codes used Ns, the average power used per time-slot, Ps, and the sector
throughput. Also, in Figure 1, we show the empirical CDF of the user throughput for each algorithm in
the α = 0 case.

Table 1. Simulation Results

α Algorithm Utility Log Utility M Ns Ps Sector
Throughput
(Mbps)

0.0 Optimal 231.944 231.944 3.35461 15 11.8997 8.8145

0.0 Truncated optimal 229.282 229.282 3 15 11.2689 7.87875

0.0 Greedy baseline 222.222 222.222 3 15 10.9659 6.36075

0.25 Optimal 173.646 231.669 3.33331 15 11.8998 9.28545

0.25 Truncated optimal 170.275 228.886 3 15 10.7793 8.54505

0.25 Greedy baseline 163.798 222.663 3 15 10.6948 7.2903

0.5 Optimal 806.085 228.404 3.36408 15 11.899 11.1392

0.5 Truncated optimal 749.531 224.379 3 15 9.83421 9.127

0.5 Greedy baseline 725.4 220.801 3 15 9.72985 8.6008

0.75 Optimal 4129.16 213.411 3.36341 15 11.8903 12.6934

0.75 Truncated optimal 3579.71 207.866 3 15 7.82554 10.1799

0.75 Greedy baseline 3538.96 201.87 3 15 7.79743 10.2524

In these results, the optimal algorithm gives a higher utility as well as a higher sector throughput
compared to the other algorithms. For the α = 0 case (proportional fair) we get a 34% improvement over
the greedy baseline algorithm. The truncated optimal algorithm is close to optimal and usually also gives
a higher sector throughput than the greedy baseline algorithm. For α = 0, we get a 23.87% improvement
over the greedy baseline algorithm. Furthermore, not only is sector throughput higher for the optimal
algorithm, but in fact, from Fig. 2 we see that all user throughputs are larger (in a stochastic ordering



Figure 2. Empirical CDF of users throughputs for α = 0.

sense). In general, the optimal is better than truncated optimal which, in turn, is better than the greedy
baseline when we compare user throughputs. We also observe that the optimal algorithm schedules 3
or 4 users whereas the other algorithms only schedule 3 users. From Table 1, we see that the optimal
algorithm does a better job of filling the power budget and that all algorithms used up all the codes.

7 Conclusions

In this paper we studied optimally allocating codes and power for the downlink of a CDMA system.
The objective was to maximize the weighted sum throughput, where the weights were determined by a
gradient-based scheduling algorithm. By formulating this as a convex optimization problem, we were able
use a dual approach to characterize the optimal solution and develop efficient optimal and sub-optimal
algorithms. Numerical results show that these algorithms can yield better performance than a greedy
baseline approach which splits the scheduling and resource allocation into two steps.
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