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Abstract

The progression of implementation technologies into the
sub-100 nanometer lithographies renew the importance of
understanding and protecting against single-event upsets in
digital systems. In this work, the effects of transient faults on
high performance microprocessors is explored. To perform a
thorough exploration, a highly detailed register transfer level
model of a deeply pipelined, out-of-order microprocessor was
created. Using fault injection, we determined that fewer than
15% of single bit corruptions in processor state result in soft-
ware visible errors. These failures were analyzed to iden-
tify the most vulnerable portions of the processor, which were
then protected using simple low-overhead techniques. This
resulted in a 75% reduction in failures. Building upon the
failure modes seen in the microarchitecture, fault injections
into software were performed to investigate the level of mask-
ing that the software layer provides. Together, the baseline
microarchitectural substrate and software mask more than 9
out of 10 transient faults from affecting correct program exe-
cution.

1. Introduction

Among the various issues facing the scaling of imple-
mentation technologies into the deep submicron regime, the
issue of transient faults remains largely an unknown en-
tity. Transient faults can arise from multiple sources: exter-
nal sources such as high-energy particles that cause voltage
pulses in digital circuits, as well as internal sources that in-
clude coupling, leakage, power supply noise, and temporal
circuit variations.

While transient faults have always to some extent
plagued semiconductor-based digital systems, the scaling of
devices, operating voltages, and design margins for purposes
of performance and functionality raises concerns about the
susceptibility of future-generation systems to such transient
effects. Historically, transient faults were of concern for
those designing high-availability systems or systems used in
electronics-hostile environments such as outer space. Be-
cause of the confluence of device and voltage scaling, and

the increasing complexity of digital systems, the problem of
transient faults is forecast to be a problem for all future digital
systems. From high-energy neutrons alone, experts estimate
that Failures in Time (FITs) for a chip will increase with the
number of devices (i.e., with Moore’s Law).

One major question is what should be done to protect the
unstructured control logic that exists within a modern proces-
sor pipeline? The relative amount of chip area devoted to such
general logic is increasing with chip complexity, and there-
fore the effects of transient faults through combinational logic
networks and pipeline latches is of particular concern. Rela-
tively straightforward techniques exist to protect large RAM
structures from infrequent, localized transient events while
few, and mostly ad-hoc, techniques exist for protecting the in-
struction processing pipeline of a modern high-performance
microprocessor.

In this paper, this question is approached by examining
the effect of transient faults on a modern microprocessor sim-
ilar to the Alpha 21264 or AMD Athlon through fault injec-
tion on a detailed Verilog model. The degree of fault masking,
or the rates at which transient faults are masked from appear-
ing as software visible errors, is estimated, and vulnerable
portions of the processor are identified. Based on this as-
sessment, we derive some lightweight mechanisms to harden
these structures, significantly improving the resilience of the
pipeline to soft errors.

In this work, we make three basic contributions:

e Microarchitectural Effects of Transient Faults:
We study the effects of transient faults that propagate into
pipeline state (such as a latch or RAM cell) and thus become
an error at the microarchitectural level. The purpose of this
component of our work is to examine the level and types of
fault masking that occur when a transient fault manifests as
a latched error in the pipeline logic of a modern processor.
This study is conducted on a latch-accurate Verilog model
of a modern wide-issue Alpha processor that uses speculative
execution. This particular contribution is similar to previous
work [6, 12]; here a more intensive fault injection campaign
is performed on a substantially more complex and speculative
processor. This component is also a continuation of work that
examined the fault propagation into a latch [3, 11, 16, 17, 20].



Here the fault propagation out from the latch is examined.

e Lightweight Microarchitectural Protection Mech-
anisms: Using the data gathered from our first set of fault in-
jection campaigns, we identify vulnerable components within
the processor pipeline and devise low-overhead protection
mechanisms to increase the microarchitectural masking level.
These mechanisms result in a sizable reduction of failures
without resorting to the use of wholesale redundancy or an
architectural checker [23].

e Architectural Effects of Microarchitectural Er-
rors: The effects of latch-level errors that have propagated
into architectural processor state (i.e., register file and instruc-
tion words) are studied. Using simplistic fault models derived
from our study of microarchitectural faults, fault masking in
software is observed and characterized.

2. Experimental Methodology

In this section, we describe our experimental methodol-
ogy. First, we introduce the processor microarchitecture and
Verilog model used in our experimentation. Next, we de-
scribe our fault model and fault injection framework. Finally,
we discuss the statistical significance of the results presented
in the remainder of the paper.

2.1. Processor Model

Given that our objective is to examine the effects of
transient faults on a modern high-performance processor
pipeline, we needed to develop a sufficiently detailed model
of a representative microprocessor architecture (microarchi-
tecture). In this subsection, we describe the microarchitecture
and the Verilog model used in our experimentation.

Our microarchitecture is a superscalar, dynamically-
scheduled pipeline similar in complexity to the Alpha
21264 [1] and the AMD Athlon [14]. The processor exe-
cutes a subset of the Alpha instruction set—due to time con-
siderations, floating point instructions, synchronizing mem-
ory operations, and some miscellaneous instructions were not
implemented. The processor includes such features as spec-
ulative instruction scheduling, memory dependence predic-
tion, and sophisticated branch prediction, which are neces-
sary ingredients for high-performance processing. The pro-
cessor can have up to 132 instructions in-flight in the 12-stage
pipeline. Every cycle, up to 6 instructions are selected for
execution using a dynamic scheduler of 32 entries. A dia-
gram of the processor is shown in Figure 1 and more details
are listed in Figure 2. The important point to note is that
our microarchitecture is representative of current-generation
high-performance microprocessors; it contains a similar rich
set of performance enhancing features (e.g., speculation) that
can affect the ways in which the processor reacts to transient
faults.

For us, understanding the ways in which transient faults
affect a microarchitecture of this complexity requires build-
ing a model of the processor that is representative down to

the latch-level of a real chip implementation. That is, all state
elements (latches, bits of RAM, etc) present in a real imple-
mentation are also present in the model and vice-versa. We
selected an edge-triggered clocking methodology, so all of
our pipeline latches are edge-triggered devices.

We argue that without such a latch-accurate model, it is
not possible to model all fault situations, making it difficult
to evaluate fault masking or to assess coverage of a protec-
tion scheme. For this reason, great care was taken to create
a detailed and accurate Verilog model upon which to perform
these fault injection studies.

Note that in our model, an L1 miss takes a constant eight
cycles to service. This has the effect of removing longer pe-
riods of processor idleness that would result from L2 cache
miss delays. As aresult, our pipeline is more sensitive to tran-
sient errors, causing us to underestimate the level of masking
in the pipeline.

2.2. Fault Model

Our fault model is a single bit flip of a state element.
This fault model captures the state-inverting phenomenon of a
neutron-strike to a state-keeping transistor of a latch or RAM
cell. This model does not accurately represent faults that oc-
cur within combinational networks. However, since combi-
national networks have much lower sensitivities due to pulse
attenuation, logical masking, latching-window masking, and
capacitive loading, they are not as problematic as state ele-
ments.

Our experimentation consists of a set of trials, each con-
sisting of a fault injection and determination of outcome. In
each trial, the time at which to inject a transient fault is first
selected. Then the bit to corrupt is selected randomly across
all of the eligible state of the processor, where eligible state is
defined by the particular experiment being run. The processor
model (including caches and predictor tables) was allowed to
“warm-up” prior to each fault injection.

In our experiments, we divided our fault injection cam-
paigns into two varieties: those targeting both latches and
pipeline RAM arrays and those targeting only latches. Iso-
lating latches from all of pipeline state has significance on
several fronts: First, latches may have different fault rates
and fault models from RAM structures due to implementa-
tion differences [17]. By distinguishing between these types
of state in our experiments, we can derive separate results
for these different structures. Second, data stored in latches
might have different characteristics compared to data stored
in RAM type structures. For example, latches might store
data that are more transient in nature or perhaps are less vul-
nerable to transient faults. Third, data stored in RAMs may
be easier and more efficient to protect using parity or error
correcting codes. Pipeline structures that are implemented
using RAM arrays include the register file, RAT files, register
free lists, scheduler and ROB payloads, and various queues.
There are about 14,000 bits of storage in latches and 31,000
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Figure 1. Processor model diagram.

bits of storage in RAM arrays in our pipeline across which
we perform injection.

After the fault injection occurs, the trial is continually
monitored for up to 10,000 cycles and compared against
a non-injected golden execution of the latch-level Verilog
model. Each trial results in one of four outcomes: (1) puArch
Match - microarchitectural state match, (2) Termination - pre-
mature termination of the workload, (3) SDC - silent data
corruption, or (4) Gray Area - none of the above. These out-
comes are described in the following paragraphs.

Microarchitectural state match occurs when the ENTIRE
microarchitectural state of the processor model (i.e., every bit
of state in the machine) is equivalent to that of a non-fault-
injected simulation. If a trial results in a microarchitectural
state match with no previous architectural state inconsisten-
cies, we can conclusively declare that the injected transient
fault’s effects have been masked by the microarchitectural
layer. These trials are placed in the pArch Match category.

Architectural state (i.e., program-visible state such as
memory, registers, and program counter) is verified every cy-
cle. If the architectural state comparison fails, then the tran-
sient fault has corrupted architectural state, and the trial is
considered a failure (Terminated or SDC). Trials that result
in register and memory corruptions are placed into the SDC
category, along with those that result in TLB misses. Tri-
als in the Terminated category are those trials that resulted in
pipeline deadlock or resulted in an instruction generating an
exception, such as memory alignment errors and arithmetic
overflow!.

If a trial does not result in failure or uArch Match within
our 10,000 cycle simulation limit, the trial is placed into

1Technically, some fraction of TLB misses would result in Termination,
specifically if the errant execution accesses an invalid or inaccessible page of
memory. We conservatively categorize all TLB misses as SDC.

Figure 2. Processor model details.

the Gray Area category. Either the fault is latent within the
pipeline, or it was successfully masked, but the timing of the
simulation was thrown off such that a complete microarchi-
tectural state match was never detected. Of those that are la-
tent, some will eventually affect architectural state while oth-
ers have propagated to portions of the processor where they
will never affect correct execution.

2.3. Statistical Significance

In this study, statistical sampling was used to identify
trends in the effects of transient faults, so enough samples
must be taken such that the experimental results have statis-
tical significance. Ideally, both the cycle in which the fault
injection occurs and the state bit that is affected would be se-
lected uniformly. While uniform sampling was implemented
for selecting the bit to corrupt, the fault injections were per-
formed on a set of about 250-300 start points for each exper-
iment. This methodology skews our results toward those of
the individual start points. However, with a relatively large
number of start points, the skewing effect is minimal.

Each experiment’s results are the compilation of 25,000—
30,000 trials. If the faults could be injected at any randomly
selected clock cycle, the overall results would have a confi-
dence interval of less than 0.7% at a 95% confidence level.
Note that for many of the experiments, the aggregate results
are subdivided for analysis, yielding larger confidence inter-
vals. As an extreme example, the gctrl results in Figure 9
consisted of only approximately 100 trials. This yields a con-
fidence interval of about 10%, the largest of the data presented
in this work.

3. Injection Experiment Results

In this section, we present the results of our fault injec-
tion campaigns. Our results are partitioned into three sub-



sections. In the first subsection, we analyze the effects of
injecting faults randomly throughout the pipeline logic. In
the second subsection, we target groups of elements within
the pipeline logic with similar logical function, for example,
the latches and RAMs that constitute the physical register file.
Finally, we examine the relationship between microarchitec-
tural masking and pipeline utilization.

3.1. Transient Faults in Pipeline State

Using the fault injection methodology described in Sec-
tion 2, we performed two fault injection campaigns: one
where we injected all bits of state (latches and RAM cells)
within the processor pipeline and one where we injected only
latches. The objective of these experiments is to gain insight
into the native level of microarchitectural masking present in
a modern processor.

Before presenting the results, we must point out that we
concentrate the fault injections on the irregular portions of
the pipeline by excluding data cache, instruction cache, and
predictor RAM arrays from the fault injection campaigns.
Fault injection into cache arrays is not interesting because
these structures are easily protected with parity and error cor-
recting codes (We do, however, inject errors into the various
structures that support the caches, such as miss handling reg-
isters and memory data path latches). We also exclude any
prediction structures determined to have no effect on correct-
ness (typically, prediction structures such as branch predic-
tors only affect timing).

Figure 3 contains the results of both fault injection cam-
paigns. Each bar in the graph represents a different bench-
mark application from the SPEC2000 integer benchmark
suite. Furthermore, the data from fault injection into latches
and RAMs are labeled with an [+r suffix, while data from
injection into only latches are labeled with an [ suffix.

The different benchmarks represent different workloads
on the processor, which affect the masking rate of the mi-
croarchitecture. The aggregate results are presented in the
rightmost bars in each graph. The benchmark gzip has the
highest rate of instructions committed per cycle (IPC) and
bzip2 has relatively high IPC and branch prediction rates as
well as the highest data cache hit rate. These factors con-
tribute to higher failure rates, since on average, more mean-
ingful work is in progress resulting in more vulnerable state.
We quantitatively measure this effect in Section 3.3.

Examining the aggregate bars of both graphs, one can ob-
serve that approximately 85% of latch+RAM faults and about
88% of latch-based faults are successfully masked. The frac-
tion of trials in the Gray Area accounts for another 3% for
both experiments; these faults are likely to have been masked
also, but we were not able to determine conclusively in our
framework. The remaining 12% of latch+RAM trials and 9%
of latch trials were known failures that were either SDC or
Terminated.

To understand the intrinsic level of microarchitectural

Figure 3. Fault injection results by benchmark.

masking for our microarchitecture (between 80-90%) one
must consider that for a high-performance processor, there
are many instances of idle logic, dead program state, and in-
correct speculation that mask the effects of a transient fault.
The effect of incorrect speculation is of significance for a cur-
rent processor and increases the masking rates over the 60-
70% estimated for a processor from the late 1980s by Czech
and Siewiorek [6].

3.2. Transient Faults in Logic Blocks

The next question we ask is how various logic blocks in
the pipeline contribute to the failure rate of the microarchi-
tecture. To accomplish this, each latch or RAM cell in the
processor was categorized based on the general function pro-
vided by that bit of state. For example, latches and RAM cells
that hold instruction input and output operands are placed into
a data category. Table 1 lists the various categories of logic
blocks and provides a brief description for each, as well as the
number of bits of latches and RAM cells within that category.

The results of the fault injection campaigns (latches and
latches+RAMs) were then categorized by the logic block of
the bit of state that was injected and the resulting outcome of
the trial. The results are presented in Figures 4 and 5.

Examining Figure 4, which presents the results for each
functional block when errors are injected into latches+RAMs,
one can observe that the architectural register alias table
(archrat) and the physical register file (regfile) are especially
vulnerable to soft errors. This is not surprising since these
structures contain the software visible register file. The spec-
ulative register alias table (specrat) and the speculative free
list (specfreelist) also appear to be particularly vulnerable. In
order to bolster the overall reliability of our microarchitec-
ture, it would be sensible to harden these and other structures,
and we discuss some ways to do so in Section 4.

Both the latch+RAM injections and the latch-only injec-
tions show high vulnerability for the bits categorized as gctrl
and valid. Their impact on the overall fail rate is small, how-
ever, since they constitute only a small fraction of the total
state of the machine. Also, it is interesting to note that the fail
rate of the data category is the lowest, due to a combination
of low utilization rate, speculation, and logical masking.



Category Description Bits of Latches | Bits of RAMs
addr 64-bit address field for memory operations. 384 3584
archfreelist | Architectural register free list. 0 336
archrat Architectural register alias table. 0 224
ctrl Miscellaneous control state such as d.ecoded instruction 2502 1916
bundle control words and state machines.
data Instruction input and output operands. 5899 2820
insn Parts of the instruction word passed along with each instruction. 1525 2016
pc 62-bit program counter fields. 1984 12480
qetrl Control state associated with queues. 176 0
regfile 65-bit register file entries and scoreboard bits. 80 5200
regptr 7-bit physical register file pointers. 978 1852
robptr 6-bit ROB tags. 352 444
specfreelist | Speculative register free list. 0 336
specrat Speculative register alias table. 0 224
valid Valid bits throughout the pipeline. 263 124

Table 1. Description of different categories of state.

. Oterminated
. DOgray
$ .3 Q0 & P Q@SSO
TS € TEF S S &P
S @ @7 O W@ A Q
S &9 R
> R v

Figure 4. Results of fault injection into
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Figure 5. Results of fault injection into latches
by type.

3.3. Correlation Between Utilization and Masking

We were able to extract an interesting phenomenon from
the data collected from our fault injection campaigns—there
is a correlation between the number of valid instructions in
the pipeline and the level of microarchitectural masking. In
Figure 6, a scatter-plot shows the percentage of non-failures
(Gray Area and pArch Match) versus the number of valid in-
structions in the pipeline at the time of injection. Here, valid
instructions are defined as instructions that will eventually
commit their results to architected state, i.e. those that are not
a result of a mis-speculation. This plot was generated for in-
jections into latches+RAMs, and a linear least mean squared

trendline is also displayed. This data is in the same vein as
work done by Mukherjee et al. [21], which estimated archi-
tectural vulnerability factors for various structures based on
their level of utilization.

Each data point in the scatter plot represents 100 trials
from a starting checkpoint. The relatively small number of
trials per data point results in a large confidence interval, con-
tributing to noise in the graph. Nonetheless, a strong trend is
present, indicating that a microprocessor is more vulnerable
to transient faults when it is full of valid instructions. Inter-
estingly, even when the pipeline is nearly full (we can theo-
retically have at most 132 instructions in the pipeline at any
point in time), approximately 70% of all transient faults still
do not propagate to architectural state, better reflecting mask-
ing levels quoted by past researchers.

100%

95% 1

90%
85%
80%

benign fault rate

75%

70% \ \ \ \
0 20 40 60 80 100

number of valid instructions
Figure 6. Scatter plot of benign fault rate versus
valid instructions.

There are three explanations for this result. First of all,
even when a processor is nearly filled to capacity with instruc-
tions, there is often a large portion of dead state not directly
associated with any instruction. Examples of such state in our
processor can include data path latches, the register file, and
various queues that facilitate deep pipelining. Second, even
some portion of processor state directly associated with valid
instructions is also commonly dead. Reasons for this include
structures retaining information for longer than necessary in
order to support speculation (for example, our scheduler does



not free an instruction’s entry until it is known that the in-
struction will complete) and state that is not always utilized
(for example, state in the memory unit that records store to
load forwarding, which does not always occur). Finally, soft-
ware level masking can also have a factor in this result, since
we verify architectural state at cycle boundaries instead of in-
struction boundaries.

In summary, we observe that 85% of trials in the
latch+RAMSs campaign and 88% of trials in the latch-only
campaign are masked. This is a significant result, particu-
larly if one notes the fact that we are injecting approximately
50%-55% of the surface area of a modern processor die (as
estimated from die photos of the Alpha 21264 and the Pen-
tium 4). The non-injected portions include the cache RAM
arrays and predictor structures, which either can be easily
hardened from soft errors through redundant coding or do not
contribute to failures. We also observed that the masking lev-
els for latches is higher than that of RAM arrays, indicating
that latches are generally less utilized.

4. Lightweight Protection

In this section, we develop several lightweight protection
mechanisms to cover the vulnerable portions of the pipeline
identified by our analysis from the previous section. We dis-
cuss the overheads of these mechanisms and evaluate their
coverage with new fault injection campaigns.

4.1. Failure Modes

We begin by more deeply evaluating the 12% failure rate
of the Latch+RAMs experiments from the previous section.
Recall that a failure is a trial that results in a SDC or Termi-
nated outcome. We further subdivide these failed trials by
examining the manner in which the failure occurred. For ex-
ample, a trial might have ended as SDC because the archi-
tectural register file was inconsistent with that of the golden
reference model.

Table 2 lists and describes the seven failure modes. Reg-
file and mem failures respectively indicate that a corruption
in the software visible register file or memory image was de-
tected. A ctrl failure describes trials where the injected fault
causes the processor to fetch, execute, and commit an incor-
rect (but valid) instruction. An except failure occurs when
the processor raises an exception (e.g. memory alignment
error or divide by zero). A trial that ends with a locked fail-
ure exhibits deadlock or livelock symptoms. In our experi-
mentation, this is detected when 100 cycles pass without any
instructions exiting the pipeline. Finally, itlb and dtlb de-
scribe transient faults that result in instruction and data trans-
lation lookaside buffer (TLB) misses. We preload both TLB’s
with all the pages accessed by the workload in the absence of
faults, so a TLB miss in our experimentation indicates a po-
tentially illegal memory access.

Figure 7 presents our assessment of the failure mode of
each of these cases, subdivided by functional block. Figure 8

Failure | Type | Description
ctrl SDC | Control flow violation - incorrect insn executed
dtlb SDC | Non-speculative access to an invalid virtual page
except Term. | An exception was generated
itlb SDC | Processor redirected to an invalid virtual page
locked | Term. | Deadlock or livelock detected
mem SDC | Memory inconsistent
regfile SDC | Register file inconsistent

Table 2. Description of failure modes.
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Figure 7. Breakdown of failure modes for injec-
tions into latches+RAMs.

presents the relative contributions of each type of state ele-
ment to the total number of failures. From these figures, we
observe that the failure modes are dominated by register file
inconsistencies and that a large portion of these corruptions
are due to injections into the register file, register alias tables,
and register free lists. Various register pointer fields through-
out the pipeline also contribute to the register file corruption
total. If these fields could be protected from transient faults,
a large fraction of the failures would be removed.

The second leading source of failures is pipeline dead-
lock. Many of these failures can be attributed to corrupted
ctrl, qctrl, robptr, and valid fields. In many of these cases,
simply forcing a pipeline flush would reset these corrupted
fields and allow the pipeline to continue executing instruc-
tions correctly. An example of a deadlock that would not be
resolved by a pipeline flush is a corruption of a queue con-
trol field in the store buffer. Since the store buffer maintains
its state across pipe flushes, another mechanism is required to
resolve its deadlocks.

4.2. Protection Mechanisms

In this section, we outline four lightweight protection
mechanisms that guard against the most common pipeline
failures. Their implementations and overheads in terms of
extra state, logic, and cycle time are discussed.

e Timeout Counter: The first protection mechanism
is a timeout counter, which targets the locked pipeline fail-
ures described previously. It detects when the pipeline has
not retired an instruction for a certain number of cycles (for
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our model, 100 cycles) and forces a pipeline flush in an at-
tempt to clear any potential deadlocks. The overhead of this
mechanism is estimated to be minimal in terms of both state
storage and combinational logic, requiring on the order of 10
latches and an incrementer in the processor’s retirement stage.
Care must be taken to ensure that the counter’s implementa-
tion does not cause the processor to enter livelock.

e Register File ECC: The next protection mecha-
nism we chose to implement involves protecting register file
contents with error correcting codes in a similar fashion
to [9]. Because each register file entry potentially holds non-
speculative software visible state, it is not sufficient to simply
detect that an error exists if we wish to mask the transient
fault. The hardware must be able to recover the data once it
detects a corruption. Thus, we decided to use ECC, which
added an overhead of eight bits for each of the 80 register file
entries.

e Register File Pointer ECC: In Section 4.1, we saw
that a number of structures that hold physical register file
pointers contributed greatly to the number of register file cor-
ruption failures. These structures include the archfreelist,
archrat, regptr, specfreelist, and specrat categories. For this
protection mechanism, all of these structures are protected
by accompanying each register file pointer with ECC. This
added 4 bits of overhead to each 7 bit register file pointer.
Since these pointers are simply passed from structure to struc-
ture, the generation of the ECC data only needs to occur once,
at the initialization of the pipeline. Error detection and re-
pair modules, however, are strategically placed throughout
the pipeline for maximum coverage and minimum overhead.

¢ Instruction Word Parity: In our model, the instruc-
tion word (along with various decoded information) is passed
along with each instruction through the pipeline to provide
control information in various stages. To protect instruction
words, parity bits for each 32-bit instruction word are gener-
ated as they enter the pipeline from the L1 instruction cache.
As instructions flow through the pipeline and portions of their
instruction words are dropped, the parity bit is updated using
information from the dropped portions. When the remainder

of the instruction word ceases to be propagated through the
pipeline, the parity bit is checked for consistency. In the case
of a parity error, a pipeline flush is initiated before the offend-
ing instruction has an opportunity to write the register file or
data cache.

4.3. Overheads

In each of the implementations presented previously, the
overheads in terms of extra state and logic were discussed.
Another possible overhead is the impact on the clock rate of
the machine. To avoid aggravating the critical path, complete
fault coverage was sacrificed for ease of implementation. For
example, the ECC data for the register file entries are gener-
ated a cycle after the data is written. This allows ample time
for ECC generation, but leaves the data vulnerable for that
first cycle. Other overheads may include higher power re-
quirements and capacitive loads on various transistors. With
the implementation of the above protection mechanisms, an
extra 3061 bits of storage out of about 45K were required.
Roughly two-thirds of this state storage overhead was in the
form of RAM type storage, while the remainder was in the
form of latches.

Depending on the nature of the various sources of tran-
sient faults, the overheads from these mechanisms likely re-
sult in a higher fault rate, due to a larger amount of vulnerable
hardware. For example, a larger number of storage elements
might increase the rate of faults caused by neutron strikes.
Fortunately, nearly all of the introduced overheads are natu-
rally redundant. For example, if a transient fault were to affect
a parity bit protecting an instruction word, a forced pipeline
flush would result with no ultimate effect on correct program
behavior. Nonetheless, it is important to consider the effect
of any introduced overheads.

4.4. Results

In this section, we estimate the effectiveness of the pro-
tection mechanisms described above by another fault injec-
tion campaign. For brevity, only results from injecting tran-
sient faults into latches+RAM are presented. State introduced
by the protection mechanisms are also subject to fault injec-
tion. Figure 9 breaks down the results of this experiment by
type of state injected. Note the addition of two new cate-
gories: ecc and parity, which respectively represent state used
to store ECC and parity information.

Compared against Figure 4, the number of failed tri-
als drops significantly. The failure rates for the archfreelist,
archrat, insn, regfile, specfreelist, and specrat categories all
exhibit large decreases as a result of the protection mecha-
nisms. The set of insn bits, however, sees a large number of
trials move from pArch Match to Gray Area. This is a re-
sult of the parity protection mechanism initiating a recovery
via pipeline flush when the bit corruption would not have re-
sulted in failure. The Gray Area category does not cover all
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Figure 9. Results of fault injection into
latches+RAMs broken down by type.

the insn trials, however, since only valid instruction words
with incorrect parity information will trigger a recovery.

Somewhat interesting to note is the large Gray Area cat-
egory of the archrat state elements. In the protection mecha-
nism implementation, a corrupted architectural register alias
table entry is never repaired, only overwritten with new, hope-
fully non-corrupted data. This only occurs when an instruc-
tion that writes its result to the corresponding register file en-
try commits. Many of the trials in the archrat’s Gray Area
category are due to an injection into a register alias table en-
try whose corresponding architectural register is not written
to within the simulation limit.

The Gray Area categories of the ctrl, gctrl, robptr and
valid state classifications also increase in size, displacing
locked failures. This is evidence that the timeout counter
mechanism worked to flush and restart the pipeline, resulting
in subsequent correct execution. Unfortunately, the change in
timing due to the pipeline flush makes a complete state match
unlikely, pushing many trials into Gray Area.

In Figure 10, a pie chart depicting the relative contribu-
tions of each state type to failures is presented. This figure
is in contrast to Figure 8, from the unprotected experiment.
The failures are now dominated by transient faults affecting
the pc, ctrl, and data categories. Note that failures from the
protected elements were not completely eliminated. These
failures were the result of transient faults affecting areas that
were left unprotected for minimal cycle time impact.

Worth noting is that directly comparing the aggregate
total in Figure 9 to its counterpart in Figure 4 is not fair.
This is due to the 6-7% extra (mostly non-vulnerable) state
introduced by the various protection mechanisms. After ac-
counting for a 7% higher transient fault rate, the implemented
mechanisms reduce the known failure rate (represented by the
SDC and Terminated categories) by approximately 75%.

5. Architectural Implications

Soft errors that do not get masked in the microarchitec-
tural level propagate to the architectural level and become vis-
ible to the running application. However, masking continues
to occur, and some fraction of these errors are masked at the
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Figure 10. Relative contributions of each state
type to SDC and Terminated.

architectural (or application) level. In this section, we model
errors that have propagated to the architectural level and ob-
serve their effects.

For this set of fault injections campaigns, we use a mod-
ified version of SimpleScalar’s functional simulator [4]. An
instruction from the dynamic instruction stream is selected
at random and forced to execute incorrectly. The program
is then allowed to proceed, and the simulation is monitored
for one of four outcomes: (1) Exception, (2) State OK, (3)
Output OK, and (4) Output Bad. If the error-injected pro-
gram generates an exception, it is placed in the Exception
category. This is a “noisy” failure. Otherwise, if the architec-
tural state (memory, registers, program counter) completely
matches that of a non-error-injected execution of the program
prior to a system call (the form of external communication for
our applications), the trial is placed in the State OK category.
This category represents trials that resulted in software mask-
ing of faults. If the trial does not fit in either of the first two
categories, the user visible output of the application may still
be correct. To identify when this occurs, the output of the ap-
plication is compared against that of a reference simulation.
If the program outputs were identical, the trial is placed in
Output OK. Note that the Output OK category is weaker than
the State OK category. Finally, a trial that generates incorrect
user visible output is added the Output Bad category.

We use six different fault models in this experiment: (1)
a single bit flip targeting the lower 32 bits of the result of a
register write, (2) a single bit flip targeting all 64 bits, (3) re-
placing the result of a register write with 64 random bits of
data, (4) a single bit flip into an instruction word, (5) chang-
ing an instruction into a no operation (nop), and (6) forcing
conditional branches to flip direction. Fault models (1)-(4)
in particular reflect the failure modes seen from the microar-
chitectural fault injection experiments from Section 3, while
fault models (5) and (6) provide an additional sense of the
transient fault masking levels of software. Results of these
experiments are presented in Figure 11 as averages across
10 SPEC2000 integer benchmarks. They represent approx-
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software.

imately 10,000-15,000 trials each, yielding a confidence in-
terval of less than 1% at a 95% confidence level for each fault
injection campaign.

From the results, we see that across all the injection cam-
paigns, approximately half of the trials result in complete ar-
chitectural state convergence (State OK). This indicates that
the masking levels of software are significant, and roughly
indicates that half the errors that escape the hardware layer
are eventually masked by the application. This masking ef-
fect is largely due to dead and transitively dead values in the
instruction stream.

We also note that in the first five fault models, a mod-
erately sized portion (10-20%) of the trials from State OK
had divergent control flow when compared against a reference
execution. This means that the induced fault temporarily im-
pacted the control flow of the application before the fault was
completely masked. A fault model that only affected control
flow was used in the last experiment, and we further investi-
gated this phenomenon in [22].

6. Limitations of Results

The presented experimental results are heavily based
on our choice of fault models, microarchitecture, simulation
models, and workloads. For example, much of this work is
geared towards characterizing the effects of single bit corrup-
tions. If this fault model fails to accurately model physical
transient faults, an underlying assumption of this work is bro-
ken. The same is true of our microarchitectural model: we
only characterize the failure rates of our particular pipeline in
this paper; but we believe that there are lessons to be learned
that are more broadly applicable. For example, the general
methodology of identifying vulnerable portions of a micro-
processor and devising low overhead protection mechanisms
for those portions is a generally applicable technique.

Furthermore, implementation choices we made in the
microarchitectural and logic design process may affect the
measured masking levels. There were occasions where
we chose a simpler implementation over a more complex
and compact implementation. For example, some Program
Counter (PC) fields within each Reorder Buffer entry could

have been stored more efficiently within a smaller separate
structure, potentially reducing the number of bits in the Re-
order Buffer and potentially reducing the masking rate. The
extent to which this has an affect on our results is unclear, but
we suspect it to be fairly small. These sorts of tradeoffs are
also made on real implementations, and some real decisions
might also increase masking rates.

While care was taken to create a detailed microarchitec-
tural experimental infrastructure, not all of the intricacies of
a modern dynamically scheduled processor were fully mod-
eled. Nonetheless, we believe that our model was created
with sufficient detail to provide error manifestation results ac-
curate to within 10s of percent when compared with those of
a real implementation.

7. Related Work

Czeck and Siewiorek [6] performed a similar analysis
through fault injection into selected bits of state in their simu-
lation model. Here, we use a more modern simulation model
and do a more thorough classification of the failure modes of
various types of state in a microprocessor.

Mukherjee et al. [21] introduced a method to com-
pute Architectural Vulnerability Factors for various processor
components and IA-64 software through analysis. The gen-
eral experimental results presented in this work corroborate
their analytic findings.

Kim and Somani [12] injected faults into picoJava-II, a
microprocessor core developed by Sun Microsystems. Their
microarchitectural model is more accurate than the one used
in this work; however, it is less complex in terms of high-
performance microarchitectural features. Also, they only ver-
ify the architectural state of the machine. Here, trials that
result in a complete microarchitectural state match are identi-
fied along with architectural state failures.

Ando et al. [10] protected the data and address paths of
their SPARC64 design with parity. Gaisler [9] protected the
register file in his SPARC V8 implementation using a tech-
nique similar to the one used in this work. Furthermore, he
protected various flip-flops by using triple modular redun-
dancy and providing three separate clock trees. Franklin [7]
noted different modes of failure throughout the pipeline, and
proposed mechanisms to guard against them. Here, vulnera-
ble state was identified through fault injection, and protection
mechanisms to defend against a majority of transient faults
were proposed, implemented, and tested.

Other work related to the microarchitectural work pre-
sented here include higher overhead mechanisms to protect
microprocessors with various forms of redundancy in mi-
croarchitecture [15, 18, 23]. Here, arguably lower overhead
approaches are proposed, albeit with lower fault coverage.

Previous work [19, 21, 2] has also explored the compo-
sition of dynamic instruction streams for dead and silent in-
structions. This work explores the same subject through fault
injection and identifies a larger set of dynamically dead in-



structions. Namely, a significant portion of control instruc-
tions are dead, and thus, instructions that produce values for
these control instructions are also possibly dead.

8. Conclusion

In this work, an analysis of the effects of transient faults
on high performance processors was characterized. To ac-
complish this, a detailed microarchitectural model was cre-
ated, and a fault model was selected. The results of the en-
suing fault injection experiment were not particularly surpris-
ing: the most vulnerable parts of a processor are those that of-
ten hold architectural state. This information was taken into
account when devising lightweight protection mechanisms to
cover the majority of the failures.

To summarize our experimental findings, we found that
at least 85% of injected single event upsets in our base-
line microarchitecture are masked from software. We also
found significant masking levels present in software for vari-
ous fault models. Together, the microarchitectural and archi-
tectural levels of masking hide more than 9 out of every 10
latched transient faults from affecting correct program execu-
tion. With precisely placed low overhead protection mech-
anisms, the level of masking is even higher. This gives an
idea of the underutilization of modern microprocessors and
dynamic inefficiencies of software.
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