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ABSTRACT
The emergence of power as a first-class design constraint has fueled
the proposal of a growing number of run-time power optimizations.
Many of these optimizations trade-off power saving opportunity for
a variable performance loss which depends on application charac-
teristics and program phase. Furthermore, the potential benefits of
these optimizations are sometimes non-additive, and it can be diffi-
cult to identify which combinations of these optimizations to apply.
Trial-and-error approaches have been proposed to adaptively tune
a processor. However, in a chip multiprocessor, the cost of indi-
vidually configuring each core under a wide range of optimizations
would be prohibitive under simple trial-and-error approaches.

In this work, we introduce an adaptive, multi-optimization power
saving strategy for multi-core power management. Specifically,
we solve the problem of meeting a global chip-wide power budget
through run-time adaptation of highly configurable processor cores.
Our approach applies analytic modeling to reduce exploration time
and decrease the reliance on trial-and-error methods. We also in-
troduce risk evaluation to balance the benefit of various power sav-
ing optimizations versus the potential performance loss. Overall,
we find that our approach can significantly reduce processor power
consumption compared to alternative optimization strategies.

Categories and Subject Descriptors
C.1.4 [Processor Architecture]: Parallel Architectures

General Terms
Design, Performance, Experimentation

Keywords
Chip Multi-Processor, Dynamic Power Management, Cache Resiz-
ing, Voltage/Frequency Scaling

1. INTRODUCTION
In modern systems, power optimizations at every layer of the

system stack are crucial to avoid thermal limits and improve energy-
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efficiency. Both low-level optimizations at transistor scale and high-
level operating system control of resources are indispensable in to-
day’s systems. An increasing number of optimizations at the micro-
architecture level ([1, 6, 12]) seek to make run-time trade-offs with
the goal of adapting to an application’s needs. This task is difficult
because not all of the optimizations have uniform power and per-
formance effects on all applications. Furthermore, due to execution
phases [10], it is likely that resource demands change frequently
within an application’s run and that consequently some power opti-
mizations can become more or less desirable at various stages. The
presence of multiple, compatible power optimizations, offers even
greater potential for power-savings, but makes the decision process
harder. Rather than merely a simple binary decision on whether
or not to apply an optimization, the system must chose a subset
of optimizations to apply. In some cases, these optimizations have
non-additive effects, making it difficult to predict what the cumula-
tive impact will be.

For multicore processors, the choice of which optimizations to
apply is even more complicated because the global search space
is potentially huge. In addition, multiprogrammed workloads of-
fer challenges because each application is likely to have its own
resource requirements. Furthermore, it can be difficult to balance
these individual demands while trying to achieve global power and
performance goals. Finally, a system-wide optimization is made
harder by the presence of independent, disjoint program phases.
Within each local application phase, we can expect a thread to
maintain the same sensitivity to resource allocation and power op-
timizations. If we consider a system-wide phase to be an interval
in which all threads are within stable phases, we can expect that on
average these independent threads will contribute to make system-
wide stable phases short lived. Consequently, global pressure on
resources and hence susceptibility to power optimizations, evolves
continually.

In recent work, trial-and-error frameworks have been used to
manage reconfigurable units in a single core processor [9, 15]. In
these approaches, the policy uses a testing period to try out all pos-
sible configurations or power modes. The results collected from the
trial phase are further used to select an appropriate run-time con-
figuration. To help reduce unnecessary trials, policies can include
techniques [8] to identify stable execution phases. These execution
windows are likely to have consistent resource utilization patterns.
Trial phases are typically entered when the system detects that a
new, stable execution phase has begun. If the phases are long-lived
the system can benefit because the length of the trial phases are
relatively short compared to the steady-state behavior.

This simple policy can be expanded to a multi-core scenario.
However, certain features of this policy make it less favorable than
it is in a single-core system. First, trial phases may contribute to



performance loss when inferior configurations are tested. Further-
more, the scalability of trial-and-error adaptation is quite limited.
As more power-saving techniques and therefore more power modes
are added, the number of required testing modes can explode.

In this paper, we examine a mechanism that integrates multi-
ple power optimizations and globally manages chip multiprocessor
processor power consumption to honor a chosen power budget. We
believe this is timely given the prominence of multi-core proces-
sors and growing interest in run-time optimization. Our approach
addresses concerns related to the large search space in a CMP sys-
tem with many core-level optimizations, complex relationships be-
tween these optimizations, and transient resource demands due to
very short-lived global phases.

Our work makes three principal contributions:

• We provide a global multiple optimization power manage-
ment framework for multi-core architectures. Our solution
configures individual cores to meet a chip-wide power con-
straint while maximizing global instruction throughput.

• Our approach introduces simple yet reasonably accurate per-
formance/power models that allow us to explore a very large
search space in a short amount of time. These models arepo-
sition independent; they allow us to evaluate the power and
performance of any given processor configuration from any
other configuration.

• We propose a risk evaluation strategy to find a balance be-
tween cost and benefit of applying the various power-saving
techniques.

The remainder of this paper is organized as follows: In Section
2, we describe our framework and identify how we envision global
power management being used in a system. We go on to describe
and evaluate power optimizations that we use in our solution in Sec-
tion 3. Then, in Section 4 we discuss policies that can be used to
guide global power management. We present simulation method-
ology, workloads, and experimental results in Sections 5 and 6. We
follow with a discussion and comparison to related works in Sec-
tion 7. Finally, we offer conclusions in Section 8.

2. SYSTEM FRAMEWORK
We begin with an overview of the proposed multiple-strategy

multi-core power management system depicted in Figure 1. At
design-time, we pre-select multiple power-saving strategies to form
a candidate pool of optimizations. At run-time, we apply a global
power manager to selectively configure the different optimizations
(e.g., dynamic voltage frequency scaling, cache resizing) on indi-
vidual processor cores to meet a specific power/performance goal.
This same optimization target is also used in [16]. The power
management system sits between the actual physical hardware and
system-level software. We assume that the power manager is im-
plemented in software. This is reasonable due to the flexibility and
easier deployment of a software implementation. Power manager
code can either be a part of the operating system or separately lo-
cated in firmware.

The power manager chooses which optimizations to apply to
each core given the workload and desired power/performance tar-
get. Each permutation of optimizations across cores is termed a
global power mode. The number of possible power modes is de-
pendent on the number of managed cores, the number of optimiza-
tions supported, and the degree to which optimizations are applied.
Even if all of these quantities are modest, there can be a large num-
ber of possible global power modes. In this work, the power man-
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Figure 1: Global Multi-Strategy Power Management

ager is charged with choosing a global power mode that obeys a
processor-wide power budget while maximizing throughput [16].

The primary work of the global power management unit is to pe-
riodically evaluate the overall power usage and performance of the
system and determine if it is warranted to switch to another power
mode. The obvious scenarios where it may be prudent to change
the power mode follow: (i) the power usage exceeds the global limit
or (ii) the power management unit determines that another power
mode offers better overall performance for the same power usage.
The general goal is to maximize system throughput while satisfying
a configurable power budget. This budget is not treated as a hard-
limit the way that thermal constraints are [4, 32]. Indeed, we expect
that temperature management facilities would also be present in the
system. Our goal is to improve energy-efficiency and consequently,
we treat the power budget as a soft-limit and make a best effort to
stay under this ceiling. Because there is considerable uncertainty
in program phases and power usage patterns [17], attempting to
guarantee that a power budget is never exceeded might restrict the
power manager to a small subset of power modes and hence ham-
per performance. We instead attempt to keep the power usage just
below the budget while minimizing performance impacts.

Run-time monitoring is essential for both maintaining the power
budget and delivering high instruction throughput; we apply a pre-
diction scheme that combines core-level counters, sensors, and an-
alytic models to keep tabs on the system in its current configura-
tion and estimate how well other power modes might fare. For
power monitoring, we assume that on-chip, core-level power mea-
surements are available via circuit-level sensors. This functionality
is present in recent industry processors [24]. We use a combination
of performance event counters, cache miss counters, and analytic
models to track performance. Our performance counters are in-
spired by CPI-stack style counters [11] which are now present in
some high-performance processors.

Our global power management strategy applies an on-line per-
formance/power modeling and optimization algorithm between in-
tervals of fixed run-time. If well-designed, a CMP global power
management policy can quickly detect changing system behavior,
and react promptly to match the characteristics of the supporting
hardwarde structures to the programs’ new requirements.
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Figure 2: Representative power-performance trade-offs

3. BUILDING A POWER OPTIMIZATION
POOL

3.1 Candidate Pool
A large number of run-time power optimizations have been stud-

ied in recent years [6, 16, 8]. To construct a strategy pool with
more optimizations, the power manager has more power modes to
choose from and therefore can potentially achieve a better power
savings if it could successfully select the best strategy each time.
On the other hand, it could also become quite challenging and even
hazardous when the manager has to evaluate, compare, and opti-
mize over a large number of candidates. The decision on whether
to include a particular power-saving strategy can both heavily af-
fect and be affected by power management policy design. After a
careful evaluation, we included two popular strategies in our study:
Dynamic Voltage/Frequency Scaling (DVFS) and cache resizing.

DVFS is an efficient power-saving technique widely used in mod-
ern processors. In DVFS, dynamic power changes cubicly with
frequency-voltage scaling [16] while static power changes expo-
nentially with voltage [29]. And overall performance is roughly
linear with clock frequency.

In this paper, we used the same power modes defined by Isci et
al. [16]. The static power is approximated with a same cubic rela-
tionship as dynamic power since the results are very close within
the voltage range. Table 1 lists all four allowed voltage-frequency
pairs along with corresponding power-saving achieved and max-
imum performance loss. Notice that within this range there is a
roughly 3-to-1 power-savings versus performance loss. Figure 2(a)
shows a representative power-performance curve for DVFS.

Supply Voltage Frequency Power Saving Max Perf-Loss
100% 100% 0 0
95% 95% 14% 5%
90% 90% 27% 10%
85% 85% 39% 15%

Table 1: Scaling effect of DVFS

In modern processors, caches occupy a large portion of die area
and account for a large portion of the transistor budget. In Intel’s
dual-core 64-bit Xeon processor, more than 80% of the transistors
are devoted to caches [33]. This results in a large contribution to
static power usage from on-chip caches. As the feature size shrinks,
leakage current continues to increase and static power becomes
more significant. It is projected that static power will threaten the
survival of CMOS itself [30] in the long term. Reducing cache leak-
age is a popular research topic and many cache resizing strategies
have been proposed recently.

Both dynamic cache and static cache resizing attempt to adjust
the cache size based on demand capacity. Figure 2(b) shows differ-
ent power-performance trade-offs achieved on several workloads
applying cache resizing. Different workloads and different stages

within a workload have different tolerance to cache size reduction.
Depending on the actual situation, cache resizing can provide an ei-
ther better or worse result than DVFS as shown in the figure. While
finer-granularity resizing is possible, in this work we apply a resiz-
ing technique with a granularity of cache ways, as in Albonesi’s
work [1]. When necessary, some ways of a cache will be turned
off or put in a low-leakage state. Execution resumes with reduced
cache capacity and associativity. We assume cache blocks that are
turned off will stop consuming static and dynamic power. We ap-
ply cache resizing of the L1 instruction, L1 data, and unified L2
caches.

4. GLOBAL POWER MANAGEMENT
POLICY

In this section, We detailedly discuss the design of our global
multi-optimization power management policy. It solves the prob-
lem of maximizing overall instruction throughput on a homoge-
neous chip multiprocessor with a global power budget. Our ap-
proach is well suited to designs in which there are multiple power
optimizations that can be applied to each processor core. Under
simple trial-and-error approaches, there are an overwhelming num-
ber of global power modes. Even if the search space is pruned,
it can still either lead to a long search process or force the power
management system to make a poor choice.

The key to our approach is an analytic performance and power
model that is fed by run-time counters and sensors. The model al-
lows us to quickly evaluate a large number of power modes in far
less time than it would take with trial-and-error evaluations. This is
particularly important in multi-core systems since it may be desir-
able to re-evaluate power modes rather frequently (e.g., whenever
any application encounters a phase change). We also introduce a
form of risk evaluation that allows us to filter out power optimiza-
tions in which the potential negatives out-weigh the benefits.

4.1 Analytic Models
Analytic modeling for complex out-of-order processors has been

recently proposed as a solution to design-time evaluation. In this
work, we further extend analytic models to evaluate power opti-
mizations at run-time.

A novel aspect of our approach is that our models areposition-
independent. Consequently, they allow us to evaluate the power
and performance of any power mode from any other power mode,
including the current one. The primary benefit of this is that we
do not have to transition to a common or baseline configuration to
evaluate an alternative set of power optimizations.

The projected performance loss and power savings for differ-
ent power modes are calculated by feeding collected data from
both sensors and event counters into simple yet reasonably accu-
rate models. In this paper, we show how two power optimizations,
namely dynamic voltage/frequency scaling (DVFS) and cache re-
sizing via selective cache ways, can be evaluated on-line.

4.1.1 Modeling Dynamic Voltage/Frequency Scaling
As discussed in Section 3, DVFS is relatively easy to model

and has rather predictable consequences on both power and per-
formance. Overall, we can model power consumption to have a
cubic relationship to the applied frequency. Given the power usage
Perfi for a given application running at frequencyFreqi , the power
consumptionPerfj at an alternative frequencyFreqj is given by:

Perfj = Perfi × (
Freqj

Freqi
)3 (1)

In previous work, on-line models have assumed a linear relation-



ship between frequency and performance [16]. This simple model
is well suited to CPU-bound applications in which there are rela-
tively few interactions with the memory system. Because globally
shared caches and off-chip RAM are outside the scope of core-
level DVFS, stall time in the memory does not scale with frequency.
Memory-bound applications are therefore less impacted by frequency
scaling. Our run-time model can explicitly quantify this effect by
estimating the division between compute and memory time.

Our approach uses CPI stack counters [11], to measure the frac-
tion of execution time that is spent on memory system access and
models that take into account the asymmetric effects of frequency
scaling. Performance event counter architectures that classify exe-
cution cycles have gained interest recently [8, 11], and have been
featured in commercially available processors [25]. They are useful
in profiling, performance debugging, and system analysis because
they provide detailed breakdowns that would otherwise only be
obtainable through simulation or extremely high-level estimation.
They can directly measure execution stalls due to cache misses in
many levels in the hierarchy, TLB misses, branch mispredictions,
and pipeline resource contention. In this work, we re-purpose them
to collect the division between compute and memory stalls and
hence focus only on two types of counts: total cycles and L2 miss
stalls (instruction + data). If we considerCPU andMem to be
compute and memory stall times, we can model performance at
two frequenciesFreqi andFreqj as

CPUj = CPUi × (
Freqj

Freqi
) (2)

Memj = Memi (3)

The projected new performance can be calculated as

Perfj =
CPUi×(

Freqj
Freqi

)+Memi

CPUi+Memi
× Perfi (4)

4.1.2 Modeling Cache Resizing
Our performance model for cache resizing depends on two sep-

arate components. First, we model the CPI cycle penalty of an
individual cache miss. Second, we approximate how the current
miss rate would change at an alternative cache size. The product of
these terms is the expected performance benefit of applying cache
resize.

The instantaneous per miss cycle penalty (e.g., the average cost
of a cache miss under the current cache configuration) is computed
individually for caches at each level of the memory hierarchy. We
identify CPI cycles associated with cache misses using the CPI
stack model proposed by Eyerman et al. [11]. We then divide those
miss cycles by the number of misses in that cache. This yields
the associated miss penalty. We assume that miss penalty is an
application-dependent characteristic and it is independent of miss
rate. This is not strictly true because misses often overlap. Con-
sequently, as the miss rate increases, the average miss penalty may
decrease if the miss events are clustered. Nevertheless, we find that
the simple miss penalty calculation is sufficient because it is rarely
prudent to select a cache configuration that increases the miss rate
significantly. It can be considered a conservative estimate.

To predict the miss rate for an alternative cache size, we apply
the method used by Qureshi and Patt [28], which itself exploits the
cache’s stack property[23] under the LRU replacement policy. A
hit at a smaller cache size is guaranteed to also be a hit when the
associativity increases. Figure 3 shows the extra counters needed to
book-keep hit and miss events. The cache tag is logically organized
in MRU to LRU order and a hit counter is connected to each column
of tags that share the same ranking in the recent access order. A hit
in the tag will result an increment in corresponding counter and

move the tag to the MRU position. Any misses in the cache tag
will be recorded in a separate miss counter. The presumed change
of the number of misses between different cache associativity can
be observed using the stats collected from all these counters. As the
example in Figure 3 shows, if the cache is currently sized to be two-
way set associative, the number of cache misses will be reduced by
23 if the associativity increases to three-way. This is true because
those hits counted in third most recently visited tags would become
true hits with increased capacity and associativity.

MRU LRU
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Figure 3: Supplementary counters for cache miss statistics.

We can now model the performance for a different associative
configuration using current and predicted miss rates, base CPI (non-
stall) cycles and stall cycles due misses in this cache. Assume
the current miss rate isMissRatei , the current miss penalty is
MissPenaltyi and the base CPI is represented byBaseCPI . Con-
sider a cache that is resized to an alternative associativity and ca-
pacity with projected miss rateMissRatej . We can estimate the
performance impact as follows:

MissPenaltyj = MissPenaltyi × (
MissRatej

MissRatei
) (5)

Perfj =
MissCPIj +BaseCPI

MissCPIi+BaseCPI
× Perfi (6)

Finally, we consider power models for resized caches. We as-
sume that we can make use of either direct cache leakage sensors
[20] or that we can model static power using thermal sensors to
detect local temperature and coupling those readings to cache leak-
age models [15]. Either approach allows us to estimate the leakage
power of the cache. We then assume that the static power usage of
a cache is then equal to the average leakage power of a cache way
times the number of enabled ways.

4.1.3 Unified Analytic Models
In general, the power optimizations we describe are not strictly

independent. For example, performance under DVFS depends on
the ratio of memory stall cycles to compute cycles. Compute-bound
applications have few memory stalls and hence are directly affected
by any decrease in clock frequency. An optimization like downsiz-
ing the L2 cache may increase miss rate and hence memory stall
cycles. This could potentially decrease sensitivity to DVFS, and
hence make frequency scaling effects less acute for compute-bound
applications.

In practice, we find that the interactions between the power opti-
mizations that we evaluate to be rather small. Consequently, we do
not directly include these dependencies in our models. This greatly
simplifies our run-time projections and selection algorithms. In our
case, the interactions between power optimizations are only visible
in extreme cases. For example, the dependence between cache re-
sizing and frequency scaling is mostly visible when the miss rate
makes an abrupt transition, causing the memory stall cycles to jump



similarly. Because any significant increase in miss rate is likely to
have an extremely negative impact on performance, the power man-
ager would likely avoid it. Even though there might be some error
in projecting the performance of simultaneously resizing the cache
and varying the frequency, the model would lead us to draw the
right qualitative conclusion: namely that this is a poor choice.

Treating each candidate power optimization as an independent
factor allows us to compute simple speedup factors. We can either
examine the relative impact of an optimization in isolation or view
the aggregate impact of a set of different optimizations by comput-
ing the product of their speedup factors. Given a set of optimiza-
tions, each having a speedupOptSpeedupk , we can mathematically
represent these computations as

Perfj

Perfi
=

Y

k

OptSpeedupk (7)

Power modeling is slightly complicated by the fact that cache
resizing has a simple additive impact on power while DVFS has a
strong, super-linear influence on total core power. We model the
additive contributions of cache resizing by summing up a set of ad-
ditive power delta values (∆OptPower1 ,OptPower2 , . . .) before
multiplying the frequency scaling effect between frequenciesFreqi

andFreqj . Notice the additive power delta values are the reduced or
increased leakage power under current voltage-frequency pair due
to the adjustment of cache size. The formula for power modeling
follows:

Powerj = (Poweri +
X

k

∆OptPowerk ) × (
Freqj

Freqi

)3

4.2 Risk Evaluation in Analytic Modeling
Compared to trial-and-error solutions, run-time management that

is guided by an analytic model can offer a significant reduction in
search time. This may allow the power manager to find an adequate
power mode early in the execution phase, maximizing power and
performance benefits. However, we acknowledge that this style of
power management can introduce some uncertainty. In particular,
we do not reconfigure the system while exploring the search space.
This opens the possibility of skipping a potentially-beneficial con-
figuration that would not have been missed under a more conserva-
tive trial-and-error based search.

In our evaluation, we found two scenarios where this posed a
problem. In the first case, we inadvertently select a power mode
because we presume that the current execution phase is stable. If
this is not true – the phase is short lived – we could encounter a
potentially-harsh reconfiguration penalty and be temporarily stuck
in a less-than-ideal configuration mode. This is sometimes true in
cases when cache demands drop momentarily, tricking the power
manager into downsizing the cache, only to have demand capacity
rise sharply thereafter. For a trial-and-error power manager, then
end of a stable phase generally leads to a back-off interval during
which power optimizations are disabled until the phase has stabi-
lized. Search space exploration begins anew once a stable phase
has been detected. Consequently, short bursts of instability are less
likely to lead to dramatic performance losses.

In the second case, the power manager chooses a poor config-
uration due to modeling error. This could have several outcomes.
First, if the actual performance is worse than the predicted perfor-
mance and phases remain stable, then we could potentially be stuck
in an inferior power mode for a long time. Second, if the predicted
power is significantly higher than expected, we might temporarily
exceed the power budget. This violation would be detected and the
power manager would try to scale the power to bring the system

into compliance. If, however, this modeling error was persistent, it
would be possible to once again transition to a high-power mode,
repeating the cycle. We note that in all of our studies we found
the analytic models had enough fidelity that these behaviors were
extremely rare.

A compromise can be made if we realize that we have several
power optimizations to choose from and these strategies possess
various stabilities, as shown in Figure 2. Unlike cache resizing,
DVFS can provide more predictable power-performance trade-offs
for many workloads. This means when given a choice of multiple
optimizations it may be wiser to temporarily ignore an optimization
if we are not confident in our power and performance predictions
for it. In this scenario, we lean more heavily on optimizations for
which we have more confidence in predictions and/or stability. The
potential price for this pruning is a optimal trade-off of power and
performance. Nevertheless, we can reduce the chances of perfor-
mance loss caused by errant predictions and still achieve a decent
power savings.

Risk functions can be developed for each power optimization
in the pool. These functions track previous history values for our
event counters or sensors and determine if resource utilization pat-
terns are consistent enough to apply projections and make use of
optimizations. If the risk function indicates that confidence for a
given optimization is low, we can choose to temporarily disable it.

We propose a simple set of risk evaluation functions that help to
reduce exposure to performance loss. We assume that DVFS offers
extremely predictable power and performance and for the purposes
of our studies assume that it has zero risk. For cache resizing we
use a simple risk function based on windowed history of power
usage. For each evaluation interval, we record core-level power
consumed in the current power mode and normalize it by the pro-
jected power consumption in the maximal config mode. We calcu-
late the standard deviation of this normalized power consumption
over a range of previous evaluation intervals. This captures how
consistently an application stresses the power budget relative to its
performance. The idea behind this risk function is that when cache
behavior is not stable, it is most likely that the program is bouncing
between CPU-bound and memory-bound patterns, and the power
usage also will vary because memory-bound applications normally
use less power. We found that a history of eight to ten intervals
worked well in practice. We chose acceptance thresholds of 0.4,
0.4, and 0.5 for the L1-instruction, L1-data, and L2 caches. When
the standard-deviation exceeds these thresholds, we disable resiz-
ing strategies for those caches and reconfigure to use the maximum
capacity.

4.3 Search
To find the best power modes, one option is to completely search

through all local power modes to determine which subset of op-
timizations to apply. Here we can only choose one power mode
for each processor core and this forms a multiple-choice knapsack
problem [2], which is NP-hard. The search space can quickly ex-
plode when more cores, more power-saving strategies, and there-
fore more power modes are considered. Greedy algorithms can
sometimes be used to find near-optimal solutions to some knap-
sack problems. We find that for our problem, greedy search offers
high-quality solutions in a relatively few steps.

In each evaluation period, our greedy algorithm begins by con-
sidering the power and performance of the maximal power mode
(e.g., one in which all power optimizations are disabled for every
core). It determines whether or not this configuration exceeds the
power budget. If it does not, the search concludes. Otherwise, the
algorithm calculates the power and performance of every immedi-
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Figure 4: On-line evaluation algorithm.

ately neighboring downgraded global power mode. It then selects
the power mode with the maximal delta power/performance ratio.
This corresponds to the global configuration that offers the steepest
reduction in power. We repeatedly evaluate until we meet the power
budget. At this point, the algorithm terminates and the power man-
ager applies the current configuration. Figure 4 presents a flowchart
that summarizes our algorithm.

We begin each application of the search with the same start node
(the maximal power mode). We could instead have initialized the
search with the current CMP configuration. This seems like an
alternative that would offer an extremely quick search assuming
that there are relatively few power mode transitions. In the com-
mon case, the power mode used in the last interval will be repeated
in the subsequent interval. However, this approach can easily get
trapped in a local optimum and achieve mediocre results. By an-
choring the initial step of the search process to the maximal config,
we essentially avoided local minimal.

4.4 Overhead
Large overhead for any power-saving strategy should be avoided

since the additional power usage from extra hardware or software
required can waste or even consume much of the power savings
achieved. Careful consideration must be taken when designing a
multiple-optimization power management scheme. We believe that
our design, maintains low overhead. We require separate phase-
locking circuits for each core and some event counters. Commer-
cially available processors commonly feature an impressive array
of event counters and support core-level voltage/frequency scal-
ing [25]. Our approach includes additional software overhead in
the form of calculation of power-performance estimates for differ-
ent power modes, risk evaluations for every strategy, and a greedy
search through the space. We assume that our evaluation intervals
are 600µs or longer. We expect that the overall impact on execution
time is immaterial. In general, an efficient implementation of the
design bears negligible overhead compared to the power savings
achieved.

5. EXPERIMENTAL METHODOLOGY
In this section, we describe the multi-core processor model and

workloads used in this paper.

5.1 Processor Model
Our experiments model a 4-core homogenous chip multiproces-

sors for a 65 nm process. Each core of the processor is comparable

to an Alpha 21264 (EV6) scaled to current technology [14]. A sim-
ilar scaling methodology was used by Kumar et al. in [21]. We
assume that each processor core runs with a maximum frequency
of 3.0 GHz. The cores in the processor have private L1 data and
instruction caches and private L2 unified caches. Inter-core com-
munication and off-chip memory transfers travel across an on-chip
bus network. Table 2 summarizes our base processor model.

Single Core
Max Clock Rate Allowed 3.0 GHz
Fetch/Decode Width 4 inst
Issue Width 6 inst, out-of-order
IQ/LSQ/ROB 32/40/80 entries
Functional Units 4 IntALU, 1 IntMult/Div

1 FPALU, 1 FPMul/Div
2 MemPorts

L1 Inst Cache 64KB 2-way 64B blocks
L1 Data Cache 64KB 2-way 64B blocks

3 cycle load hit
Chip Multiprocessor

Cores 4
L2 2MB 16-way private 128B

blocks
Max Off-chip memory latency 250 cycles

Power Parameters
Max VDD 1.0V
Max Clock Rate 3.0GHz
Feature Size 65nm

Table 2: Processor Parameters

We assume that each core maintains its own clock domain and
that processor frequencies can be scaled independently to a discrete
set of operating frequencies. The discrete frequency points include
85%, 90%, 95%, and 100% of the maximum frequency. The cor-
responding voltage supplies for these frequency settings are also
85%, 90%, 95%, and 100% of the nominal power voltage required
for the maximum frequency.

5.2 Simulation Framework
The simulation infrastructure uses a heavily-modified version of

the M5 cycle-accurate Stand-Alone Execution simulator [3], which
includes detailed models of pipelines, caches, buses, and off-chip
memory. We have modified M5 to support the simulation of DVFS
at core-granularity and dynamic cache resizing at way-granularity.

To simulate power usage, we merged dynamic power models
from Wattch [5] into M5. Wattch is a widely-used architecture-
level power simulator and provides a reasonably-accurate dynamic
power model. To simulate static power, we adapt leakage data from
a commercial processor [26]. This data was collected from a high-
speed thermal scope, which measured localized component temper-
ature in a processor. The temperature readings were then analyzed
to identify dynamic and static power breakdowns on a structural ba-
sis. Using the static power densities as a baseline, we used scaling
factors from ITRS [30] to calculate static power density at 65 nm.
Finally, we multiply the static power densities by the component ar-
eas using a floorplan of an EV6 core scaled to 65 nm. On average,
the static power is around 40% of the total power usage, which is on
par with the ITRS figures [30]. We simulate any necessary penalty
cycles needed for data write-back during a cache sizing-down and
a fixed number of penalty cycles for frequency scaling.

5.3 Workloads
To better evaluate different scenarios, we create four workload

groups that showcase representative processor usage patterns. Each
group consists of four applications taken from the SPEC CPU2000
benchmark suite. To isolate representative simulation windows, we
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Figure 5: Validating the L2 CPI Model

use SimPoint [31] to identify relevant instruction execution inter-
vals for all benchmarks and save checkpoints. Using these check-
points, we simulate until the slowest application has run 300 mil-
lion instructions. Table 3 lists the actual workload compositions.
The workloads for group C and group D are specially selected.
All applications in group C show relatively-stable program phases
while the opposite is true for group D. The remaining groups con-
sist of randomly picked programs.

Groups No. Workloads
Group A equake, swim, sixtrack, gcc
Group B applu, gap, facerec, vortex
Group C mesa, eon, lucas, wupwise
Group D art, mcf, parser, vpr

Table 3: Workloads

6. EXPERIMENTAL RESULTS

6.1 Validation Cache CPI Model
The accuracy of our analytic models is important since the whole

power management system is built upon it. Any serious model-
ing errors can easily cause inferior power mode adjustment deci-
sions. We found that our DVFS models are quite accurate given
the relatively-simple relationship between performance, frequency,
and CPU versus memory stall cycles. The deviation is within 4%.
We focus our discussion on the verification of the CPI modeling
needed for cache resizing.

We first ran a batch of simulations for SPEC 2000 benchmarks
with a full-size L2 cache and used our analytic CPI models to calcu-
late the expected performance at various resized cache capacities.
In a second round of simulations, we statically resized the cache to
each of the sizes and simulated actual performance. We show the
results for four representative benchmarks in Figure 5. The solid
lines in these graphs show the normalized performance calculated
from CPI models and the dashed lines show the results when we
actually resize the cache. Clearly, the model is very accurate for
both facerec and mcf. There is small disagreement between the
model and simulation when the cache size becomes very small in
Figure 5(a). Sometimes the distance can be very large as shown
in the case of gcc. This is because when the cache size becomes
minimal, cache miss rates can increase significantly. With more
cache misses, the average cache miss penalty will drop because
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Figure 6: Comparing trial-and-error search space evaluation
with model directed search.

more misses can overlap. A pessimistic penalty estimate based on
larger cache sizes can cause conservative performance estimates.
Most of the time, this happens when the distance between actual
power mode and the predicted power mode is large (e.g., model-
ing the performance for minimal-sized cache from maximal-sized
cache in our case). Overall, the model works very well except for
art, which has an extremely high miss rate and many overlapping
memory accesses. Consequently, we overestimate the miss penalty.
However, this is not a severe problem for two reasons. First, this
kind of behavior is relatively rare. Other than art, mgrid is the only
other benchmark that shows a similar behavior. Second, the pre-
dicted performance is generally pessimistic. This means that we
are unlikely to make an ill-advised cache size reduction in a power
manager.

6.2 Model Evaluation versus Trial-and-Error
In order to provide a comparison, we also implemented a trial-

and-error power management policy. A trial interval for a workload
will begin when the program ends an unstable period and enters a
new stable series of phases. To detect the phase change, a detec-
tion method based on code-signature [10] is also implemented. The
signature is a 1,024-bit value xor-ed from hash values based on ad-
dresses of executed instructions. A distance value between two sig-
natures is calculated and a phase change is thought to occur when
the distance is larger than an empirically-determined threshold. For
the global trial-and-error power management policy, when one or
several workloads are unstable, maximal config will be applied to
the cores holding those benchmarks and adjustments will be made
to the remaining cores to meet the power budget.

In Figure 6, the curves labeledModeling-Greedyshows the per-
formance degradation under a given power budget for our analytic-
modeling method using greedy search but without risk evaluation.
The curves labeledTrial-and-error represent the results of apply-
ing the trial-and-error management policy. Table 4 lists the the time



percentage of unstable stages for both single workload and the pro-
cessor as a whole structure. The only situation in which the trial-
and-error policy works well is for Group C, which also shows high
stability. For Group B, even though only one workload is highly
unstable, globally the whole system is impacted and it is difficult to
achieve a global balance using the trial-and-error policy. Also, it is
very difficult for the trial-and-error policy to meet an exact power
usage target. On the contrary, our analytic-modeling-based pol-
icy without any risk evaluation strategy can easily achieve decent
power-performance trade-offs and on average, a 8% performance
degradation can save 35% power.

Group A. Unstable Period Group B. Unstable Period
equake 12.7% applu 5.2%
swim 20.9% gap 1.5%
sixtrack 0% facerec 52.4%
gcc 43.6% vortex 0.7%
Processor 61.8% Processor 55%
Group C. Unstable Period Group D. Unstable Period
mesa 2.3% art 96.2%
eon 0% mcf 49.7%
lucas 17.4% parser 44.8%
wupwise 0% vpr 18.5%
Processor 19.8% Processor 99.1%

Table 4: Percentage of time that individual threads exhibit un-
stable phase behavior.

In Figure 6, we also compare the results for modeling-based
methods with a greedy heuristic and a global brute-force optimal
search. The curve labeledModeling-Globalshows the results when
an optimal search among all combinations of power modes is per-
formed. It is clear that the results for a greedy search and a globally-
optimal search are extremely close. For some cases, the optimal
search actually provides a slightly larger performance loss for same
amount of power savings. This is because in an optimal search,
more configuration changes are made given a presumably-small
benefit, which is not enough to compensate for the performance
loss during a configuration change, such as forced write-back of
valid content when sizing-down a cache.

6.3 Modeling with Risk Management and
MaxBIPS

Figure 7 shows another group of results for the four workload
groups selected. In these figures, the curves labeledModelingstill
represent the power management results for the policy based on
analytic modeling without a risk evaluation support. The curves
labeledModeling-Riskshow power-performance trade-offs when
the risk evaluation strategy has been applied. Finally, the curves
labeledMaxBIPSshow the results of a global power management
policy introduced by Isci et al. [16]. MaxBIPS applies DVFS with
core-level granularity based on very simple analytic models that do
not consider the ratio between memory and compute cycle. Isci
et al. [16] demonstrated that MaxBIPS can achieve results that are
close to an oracle situation, in which future knowledge is used to di-
rect current configuration adjustment. This means further improve-
ment on solely DVFS-based strategy would be extremely difficult
to obtain.

For all four groups of workloads, our policy with simple risk
evaluation support provides either an equivalent or better results
depending on the stability of the workloads. The best improvement
happens with the group composed of four unstable workloads as
shown in Figure 7(d). These results indicate that a simple cache-
resizing risk evaluation strategy based only on power usage varia-
tion can work well in practice. It manages to avoid inferior configu-
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Figure 7: Modeling with Risk Management and MaxBIPS

rations that would adversely impact performance while not missing
out on good opportunities to save power. It is worth to point out that
the workload group composed of equake, swim, sixtrack, and gcc
is not friendly to a trial-and-error policy because of frequent phase
changes as identified by code signatures. However, the actual cache
usage is quite stable as shown in Figure 7(a). Our risk management
policy notices the stable cache behavior and allows user to apply
resizing to achieve good power savings.

When compared to MaxBIPS, multi-optimization based power
management policy does not always win out. In Figure 7(b), Max-
BIPS and the policy without risk evaluation support have very close
results. In Figure 7(d), MaxBIPS beats both of our policies. This
illustrates the difficulty of managing multiple strategies and design-
ing an efficient policy. Even though risk evaluation can be efficient
in helping identify the strategies that temporarily possess high risks
and are likely to hurt performance, it often takes time to notice the
risk (several evaluation intervals). By that time, some errors may
have already been made.

6.4 Power Violations Over Time
In this work, we are more interested in achieving an average

power usage target. Therefore the power budget is not treated as
a hard constraint and temporary budget violations are allowed. In
this section, we examine the frequency of budget violations.

In this work, we are primarily interested in achieving an steady-
state power usage target. We presume that the hardware has built-
in thermal throttling mechanisms that engage whenever a core ap-
proaches a potentially-dangerous temperature peak. Consequently,
we do not treat the power budget as a hard constraint in our work.
Occasionally, budget violations may occur, and when they do, the
global power manager detects them and transitions the system to
a lower power state. In this section, we examine the frequency of
budget violations and their relationship to application characteris-
tics.

Figure 8 shows a normalized power break-down for a set of
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Figure 8: Power usage break-down

workloads under a given power budget. From the graph, power
usage is very stable for a workload group that consists of highly-
predictable benchmarks as in Figure 8(a). In the case of Figure
8(b) and 8(c), fluctuations in power usage are more prominent and
temporary power budget violations happen more frequently. In par-
ticular, for the workload consisting of art, mcf, parser, and vpr the
normalized power budget of one is exceeded many times. This plot
is consistent with results on phase stability from the previous sec-
tions. These applications have rather unstable resource usage, and
it is difficult to predict their power or performance characteristics.
This leads to repeated violations.

We believe that further improvements in global management can
be made by introducing a safety-margin just below the global power
budget. The power manager would conservatively seek to main-
tain this set-point, giving us enough breathing room to decrease
the number of true violations. Furthermore, it may be possible to
adaptively determine an ideal value for this set-point by monitoring
previous behavior, and in particular, tracking true or near budget vi-
olations.

7. DISCUSSION AND RELATED WORKS
Architecture-level power management has long been an impor-

tant topic given that both high power usage and heat generation
in high-performance processors act as major design obstacles and
challenge further technology scaling. Many thermal and power-
saving techniques have been proposed recently [4, 6, 13].

Some of these techniques target a particular architectural unit
and others take a more global aim at power. Cases where these
optimizations do not completely overlap can offer great potential.
Specifically, Huang developed a framework that was capable of
achieving very good processor-wide energy-savings by combining
several different power optimizations [15]. This approach pre-sorts
several techniques based on their general efficiencies and applies
them one by one until a pre-set limit is satisfied. While this greatly
simplifies the design of the power manager, it does not make al-
lowances for cases where the relatively efficiency of the power-
saving approaches change due to application characteristics or con-
text.

Work by Dhodapkar and Smith examined the concept of working-
set based optimization [8, 9]. In particular, they developed an on-
line phase detection approach and showed how it can be coupled
with trial-and-error to efficiently tune processor resources to save
power. In his thesis, Dhodapkar suggests that it might be possible
to reduce or eliminate the dependence on trial-and-error through
compact analytic models [7]. In later work, Karkhanis and Smith
introduced analytic models that could be used to evaluate out-of-
order processors at design time [18, 19]. In this work, we apply
Dhodapkar’s notion of using analytic models on-line to predict per-
formance under a number of complex configurations.

Power optimizations play an increasingly-important role in multi-
core architectures. Recent work has examined benefits of hetero-

geneous architectures for power efficiency [21], power and temper-
ature constraints for multi-core systems[22], and OS-level thermal
management for CMPs [27].

Isci et al. were the first to propose the concept of a global chip-
level power budget for a multi-core processor [16]. This work also
introduced the notion of a global power management unit and pro-
posed several CMP global power management policies using only
DVFS techniques. In particular, the MAXBIPS policy demon-
strates impressive results by applying a set of very simple analytic
models to predict performance and power under DVFS.

We extend this work by integrating several power optimizations
together and designing an efficient, yet light-weight global power
management policy. From here, we believe further exploration is
necessary. While more power saving strategies can be integrated
into the pool, improvement on the policy can also be profitable. We
plan to investigate a wider range of power optimizations and tighter
control on global power in our future work.

8. CONCLUSION
We described a global multiple optimization power management

framework for multi-core architectures. Our approach applies a
greedy algorithm to quickly examine a large search-space and find
operating points that offer good power/performance compromises.
We then configure individual cores to meet the chip-wide power
constraint while maximizing global instruction throughput. Our
approach introduces simple yet reasonably-accurate power models
that allow us to explore a very large search space in a short amount
of time. In particular, we introduce position-independent models
that allow us to evaluate potential power modes based on the current
configuration. With these mechanisms, we find that we can avoid
the cost of trial-and-error approaches commonly used in on-line
microarchitecture adaptation. Finally, we propose a risk evaluation
strategy to find a balance between cost and benefit of applying the
various power-saving techniques.
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