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Abstract die-to-die frequency variation and2a x leakage power vari-
ation [7]. ITRS predicts that manufacturing variabilityl\wi
Parameter variation due to manufacturing error will be an have an increasing prominence in future designs.

unavoidable consequence of technology scaling in future g The large magnitude of the power variability present in
erations. The impact of random variation in physical fastor current chips is expected to worsen in future scaled process
such as gate length and interconnect spacing will have a pro-technologies. This is primarily due to the exponential rela
found impact on not only performance of chips, but also their tionship between transistor gate length and subthresbald |
power behavior. While circuit-level techniques such aspada  age current [28] and increasingly intensified leakage power
tive body-biasing can help to mitigate mal-fabricated ehip  percentage in total power. Consequently, very small devia-
they cannot completely alleviate severe within die vaoigi  tions in this critical parameter can have detrimental éffen
forecasted for near future designs. the overall power profile of a chip. Statistical variations i
Despite the large impact that power variability will have other transistor parameters such as gate width can also have
on future designs, there is a lack of published work that ex- g significant impact on power consumption. Projective stud-
amines architectural implications of this phenomenonhiat  jes have shown that physical variations in interconnects wi
work, we develop architecture level models that model powerhave an increasingly important influence on overall chip per

variability due to manufacturing error and examine its influ  formance and will eventually overtake devices as a dominant
ence on multicore designs. We introduce VariPower, a taol fo source of performance variability [26].

modeling power variability based on an microarchitectural
description and floorplan of a chip. In particular, our mod-
els are based on layout level SPICE simulations and project
power variability for different microarchitectural bloskus-

ing statistical analysis. Using VariPower, (1) we charatte
power variability for multicore processors, (2) explorepdip
cation sensitivity to power variability, and (3) examine s
tering techniques that can appropriately classify groups o
processors and chips that have similar variability chaexet
istics.

The net effect of these manufacturing errors is that com-
ponents and chips will be increasingly pronefabrication
induced asymmetnyhere physical instantiations of cores, in-
terconnection components, and caches on the same chip may
differ widely although they have identical schematic digscr
tions. In contrast, t@rchitected asymmeti21], which can
be artfully constructed to balance power, throughputniate
and area goals for a target workload, fabrication asymme-
try is considerably more nettlesome. The major difficulty
is that many of the fundamental characteristics such as cir-
cuit power and latency for various microarchitectural stru
tures are no longer constant. They are subject to devia-
1 Introduction tions due to imperfections in the materials and equipment

used to fabricate the chip, as well as unavoidable, stzisti

In future technology generations, manufacturing variatio Variance. Furthermore, the Semiconductor Industry Associ
will have a profound impact on the reliability, performance tion (SIA) whose forecast anticipates improvements from de
and power consumption of microprocessor designs. Man-Vice/fabrication processes, still paints a grim picture ga-
ufacturing deviations due to both systematic fabrication e rameter control in deep submicron technology nodes [29].
rors as well as random statistical variations affect gate, si Microarchitecture can have a significant impact on param-
dopant concentration, interconnect width, spacing, aimttth  eter variation. Pipeline depth and chip organization can in
ness. This translates directly to chips that miss critiégal ¢ fluence the susceptibility of a design to parameter varnatio
cuit design targets including latency, power, and resiiéeto [7]. Furthermore, by choosing structures that can be config-
noise. In current designs, foundry induced physical devia- ured on a per instance basis after fabrication and desitgssty
tions already produce significant die-to-die variationpér- that are more robust to the power, performance, and retiabil
ticular, industry data for a high-performance processoa in consequences of parameter variation, designers can taitiga
130nm technology shows that individual dies produced with variability. In addition, cooperative strategies that sider
the same fabrication equipment can have as much3a¥a both circuit-level implementation and architectural orga-



tion are promising because they allow for tradeoffs at many2 Background

levels of the design. To properly understand these trasé@off

is imperative that architects have access to models that conp 1 physical Manufacturing Variations
sider physical structure and capture the relationship éetw
early stage architectural organization decisions andttiess

tical profile of key design metrics. In current fabrication technologies, the physical dimen-

sions of circuit elements, such as gate length and wire width
. commonly deviate from their nominal values. This is often a
1.1 Contributions by-product of errors in the any one of many elaborate manu-
facturing steps used in modern VLS| manufacture. Recently

In this work, we describe VariPower, a microarchitectural the problem has received significant attention because tech

tool for modeling statistical variability in the power camsp- nology scaling magnifies the slightest errors [6, 7].
tion of a high-performance microprocessor design. We targe  Some manufacturing processes, such as lithography and
power variability as an initial target for architectural modac- chemical mechanic polishing, are fundamentally more diffi-

turability studies due to the emergence of power as afirsscla cult to control with current technology. Consequently,ythe
design constraint [29], and the large amount of power varia- introduce variation in the physical dimensions of devicaed a
tion already seen in commercially available chips [7]. We interconnects. Operational characteristics for MOS ftgans
focus our study on the impact of power variability on a chip tors are heavily determined by relevant physical pararsgter
multiprocessor (CMP) design which is composed of schemat-such as gate length, gate oxide thickness, and dopant ylensit
ically homogenous cores and caches. Due to within-die pa-Manufacturing steps that influence these physical paramete
rameter variation, these components may have fabrication i have a larger bearing on the final result. As transition iheo t
duced asymmetry in power consumption. Furthermore, wenanoscale era, the problem will worsen [25, 26]. This will
argue that architects will also need high-level stratefdes  have direct impact on both the yield and quality of the final
reasoning about statistical variation and classifyingetypf products.
cores and chips with respect to their variation. In general, manufacturing errors fall into two categories:
This makes the following principal contributions: systematic and random [15]. Systematic variations camc@affe
. . .. the whole lot, wafer, die or portion of the die in a common
e We develop architectural models for studying probabilis- 4nq repeatable pattern. Most of these errors may be cadrecte
tic die-to-die and within-die manufacturing power varia- o glleviated if the patterns are observed and correspgndin
tions measures, such as optical proximity correction, are ta®en.
the other hand, random variations are extremely difficurloif
impossible to predict and generally require a statistieaht
nigue to analyze the problem. Randae-to-dievariations

e We introduce an automatic approach for classifying rep- Will affect all the on-die devices in the same way, while ran-
resentative groups of cores and chips that have considerdomwithin-dievariations will produce parameter differences
able parameter variation. that change on a device-to-device basis on a single die.

In some cases, within-die variations also have spatial cor-

Overall, this work is one of the first to consider relation patterns [18]. For two transistors on the same die,

architecture-level models for manufacturing variabilitin it has been shown that gate lengths are linearly correlated
addition, we offer approaches for characterizing powermasy  with distance. This correlation has an important implizati
metry due to process variation and illustrate the potefgial  neighboring devices are more likely to share common prop-

e From a power perspective, we explore application sensi-
tivity to variability.

variation aware management. erties. Consequently, a leaky transistor is likely to be sur
rounded by other leaky transistors. As a result, regione-cl
1.2 Organization ters of leaky transistors can quickly make the microarchite

tural unit that they appear in less attractive to use as whole

The remainder of this paper is organized as follows: In 1NiS iS & concept that we explore in our case studies.

Section 2, we describe the chief sources of parameter varia- ) o

tion in chip manufacture. We then introduce a model for pro- 2.2 Static Leakage Current Under Variation and
jecting the statistical profile of a design under power \zka Correlation

ity in Section 3. In Section 4, we validate our model against

detailed SPICE simulation and published data on commer-  Static leakage current is primarily composed of three com-
cially available chips. In Sections 5 and 6, we present our ponents: subthreshold leakage, gate leakage and substrate
experimental methodology and a series of case studies thaleakage. Simulation on sample circuit structures with &PIC
explore power variation in a multicore design. We offer a dis and PTM [13] 65nm technology predictive model card identi-
cussion and comparison to existing work in Section 7, andfies subthreshold leakage as the dominate leakage source for
finally we conclude in Section 8. near future technologies. The subthreshold leakage ofjesin



OFF transistor is determined by gate length, gate width, andmodels that can capture the degree of variation, early stage
threshold voltage. Subthreshold leakage has a lineaicetat  studies will be difficult to produce.
ship with gate length and has exponentially relationshiipis w In this work, we introduce VariPower an architecture-level
gate length and threshold voltage. Due to this exponentialpower variability modeling tool based on circuit-level mas
dependence on gate length, small deviations in this pasamet At the heart of VariPower is a lookup table driven power
can introduce leakage current that is significantly larpant  density estimator that uses SPICE derived scaling factors t
the nominal case. model the impact of physical parameter deviations on both
In general, leakage analysis is difficult in an arbitrary dynamic and static power consumption. VariPower models
logic or memory cell due to thetack effec28]. Under within-die as well as die-to-die power variability via Ment
this phenomena, chaining of multiple OFF transistors reduc Carlo simulation and can project the probability distribu-
boththe leakage variation and leakage current. Different cir- tions for power consumption under parameterized architec-
cuit structures may consequently have very different Igaka tural models and application usage profiles. This flexipdit
power [11]. Detailed leakage power modeling under the stacklows VariPower to predict the severity of fabrication inddc
effect requires analysis to identify a set of prime inputd an power asymmetry for a design and its consequences on dif-
their corresponding probability of appearing. Howevere on ferent classes of workloads and power management policies.
very common building block, the 6-T SRAM cell does not  Figure 1 outlines the flow for the generation of a single
create a stack effect concern because it has no chained trarsample. An architecture-level description for a chip is fed

sistors. into VariPower. This description identifies the major compo
nents of the design, expresses their area and placement, and
2.3 Dynamic Circuit Power Under Variation characterizes their basic circuit composition. VariPouses

this information to create a high-level description of théc

Dynamic power is consumed by the charging and dis- Using a series of random numbers which represent parame-
charging of internal capacitors contributed by transistnd ter variation, and circuit-level models that estimate powe
wiring network. The capacitance of these parasitical ca- Simulator produces a power profile for the chip.
pacitors mostly has a linear relationship with the struetur
dimension. Hence, the deviation in structural dimensions3.1 Hierarchical Representation of A Physical De-
would only cause an approximately linear variation in dy- sign
namic power, instead of an exponential one as in the case of
static power. As a result, dynamic power variation is signifi
cantly smaller than static power variation, a result cordigm
by our SPICE simulations in the following sections.

Though the variation is limited, dynamic power is still a

In fabricated chips, parameter variation is partially depe
dent on spatial properties of the circuit blocks [18, 27]pTy
ically, nearby circuits tend to have strong parameter eorre

fimary source of chio power dissipation. For the our OsesIations. As the distance between circuits increase, the cor
P y PP . P " - burp relations decrease. Physical geometry of microarchitaktu
of completeness and comparison, we continue to include dy-

namic power in the models that we propose structures will have a significant imp_act on their statatic
' profiles. To capture these effects, VariPower models all-com
] o ) ponents of a design in hierarchical floorplan.
3 VariPower: Statistical Power Modeling In VariPower, a chip-level design is expressed e
scription fileusing thePyt hon scripting language. Individ-
The importance of early-stage power estimates to guideual cores, caches, and other architectural structuresegre r
architectural design decisions will increase as manufimgu ~ resented a®yt hon objects. ThePyt hon interface allows
variations become more prominent. At first glance, it would components to be represented in terms of physical dimen-
appear that low-level fabrication errors are too far remdove sions: length, width, and placement on chip. To facilitate
from the architectural domain, and those approaches &tget easy replication and placement of common superstructures,
at the circuit level might offer more benefit. VariPower allows the user to define hierarchical components
However, architectural design options such as pipelinein a group. Using basic support routines, grouped items can
depth and cache sizing often dictate the overall perfor- be re-instantiated and stamped down anywhere on chip. This
mance and power characteristics of a processor. Furtherallows for easy representation of tiled architecture asodegp
more, they frequently place bounds on which circuits can in Figure 2. In this example, a simple processor core is de-
be used to implement functionality. In addition, pure citcu fined in terms of its major subcomponents: caches, router,
approaches such as adaptive body-biasing (ABB) [33] haveand execution pipeline. The components are grouped to form
non-negligible overheads and may not be suitable for fine-a core. The core is then replicated many times to describe a
grain, localized adjustments necessary for within-digavar  whole chip layout.
tion. Flexible approaches that simultaneously considén bo In addition to describing physical placement of compo-
architectural and circuit trade-offs [24], may offer a bett nents, the description file also specifies circuit compmisiti
chance of reaching an optimal design. Without high-level of architectural structures. Each component or physical re
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Figure 1: Modeling infrastructure used in this work.
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Figure 2: Hierarchical models used in VariPower

circuit under a number of different inputs and collect both
static and dynamic power.

To model the impact of variation on the macro circuit,
we vary physical dimensional parameters for the entire lay-
out description, re-extract electrical component valuekra-
evaluate the circuit under SPICE. For interconnect, Vavi&to
layout level models allow us to directly model the impact
that wire width, thickness, and inter-layer dielectricsdnan
power. For devices, we model gate length, which is known
to have an exponential impact on leakage power, as well as
gate width. We do not directly model the variational impact

source, can be comprised of one or more circuit macro blocksgn dopant ion concentration or gate oxide thickness and plan

which together implement functionality. For example, aheac

to add extensions to model these parameters as part of future

structure might be composed of a tag array, data array, Sens@,ork.

amps, decoders, and drivers. Each of these functional sub-

In our circuit characterizations we assume that withina cir

sections could be represented by its own circuit macro blockcuit, macro dimensional parameters of wires are perfeoﬂ.y c

within the larger cache structure.

3.2 Power Models for Circuit Macros

related, and that dimensional parameters of devices ave als
perfectly correlated. This simplifying assumption is i@as
able because physical parameters of circuit neighbormg-st
tures have been shown to be strongly correlated [18, 27§ Thi

Circuit macros are the key to modeling statistical power is a result of imperfections in a manufacturing step, for ex-
profiles in VariPower. Each macro is a small circuit that is ample etching, impacting neighboring structures in a simil

representative of a larger circuit structure. These macaos
be thought of as basic building blocks. Just like the fult cir

manner. We construct tables for dynamic and leakage power
by varying physical parameters for the macro circuit within

cuits that they represent, these macros have their own-correthe range +/-15% of the nominal value.

sponding power densities and sensitivity to parameteavari

tions. To capture implementation specific details and the re 3.3 Modeling Parameter Variations

lationship between power and physical parameter deviation

VariPower uses layout-level circuit models to express-vari
ability for key classes of circuit structures that are used i
processor. Specifically, VariPower has representativaiitir
macros for regular array structures, such as cells fronstegi
files, cells from cache arrays, as well as slices of an ALU.
With the benefit of layout-level empirical models,
VariPower can predict the impact physical variations will

As described in section 2, integrated circuit fabrication
processes introduce both systematic and unavoidablemando
variation in the physical features that comprise transistod
interconnects in high-performance processors. In pdaticu
lithography, etching, and chemical mechanic polishinggéire
subject to error. Consequentially, physical dimensioch sts
gate length and wire width will vary for features in circyits

have on the power consumption of a design. The layout de-jeading to electrical variations in their power behavior.

scription for individual macro circuits includes nominaiag

Each of the physical parameters can be modeled as the sum

and physical placement of devices and interconnect. Basegy die-to-die (D2D) and within-die (WID) variances as:

on this geometric information, VariPower support utiktizu-
tomatically extract resistances and capacitances foripteilt

metal layers and polysilicon, as well as gate sizing descrip

tions for devices. The resistive and capacitive values are d
termined via analytic models [35]. The electrical compdeen

o(2.9)? = obap + 0% 1n / pep)dP (1)
P

where the overall variance of a parameter is a function of

are then output to a SPICE file. We then simulate the macroits location on the chip. The global variance is determined



by 0%, and it relates the overall deviations that are presentthe rate at which the correlation approaches zero by chang-
across all fabricated dies. The second term expressesdhe sping the size of the convolution sum. By changing the aspect
tial correlation of the physical parameter. Empirical $gd  ratio of the convolution box, we can also change the horizon-
have shown that critical parameters can have strong pesitiv tal and vertical correlation factor. In addition, we can ralod
correlation for two neighboring points [18, 27]. With thigs non-monotonic correlations with more irregular shapes: Fu
ple, yet flexible model, VariPower can effectively model com thermore, by allowing the convolution sum to “wrap-around”
mon types of statistical parameter variation. we can model concave correlation patterns [18].
The last step in generating is to add a single random

AT F AT TR number(x = 0,0 = opap) to all elements of the matrix.
This represents the global sample-wide parameter deniatio
The entire process is repeated to generate variation restric
for all physical parameters that VariPower models.

To compute the local dynamic and static power variation
of each region of a chip, VariPower overlays the parameter
matrix over the hierarchical layout of the design as shown in
Figure 3. Within each region, VariPower uses the local pa-
rameter matrix values to index the lookup table for the cor-
responding circuit macro. This allows us to model spatially
dependent power densities across the chip.

Figure 3: Computing correlated parameter variation using convolu-
tion sums.

VariPower introduces a novel scheme for generating vir-
tually any kind of correlated parameter profile. For a given
parameter that we wish to model, VariPower generates an
n x n matrix P, which represents how the parameter varies
locally on chip. The grid edge length, can be tuned for ac-
curacy/speed tradeoffs. We note that by discretizing tg ch Figure 4: Division of architectural floorplan into regions subject to
into parameter domains, we are introducing parameter mode| Parameter variation.
ing error which is inversely proportional to the edge length
This modeling error can manifest itself in one of two ways:

(i) circuits in the same grid region may be separated from 3.4 Resource Utilization and Circuit Modes

each other by a maximum distance @hipLength/n yet

be modeled to have the same correlation and (ii) circuits in ~ While process variation affects the maximum power pro-
neighboring grid regions may have a separation distance offile for a chip, application utilization patterns and runéim
less tharC'hip Length/n and hence have weaker correlations power saving strategies have a significant impact on the typ-
than their true separation would suggest. In our experienceical power consumption of the chip. For example, switching

modest values ot give good results. In the caset= 1024,
we note that the correlation step sizes are on the orde60f

activity factors determine the dynamic power consumption o
a pipeline. Dynamic and static power saving strategies such

for a linear spatial correlation model. We choose this edgeas clock-gating and power-gating transition unused pastio

length in our work.

of a processor into low-power states. The degree to which

To construct the final parameter matrix, VariPower first they can save power is highly dependent on the activity pro-
generates(z, ann x n matrix of independent Gaussian ran- files and performance demands of running applications.
dom numbers. To determine each elemdns, VariPower VariPower’s scenario generator allows it to examine chip
sums a subset of elements fGrto create virtually any cor-  power and its variability under relevant workloads and ol
relation pattern. Figure 3, shows an example where elementgies. In particular, VariPower takes an activity profile
in the final matrix, P, will have a correlations in horizon-  which captures the hardware usage patterns of benchmark
tal/vertical directions that decrease linearly and reazb af- applications. The activity profile can be readily generated
ter a space of three elements. This works because elementsy cycle accurate power/performance simulators like Sim-
in P that are near each other have a large number of items inplescalar/Wattch [10, 9] and expresses the number of cycles
common. Elements that are far away from each other havespent in active, idle, and low-power states for cachessregi
none in common. In essence, correlated parameter genmeratioter files, execution units, and other resources in the psoces
is very similar to 2D convolution kernels used in image ma- VariPower applies application usage profiles on power macro
nipulation. The procedure for generating these randomeeor models for each core to generate a cross product of usage pat-
lated values is simple yet flexible. We can essentially cekang terns and cores. From this cross product it can select entrie



that represent interesting user-defined scenarios.

VariPower has built-in support for identifying the average
power over all possible assignments (asymmetry agnoasc),
well as worst-case power (pathologically bad assignmertt) a
best-case power (optimal assignment strategy). Furthermo [
the Scenario Generation model can be extended to examin
more complicated assignment patterns. This allows us to an
swer questions likeyhat is the best assignment under lim-
ited knowledge of power asymmetr¥® architects begin to
explore the effects of parameter variations, it will be eas-
ingly important to answer thesehat-if questions.

4 Gaining Confidence in Variation Models Figure 5: Circuit layout for (a) SRAM cell used in caches and (b)
portion of an adder implemented in dynamic logic.

For architecture-level power models, the emphasis is tra-Under the second mechanism, we use existing power simula-
ditionally placed on fidelity rather than absolute accurdny  tors to form a baseline power estimate and apply VariPower
this way, architectural models can be used to help guidg earl models to project the deviation under parameter variation.
stage design decisions without the complexity and detatl th the evaluations in this paper, we apply the later mechanism.
would be essential under an absolute accuracy requirementat present, VariPower does not have enough representative
VariPower is designed to produce high-fidelity projections  circuit blocks to provide absolute, overall power projent
power variability. for an entire processor. We therefore use a slightly modified

At present, validating VariPower is difficult for two pri- version ofWat t ch [9] as our baseline and apply VariPower
mary reasons. First, there is limited, detailed, publisired  models to project variation.
dustrial data on parameter variation. In particular, we do
not know of any comprehensive data on the power variation 4 » Chip-Wide Parameter Deviation and Power
of microarchitectural structures. Second, VariPower dions Variation
model the susceptibility of future architectures to vaoiat

trends in future technologies. This is a common challenge in ) . L i .
the architecture community. In this section, we descrilmeeso Our first partial validation compares VariPower projection

of our low-level power building blocks and offer some partia to published measurements f_rom fabricated designs. We first
validation for VariPower’s projections. compare our modeled on-chip gate length to those reported

by Friedberg et al [18]. In their work, the authors used elec-
N tronic linewidth metrology (ELM) to capture critical gaté d
4.1 Low Level Circuit Blocks mensions for a 200mm wafer fabricated in a 130nm process.
ELM works by passing a known current through gates and
We choose several basic memory and logic cells as repreimeasuring the voltage across a section of those gates.- Fried
sentative structures of the whole processor. At present, weberg et al found strong spatial gate length correlations be-
have layout/circuit models for a simple dual bitine SRAM tween transistors on the same die. The correlation deaease
cell, a multi-ported (4r,2w) SRAM cell, a simple CAM cell, roughly linearly with distance and leveled off at about half
an ALU bit slice, and a pipeline latch comparable to one usedthe chip length. We configured VariPower to model a similar
in the PowerPC 603 [32]. As we continue the development of correlation profile. Figure 7 shows the resulting gate lengt
VariPower, we hope to extend this list to cover more circuits correlation. Note that our convolution based parameter gen
We anticipate that the use of SPICE simulations with inter- eration is capable of producing a close facsimile of the em-
connect resistance/capacitance extracted from actualiigy pirical findings in [18]. In Figure 6, we present two samples
would provide a sufficient accuracy for these blocks. Figure of a four core CMP modeled using our correlation method.
shows the layout for two macro blocks used by VariPower. In The two chips have very different gate length variation pat-
the process of assembling these models, we sanity-checketerns. This underscores the impact that local paramater-var
for correct functional operation under the target clock fre tion will have on multicore power.
qguency. Our second validation examines chip-wide power.
VariPower can generate power estimates under variationvariPower allows us to model both dynamic and static
using two different mechanisms. Under the first mechanism, power variation. In the literature, we could not find many
we directly apply the block level power estimates to cal®ila reported figures for dynamic power variation. Nassif notes
absolute power for a given processor model. The benefit ofthat the impact of manufacturing variation on this topic
this approach is that the power variations and absolute powe has not received much attention [15]. One of the benefits
are tied to the same underlying circuit-level implemewtati  of VariPower is its ability to give a comprehensive power



5.1 Processor Model

Our experiments model power variability and performance
of 4-core homogenous chip multiprocessors for a 65nm pro-
cess. Each core of the processor is comparable to an Alpha
21264 (EV6) scaled to current technology [19]. Under this
simple technology scaling, we assume that the processbr wil
not be able to reach the maximum frequency for 65nm, and
instead operates at a 3.0GHz frequency. A similar scaling
methodology was used by Kumar et al. in [21]. The cores in
the processor have private L1 data and instruction caches an
Figure 6: Gate length variation in two chip samples. The chips rep- private L2 unified caches. Intercore communication and off-
resent two physical instances of the four core CMP described in Secchip memory transfers travel across an on-chip bus network.

tion 5. Table 1 summarizes our base processor model.
. Our simulation infrastructure is based on a heavily mod-
0o | ] ified version of thevb Stand-Alone Execution simulator [5]
os | ] which includes detailed models of pipelines, caches, huses
= orl | and off-chip memory. We extendlb by modeling nominal
& L6l \ | power under parameter variation as described in Section 3.
£ 0.
§ 05
B o4t \ 1 Single Core
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N Fetch/Decode Width 4 inst
o2t \ 1 Issue Width 6 inst, out-of-order
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L1 Data Cache 64KB 2-way 64B blocks
3 cycle load hit
Chip Multiprocessor

Figure 7: Modeled intra-die variation in gate length.

projection. In Figure 9, we present our estimates of dynamic Cores Z

and static power variation for a four core chip multiprocgss L2 2MB 16-way private 128B blockg
which we describe in detail in Section 5. Our results focus Off-chip memory 'ategcy 230 cycles

on within-chip parameter variation. We note first that the 50 OWerl_g\r/ameters

dynamic power variation is limited in comparison to the Clock Rate 3.0GHz

static power variation. In addition, the leakage distriduit Feature Size 65nm

is skewed, with a small number of chips that have very large

leakage factors. We also see approximatelyxavariation Table 1: Processor Parameters

in leakage power. These results are all comparable to those
reported in [4]. However, the relative spread in leakage is
much smaller than the0x variation described in [7]. We
still believe that our projections are reasonable because t
reflect only within-die parameter variation while the saewpl
studied by Borkar also had substantial die-to-die paramete
variation. Die-to-die variation is known to make a major
contribution to total variation [8].

5.2 Workloads

To evaluate the efficacy of VariPower, we use several
workloads that showcase a variety of hardware usage pattern
Individual applications are taken from the SPEC CPU2000
benchmark suite. To reduce the total number of simulations,
5 Experimental Methodology we identify a subset of SPEC applications_ WhiCh exhibit a

range of power and performance characteristics and then fo-
cus our case studies on these benchmarks. Table 2 listgall th

In this section, we describe the processor model and work-benchmarks used in our experiements. To isolate representa
loads used in our case studies. While VariPower is capabletive simulation windows, we use SimPoint [30] to identif{-re
of modeling the power variation of virtually any CMP con- evant instruction execution intervals for all benchmarkd a
figuration, we choose to show a number of different uses of save checkpoints. Using these checkpoints, we simulatie unt
VariPower on a single CMP design. at least one thread has committed 200 million instructions.
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Table 2: SPEC CPU2000 Benchmarks Used In This Work
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L2 Cache .2 Cache
(way1) o (way2) | (wayl) . (way2) Core d™ Figure 9: Normalized Chip Dynamic and Static Power Distribution
way
Floating Point Normalized Leakage Power
@ (b) Resources Rank (Decreasing Power)
1 2 3 4
; . ; FPMap | mean 1.160 | 1.088 | 1.036 | 1.000
Figure 8: Floorplan of Simulated Processor stdevimean| 0.1116 | 0.0733 | 0.0548 | b.0467
6 Results FPMUl | mean 1.160 | 1.088 | 1.037 | 1.000
stdev/mean| 0.1105| 0.0729 | 0.0552 | 0.0467
] ] ) ) ) FPReg | mean 1.154 | 1.079 | 1.032 | 1.000
In this section, we conduct a series of case studies using stdev/imean| 0.1258 | 0.0708 | 0.0497 | 0.0412
VariPower. These studies serve as examples of the kinds of FPAdd | mean 1lel 1 1.088 | 1.037 | 1.000
p stdev/mean| 0.113 0.072 0.0548 | 0.0469

early stage studies that VariPower can perform.
_ Figure 8 (a) shows the floorplan of a single core used rapje 3: The power distribution of the same microarchitectural struc-
in these case studies. The floorplan itself is borrowed from tyres in different cores.

Skadron et al ([31]) and is a rough approximantion of an Al-
pha 21264 processor core. We also base our floorplan for ou
four-core CMP on work by Kumar ([22]) as shown in Figure
8(b).

In VariPower, Monte Carlo analysis is used to simulate the
variations of five process parameters: gate width, gateteng
wire length, wire height and inter-wire distance. In thisdst,
we focus on within-die variation, and we include no addi-
tional die-to-die variation. For the 65nm predictive techn
ogy model [13] used in our SPICE simulations, we assume
a 30 variation of 9% deviation of nhominal values for gate
width and gate length, and 3 variation of 15% deviation
of nominal values for the remaining process parameters. The Taple 3 presents the normalized mean leakage for floating
whole chip is divided into 4024 x 1024 grid. The devices  point resources across all the cores in our CMP design. For
in the same grid region are assumed to have perfect correlagach resource, we rank the structures by decreasing leakage
tion. Furthermore, correlation between devices in differe power. We can see overall, that for a given resource type' the
grid sections linearly drops as the separation increasés as |eakiest structure is considerably leakier than the lestyl.
lustrated in Figure 7. The Monte Carlo simulations prOduce On average the most power-hungry resource uses 16% more
10,000 samples. power than the corresponding least power-hungry resotirce o

the same type. This suggests that their might be some op-
6.1 Case Study 1: Core-To-Core Power Variations  portunity for assigning application threads to cores based
their resource usage and the chip leakage profile. We also

As an example of how variability affects microarchitec- note that in general, the ratio of leakage power for cores de-
tural structures within a core, we compare the static power o creases in the same fashion for the all the functional resour
floating point resources in each core of our CMP. We choosetypes that we study. What is not evident in the table, is that
floating-point resources because they are not used by mtegewhen a given structure suffered from a higher leakage factor
applications and hence are a likely candidate for leakage ma other structures in the same core did as well. This can be ex-
agement techniques such as standby power modes or powepected due to the strong spatial correlation factors désmiis
gating [16, 20]. The insight is that if there is significantiva  in Section 3.

ation in power across cores for a given functional unit, we
l?nay benefit from selecting specific applications to run on ap-
propriate cores. For example, an application that does not
utillize floating point resources could be run on a core with
leaky FPUs because any reasonable leakage power manage-
ment strategy would transition the FPUs into a low-power
state. Note: This assumes that there is little or no diffegen

in maximum operating frequency for the chosen core. Based
on the effects that a large number of critical paths haveiitirc
delay [8], this is a reasonable assumption. This assumjgion
confirmed by other high-level models [17].
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Figure 11: The possible power savings of twolf on different cores
by disabling unneeded microarchitectural resources. When resizing

Figure 10: The average power usage of benchmark programsgn be
9 gep g prog 0 caches, we tolerate at most a 2% performance loss.

randomly selected, and worst possible cores.

6.2 Case Study 2: Application Sensitivity to  erage power usage when the application is randomly assigned
Within-Core and Core-To-Core Power Varia- to a core. All the results are normalized with respect to the
tion minimal power of a program. Clearly, different applicason

can have widely different results. Over all the benchmarks,

the minimal assignment saves 6% to 19% over the average

General purpose applications normally have different uti- ) - .
Purp PP y (random) assignment. The minimal assignment saves from

lization requirements on macro blocks. For example, some S g
. . 0 0 _

threads have larger memory footprints and require mosieof th 13 /0150 41?’ tO\éefr thelv¥t0r3t dca'lsﬁf . T_he appl_|cat|o(rj13 '&T;}g

available cache capacity. As mentioned in the previous casd!l€ 0 are listed from ieft and rignt in Increasing order

study, some applications may not require all of the availabl static power percentage of the total power. With longer mem-

execution resources. Typically, these applications anglica gry s}all m?;f‘:’ hbenclhmarlés Ilke.ammp ang equake thllcth
dates for power reduction strategies that may effectively r ar:/e ower zve tO\{v%r_ ygan:_m pgvxer;/vt_en compaf[e 0
size processor components such as caches and queues [12, erprograms. As stated in Section .1, stalic power ora mi

Under power variability, each core may have its own leakage odartc:_hlte(::urﬁ structu;e dn?r:n:ally has much_larglger “g“at .
profile for a given resource. Consequently, different assig and it1s actually expected that a program using I€ss dynamic

ments of threads to cores may yield different power s:avings:!oower has a better chance to achieve arger power savings, as

when leakage management is applied. This constitutes an 0p|_llustrated in Figure 10.
portunity forcore-to-coresavings under leakage asymmetry. When combined with other power management mecha-
For a given core, there are typically functionally identica Nisms, in-core power variations also provide power saving
structures that may be available to a thread. If the curqent a OPPortunities if proper assignment can be made. A focused
plication does not require all of those resources, there mayPower control strategy would choose to power-gate the right
be a choice of which resources to use and which to transitionmicroarchitectural units to minimize performance loss; ob
into a low power standby mode. Selective cache ways is antaining a better power-performance balance. We study such
example of a power saving strategy to which this may apply an example using the benchmark twolf in the remaining part
[3]. Traditionally, structures are considered equivaleomn  Of case study 2.
a power savings standpoint. However, under parameter-varia  Detailed simulation shows that closing 2 of 16 ways of L2
tion, there may be a considerable difference in leakage powe Cache and half of the L1 Dcache would only cause a 2% per-
for two structures that provide identical functionalityprfex- formance loss for twolf. In Figure 11 the three color bars
ample, one cache sub-array may be leakier than a neighboringhow the achieved power savings under three scenarios: (1)
sub-array. This is an example ofathin coresavings under  selecting the most power-efficient, (2) random and (3) most
leakage asymmetry. power-hungry blocks to close when resizing the caches. The
We used VariPower to model the impact that within-core three groups from left to right in the Figure correspond to
and core-to-core resource selection can have on power. Figthe scenarios in which twolf runs on the most power-efficient
ure 10 shows the core leakage power for eight SPEC 2000core, a randomly selected core and the most power-hungry
benchmarks under different application to core bindings. F core. On average, the best selection achieves 12% more
each benchmark, the left bar corresponds to the best situati power savings over a random selection and 23% over the
in which the application is assigned to the core that consume worst choice. Additionally, we see that the benefit is larger
minimal power and the right bar is the opposite scenario when the within core resource selection is used on a cores
which exhibits the worst result. The central bar shows the av that have higher overall power.



6.3 Case Study 3: Automatic Clustering and Bin- For N=5, the centroid with the largest total leakage values
ning of Samples also represents the smallest fraction of the populationgsis

before. But in this case, the representative 4.25% of the sam

ple population are probably outliers that may be disregarde

expect that Monte Carlo simulation methods like VariPower, N analysis. Clusters 3 and 4 offer a particularly Interegti
view of the sample space. These two clusters have similar to-

will become more common in architectural studies. Typicall : . ;
these types of simulations produce large amounts of data intal leakage power values, but there is a noticeable difiaren

o . . the way this power is divided. This highlights an advan-
the form of samples. While it is typically straightforward to n . . s
collect important summary statistics for an individualiabte tage of clustering that could not be identified if we had opted

(e.g. mean and standard deviation of leakage power) from thetO JIL:J.St ﬁrarfa?\:f? V\t/rl;[h respﬁct :obt_otal Iﬁf':ll?]age. in has th
data, it can be considerably more difficult to perform muitid inaily, for N=7, the smallest bin, WO'C again has the
mensional data analysis. Rather than organizing the déta wi Iargest power t(?tal, only represents 1'.75/° of the popuiatio
respect to a single metric, it becomes necessary to singdltan T1h2e85\;\>/< rngl\wng %r?]phs show dfl:cfon5|dterable absolg;et (gnge
ously arrange the data with respect to many metrics. This isgion-s - 24.8W) and have very different core power distribu-

particularly true in the power variability analysis of a CI_\/IP We can see from this small example. that clustering has
because each core or processor component can essentially k{ﬁ ) _ pie, the X 9
: ; . e potential to help architects group multidimensiondahda
thought of as its own dimension. . . ;
As part of our future work, we plan to investigate clustering

. One [lke_ly applllcatlon of multidimensional analyslsnmll- techniques to further analyze data collected from architat
ticore binning which can be thought of as a multicore ex- simulations

tension of traditional uniprocessor binning. Under multec

binning, our goal is to identify a set of chip instances that

have similar core-level profiles. In the case of power vakiab 7 Discussion and Related Work
ity studies that we explore in this paper, we want to identify

groups of chips that appear the same with respect to thear cor  process variations and its impact on system performance
power consumption under variation. This knowledge could be gng reliability have gained much attention in the research
used to partition a sample space for further study. In egsenc community in recent years. Borkat al. in [7] discuss com-
multicore binning can be thought of as a way to apply Some mon parameter variations observed in today’s industry and
order to the mountain of data that emerges from Monte Carlotheijr impact on circuit and microarchitecture. This workaal
simulation. describes current challenges at the circuit level and ®ffpr

In this case study, we explore the usecbfsteringa sta- portunities for architects to help.
tistical data mining approach that groups and organizes mul  |n an effort to better understand and describe the underly-
tidimensional data. In particular, we apply the k-means al- ing physical mechanisms behind parameter variation, tecen
gorithm to analyze the leakage profile of our four core CMP work has examined use of statistical models. These repre-
sample space. Previous work has examined clustering techsentations capture observable circuit characteristiosh(sis
niques to identify program phases [30]. To our knowledge, |eakage power and maximum clock frequency) given the vari-
we are the first to propose a machine learning algorithm to ation of the underlying technology parameters ( such as tran
analyze hardware projections. sistor channel length and oxide thickness). In [28], R&o

For a given N, the k-means algorithm groups the given al. developed a model to estimate the variation of chip leak-
multidimensional data into N clusters. Each cluster coistai  age current due to gate length process variation. In [14], th
a collection of data items that share some similarity, Ugual authors established a similar model with additional cagisid
measured by a distance function (e.g. Manhattan distance oations on oxide thickness variability and process paramete
Euclidean distance). We applied k-means clustering to-iden correlations. In [1], random dopant fluctuation is further i
tify chips that have similar core leakage profiles, using Eu- cluded in estimating the leakage variation. Bowneaal. [8]
clidean distance as a similarity criteria. For each chipun o developed a model describing the maximum clock frequency
sample population, we first sort the core leakage values-in asdistribution of processors. This model was demonstrated to
cending order. This allows us to compare the cores from dif- be extremely accurate when compared with wafer sort data.
ferent chips using a consistent rank. We explored the benefit Recent research [18, 34] has taken a closer look at the cal-
of clustering for three values of N: 3, 5, and 7. ibrating models against real, fabricated chips. The asthor

Figure 12 summarizes the clustering results by presenting[18] physically measured the critical dimensions on an &du
a centroid for each cluster. For N=3, there are two large-clus trial processed wafer using ELM and successfully observed
ters which comprise almost 90% of the population. The third the strong correlation of gate lengths. In [34] the authors i
cluster which represents 9.95% of the population is distin- plemented special testing structures and electronicafig-m
guished by a much higher overall leakage Figure (reachingsured leakage currents. As work in this area continues, we
22W), and features a very large leakage value for one of itswill benefit from higher fidelity parameter variation models
cores. While much progress has been made on modeling and ad-

As the impact of manufacturing variability increases, we
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Figure 12: Core leakage power binning using k-means clustering. bteeithe number of clusters. Bars represent core and chip leakage
power for the centroid of each cluster. Percentages represent ¢éhef $ire cluster relative to the entire sample population (10,000 chips).

dressing variation problems at both the device and cireuit|  ation have on both dynamic and static power. We provide a
els, microarchitects are only begining to examine the prob- partial validation of our model against published resufis.
lem. Humenayet al. develop a model for power and perfor- nally, we provide a series of case studies that explore the po
mance variability for mulitcore chips [17]. The major diffe  tential for power variability analysis at the microarcliigre
ences between their power model and ours is that we build onlevel.

SPICE level macro blocks, and we also model interconnect
related variations and dynamic power. In addition, we have
augmented VariPower with a very flexible model for model-
ing correlated parameter variation and a scenario gemerato
that allows us to eas”y answer a number of “What if?” ques- We would like to thank the anonymous reviewers for their
tions. Marculescu and Talpes in [23] propose a joint perfor- constructive feedback and helpful suggestions. This wak w
mance, power and variability metric design method consider supported in part by NSF award CCF-0541337.

ing the statistical uncertainty at microarchitecture lelee to

gate length and temperature variations. In [2] the authers e References

tablish a model describing the failure distribution of dripc
caches under severe process variations. They proposd-a faul
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