
Greybox Design Methodology: A Program Driven
Hardware Co-optimization with Ultra-Dynamic Clock

Management
Tianyu Jia, Russ Joseph, and Jie Gu

EECS Department, Northwestern University, Evanston, IL, USA
tianyujia2015@u.northwestern.edu, rjoseph@eecs.northwestern.edu, jgu@northwestern.edu

ABSTRACT
In this paper, a novel Greybox design methodology is proposed to
establish a design and co-optimization flow across the boundary of
conventional software and hardware design. The dynamic timing
of each software instruction is simulated and associated with
processor hardware design, which provides the basis of ultra-
dynamic clock management. The proposed scheme effectively
implements the instruction-based clock management and achieves
21.71% frequency speedup. Besides, a novel program-driven
hardware optimization flow is proposed, in which software
operations are mapped with hardware gate netlist and sorted by the
usage frequency. The experiments on an ARM based pipeline
design in commercial 65nm CMOS process show an extra 10%
frequency speedup is obtained with high optimization efficiency.
Overall, the proposed Greybox design method achieves frequency
speedup by 31.56%, comparing with conventional design method.

1. INTRODUCTION
As CMOS technology scaling has slowed down significantly,

innovative systematic approaches for low power design become
crucial to solve the energy bottleneck of many emerging
applications, such as wearable electronics, Internet-of-Things, and
biomedical devices. Dynamic voltage frequency scaling (DVFS)
has been widely utilized as one of the main approaches to achieve
energy efficient computing. In recent years, fine grained DVFS
which integrates multiple on-chip regulators for multi-core
processors becomes popular and provides significant flexibility for
energy optimization [1-2]. Beyond the system level scaling for each
core, researchers started to explore the architecture and circuit level
co-optimization based on sophisticated insight into software
programs. For example, an autonomous DVFS scheme was
proposed in which regulator achieves fast transient response to
support the dynamic workload changing [3]. Recently, an
instruction-based voltage scaling scheme was introduced by
dynamically adapting supply voltage for each instruction in ultra-
low power scenario [4].

Conventional static timing analysis (STA) for the synchronous
digital circuit normally determines the operation frequency based
on the worst critical logic paths to avoid any timing violations. In

real applications, pronounced locality of the instruction execution
time has been observed [5]. It has been found that dynamic timing
slack exists at instruction level [6-7]. To remove the safety margin
and speedup the clock frequency, hardware design like Razor is
proposed to use error detection mechanisms and achieving a
10~30% power saving beyond conventional design techniques [8].
However, additional error detection logics are needed to recover
the pipeline when the error is detected. An instruction based
frequency scaling scheme utilizing dynamic timing slack was
proposed in [6]. However, the hardware implication of dynamic
timing slack is not explored, and there is a missing consideration of
the link between software usage and actual hardware performance.

It is important to notice that in the conventional design flow,
software and hardware design are normally performed by separate
design groups and treat each other as a “blackbox”. For instance,
the backend design team on gate level optimization of the
microprocessor does not consider particular program/instruction
usage during the hardware design. Similarly, engineers working on
compiler optimization will not have the knowledge of gate level
performance of each instruction set. As will be shown in the paper,
if the software operation behavior of the target applications could
be analyzed and incorporated into the hardware design phase, it can
provide a new opportunity of cross-layer design optimization,
which renders significant performance enhancement. In this paper,
we proposed a novel HW/SW co-design methodology, “Greybox
methodology”, which targets to break the boundary of conventional
HW/SW design flow by creating a mapping between software
instructions and processor hardware design. Fig. 1 shows an
overview of the proposed “Greybox Design Methodology”. At
hardware side, instruction-based ultra-dynamic clock management
scheme based on a dynamic phase selecting all-digital phase-
locked-loop (PLL) is engaged to enable a real-time collaboration
between instructions and processor dynamic clock period control.
At architecture and system side, the program level knowledge such
as instruction usage frequency is incorporated into the design of
microprocessor through a sophisticated mapping process. As a
result, a novel program-driven hardware optimization flow is
proposed to provide a new opportunity of hardware co-optimization
which has not been considered in conventional design flow.

Hardware – ARM Pipeline

IF W
B

P
C ID O

F

M
E
M

EXApplication
Programs

Software
Greybox Design

Digital
PI FilterPFD

DCO
Divider

Dynamic PLL

B: Program-driven HW OptimizationA: Instruction-based Clock Management

HW/SW Mapping
& Analysis
add mov

B:

A:

2. Instruction/
HW Paths
Mapping

1. Program
Analysis

3. Program-
driven

Optmization

2. Instruction/
HW Perfor.
Association

1. Cross-layer
Simulation

3. Instruction-
based

clocking
Fig. 1. Overview of the Greybox design methodology.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for
components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to
post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.
DAC '17, June 18-22, 2017, Austin, TX, USA
© 2017 ACM. ISBN 978-1-4503-4927-7/17/06…$15.00
DOI: http://dx.doi.org/10.1145/3061639.3062255

This work uses an ARMv5 ISA microprocessor design to
evaluate the performance of the proposed scheme [9]. In order to
obtain the instruction dynamic timing information, a cross-layer
simulation environment was developed, in which architecture level
Gem5 simulator [10], gate level simulator VCS and timing analysis
tool Primetime are integrated into a joint simulator in which each
software program is simulated with backend annotated gate level
netlist at every clock cycle with accurate timing information. In
parallel, Cadence Analog Mixed-Signal (AMS) simulations is
utilized for gate level pipeline netlist and PLL circuits to verify
transistor level timing and clocking control. More detailed
contribution of this work are highlighted below: (1) Based on the
large amount of instruction level timing analysis, an association
between software instructions and the hardware design netlist is
created; (2) The timing distribution for each instruction operation
is analyzed and the critical instructions are classified into particular
instruction categories for creating the operation clock bound for
dynamic clock management; (3) An instruction-based ultra-
dynamic clock management scheme is developed and significant
processor clock frequency speedup is achieved; (4) A novel
program-driven hardware co-optimization flow is proposed, in
which the critical paths mapped with frequently-used instruction
and sorted based on a sophisticated mathematical weighting model.
Optimization is then performed based on ranking of the instruction
set weight, which renders significant improvement on efficiency of
hardware optimization; (5) The whole hardware system including
all-digital PLL are designed using commercial CMOS process with
thorough verification down to the transistor level simulations.

2. INSTRUCTION-BASED ULTRA-DYNAMIC
CLOCK MANAGEMENT

A single-issue ARMv5 microprocessor design is used as our
test vehicle due to its popularity and relatively simple structure, as
shown in Fig. 1. The pipeline design includes 6 pipeline stages:
instruction fetch (IF), instruction decode (ID), operand fetch (OF),
execution (EX), Memory (MEM) and write back (WB). Following
the instruction set architecture (ISA) defined for ARMv5
architecture, the target pipeline is designed in commercial 65nm
CMOS technology. The design has a nominal supply of 1.2V, with
the conventional synthesized operating frequency 750MHz, which
means the clock period .

The design flow of the proposed instruction-based ultra-
dynamic clock management as first part of overall Greybox design
is shown in the left bottom (A) of Fig. 1. First, the cross-layer
simulations which include both architecture and circuit level
simulations are performed to obtain the instruction level dynamic
timing information. Second, to facilitate the analysis and prediction
of the instruction based hardware delay, software instructions are
classified intro several instruction categories based on different
hardware operation mechanism through thorough reading into the
ISA definition and synthesized gate level netlist. Finally, an
instruction-based clock management is created by assigning
dynamic clock period to each individual instruction set.
2.1 Instruction Dynamic Timing

Fig. 2 shows several simulation examples of the instruction
dynamic delay time distribution at different pipeline stages from
program 403.gcc in SPEC CPU2006 benchmark suite [11]. It
reveals an important observation that instruction delay varies
significantly depending on instruction type, pipeline stage and
operand values. In conventional design, the worst-case delay is
always used as final clock period regardless whether the worst-
case delay is executed by actual software operations or not. In our
proposed “Greybox” scheme, we create an ultra-dynamic clock
design based on all-digital PLL (details in Section 4) to fully track

the delay variation among instructions, so as to remove the extra
pessimism from the large delay distribution of each instruction.

Among the simulated instruction dynamic timing results, we
define the instruction dynamic timing as instruction dynamic delay

 within each pipeline stage. Across the pipeline stages, we define
pipeline dynamic clock period to be the longest instruction
dynamic delay across all pipeline stages in the same cycle, as
equation (1), which represent the minimum clock period to avoid
timing violation.

Note that the dynamic delay varies even for the same

instruction because the operand values vary. Based on the
distribution for each instruction, the maximum instruction dynamic
delay is defined as dynamic delay bound, as (2), which denotes the
worst execution time for the particular instruction.

In Fig. 2, the dynamic delay of instruction ldr at EX stage

ldr(EX) varies from 0.5ns to 1.1ns and thus .
Similarly, the for both ldr(OF) and cmp(EX) is 1.2ns and
1.3ns, respectively. The observations show that not only different
instruction at the same pipeline stage may take different longest
dynamic delay, e.g. , the same instruction at different stages
also show different timing results. The efficient solution to better
understand the of each instruction is to build the association
between the instruction timing and hardware design, which is the
HW/SW association process will be introduced in the next section.

Fig. 2. Simulation examples of individual instruction dynamic
delay distribution for benchmark 403.gcc.
2.2 Instruction Timing Association with Hardware

The dynamic delay bound for each instruction is
analyzed and associated with the hardware design in this section.
Based on the PLL clock design, the dynamic clocking range is set
from 0.8ns to with the clock adjustment step 0.1ns. Thus all
the instructions with dynamic delay larger than 0.8ns are analyzed
and associated with the corresponding by the following
instruction categories. For instructions without beyond 0.8ns,

is assigned.
Category 1: Complex logic operations

The instructions in this category most happen at the execution
(EX) stage due to the complex logic operation, such as instructions
cmp (Compare), mla (Multiplication), subs (Subtraction with
Compare), etc. For example, cmp at EX stage will exercise both
ALU operation and computation of conditional flags, which will
deterministically take longer time than regular ALU instructions.
The instructions in this category contribute to the conventional
critical path, i.e. worst case delay in the pipeline and determine the
clock period in conventional processor design.
Category 2: Data dependency operations

Instructions which use values produced by the previous
instructions are said to have read-after-write (RAW) dependencies.
The data dependency will likely cause a long delay at OF stage, as
the instruction will wait for the previous instruction operand results.
In this scenario, the operand forwarding paths are triggered.

ldr(EX)
ldr(OF)

cmp(EX)
shift(ID)

branch(IF)

0%

3%

6%

0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4

P
er

ce
nt

ag
e

of

To
ta

l I
ns

tr.
 (%

)

Delay Time (ns)

Tclk

Tbound

Category 3: PC fetch related operations
Program counter (PC) fetch and computation logic normally

associated with other pipeline stages. There are mainly two types
of instructions that could affect the delay time of the PC fetch logic.
One type is the branch instructions located at EX stage, which
evaluate the conditional flags and determine whether the branch
will be taken or not. The other case is caused by some complex
instructions, e.g. shift, push/pop, which require two or more clock
cycles to complete based on the ISA. Those instructions introduce
PC “stall” to prevent PC from incrementing, as shown in Fig. 3.
Category 4: Miscellaneous operations

There are still small portion instructions consume longer delay
which has not been included in the categories above. For example,
some specific instruction sequences could occasionally trigger
some long operations paths by special register value transitions.
The instructions in this category are highly related to specific
architecture design and can be scrutinized based on the particular
processor design rather than the ISA.

The delay time distribution of the categorized instructions is
shown in the histogram of Fig. 3. In the distribution, instructions
with longest delay time mostly come from Category 1 at EX stage.
However, only 1.2% instructions really execute the worst case
critical path close to . This observation points out the significant
pessimism in conventional worst-case based design approach
where clock is fixed at worst-case delay leading to significant
redundancy in operating speed. The proposed dynamic clocking
scheme exploits such redundancy margin to achieve significant
enhancement on processor speed.

ALU
O
FIFP

C ID
Condition

Flag

Category2
Category3: for branch
Category3: for PC stall

Category1

Fig. 3. Typical long delay instruction paths and the instruction
category in delay time distribution view.
2.3 Instruction-based Clock Management

The instruction and hardware association above is completed
for every instruction to find their corresponding dynamic delay
bound . In the proposed scheme, the control bits are
encoded into instruction codes, which will be sent to the control
unit to dynamically adjust the processor clock period. The details
are introduced in Section 4.

Fig. 4 shows the distribution of pipeline dynamic timing
 and the implemented clock based on bound timing .

In an ideal situation, the clock period seamlessly tracks the real
dynamic timing . As a result, the effective clock frequency
determined by and the speedup is expressed as (3),
which shows 34% frequency speedup benefit as listed in Table 1.

However, in reality, the instruction level dynamic clocking
can only follow instead of in order to pessimistically
cover all possible instruction delay scenarios because it is not easy
to predict the operand dependency of the instruction. Hence the

practical frequency speedup is determined by as
(4), in which smaller will bring more clock speedup.

In the experiment for program 403.gcc, the proposed clocking
scheme following achieves effective frequency 906MHz,
which obtains 20.76% clock frequency speedup comparing with
conventional design frequency, as listed in Table 1.

Fig. 4. Distribution of the pipeline dynamic clock period Td,pipe
and the implemented dynamic clocking based on Tbound.
Table 1. Effective frequency speedup in program 403.gcc.

Effective T 1.33 ns 0.995 ns 1.104 ns
Effective f 750 MHz 1005 MHz 906 MHz
Speedup 0 34.0% 21.43%

3. PROGRAM-DRIVEN HARDWARE DESIGN
OPTIMIZATION

As there is only small number of instructions execute the
longest critical paths in the pipeline, it is in fact not efficient to only
improve the longest critical path delay as the conventional design
optimization. On the other hand, much larger benefits can be
obtained if we optimize the hardware design based on the usage of
instructions from software program. For instance, improving more
frequently used instructions will lead to higher frequency speedup
even if the instruction is not on the critical path. In fact, the area
cost of optimizing such less critical instruction is much less than
the cost of instructions on critical path. The proposed program-
driven design optimization flow is shown in right bottom (B) of
Fig. 1. First, we perform analysis on software programs, with the
frequency of each instruction’s usage extracted and ranked.
Second, a sophisticated software instruction and hardware gate
level netlist mapping is conducted, with a mathematical model of
the weighting function developed to provide guideline on the
benefits and costs of optimization for each instruction. Finally, the
ranked instructions are optimized through backend optimization
flow to obtain maximize speedup with minimum hardware costs.
3.1 Instruction Usage Mapping with Hardware

As shown in the example in Fig. 5(a), our cross-layer
simulations which is explained earlier captures the instructions with
the dynamic execution time and the critical path endpoint registers
for each pipeline stage in one clock cycle. The pipeline stage with
longest execution time determines the pipeline clock period .
At the same time, its corresponding path endpoint is denoted as
critical endpoint (CEP), e.g. the OF_Reg_64(ldr) in Fig. 5(a). The
number of times of each CEP register observed in simulations over
the total instruction numbers is defined as CEP usage percentage

, which represents the individual CEP usage frequency during
the program operations. The mapping of registers to a particular
instruction allows us to associate software instruction usage with
hardware gate level netlist. Fig. 5(b) shows the top 10 high usage
percentage CEPs mapped with instruction type in one program. In
practical, all CEP usage percentage are calculated and ranked.

To create finer mapping between instructions and gate level
logic paths, corresponding instruction start points (SP) in gate level
netlist are also obtained. In the proposed flow, we identify all the

0%

20%

40%

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4

P
er

ce
nt

ag
e

of
To

ta
l I

ns
tr.

 (%
)

Delay Time (ns)

Category1
Category2
Category3
Category4 and rest

Tclk

1.2%

0%

40%

80%

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4

P
er

ce
nt

aa
ge

 o
f

To
ta

l I
ns

tr.
 (%

)

Delay Time (ns)

Tclk

Td,pipe

Tbound
mean(Td,pipe)

mean(Tbound)

possible SP register candidates based on the RTL design. Their
register value transitions are stored during the simulations. As the
example in Fig. 6, register SP1 and SP2 value transitions between
0 and 1, which could possible trigger the logic paths ended at CEP.
Register SP3 maintains a constant register value and is not a valid
path start point. As a result, SP1, SP2 and CEP construct a path
group which maps into instruction “ldr”. We formulate path group
as shown in (5), where the instruction is mapped with N numbers
of SP, CEP, dynamic delay bound, and the frequent usage of the
instruction. All instructions are mapped in this format into gate
level netlist. As shown in Fig. 7, all the gate level logics on the
instruction paths are shown in the backend layout. Several high
usage percentage instruction path examples are also highlighted.

PC/IF ID OF EX
IF_Reg_12

Td,IF

ID_Reg_104

Td,ID OF_Reg_64

Td,pipe=Td,OF EX_Reg_89

Td,EX

beq cmp ldr add

(a)

Fig. 5. (a) Simulation of the critical endpoint; (b) Top 10 usage
percentage CEP mapped with instruction in one benchmark.

CEP

SP1

SP2

SP3 ×
pCEP

...
...

OF

ldr

Valid SP
#: N

Invalid SP

Fig. 6. Instruction path groups identified by SP and CEP.

ldr(OF)

ldrb(ID) cmp(EX)

mla(EX)

mla(EX)

bne(IF)

Instruction
paths (blue)

umull(EX)

Fig. 7. Examples of instruction and logic path group mapping
in the complete layout view of the ARM pipeline design.
3.2 Program-driven Optimization Method

In order to obtain more clock speedup benefit, a program-
driven hardware optimization flow is developed. In general,
specific optimization constraints are added to the instruction paths
to constrain the path execution time, as (6).

in which represents optimization strength. Larger brings
more clock speedup benefit while generates more area penalty. The
optimization may become ineffective if is too large to cause
timing violation. In our experiment, ranges from 0.1 to 0.3ns.

A mathematical model is developed to quantify the area cost
as (7) in which m is the total number of path groups under
optimization, is the target improvement of speed, and is the

path numbers in each path group. is an empirical constant factor,
which varies within 1.2e-3~2e-3 in experiment. This cost equation
relatively represents the difficulty of improvement, e.g. the number
of logic path under optimization and the optimization timing target.

All the instruction path groups are ranked by the path weight

function considering their usage percentage , area cost and
associated for the instruction, as shown in (8). Here, larger

 is given higher optimization priority because it provides
more speedup improvement space.

With the total optimization path groups number of m, the
optimization weighted sum is expressed as (9). If all the instruction
path groups are optimized, then is 100%. Fig. 8 shows
the instruction weight distribution of all the path groups. It is
interesting to observe that only small portion (<20%) of path group
contribute to the weighted sum of 70%. This means we can
selectively optimize small portion of instruction paths to obtain
majority of speed up, which aligns with our earlier observation.

Fig. 8. Path weight distribution in benchmark 403.gcc.

After the instruction path weights calculated, instruction paths
are optimized by utilizing “set_max_delay” command to constrain
the max execution delay of logic path to . We also
compared the optimization efficiency at either front-end synthesis
stage or back-end place & route stage. Our experiment shows that
optimizing design at back-end is more effective as it considers the
practical place and route effects. As a result, we utilized our
proposed optimization flow at back-end stage.
3.3 Optimization Performance and Cost

To verify the program-driven optimization performance and
the cost, three cases with different optimization weighted sum are
conducted, as shown in Fig. 9 and Table 2. Results show that more
than half of the speedup benefits (4.98%) have been obtained in
Case A (weighted sum of 70%) with only 1.8% area overhead. In
Case B (weighted sum of 85%), speedup of 7.82% is achieved with
area cost only 3.4%. If all the path groups are optimized, as in Case
C, 9.64% speedup improvement is achieved with the area cost of
7.2%. This observation highlights the strength of our optimization
method, i.e. majority of benefits are obtained with very little area
overhead, which also demonstrates the effectiveness of our
weighting functions. The proposed program-driven optimization is
also compared with a “blind” optimization without the knowledge
of instruction usage, listed by the dash curve in the Fig. 9. The
comparison shows the proposed optimization achieves almost
twice of speedup benefits compared with the “blind” optimization
where the weight of instruction path is not considered.

Fig. 10 shows the dynamic delay distribution for baseline
design and optimized cases simulated with complete backend P&R
design. With the proposed optimization flow, instructions with
dynamic timing ranges 1~1.2ns are constrained down to less than
1ns. When more path groups are optimized, more instructions are
optimized to be shorter delay, as in Case C compared with Case B.
Comparing the baseline design and Case C, a speedup of 9.64% is
achieved with the proposed program-driven optimization method.

0%
2%
4%
6%

U
sa

ge

P
er

ce
nt

ag
e

(%
)

(b)

mla
bne mla ldr subs ldrb cmp mla sub add

0%

5%

0 20 40 60 80 100 120 140 160P
at

h
W

ei
gh

t
Path Group #

70% 85% weightopt=100%

...

Fig. 9. Clock speedup improvement by proposed optimization.
Table 2. Optimization cases with different .

 Baseline Case A Case B Case C
 0% 70% 85% 100%

Path Group # 0 40 91 218
Area Cost 0% 1.8% 3.4% 7.2%

Speedup Improve 0% 4.98% 7.82% 9.64%

Fig. 10. Optimization effects on dynamic delay distribution.

4. SYSTEM SCHEME IMPLEMENTATION
4.1 Overall System Design

The overall diagram of proposed ultra-dynamic clock system
is shown in Fig. 11, which includes ARM pipeline, control units,
PLL, etc. The dynamic clock period management is determined by
3-bit control values which are encoded into each individual
instruction code. This strategy is similar to the previous study with
benign binary modification techniques for encoding information
directly into the instruction stream [12]. The instruction is sent to
both IF stage and control unit. The dynamic clock period control
values are decoded by the control unit and sent to the PLL for
glitch-less phase selection. Considering the delay time of controller
unit, the dynamic clock period control value is encoded one cycle
early than its actual execution cycle. Comparing with the
conventional clocking, the hardware overhead of the proposed
scheme is the phase selection multiplexer and control unit, which
is negligible compared with overall processor area.

Besides the regular PC fetch, the pipeline could experience
flush scenarios by instructions like branch or ldr pc, which trigger
the PC recover signal. As the pipeline is blank after flush, the first
few instructions entering the pipeline always complete within short
time in the experiment. Thus the pipeline PC recover signal is also
used to notice the controller to provide short clock period after each
pipeline flush. The experiments show this PC recover function
introduces additional 2% clock speedup benefit.

Controller

IF WBP
C ID OF

M
E
M

EX

Instr.
Cache

Program

PC
Recover Dynamic Clock

Management

Digital
PI FilterPFD

DCO
Divider

PLL

Fig. 11. Overall diagram of the proposed system scheme.

4.2 ADPLL Design and Phase Noise Margin
In order to generate cycle-by-cycle dynamic clocking, an all-

digital phase locked loop (ADPLL) with clock phase selector is
designed in 65nm technology with full transistor implementation.
The ADPLL loop consists of time-to-digital converter (TDC),
digital proportional-integral (PI) filter, digital controlled oscillator
(DCO) and frequency divider, as shown in the Fig. 12. The DCO
frequency is proportional to the drain current of the ring array and
inversely proportional to the loading capacitance, which is similar
to the design reported in [13]. There are 6bit coarse tuning and 7bit
fine tuning to control active rings and loading capacitance, which
achieve the coarse and fine resolution 30MHz and 0.3MHz. The
ADPLL output frequency covers 30MHz to 2GHz.

For the DCO design, 11 stages are designed in each ring
element, which provide total 22 phases with the constant delay

. To maintain same delay between adjacent phase,
identical fine capacitance loads area distributed at each phase. All
these 22 phases are connected to a glitch-less multiplexer, which is
selected by 5bit signal from the controller. Whenever the pipeline
requires shorter/longer clock period, the mux selection is
accordingly changed by n and generates
or .

Kp

Ki
1-z-1

+TDC Kdco

1/N

+

Ødiv

Øref

fout

PI Filter

coarse

fine

Phase Select
Sel

Dynamic
Clocking

Tdyn

5

C[0]

2X 2X 2X 2X 2X 2X 2X 2X 2X 2X 2X

C[1]

4X 4X 4X 4X 4X 4X 4X 4X 4X 4X 4X

C[2]

F[0]

F[1]

F[2]
2X

4X

F[3]
8X

2X

4X

8X

2X

4X

8X

2X

4X

8X

2X

4X

8X

2X

4X

8X

2X

4X

8X

2X

4X

8X

2X

4X

8X

2X

4X

8X

2X

4X

8X

Glitchless MuxSel
Dynamic Clocking

...

...

Fine
tune
(7bit)

Coarse
tune
(6bit)

Phase
Selection

C[0]

C'[0]

a b

a b

c

 F'[0]
c

Tclk Tshrink Tstretch
5

Fig. 12. Block diagram of the ADPLL design and the dynamic
clocking generation.

The ADPLL phase noise is simulated and shown in Fig. 13. It
is observed that phase noise is -108.4dBc/Hz at 1MHz offset. The
DCO quantization noise is expressed by (10) and dominate the
phase noise around the loop bandwidth due to DCO fine frequency
tuning resolution, i.e. 0.3MHz, while it can be further suppressed
by adding sigma delta module between DCO and PI filter [14].

The simulated phase noise is integrated resulting in cycle-to-

cycle jitter as defined by (11).

in which represents the power spectrum of the phase noise
[15]. The overall jitter performance leads to a conservative 6-sigma
jitter of less than 50ps and will not introduce significant constraint
on system timing budget. During the system level dynamic clock
period adjustment, PLL jitter and other variations, e.g. PVT, should
be considered into the safety margin, as (12).

0%

5%

10%

15%

0% 1% 2% 3% 4% 5% 6% 7% 8%

S
pe

ed
up

Im

pr
ov

em
en

t

Area Increase (%)

Case B
Case C

Case A
Blind Optimization

Proposed Optimization

0%

30%

60%
Baseline Tclkmean(Td,pipe)

0%

30%

60%
Case B Tclk

0%

30%

60%

0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4
Delay Time (ns)

Case C Tclkmean(Td,pipe)

P
er

ce
nt

ag
e

of

To
ta

l I
ns

tr.
 (%

)

Fig. 13. Simulated phase noise for ADPLL at fout=750MHz.

5. SIMULATION RESULTS
Six benchmark programs from benchmark SPEC CPU2006

[11] are simulated to evaluate the proposed scheme performance.
Fig. 14 shows the improvement of the average clock frequency.
Based on the conventional design flow, the pipeline is operated
with frequency 750MHz. Applying the proposed instruction-based
ultra-dynamic clocking strategy, the average clock frequency
improved to around 910MHz, which achieve average 21.71% clock
speedup. The proposed program-driven hardware optimization
based on all these six benchmark programs is conducted to optimize
design with area increase of 7.2%. The average clock frequency is
further improved to 986MHz, which achieves speedup 31.56% of
the average clock frequency. If converting the clock frequency
speedup by scaling down the supply voltage, around 25% of power
reduction could be obtained from the proposed scheme.

Fig. 15 shows examples of the program-driven optimization
effects from the layout view, in which each logic path is mapped
with instruction and its execution time. After the optimization, the
exercise time of the same instructions are effectively reduced,
which are mainly caused by the reduction of the cell numbers on
the instructions paths. The proposed system scheme is also
simulated in the Cadence Virtuoso AMS mixed-signal environment
with full transistor level schematic of ARM pipeline and PLL
design. As shown in Fig. 16, the ARM core clock period has been
successfully adjusted based on each individual instructions.

Fig. 14. Comparison of processor effective frequency (upper) and the
frequency speedup results (lower).

Fig. 15. Instruction path examples before (upper) and after
(lower) the proposed optimization.

Fig. 16. Full transistor level AMS simulation of the ARM
pipeline and ADPLL.

6. CONCLUSION
 In this paper, a novel Greybox design methodology is
proposed to cross the conventional HW/SW design boundaries to
bring new design and co-optimization opportunities. Based on
architecture and circuit level co-simulations, the dynamic timing
margin of instructions is associated with the hardware pipeline
design to provide the basis of ultra-dynamic clock management
scheme, leading to a 21.7% frequency speedup. Furthermore, a
novel program-driven hardware optimization flow is proposed, in
which sophisticated mathematical weighting model is developed to
map the frequent usage instructions with the hardware logic paths.
Additional 10% frequency speedup is obtained by the proposed
program-driven optimization flow. Overall, the proposed Greybox
design methodology achieves clock frequency speedup by 31.5%
on an ARM ISA based pipeline design, comparing with the
conventional design methodology.

7. ACKNOWLEDGMENTS
This work is partially supported by NSF grants CCF-1618065 and
CCF-1116610.

8. REFERENCES
[1] J. Howard, et al., “A 48-core IA-32 processor in 45 nm CMOS using

on-die message-passing and DVFS for performance and power
scaling”, IEEE Journal of Solid-State Circuits, vol. 46, no. 1, pp. 173-
183, Jan. 2011.

[2] Z. Toprak-Deniz, et al., “Distributed system of digitally controlled
microregulators enabling per-core DVFS for the POWER8
microprocessor”, International Solid-State Circuits Conference
(ISSCC), pp. 98-99, Feb. 2014.

[3] S. Kim, et al., “Enabling wide autonomous DVFS in a 22 nm graphics
execution core using a digitally controlled fully integrated voltage
regulator”, IEEE Journal of Solid-State Circuits, vol. 51, no. 1, pp.
18-30, Jan. 2016.

[4] T. Jia, et al., “Exploration of associative power management with
instruction governed operation for ultra-low power design”, Design
Automation Conference (DAC), 2016.

[5] J. Xin, et al., “Identifying and predicting timing-critical instructions to
boost timing speculation”, International Symposium on
Microarchitecture (MICRO), pp. 74-85, 2011.

[6] J. Constantin, et al., “Exploiting dynamic timing margins in
microprocessors for frequency-over-scaling with instruction-based
clock adjustment”, Design, Automation & Test in Europe Conference
& Exhibition (DATE), 2015.

[7] H. Cherupalli, et al., “Exploiting dynamic timing slack for energy
efficiency in ultra-low-power embedded systems”, International
Symp. on Computer Architecture (ISCA), 2016.

[8] S. Das, et al., “RazorII: in situ error detection and correction for PVT
and SER tolerance”, IEEE Journal of Solid-State Circuits, vol. 44, no.
1, pp. 32-48, Jan. 2009.

[9] Online resource, ARM, “ARMv5 Architecture Reference Manual”,
https://silver.arm.com/download/download.tm?pv=1073121

[10] Online resource, http://www.gem5.org/Main_Page
[11] J. Henning, et al., “SPEC CPU2006 benchmark descriptions”,

Computer Architecture News, 34(4), Sep. 2006.
[12] A. Meixner, et al., “Argus: Low-cost, comprehensive error detection

in simple cores”, International Symposium on Microarchitecture
(MICRO), pp. 210-222, 2007.

[13] N. August, et al, “A TDC-less ADPLL with 200-to-3200MHz range
and 3mW power dissipation for mobile SoC clocking in 22nm
CMOS”, International Solid-State Circuits Conference (ISSCC), Feb.
2012.

[14] M. Perrott, “Tutorial on digital phase-locked loops”, Custom
Integrated Circuits Conference (CICC), 2009.

[15] U. Moon, et al., “Spectral analysis of time-domain phase jitter
measurement”, IEEE Transactions on Circuits and System II, vol. 49,
no. 5, pp. 321-327, 2002.

-140
-120
-100
-80
-60

1.0E+03 1.0E+04 1.0E+05 1.0E+06 1.0E+07 1.0E+08P
ha

se
 N

oi
se

(d

B
c/

H
z)

Frequency (Hz)

0
400
800

1200
1600

gcc hmmer astar perlbench bzip2 gobmk

Fr
eq

ue
nc

y
(M

H
z)

Conventional Clocking Dynamic Clocking
After Design Optimization

0%

20%

40%

gcc hmmer astar perlbench bzip2 gobmk

Fr
eq

ue
nc

y
S

pe
ed

up

Dynamic Clocking After Desgin Optimization

-0.4
0

0.4
0.8
1.2

10 11 12 13 14 15 16 17 18 19 20

V
cl

k
(v

)

Time (ns)

ldrb sub bne ldr str mov mlaadd

cmp(EX):
Tdyn=1.2ns
Cell #:23

orr(OF):
Tdyn=1.1ns
Cell #:12

pop(ID):
Tdyn=1.0ns
Cell #:14

cmp(EX):
Tdyn=1.0ns
Cell #:22

orr(OF):
Tdyn=0.8ns
Cell #:9 pop(ID):

Tdyn=0.8ns
Cell #:13

