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ABSTRACT 
In this paper, a novel Greybox design methodology is proposed to 
establish a design and co-optimization flow across the boundary of 
conventional software and hardware design. The dynamic timing 
of each software instruction is simulated and associated with 
processor hardware design, which provides the basis of ultra-
dynamic clock management. The proposed scheme effectively 
implements the instruction-based clock management and achieves 
21.71% frequency speedup. Besides, a novel program-driven 
hardware optimization flow is proposed, in which software 
operations are mapped with hardware gate netlist and sorted by the 
usage frequency. The experiments on an ARM based pipeline 
design in commercial 65nm CMOS process show an extra 10% 
frequency speedup is obtained with high optimization efficiency. 
Overall, the proposed Greybox design method achieves frequency 
speedup by 31.56%, comparing with conventional design method. 

1. INTRODUCTION 
As CMOS technology scaling has slowed down significantly, 

innovative systematic approaches for low power design become 
crucial to solve the energy bottleneck of many emerging 
applications, such as wearable electronics, Internet-of-Things, and 
biomedical devices. Dynamic voltage frequency scaling (DVFS) 
has been widely utilized as one of the main approaches to achieve 
energy efficient computing. In recent years, fine grained DVFS 
which integrates multiple on-chip regulators for multi-core 
processors becomes popular and provides significant flexibility for 
energy optimization [1-2]. Beyond the system level scaling for each 
core, researchers started to explore the architecture and circuit level 
co-optimization based on sophisticated insight into software 
programs. For example, an autonomous DVFS scheme was 
proposed in which regulator achieves fast transient response to 
support the dynamic workload changing [3]. Recently, an 
instruction-based voltage scaling scheme was introduced by 
dynamically adapting supply voltage for each instruction in ultra-
low power scenario [4].  

Conventional static timing analysis (STA) for the synchronous 
digital circuit normally determines the operation frequency based 
on the worst critical logic paths to avoid any timing violations. In 

real applications, pronounced locality of the instruction execution 
time has been observed [5]. It has been found that dynamic timing 
slack exists at instruction level [6-7]. To remove the safety margin 
and speedup the clock frequency, hardware design like Razor is 
proposed to use error detection mechanisms and achieving a 
10~30% power saving beyond conventional design techniques [8]. 
However, additional error detection logics are needed to recover 
the pipeline when the error is detected. An instruction based 
frequency scaling scheme utilizing dynamic timing slack was 
proposed in [6]. However, the hardware implication of dynamic 
timing slack is not explored, and there is a missing consideration of 
the link between software usage and actual hardware performance.  

It is important to notice that in the conventional design flow, 
software and hardware design are normally performed by separate 
design groups and treat each other as a “blackbox”. For instance, 
the backend design team on gate level optimization of the 
microprocessor does not consider particular program/instruction 
usage during the hardware design. Similarly, engineers working on 
compiler optimization will not have the knowledge of gate level 
performance of each instruction set. As will be shown in the paper, 
if the software operation behavior of the target applications could 
be analyzed and incorporated into the hardware design phase, it can 
provide a new opportunity of cross-layer design optimization, 
which renders significant performance enhancement. In this paper, 
we proposed a novel HW/SW co-design methodology, “Greybox 
methodology”, which targets to break the boundary of conventional 
HW/SW design flow by creating a mapping between software 
instructions and processor hardware design. Fig. 1 shows an 
overview of the proposed “Greybox Design Methodology”. At 
hardware side, instruction-based ultra-dynamic clock management 
scheme based on a dynamic phase selecting all-digital phase-
locked-loop (PLL) is engaged to enable a real-time collaboration 
between instructions and processor dynamic clock period control. 
At architecture and system side, the program level knowledge such 
as instruction usage frequency is incorporated into the design of 
microprocessor through a sophisticated mapping process. As a 
result, a novel program-driven hardware optimization flow is 
proposed to provide a new opportunity of hardware co-optimization 
which has not been considered in conventional design flow. 
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Fig. 1. Overview of the Greybox design methodology. 
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This work uses an ARMv5 ISA microprocessor design to 
evaluate the performance of the proposed scheme [9]. In order to 
obtain the instruction dynamic timing information, a cross-layer 
simulation environment was developed, in which architecture level 
Gem5 simulator [10], gate level simulator VCS and timing analysis 
tool Primetime are integrated into a joint simulator in which each 
software program is simulated with backend annotated gate level 
netlist at every clock cycle with accurate timing information. In 
parallel, Cadence Analog Mixed-Signal (AMS) simulations is 
utilized for gate level pipeline netlist and PLL circuits to verify 
transistor level timing and clocking control. More detailed 
contribution of this work are highlighted below: (1) Based on the 
large amount of instruction level timing analysis, an association 
between software instructions and the hardware design netlist is 
created; (2) The timing distribution for each instruction operation 
is analyzed and the critical instructions are classified into particular 
instruction categories for creating the operation clock bound for 
dynamic clock management; (3) An instruction-based ultra-
dynamic clock management scheme is developed and significant 
processor clock frequency speedup is achieved; (4) A novel 
program-driven hardware co-optimization flow is proposed, in 
which the critical paths mapped with frequently-used instruction 
and sorted based on a sophisticated mathematical weighting model. 
Optimization is then performed based on ranking of the instruction 
set weight, which renders significant improvement on efficiency of 
hardware optimization; (5) The whole hardware system including 
all-digital PLL are designed using commercial CMOS process with 
thorough verification down to the transistor level simulations. 

2. INSTRUCTION-BASED ULTRA-DYNAMIC 
CLOCK MANAGEMENT 

A single-issue ARMv5 microprocessor design is used as our 
test vehicle due to its popularity and relatively simple structure, as 
shown in Fig. 1. The pipeline design includes 6 pipeline stages: 
instruction fetch (IF), instruction decode (ID), operand fetch (OF), 
execution (EX), Memory (MEM) and write back (WB). Following 
the instruction set architecture (ISA) defined for ARMv5 
architecture, the target pipeline is designed in commercial 65nm 
CMOS technology. The design has a nominal supply of 1.2V, with 
the conventional synthesized operating frequency 750MHz, which 
means the clock period .  

The design flow of the proposed instruction-based ultra-
dynamic clock management as first part of overall Greybox design 
is shown in the left bottom (A) of Fig. 1. First, the cross-layer 
simulations which include both architecture and circuit level 
simulations are performed to obtain the instruction level dynamic 
timing information. Second, to facilitate the analysis and prediction 
of the instruction based hardware delay, software instructions are 
classified intro several instruction categories based on different 
hardware operation mechanism through thorough reading into the 
ISA definition and synthesized gate level netlist. Finally, an 
instruction-based clock management is created by assigning 
dynamic clock period to each individual instruction set. 
2.1 Instruction Dynamic Timing 

Fig. 2 shows several simulation examples of the instruction 
dynamic delay time distribution at different pipeline stages from 
program 403.gcc in SPEC CPU2006 benchmark suite [11]. It 
reveals an important observation that instruction delay varies 
significantly depending on instruction type, pipeline stage and 
operand values. In conventional design, the worst-case delay is 
always used as final clock period  regardless whether the worst-
case delay is executed by actual software operations or not. In our 
proposed “Greybox” scheme, we create an ultra-dynamic clock 
design based on all-digital PLL (details in Section 4) to fully track 

the delay variation among instructions, so as to remove the extra 
pessimism from the large delay distribution of each instruction. 

Among the simulated instruction dynamic timing results, we 
define the instruction dynamic timing as instruction dynamic delay 

 within each pipeline stage. Across the pipeline stages, we define 
pipeline dynamic clock period  to be the longest instruction 
dynamic delay across all pipeline stages in the same cycle, as 
equation (1), which represent the minimum clock period to avoid 
timing violation.  

  
Note that the dynamic delay  varies even for the same 

instruction because the operand values vary. Based on the  
distribution for each instruction, the maximum instruction dynamic 
delay is defined as dynamic delay bound, as (2), which denotes the 
worst execution time for the particular instruction.   

  
In Fig. 2, the dynamic delay of instruction ldr at EX stage 

ldr(EX) varies from 0.5ns to 1.1ns and thus . 
Similarly, the  for both ldr(OF) and cmp(EX) is 1.2ns and 
1.3ns, respectively. The observations show that not only different 
instruction at the same pipeline stage may take different longest 
dynamic delay, e.g. , the same instruction at different stages 
also show different timing results. The efficient solution to better 
understand the  of each instruction is to build the association 
between the instruction timing and hardware design, which is the 
HW/SW association process will be introduced in the next section.  

 
Fig. 2. Simulation examples of individual instruction dynamic 
delay distribution for benchmark 403.gcc. 
2.2 Instruction Timing Association with Hardware 

The dynamic delay bound  for each instruction is 
analyzed and associated with the hardware design in this section. 
Based on the PLL clock design, the dynamic clocking range is set 
from 0.8ns to  with the clock adjustment step 0.1ns. Thus all 
the instructions with dynamic delay larger than 0.8ns are analyzed 
and associated with the corresponding  by the following 
instruction categories. For instructions without  beyond 0.8ns,  

is assigned. 
Category 1: Complex logic operations 

The instructions in this category most happen at the execution 
(EX) stage due to the complex logic operation, such as instructions 
cmp (Compare), mla (Multiplication), subs (Subtraction with 
Compare), etc. For example, cmp at EX stage will exercise both 
ALU operation and computation of conditional flags, which will 
deterministically take longer time than regular ALU instructions. 
The instructions in this category contribute to the conventional 
critical path, i.e. worst case delay in the pipeline and determine the 
clock period  in conventional processor design.  
Category 2: Data dependency operations 

Instructions which use values produced by the previous 
instructions are said to have read-after-write (RAW) dependencies. 
The data dependency will likely cause a long delay at OF stage, as 
the instruction will wait for the previous instruction operand results. 
In this scenario, the operand forwarding paths are triggered. 
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Category 3: PC fetch related operations 
Program counter (PC) fetch and computation logic normally 

associated with other pipeline stages. There are mainly two types 
of instructions that could affect the delay time of the PC fetch logic. 
One type is the branch instructions located at EX stage, which 
evaluate the conditional flags and determine whether the branch 
will be taken or not. The other case is caused by some complex 
instructions, e.g. shift, push/pop, which require two or more clock 
cycles to complete based on the ISA. Those instructions introduce 
PC “stall” to prevent PC from incrementing, as shown in Fig. 3.  
Category 4: Miscellaneous operations 

There are still small portion instructions consume longer delay 
which has not been included in the categories above.  For example, 
some specific instruction sequences could occasionally trigger 
some long operations paths by special register value transitions. 
The instructions in this category are highly related to specific 
architecture design and can be scrutinized based on the particular 
processor design rather than the ISA. 

The delay time distribution of the categorized instructions is 
shown in the histogram of Fig. 3. In the distribution, instructions 
with longest delay time mostly come from Category 1 at EX stage. 
However, only 1.2% instructions really execute the worst case 
critical path close to . This observation points out the significant 
pessimism in conventional worst-case based design approach 
where clock is fixed at worst-case delay leading to significant 
redundancy in operating speed. The proposed dynamic clocking 
scheme exploits such redundancy margin to achieve significant 
enhancement on processor speed. 
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Fig. 3. Typical long delay instruction paths and the instruction 
category in delay time distribution view. 
2.3 Instruction-based Clock Management 

The instruction and hardware association above is completed 
for every instruction to find their corresponding dynamic delay 
bound . In the proposed scheme, the  control bits are 
encoded into instruction codes, which will be sent to the control 
unit to dynamically adjust the processor clock period. The details 
are introduced in Section 4.  

Fig. 4 shows the distribution of pipeline dynamic timing 
 and the implemented clock based on bound timing . 

In an ideal situation, the clock period seamlessly tracks the real 
dynamic timing . As a result, the effective clock frequency 
determined by  and the speedup is expressed as (3), 
which shows 34% frequency speedup benefit as listed in Table 1.  

  

However, in reality, the instruction level dynamic clocking 
can only follow   instead of  in order to pessimistically 
cover all possible instruction delay scenarios because it is not easy 
to predict the operand dependency of the instruction. Hence the 

practical frequency speedup is determined by  as 
(4), in which smaller  will bring more clock speedup. 

  

In the experiment for program 403.gcc, the proposed clocking 
scheme following  achieves effective frequency 906MHz, 
which obtains 20.76% clock frequency speedup comparing with 
conventional design frequency, as listed in Table 1. 

   
Fig. 4. Distribution of the pipeline dynamic clock period Td,pipe 
and the implemented dynamic clocking based on Tbound. 
Table 1. Effective frequency speedup in program 403.gcc.  

    
Effective T 1.33 ns 0.995 ns 1.104 ns 
Effective f 750 MHz 1005 MHz 906 MHz 
Speedup 0 34.0% 21.43% 

3. PROGRAM-DRIVEN HARDWARE DESIGN 
OPTIMIZATION 

As there is only small number of instructions execute the 
longest critical paths in the pipeline, it is in fact not efficient to only 
improve the longest critical path delay as the conventional design 
optimization. On the other hand, much larger benefits can be 
obtained if we optimize the hardware design based on the usage of 
instructions from software program. For instance, improving more 
frequently used instructions will lead to higher frequency speedup 
even if the instruction is not on the critical path. In fact, the area 
cost of optimizing such less critical instruction is much less than 
the cost of instructions on critical path. The proposed program-
driven design optimization flow is shown in right bottom (B) of 
Fig. 1. First, we perform analysis on software programs, with the 
frequency of each instruction’s usage extracted and ranked. 
Second, a sophisticated software instruction and hardware gate 
level netlist mapping is conducted, with a mathematical model of 
the weighting function developed to provide guideline on the 
benefits and costs of optimization for each instruction. Finally, the 
ranked instructions are optimized through backend optimization 
flow to obtain maximize speedup with minimum hardware costs.   
3.1 Instruction Usage Mapping with Hardware 

As shown in the example in Fig. 5(a), our cross-layer 
simulations which is explained earlier captures the instructions with 
the dynamic execution time and the critical path endpoint registers 
for each pipeline stage in one clock cycle. The pipeline stage with 
longest execution time determines the pipeline clock period . 
At the same time, its corresponding path endpoint is denoted as 
critical endpoint (CEP), e.g. the OF_Reg_64(ldr) in Fig. 5(a). The 
number of times of each CEP register observed in simulations over 
the total instruction numbers is defined as CEP usage percentage 

, which represents the individual CEP usage frequency during 
the program operations. The mapping of registers to a particular 
instruction allows us to associate software instruction usage with 
hardware gate level netlist. Fig. 5(b) shows the top 10 high usage 
percentage CEPs mapped with instruction type in one program. In 
practical, all CEP usage percentage are calculated and ranked. 

To create finer mapping between instructions and gate level 
logic paths, corresponding instruction start points (SP) in gate level 
netlist are also obtained. In the proposed flow, we identify all the 
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possible SP register candidates based on the RTL design. Their 
register value transitions are stored during the simulations. As the 
example in Fig. 6, register SP1 and SP2 value transitions between 
0 and 1, which could possible trigger the logic paths ended at CEP. 
Register SP3 maintains a constant register value and is not a valid 
path start point. As a result, SP1, SP2 and CEP construct a path 
group which maps into instruction “ldr”.  We formulate path group 
as shown in (5), where the instruction is mapped with N numbers 
of SP, CEP, dynamic delay bound, and the frequent usage of the 
instruction. All instructions are mapped in this format into gate 
level netlist. As shown in Fig. 7, all the gate level logics on the 
instruction paths are shown in the backend layout. Several high 
usage percentage instruction path examples are also highlighted. 
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Fig. 5. (a) Simulation of the critical endpoint; (b) Top 10 usage 
percentage CEP mapped with instruction in one benchmark. 

CEP

SP1

SP2

SP3 × 
pCEP

...
...

OF

ldr

Valid SP 
#: N

Invalid SP
 

Fig. 6. Instruction path groups identified by SP and CEP. 
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Fig. 7. Examples of instruction and logic path group mapping 
in the complete layout view of the ARM pipeline design. 
3.2 Program-driven Optimization Method 

In order to obtain more clock speedup benefit, a program-
driven hardware optimization flow is developed. In general, 
specific optimization constraints are added to the instruction paths 
to constrain the path execution time, as (6).  

 
in which  represents optimization strength. Larger  brings 
more clock speedup benefit while generates more area penalty. The 
optimization may become ineffective if  is too large to cause 
timing violation. In our experiment,  ranges from 0.1 to 0.3ns.  

A mathematical model is developed to quantify the area cost 
as (7) in which m is the total number of path groups under 
optimization,  is the target improvement of speed, and  is the 

path numbers in each path group.  is an empirical constant factor, 
which varies within 1.2e-3~2e-3 in experiment. This cost equation 
relatively represents the difficulty of improvement, e.g. the number 
of logic path under optimization and the optimization timing target.  

  
All the instruction path groups are ranked by the path weight 

function considering their usage percentage , area cost and 
associated  for the instruction, as shown in (8). Here, larger 

 is given higher optimization priority because it provides 
more speedup improvement space. 

  

With the total optimization path groups number of m, the 
optimization weighted sum is expressed as (9). If all the instruction 
path groups are optimized, then  is 100%. Fig. 8 shows 
the instruction weight distribution of all the path groups. It is 
interesting to observe that only small portion (<20%) of path group 
contribute to the weighted sum of 70%. This means we can 
selectively optimize small portion of instruction paths to obtain 
majority of speed up, which aligns with our earlier observation. 

  

 
Fig. 8. Path weight distribution in benchmark 403.gcc. 

After the instruction path weights calculated, instruction paths 
are optimized by utilizing “set_max_delay” command to constrain 
the max execution delay of logic path to . We also 
compared the optimization efficiency at either front-end synthesis 
stage or back-end place & route stage. Our experiment shows that 
optimizing design at back-end is more effective as it considers the 
practical place and route effects. As a result, we utilized our 
proposed optimization flow at back-end stage. 
3.3 Optimization Performance and Cost 

To verify the program-driven optimization performance and 
the cost, three cases with different optimization weighted sum are 
conducted, as shown in Fig. 9 and Table 2. Results show that more 
than half of the speedup benefits (4.98%) have been obtained in 
Case A (weighted sum of 70%) with only 1.8% area overhead. In 
Case B (weighted sum of 85%), speedup of 7.82% is achieved with 
area cost only 3.4%. If all the path groups are optimized, as in Case 
C, 9.64% speedup improvement is achieved with the area cost of 
7.2%. This observation highlights the strength of our optimization 
method, i.e. majority of benefits are obtained with very little area 
overhead, which also demonstrates the effectiveness of our 
weighting functions. The proposed program-driven optimization is 
also compared with a “blind” optimization without the knowledge 
of instruction usage, listed by the dash curve in the Fig. 9. The 
comparison shows the proposed optimization achieves almost 
twice of speedup benefits compared with the “blind” optimization 
where the weight of instruction path is not considered. 

Fig. 10 shows the dynamic delay distribution for baseline 
design and optimized cases simulated with complete backend P&R 
design. With the proposed optimization flow, instructions with 
dynamic timing ranges 1~1.2ns are constrained down to less than 
1ns. When more path groups are optimized, more instructions are 
optimized to be shorter delay, as in Case C compared with Case B. 
Comparing the baseline design and Case C, a speedup of 9.64% is 
achieved with the proposed program-driven optimization method.  
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Fig. 9. Clock speedup improvement by proposed optimization. 
Table 2. Optimization cases with different .  

 Baseline Case A Case B Case C 
 0% 70% 85% 100% 

Path Group # 0 40 91 218 
Area Cost 0% 1.8% 3.4% 7.2% 

Speedup Improve  0% 4.98% 7.82% 9.64% 

 

 

 
Fig. 10. Optimization effects on dynamic delay distribution. 

4. SYSTEM SCHEME IMPLEMENTATION  
4.1 Overall System Design 

The overall diagram of proposed ultra-dynamic clock system 
is shown in Fig. 11, which includes ARM pipeline, control units, 
PLL, etc. The dynamic clock period management is determined by 
3-bit control values which are encoded into each individual 
instruction code. This strategy is similar to the previous study with 
benign binary modification techniques for encoding information 
directly into the instruction stream [12]. The instruction is sent to 
both IF stage and control unit. The dynamic clock period control 
values are decoded by the control unit and sent to the PLL for 
glitch-less phase selection. Considering the delay time of controller 
unit, the dynamic clock period control value is encoded one cycle 
early than its actual execution cycle. Comparing with the 
conventional clocking, the hardware overhead of the proposed 
scheme is the phase selection multiplexer and control unit, which 
is negligible compared with overall processor area. 

Besides the regular PC fetch, the pipeline could experience 
flush scenarios by instructions like branch or ldr pc, which trigger 
the PC recover signal. As the pipeline is blank after flush, the first 
few instructions entering the pipeline always complete within short 
time in the experiment. Thus the pipeline PC recover signal is also 
used to notice the controller to provide short clock period after each 
pipeline flush. The experiments show this PC recover function 
introduces additional 2% clock speedup benefit. 
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Fig. 11. Overall diagram of the proposed system scheme. 

4.2 ADPLL Design and Phase Noise Margin 
In order to generate cycle-by-cycle dynamic clocking, an all-

digital phase locked loop (ADPLL) with clock phase selector is 
designed in 65nm technology with full transistor implementation. 
The ADPLL loop consists of time-to-digital converter (TDC), 
digital proportional-integral (PI) filter, digital controlled oscillator 
(DCO) and frequency divider, as shown in the Fig. 12. The DCO 
frequency is proportional to the drain current of the ring array and 
inversely proportional to the loading capacitance, which is similar 
to the design reported in [13]. There are 6bit coarse tuning and 7bit 
fine tuning to control active rings and loading capacitance, which 
achieve the coarse and fine resolution 30MHz and 0.3MHz. The 
ADPLL output frequency covers 30MHz to 2GHz. 

For the DCO design, 11 stages are designed in each ring 
element, which provide total 22 phases with the constant delay 

. To maintain same delay between adjacent phase, 
identical fine capacitance loads area distributed at each phase. All 
these 22 phases are connected to a glitch-less multiplexer, which is 
selected by 5bit signal from the controller. Whenever the pipeline 
requires shorter/longer clock period, the mux selection is 
accordingly changed by n and generates  
or .  
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Fig. 12. Block diagram of the ADPLL design and the dynamic 
clocking generation. 

The ADPLL phase noise is simulated and shown in Fig. 13. It 
is observed that phase noise is -108.4dBc/Hz at 1MHz offset. The 
DCO quantization noise is expressed by (10) and dominate the 
phase noise around the loop bandwidth due to DCO fine frequency 
tuning resolution, i.e. 0.3MHz, while it can be further suppressed 
by adding sigma delta module between DCO and PI filter [14].  

  
The simulated phase noise is integrated resulting in cycle-to-

cycle jitter  as defined by (11). 
  

in which  represents the power spectrum of the phase noise 
[15]. The overall jitter performance leads to a conservative 6-sigma 
jitter of less than 50ps and will not introduce significant constraint 
on system timing budget. During the system level dynamic clock 
period adjustment, PLL jitter and other variations, e.g. PVT, should 
be considered into the safety margin, as (12). 
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Fig. 13. Simulated phase noise for ADPLL at fout=750MHz. 

5. SIMULATION RESULTS 
Six benchmark programs from benchmark SPEC CPU2006 

[11] are simulated to evaluate the proposed scheme performance. 
Fig. 14 shows the improvement of the average clock frequency. 
Based on the conventional design flow, the pipeline is operated 
with frequency 750MHz. Applying the proposed instruction-based 
ultra-dynamic clocking strategy, the average clock frequency 
improved to around 910MHz, which achieve average 21.71% clock 
speedup. The proposed program-driven hardware optimization 
based on all these six benchmark programs is conducted to optimize 
design with area increase of 7.2%. The average clock frequency is 
further improved to 986MHz, which achieves speedup 31.56% of 
the average clock frequency. If converting the clock frequency 
speedup by scaling down the supply voltage, around 25% of power 
reduction could be obtained from the proposed scheme. 

Fig. 15 shows examples of the program-driven optimization 
effects from the layout view, in which each logic path is mapped 
with instruction and its execution time. After the optimization, the 
exercise time of the same instructions are effectively reduced, 
which are mainly caused by the reduction of the cell numbers on 
the instructions paths. The proposed system scheme is also 
simulated in the Cadence Virtuoso AMS mixed-signal environment 
with full transistor level schematic of ARM pipeline and PLL 
design. As shown in Fig. 16, the ARM core clock period has been 
successfully adjusted based on each individual instructions. 

 

 
Fig. 14. Comparison of processor effective frequency (upper) and the 
frequency speedup results (lower). 

 

 
Fig. 15. Instruction path examples before (upper) and after 
(lower) the proposed optimization. 

 
Fig. 16. Full transistor level AMS simulation of the ARM 
pipeline and ADPLL. 

6. CONCLUSION 
        In this paper, a novel Greybox design methodology is 
proposed to cross the conventional HW/SW design boundaries to 
bring new design and co-optimization opportunities. Based on 
architecture and circuit level co-simulations, the dynamic timing 
margin of instructions is associated with the hardware pipeline 
design to provide the basis of ultra-dynamic clock management 
scheme, leading to a 21.7% frequency speedup. Furthermore, a 
novel program-driven hardware optimization flow is proposed, in 
which sophisticated mathematical weighting model is developed to 
map the frequent usage instructions with the hardware logic paths. 
Additional 10% frequency speedup is obtained by the proposed 
program-driven optimization flow. Overall, the proposed Greybox 
design methodology achieves clock frequency speedup by 31.5% 
on an ARM ISA based pipeline design, comparing with the 
conventional design methodology.  
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