Process Variation Aware Cache Leakage Management

Ke Meng
k-meng@northwestern.edu

Russ Joseph
rjoseph@eecs.northwestern.edu

Department of Electrical Engineering and Computer Science
Northwestern University
Evanston, IL 60208

ABSTRACT

In a few technology generations, limitations of fabrication
processes will make accurate design time power estimates a
daunting challenge. Static leakage current which comprises
a significant fraction of total power due to large on-chip
caches, is exponentially dependent on widely varying phys-
ical parameters such as gate length, gate oxide thickness,
and dopant ion concentration. In large structures like on-
chip caches, this may mean that one portion of a cache may
consume an order of magnitude larger static power than
equivalently sized regions.

Under this climate, egalitarian management of physical
resources is clearly untenable. In this paper, we analyze the
effects of within-die and die-to-die leakage variation for on-
chip caches. We then propose way prioritization, a manufac-
turing variation aware scheme that minimizes cache leakage
energy. Our results show that significant average power re-
ductions are possible without undue hardware complexity
or performance compromise.

Categories and Subject Descriptors

B.3.2 [Memory Structures|: Design Styles - cache mem-
ories

General Terms

Design, Performance, Experimentation

Keywords

process variation, low power, leakage, cache management,
Gated-VDD, selective cache ways

1. INTRODUCTION

In future technology generations, the promise of burgeon-
ing transistor budgets will be tempered by a sobering fact:
foundries will have increasingly limited control of transistor
quality. ITRS lists several fundamental challenges for chip
manufacture which limit fabrication accuracy but have no
known solutions [15]. These quality control issues manifest
themselves as randomly distributed variations in character-
istics such as transistor length and gate oxide thickness [4].

Permission to make digital or hard copies of all or part of thaknfor
personal or classroom use is granted without fee providatidbpies are
not made or distributed for profit or commercial advantage aatidbpies
bear this notice and the full citation on the first page. Toyoogherwise, to
republish, to post on servers or to redistribute to listguies prior specific
permission and/or a fee.

ISLPED’ 06, October 4-6, 2006, Tegernsee, Germany.

Copyright 2006 ACM 1-59593-462-6/06/00185.00.

Ultimately, these variations affect power and performance
by altering circuit behavior, leading to physical implemen-
tations which may no longer meet design specifications

Leakage current, well known as a prominent threat for
deep submicron design, is highly susceptible to manufac-
turing variations and will consequently be more difficult to
optimize [7]. Recent industry data show as much as a 20x
variation in total chip leakage power for dies from the same
wafer [4]. The majority of this variation comes from devia-
tions in leakage power. As a result of the exponential depen-
dence on gate length (L) and threshold voltage (v¢), which
vary on a die-to-die and within-die basis, even schematically
equivalent cells on the same chip can have dramatically dif-
ferent leakage power.

Due to the huge potential variances in device characteris-
tics, microarchitectures can no longer be designed with an
egalitarian view of hardware resources. In particular, fixed
parameter leakage models and optimizations will become in-
creasingly less effective because they can only target the
fraction of chips which have no imperfections, ignoring the
majority of chips which have significant on-chip variations.
The consequences will be significant for cache memories due
to their large on-chip area. First, they will account for a
large portion of the total chip leakage. Second, they will be
exposed to significant amounts of spatially dependent pa-
rameter variation. Although techniques like adaptive body
biasing ([16]) have potential for reducing leakage, they ne-
cessitate use of complicated circuit techniques which may
not be feasible for fine grain spatial leakage control.

In this work, we examine the effects that leakage variation
can have on cache memories. This paper makes two primary
contributions:

e We develop architecture-level statistical models and
methodology for studying cache leakage under manu-
facturing variations. We are among the first to survey
the local and global effects of manufacturing variation
on cache leakage.

e Based on our analysis, we introduce way prioritiza-
tion, a leakage reduction strategy that appropriately
sizes caches to reduce the average and worst case leak-
age power without compromising performance. Over-
all, we show a 28% reduction in L3 leakage power con-
sumption versus a variation oblivious resizing strategy.

The remainder of this paper is organized as follows: Section
2 introduces the statistical models used in this paper. In
Section 3, we propose a cache organization which accounts
for process variation to improve leakage management. Ex-
perimental methodology and evaluation of way prioritiza-
tion follow in Sections 4 and 5. Finally, we conclude with a
summary in Section 6.

2. MODELING PROCESS VARIATION

In this paper, we leverage existing stochastic techniques
common in the circuit design community to develop archi-
tectural models for on-chip caches. Our approach, depicted
in Figure 1, uses two phases. In the first, we construct a
statistical model for a cache based on organizational param-
eters such as capacity and block size, as well as physical
parameters such as geometric position on chip and overall
die size. For a fixed set of manufacturing quality parameters,
this model captures the local leakage variation within differ-
ent regions of the cache and the total cache leakage variation
across dies. In the second phase, we conduct Monte Carlo
analysis by generating multiple random samples which have
the statistical properties described by our model. While
Monte Carlo simulation is not as elegant as some recently
proposed analytic strategies for computing total leakage [6,
14], our methodology experiments allow us to examine sev-
eral spatial aspects of the problem that the analytic tech-
niques do not support.

Chip Geomet
(Areg, Floor Plgn)

\ SRAM Cell Leakage

Cache Organization _ | correlation Monte
(CapBalgl(tX(,SAing)ouatlvn Model Analysis | | eakage Statistics
(Die-die variation,
within—die correlation

Correlation
Structure

Variation Parameters
(Die—die variation,
within—die correlation)

Figure 1: Leakage variation modeling approach used
in this work.

2.1 Leakage Mode for An Individual SRAM
Cell

A six-transistor (6-T) SRAM cell serves as the basic con-
struction block of a standard cache design. We develop a
6-T leakage model as the basis of our static power analysis.
In current CMOS technologies, leakage current is composed
of three major sources: subthreshold leakage, gate leakage
and substrate leakage. SPICE simulation with PTM [5]
32nm technology predictive model card identifies subthresh-
old leakage as the dominant source for near future technolo-
gies. In the rest of this paper, we focus on subthreshold
leakage, but the methodology is readily extendable to other
types of leakage.

The basis of a 6-T cell is a pair of cross-coupled inverters.
Subthreshold leakage occurs on a PMOS transistor and an
NMOS transistor from each inverter regardless of the value
stored in the cell. As shown by Rao et al., gate length
variation plays a dominant role in subthreshold leakage [14].
In this work, we focus on the leakage current deviations
caused by gate length variation.

Rao et al. took the following empirical equation to model
the subthreshold leakage current of a single transistor with
respect to the transistor gate length [14]:

[= ple(p2L+p3L2) (1)
We extend the usage of the above equation to a SRAM cell.
First we create a 6-T SPICE model, then we collect its leak-
age current during a series of simulations where we sweep
transistor gate lengths over the +/ — 10% range of their

nominal values. We then apply curve fitting to identify the
constants. In our simulations, we assume a perfect correla-
tion between gate lengths in an individual SRAM cell due
to their proximity. These are common assumptions found
in the literature [1, 14].

fitting curve

o 51 SPICE simulation result
s \
(]
g 4r
g
©
K] N
° 3 A\
8 \
©
E 2+ \
(=] ,
< AN
N \\
\\

A

29 30 31 32 33 34 35 36
gate length(nm)

Figure 2: SPICE simulation and Curve fitting re-
sults.

Figure 2 shows the comparison between the leakage value
obtained from SPICE simulation and the fitting curve. The
fit matches the simulation results accurately over a wide
range.

The fabricated gate length is the sum of nominal value
and the variation:

Ltotal = Lnominal + Lintradie,variation + Linterdie,variatio(n)
2

Intra-die variation expresses the difference in gate length
from a transistor to another transistor on a single die, while
inter-die variation refers to the die-to-die variation. We
model both variations as normally distributed random vari-
ables Linterdie,’uariationand L'Lnt'ru.die,’uu'riation» In the fOHOW'
ing section, we discuss the gate length correlation patterns
which form the basis for the variation models.

2.2 Spatial Correlation Between SRAM Cells

Experimental results from physical measurements in [10]
show that strong spatial correlation exists on intra-die gate
length variations. For two identical transistors, the correla-
tion factor of their gate length drops almost linearly as the
distance between the two devices increases. The correlation
nears zero as the separation approaches half the width of
the die. This spatial correlation is also independent of chip
size if one chip is printed per field. The consequence is that
there is physical-spatial locality for leakage in regular array
structures such as caches.

To model the spatial correlation in a die, we use the hi-
erarchical correlation modeling method introduced in [1] to
capture within-die variation. Figure 3(a) illustrates how the
hierarchy corresponds to physical spacing for a small exam-
ple. At the top level, we generate a random variable which
is an additive term present in the gate length of all devices.
We recursively divide the area into quadrants and generate
random additive terms for each quadrant. The effective gate
length for specific device can be found by adding the random
variables in its hierarchy to the nominal gate length. In our
experiments, we choose a grid with an area of 32 6-T cells as

200 250

(a) Hierarchal correlation (b) Correlated leakage variation
matrix

Figure 3: Construction of correlation models used
in this work and resulting leakage variation for two
samples.

the terminal size and end the recursion there. Consequently,
for a 25% chip area 16MB data array, we have a total of 12
levels and 4,194,304 atomic macro cells over the cache data
array. By scaling the additive terms as the grid size de-
creases, we can match the spatial correlation presented in
[10].

Figure 3(b) shows an example of how severe the leakage
variation can be in cache structures. The same batch of
simulation runs also featured a maximum 20X cache leak-
age variation from die-to-die. The implication is that it may
no longer be wise to treat two chips, two processor cores on
the same chip, or even two sub-arrays in the same cache
identically. It is important to recognize the physical differ-
ences rooted in process variation. Additional power savings
can be gained if we can find ways to manage a processor on
a granularity fine enough to isolate spatial variations.

3. PROCESS VARIATION AWARE CACHE
SIZING

Because caches normally occupy a large portion of on-
chip area, they are a major target for static power control.
The regularity of caches provide a large design space and
flexibility for cache structure design. In this section, we
propose a cache design with leakage variation awareness.

3.1 Enabling Techniques

Previous work on power aware processor design has exam-
ined several methods for reducing both dynamic and static
power for caches [2, 11, 13, 9]. Our approach extends two
widely known techniques, which we briefly summarize:

e Selective Cache Ways [2] - In an n-way set associa-
tive cache, one or more ways (regular sub-arrays) can
be disabled, effectively reducing both the associativity
and the overall size of the cache. Power saving modes
can then be applied to decoders, precharge structures,
sense amplifiers, and SRAM cells in the disabled ways.

e Gated VDD [13] - Portions of logic or memory can
be selectively enabled or disabled by placing a con-
trolling transistor on conductive paths to VDD/VSS.
Leakage current can be effectively eliminated in SRAM
cells via this technique.

We use cache ways as the granularity at which to apply
VDD gating. With these two technologies, caches can be
effectively sized to meet workload demands.

3.2 Way Prioritization

Conventional cache sizing strategies do not differentiate
cache ways, despite the fact that some portions of the cache
will be leakier than others. This egalitarian view of the cache
may not achieve good energy savings if one of the enabled
ways happens to have a high overall leakage current. Ideally,
we wish to only use cache ways that have energy costs which
are commensurate with the performance benefit from having
increased cache size.

We propose way prioritization as a technique to enable the
appropriate number of cache ways and select which subset of
the cache array to make active. Way prioritization achieves
good overall energy savings for a given performance level by
accounting for the effects of within-die and die-to-die vari-
ation. Just as in the standard selective ways approach, the
cache needs to be appropriately sized for a given workload.
Furthermore, way prioritization can be applied in concert
with circuit-level leakage and variation aware design tech-
niques such as adaptive body-biasing [16] and multiple v,
assignment to maximize leakage savings. In this section, we
focus on the mechanisms that allow us to isolate and priori-
tize ways. We discuss tradeoffs in sizing policies in the sub-
sequent section. Under way prioritization the SRAM cells
belonging to the same way are organized into a sub-array
on the chip. In our case, this has the additional benefit of
taking advantage of the spatial leakage correlation.

The key hardware difference between a standard selec-
tive cache ways implementation and a way prioritized one
is a set of hardware registers which identify the leaky cache
ways and make cache sizing effective. Figure 4 depicts the
hardware differentiation and highlights the PRIORITY and
DEGREE registers. The PRIORITY register consists of n en-
tries of logan bit size for an n-way set associative cache.
The entries in the PRIORITY register correspond to physical
ways sorted by descending leakage power. The DEGREE reg-
ister supplements this information by tracking the absolute
leakage of the corresponding physical way. When the cache
is being resized for a particular workload, these registers can
be queried to determine how many ways should be enabled
and which specific ways should be enabled.

Data Array
address:
‘ tag ‘ index ‘ (B))f/f!:et Enabled Disabled Disabled Enableq
@
— —>
Tag Array Decode v v v v
» Data Select Logic

Data
Priority Register
-<—— High Low —
[ilz] o]+
‘15‘ 15‘ 11‘ 9..... 1‘

Figure 4:
cache ways

Hardware organization for prioritized

The measurements needed to populate the leakage regis-
ters can be collected off-line during the manufacturing test
phase. Individual cache ways can be independently enabled
as part of a built in self-test (BIST) sequence while the rest

of the processor is left idle. The leakage current for each way
can be calculated from ammeter readings of total chip cur-
rent draw. Collected data can be quantized, physical ways
can be sorted by their leakage power, and the resultant in-
formation can be kept in non-volatile near-chip storage. At
boot time, the PRIORITY and DEGREE registers can be con-
figured based on the previously determined values.

3.3 CacheSizing Policiesfor Individual Chips
and Workloads

Way prioritization allows the cache to be sized and con-
figured on a per workload and per chip basis. Given knowl-
edge of how application performance varies with increasing
total cache size, we can either chose a sizing which mini-
mizes power for a fixed performance level or we can tar-
get a more flexible power/performance optimization metric
(e.g. energy-delay product). We assume that static profil-
ing [2] or dynamic working set analysis [8] can identify how
performance scales with cache size. The remainder of this
discussion focuses on policies.

For a fixed performance level, for example 2% slowdown,
a working set profile provides an appropriate cache size, or
equivalently, k, the optimal number of active ways. Un-
der way prioritization, the cache can be resized by enabling
the last k physical ways held in the PRIORITY register and
disabling all other ways. Any dirty data held in a newly dis-
abled way is written back to the next level in the memory
hierarchy before VDD is finally gated. Because the physical
ways are pre-sorted by leakage, this cache configuration rep-
resents the organization which would produce the minimal
leakage power for that given performance level.

For optimizations which allow a variable amount of per-
formance degradation, we need to know the incremental en-
ergy cost of enabling each additional way. Different physical
chips may have different total leakage or different ratios of
leakage between ways. The DEGREE register tracks how much
leakage energy each additional way contributes. When re-
configuring the cache to minimize energy-delay, for exam-
ple, the optimal value can be found by iterating through
the PRIORITY and DEGREE registers. Initially, the core power
would be added to the leakage power for the least leaky
way and that sum would be multiplied by slowdown? for
the minimal cache size. For each additional way, the total
chip power increases, but the delay (obtained via profiling)
decreases. The minimal energy-delay product can be found
by repeating this process. If core power increases and delay
decreases monotonically with cache size, the search process
need not be exhaustive: an increase in energy-delay signals
that the optimal sizing has already been reached. In the
worst case, none of the ways are disabled, and a total of n
iterations are performed. Note that the pre-sorting of the
PRIORITY register means that we do not need to identify all
possible combinations of physical ways. Because this sizing
process is slightly more complicated than trying to meet a
fixed performance goal, it may be preferable to implement
it in microcode or the operating system.

In addition to manufacturing variations in gate length,
runtime parameters like temperature can also have an influ-
ence on leakage power. Our work focuses primarily on large
L3 caches which typically have lower peak temperatures, so
we believe that the thermal contribution to variation will be
relatively small. However, on-chip thermal sensors could be
combined with structures like the DEGREE register to adjust
power estimates for runtime conditions. We plan to investi-
gate this approach in future work.

4. EXPERIMENTAL METHODOLOGY
4.1 Processor Model

Our experiments model a high-performance server class
processor comparable to the Intel Montecito [12]. The pro-
cessor features two symmetric cores, each of which has pri-
vate L1, L2, and L3 caches. Table 1 summarizes the pipeline
configuration and cache organization for our processor. The
processor executes the Alpha ISA.

~ !
a single way

Core 1 | Cofe2
! ! 16M

L3 | | 16 Way
Cache | | L3 Cache

Figure 5: The base floorplan for performance simu-
lation

We target this design for a future 32nm technology pro-
cess where leakage and process variation will play prominent
roles. We devise the floorplan for this design by assuming
that the footprint for a single processor core is equivalent to
that of a single core for Montecito in a 90nm process. We
then scale the core to 32nm and assume a base floorplan for
our experiments as presented in Figure 5. The cache struc-
ture studied is a re-sizable 16M L3 Cache which occupies
25% of the total chip area.

The processor is modeled via the M5 Full System simulator
[3] which includes detailed models of pipelines, caches, buses,
and off-chip memory. The simulator runs a slightly modified
version of the 1inux-2.6.8.1 kernel and captures all of the
performance effects of the multiprogrammed workloads used
in this study.

Workload
Single Core Name | Apps

Clock 2.5 GHz int.2.1 | bzip2, crafty
Fetch/Decode | 4 inst int.2.2 | eon, twolf
Issue 6 inst, out-of-order fp.2.1 ammp, art
IQ/LSQ/ROB | 32/40/80 entries fp.2.2 equake, mesa
Func Units 4 IntALU, 1 IntMul || mix2.1 | ammp, bzip2

1 FPALU, 1 FPMul || mix2.2 | art, crafty

2 MemPorts mix2.3 | equake, eon

L1 I-Cache 16KB 4-w 1 cyc mix2.4 | mesa, twolf
L1 D-Cache 16KB 4-w 2 cyc

L2 I-Cache 1MB 8-w 7 cyc

L2 D-Cache 256KB 4-w 6 cyc

L3 Cache 16MB 16-w 20 cyc

Table 1: Processor parameters for a single core and
workloads used in this study.

4.2 Workloads

To evaluate the efficacy of our leakage management ap-
proach, we use several multiprogrammed workloads which
showcase a variety of memory usage patterns. Individual
applications are taken from the SPEC CPU2000 benchmark
suite. To reduce the total number of simulations, we iden-
tify a subset of SPEC applications which exhibit a range
of performance characteristics and then group them into
eight mix sets. Table 1 also shows the workload groupings
used in the experiments. The benchmarks were compiled

with gcc-4.0.1 for alpha-linux using -04 -ffast-math
-funroll-loops flags. All of our workloads run on a sin-
gle core of our dual core design. We report performance
and power savings with respect to a single core.

5. RESULTS
5.1 Leakage Variation in Cache Structures

We used our Monte Carlo method to evaluate spatial leak-
age variation under several different cache configurations.
Each simulation point consists of 10,000 samples. In all
cases we assumed normal distribution on gate length intra-
die variation and the 30 value of the distribution was set to
9.4% of the nominal value.

100 b 16M Cache 25% Chip area —+—
8M Cache 13% Chip area
T 4M Cache 6% Chip area K-
=

L T 256K Cache .6% Chip area
R
it TR
10 = g \7‘\\\
& ¥
= S

Average Max leakage over Min leakage

X
e
;

1

. . . . ol <
j -

64 256 1K 4K 16K 64K 256K M aMm

Cache Way Size(Bytes)

Figure 6: Average max leakage over min leakage
with respect to way sizes.

Figure 6 shows the dramatic difference in cache leakage
for regions chosen from different locations in the data array.
This log-log plot tracks the ratio of maximum to minimum
leakage power for cache regions of varying size. For each
region size, we first select square sub-arrays of the cache
which have maximum and minimum leakage, and then we
compute their ratio. We draw these curves for a wide range
of cache sizes. From Figure 6, we first see that the leakage
ratio decreases rapidly as the region size increases. This is
due to the fact that when the regions are small, there are
many distant sections to choose from, increasing the chance
that the regions do not have similar parameter sizes. As
the regions grow, both the maximum and minimum leakage
regions tend towards mean values, and the distance between
the regions decreases. The second trend is that increasing
cache sizes boost the max/min ratio. This is due to the fact
that larger caches have a larger population of 6-T cells and
hence longer “tails” on the distribution. We can extrapolate
the benefits of way prioritization if we consider cache ways
to be our regions. First, the savings are likely maximized on
very large caches. Second, greater associativity and hence a
larger number of small cache ways increase the potential for
power savings. In the remainder of this paper, we focus our
analysis on a large, highly associative cache (16-way 16M
L3).

Again employing our Monte Carlo approach, we create
10,000 random samples of the L.3 cache described in Section
4, assuming zero global inter-die variation. For each run, we

T T T T T T
'mean individual way leakage’ ——
‘leakage in simulation run 1’ -+
| "leakage in simulation run 2" -+
251 4| ‘leakage in simulation run 3" -+

15

normalized way leakage current

0.5

sorted way

Figure 7: Normalized mean leakage current from
most leaky to least leaky ways.

Inter-die Variation Normalized Way Leakage
30 Perc. of Nominal Value | Rank(Decreasing Leakage)
1 6 10 16

0% mean 2441170 | 1.43 | 1.00
stdev 0.55 | 0.29 | 0.23 | 0.18
2.8% | mean 2.59 | 1.80 | 1.50 | 1.05
stdev 1.10 | 0.67 | 0.54 | 0.37
5.6% | mean 275 [1.90 | 1.58 | 1.10
stdev 1.57 1 0.98 | 0.79 | 0.52
9.4% | mean 3.051209 [1.73 | 1.19
stdev 2.40 | 1.50 | 1.20 | 0.78

Table 2: The influence of inter-die variation on way
leakage current distribution.

sorted the cache ways by decreasing leakage current. Figure
7 shows the normalized mean leakage current for the ranked
cache ways and the standard deviation spread. We can see
that on average the leakiest way consumes 2.44 times more
static power than the least leaky way. Figure 7 also shows
way leakage current for several samples. Clearly, different
chips can have divergent leakage profiles for their ways.

Table 2 lists the normalized mean leakage currents and
standard deviation of the leakage currents calculated from
the simulation results of leakage-severity-sorted ways. This
time the 30 value of inter-die variation changes from 0%
to 9.4% and both the mean leakage and standard deviation
show an increase as the inter-die variation increases. The
increase for mean leakage is quite limited while the standard
deviation sees a significant jump. It indicates that we can
expect much more variance in way leakage profiles and a
better savings from way prioritization.

5.2 Energy Savingsof Variation Aware Sizing

Figure 8 shows the benefits of way prioritization as applied
to the L3 cache for multiprogrammed workloads. In these
experiments, we again assume zero inter-die variation and a
30 9.4% intra-die variation. All the benchmarks place small
to moderate pressure on the L3 Cache. We assume a static
cache sizing policy which chooses the maximum number of
ways to disable while not reducing performance by more
than 2%.

In Figure 8, the y-axis represents the static power con-
sumed by working ways as a percentage of the total static
power of the L3 Cache. Clearly, our method provides sat-
isfying power saving over standard selective ways (for both
the average and worst case). Prioritized ways consume an
average 28% and 48% less cache static power over the non-
variation aware mean and worst-case scenarios.

Mean-Unaware Bl Worst

B Prioritized

Leakage Power

Percentage of Total L3 Cache

int2.1 int2.2 fp2.1 fp2.2 mix2.1 mix2.2 mix2.3 mix2.4
Workload

Figure 8: Cache leakage energy of way prioritiza-
tion (prioritized) versus variation unaware selective
cache ways in average (mean-unaware) and patho-
logically bad (worst) cases.

Results based on the energy-delay metric are presented in
Figure 9. We assume that the cache static leakage power
comprises 20% of the total core power consumption and
that the dynamic power of the whole core is unchanged
when cache ways are closed. We normalize the results to
the full cache leakage power. In theory, the best energy-
delay product achievable is 0.8, when all ways are closed
and the performance does not suffer. The results in Figure
9 indicate we can achieve better energy-delay product than
mean-unaware case in which all ways are assumed to con-
sume the same amount of power and the worst-case scenario
in which the most leaky ways are chosen to stay on.

Mean-Unaware B Worst

0.9 B Prioritized

Energy—-Delay Product

int2.1 int2.2 fp2.1 fp2.2 mix2.1 mix2.2 mix2.3 mix2.4
Workload

Figure 9: Energy-Delay product of way prioriti-
zation (prioritized) versus variation unaware aver-
age (mean-unaware) and pathologically bad (worst)
cases.

A relevant feature not captured in the above figures is that
a single mean leakage current profile cannot represent actual
leakage profiles. In certain situations a variation oblivious
cache-sizing method could make a faulty decision in closing
ways. In addition to picking the wrong physical ways to
close, unaware sizing risks choosing the wrong number of
ways to close. By taking into account the individual leakage
profile of a chip, way prioritization always chooses the best
energy-delay sizing.

6. CONCLUSION

In future technologies, leakage power will comprise a sig-
nificant portion of the total chip power and the effects of
manufacturing variations will be pronounced. This paper is
among the first to examine the effects that parameter vari-
ation have on cache leakage. Our findings show that spatial

variation can have significant influence on the cache leakage
profile. In particular, equal areas of the cache may have
leakage factors that differ by more than an order of magni-
tude. We propose way prioritization, a cache organization
that considers the leakage profile of a chip and resizes the
cache by closing sub-arrays that have higher leakage factors.
The result is a substantial energy savings with little im-
pact on complexity or performance. Furthermore, because
way prioritization works at the microarchitectural level, it
is complementary to existing circuit-level leakage reduction
and variation tolerance schemes.

7. REFERENCES

[1] A. Agarwal, D. Blaauw, S. Sundareswaran, V. Zolotov,

M. Zhou, K. Gala, and R. Panda. Path-based statistical
timing analysis considering inter and intra-die correlations.
In Proc. of TAU, 2002.

[2] D. H. Albonesi. Selective cache ways: On-demand cache
resource allocation. In Proc. of the 32nd Annual
IEEE/ACM Int. Symp. on Microarchitecture, pages
248-259, Nov. 1999.

[3] N. L. Binkert, E. G. Hallnor, and S. K. Reinhardt.
Network-oriented full-system simulation using m5. In 6th
Workshop on Computer Architecture Evaluation using
Commercial Workloads (CAECW), Feb. 2003.

[4] S. Borkar et al. Parameter variations and impact on circuits
and microarchitecture. In Proc. of the 40th DAC, 2003.

[5] Y. Cao, D. S. T. Sato, M. Orshansky, and C. Hu. New
paradigm of predictive mosfet and interconnect modeling
for early circuit design. In Proc. of CICC, pages 201-204,
2000. http://www.eas.asu.edu/ptm.

[6] H. Chang and S. Sapatnekar. Full-chip analysis of leakage
power under process variations - including spatial
correlations. In Proceedings of the ACM/IEEE Design
Automation Conference, 2005.

[7] A. Devgan and S. Nassif. Power variability and its impact
on design. In Proceedings of the 18th International
Conference on VLSI Design (VLSID-05), 2005.

(8] A. Dhodapkar and J. E. Smith. Managing
multi-configuration hardware via dynamic working set
analysis. In Proc. of 29th Int. Symp. on Computer
Architecture (ISCA-29), May 2002.

[9] K. Flautner, N. Kim, S. Martin, D. Blaauw, and T. Mudge.
Drowsy caches: Simple techniques for reducing leakage
power. In Proceedings of 29th International Symposium on
Computer Architecture (ISCA-29), May 2002.

[10] P. Friedberg, Y. Cao, J. Cain, R. Wang, J. Rabaey, and
C. Spanos. Modeling within-die spatial correlation effects
for process-design co-optimization. In Proc. of the 6th Int.
Symp. on Quality Electronic Design, 2005.

[11] S. Kaxiras, Z. Hu, and M. Martonosi. Cache decay:
Exploiting generational behavior to reduce cache leakage
power. In Proceedings of the 28th International Symposium
on Computer Architecture (ISCA-28), June 2001.

[12] C. McNairy and R. Bhatia. Montecito: A dual-core
dual-thread itanium processor. IEEE Micro, 25:10-20, Apr.
2005.

[13] M. Powell, S.-H. Yang, B. Falsafi, K. Roy, and
T. Vijaykumar. Gated-Vdd: A circuit technique to reduce
leakage in deep-submicron cache memories. In ACM/IEEE
ISLPED, 2000.

[14] D. B. Rajeev Rao, Ashish Srivastava and D. Sylvester.
Statistical analysis of subthreshold leakage current for vlsi
circuits. IEEE Trans. on VLSI Systems, 12:131-139, Feb.
2004.

[15] Semiconductor Industry Association. International
Technology Roadmap for Semiconductors, 2003.
http://public.itrs.net/Files/2003ITRS/Home.htm.

[16] J. W. Tschanz, J. T. Kao, S. G. Narendra, R. Nair, D. A.
Antoniadis, Fellow, A. P. Chandrakasan, and V. De.
Adaptive body bias for reducing impacts of die-to-die and
within-die parameter variations on microprocessor
frequency and leakage. IEEE JOURNAL OF
SOLID-STATE CIRCUITS, 37:1396-1402, Nov. 2002.

