
Time Squeezing for Tiny Devices

Yuanbo Fan∗† , Simone Campanoni∗‡, Russ Joseph‡

†NVIDIA ‡Northwestern University

ABSTRACT
Dynamic timing slack has emerged as a compelling opportunity for

eliminating inefficiency in ultra-low power embedded systems. This
slack arises when all the signals have propagated through logic paths
well in advance of the clock signal. When it is properly identified, the
system can exploit this unused cycle time for energy savings. In this
paper, we describe compiler and architecture co-design that opens
new opportunities for timing slack that are otherwise impossible.
Through cross-layer optimization, we introduce novel mechanisms
in the hardware and in the compiler that work together to improve
the benefit of circuit-level timing speculation by effectively squeez-
ing time during execution. This approach is particularly well-suited
to tiny embedded devices. Our evaluation on a gate-level model
of a complete processor shows that our co-design saves (on aver-
age) 40.5% of the original energy consumption (additional 16.5%
compared to the existing clock scheduling technique) across 13
workloads while retaining transparency to developers.

CCS CONCEPTS
• Software and its engineering → Compilers; • Computer sys-
tems organization → Embedded systems.

KEYWORDS
code generation, timing speculation, timing slack

ACM Reference Format:
Yuanbo Fan∗† , Simone Campanoni∗‡, Russ Joseph‡. 2019. Time Squeezing
for Tiny Devices. In The 46th Annual International Symposium on Computer
Architecture (ISCA ’19), June 22–26, 2019, Phoenix, AZ, USA. ACM, New
York, NY, USA, 14 pages. https://doi.org/10.1145/3307650.3322268

1 INTRODUCTION
The next generation of tiny devices including smart city sensors,
nano-drones, wearable devices, implantable electronics, and wire-
less sensor nodes demand reasonable performance with ultra-low
energy profiles [4, 6, 14, 17, 18, 48, 50]. As we putter towards the
∗Yuanbo Fan and Simone Campanoni contributed equally to the research presented in
this paper.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ISCA ’19, June 22–26, 2019, Phoenix, AZ, USA
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6669-4/19/06. . . $15.00
https://doi.org/10.1145/3307650.3322268

end of Moore’s Law ([44, 46]), technology scaling challenges and
exhaustion of circuit-level design tricks will make these goals in-
creasingly difficult to achieve ([2, 3]) for emerging low cost Internet
of Things (IoT) applications. While this era has ushered in novel op-
portunities for accelerators ([33]), tiny devices will likely continue to
rely on low-power general purpose processors for most of their com-
pute needs because of their highly constraint engineering costs and
low time-to-market [39]. Unfortunately, IoT systems require higher
energy efficiency from low-power general purpose processors to
become ubiquitous [29]. But, as opposed to costly high-performance
systems which feature a wide variety of underutilized resources
and heavy energy costs associated with the memory system ([32]),
increasing energy efficiency in already lean low-power processors
remains important and difficult. In other words, there is no easy path
in front of us.

Dynamic timing slack (DTS) has emerged as a promising target
for energy optimization in tiny devices. DTS refers to the portion of
the clock period that remains after all the signals have propagated
through logic paths (Figure 1 highlights this concept). When data
waits on the latch/flip-flop inputs well in advance of the clock edge,
this interval can be viewed as wasted time. State-of-the-art low-
power architectures [16] are able to detect the presence of this slack
within a single clock cycle and they scale down the supply voltage to
reclaim energy. These approaches are already able to save significant
energy (between 10% and 20% of the processor power, besides PVT
margin reduction), but they are all limited by having a compiler
that generates code without being aware of DTS. We argue that
a DTS-aware code generation is currently the missing piece. This
paper shows that relatively simple changes to an industrial-strength
compiler tailored to a DTS-optimized low-power processor almost
doubles the energy savings of such processor (from 24% energy
savings gained by a DTS-unaware code generation to 40.5%).

DTS (and therefore the energy savings enabled by it) in IoT pro-
cessors are mostly limited by the critical paths in the execution units

Figure 1: Effects of code transformation and clock scheduling
on clock cycle.

https://doi.org/10.1145/3307650.3322268
https://doi.org/10.1145/3307650.3322268

ISCA ’19, June 22–26, 2019, Phoenix, AZ, USA Fan and Campanoni, et al.

– the most prominent being the carry chain within ALUs and effec-
tive address generators. From the carry chain, these paths typically
extend to condition generation logic and register bypass networks.
Prior work has identified timing slack within the execution units of
server chips [35] as well as ultra-low power microcontrollers [7]]
and we have witnessed similar behavior on our own testbed. Our
observation that motivated us to design, build, and test the work
described in this paper is that most carry chain stress is triggered by
code patterns that a compiler has full control over. In more detail,
most carry chains are triggered by subtracting small values from
another one. Often, these subtractions relate to operations that a
compiler has full control over, like effective address computation.
For example, computing the effective address of a memory location
by subtracting a small offset value (e.g., 4) from a large value like
a stack base address (e.g., 0xFFFFFF40) forces the hardware both
to invert the former and to add one due to two’s complement rep-
resentation. Then, the hardware performs the add operation using
the so-generated negative value (e.g., 0xFFFFFF40 + (-4)). The
hardware is forced to perform the inversion because of the two’s
complement representation used by all commodity processors. The
inversion of a small value propagates from the carry-in bit the en-
tire way through the fast adder structures and beyond. This limits
DTS and, therefore, blocks the energy savings that a DTS-optimized
low-power processor could otherwise obtain. Notice that the same
task can be accomplished by adding a small offset (e.g., 4) from a
different base address (e.g., FFFFFF3C), which leads to much less
(often none) carry chain stress that significantly increases its DTS.
Finally, while this seems a simple change, it requires significant
modifications to the code generator of a compiler to compute the
effective memory addresses following this new scheme. This also
necessitates non-trivial changes to the memory data layout as well.
Note that this is only one example of the DTS-aware code generation
that our compiler performs.

In this paper, we introduce co-design which permits cross-layer
optimization of the compiler and architecture to exploit DTS in
novel ways on tiny devices. The overarching innovation is the recog-
nition that program data fuels many of the opportunities for timing
slack and that by elevating timing models into the compiler, we
can create additional DTS by squeezing operations at a sub-cycle
resolution and enhancing the architecture to benefit from these op-
portunities. Previous work has viewed slack without regard to the
way that the presence or absence of certain types of data values
or placement of data impact timing slack. We demonstrate that a
compiler can leverage its ability to manipulate both code generation
and data layout to create new types of timing slack. This approach is
well-suited to tiny devices where there are limited opportunities for
additional energy savings and the designer has significant control of
the system stack allowing for aggressive cross-layer optimizations.
We demonstrate our approach by fully implementing it in a modern
industrial-strength compiler and evaluating it on a gate-level model
of a ultra low-power processor, which has been validated against a
fabricated chip.

This paper makes the following contributions: (i) We show that
current DTS of state-of-the-art low-power processors is limited by
code patterns that compilers have full control of (ii) We designed
the first DTS-aware compiler which considers the impact that data
has on timing slack. The compiler uses this knowledge to temporally

Figure 2: (a) Critical path stressing instruction requires clock
stretch. (b) Compiler can generate code which avoids critical
path. (c) System-wide energy savings enabled by VDD scaling
at the same performance.

squeeze operations to expose an additional amount of dynamic tim-
ing slack to the hardware. (iii) We demonstrate the great potential of
coupling DTS-aware compilers and architecture to save significant
energy on tiny devices by targeting dynamic timing slack on at a fine
temporal granularity. (iv) We depict simple but powerful hardware
support for effective address calculation which allows the system to
bypass an otherwise problematic critical path.

2 BACKGROUND AND MOTIVATION
Dynamic timing slack (DTS) refers to the underutilized fraction of
the clock cycle during which data has already propagated through
all logic paths and waits to be latched on the subsequent clock
edge. Figure 1a visually shows how timing slack emerges for a
cmp instruction. When the result produced by the cmp instruction is
available well before the clock edge, there is dynamic timing slack
(presuming that none of the other critical paths are exercised).

Like many other types of slack found in the system, these idle
intervals can be viewed as an opportunity. Persistent and identifiable
timing slack could be traded for either performance improvement
by increasing the clock frequency or energy savings by lowering the
supply voltage. Timing speculative architectures like Razor, EVAL,
or CLK-Sched ([15, 16, 42]) are built to function at marginal oper-
ating conditions and can directly exploit existing DTS to improve
energy-efficiency without any additional design effort. These sys-
tems rely on error detection and correction logic to identify errors
and guarantee architecturally correct results.

This work is motivated by our observation that there are deep
connections between the DTS and the workload, which are not
understood or controlled by today’s compilers. For example, the
DTS of the cmp instruction of Figure 1a is sensitive to the operand
order. A different order can lead to higher DTS (and therefore higher
energy savings) as shown in Figure 1b. This is because the hardware
inverts the second operand of a cmp to perform the comparison. The
latency of such inversion depends on the value stored in the second
operand. Today’s compilers ignore this (and other) aspects of the
code being generated and, therefore, they often generate code with
high circuit-level latencies, which limits the energy saved by the
underlying DTS-optimized architecture. On the other hand, a DTS-
aware compiler can decide the order of the operands based on both
the understanding of the possible value ranges of the operands of an
instruction and their related DTS. This is an example that motivates
the need for the code generation of a compiler to become DTS-aware.
This is the topic of this paper.

Time Squeezing for Tiny Devices ISCA ’19, June 22–26, 2019, Phoenix, AZ, USA

2.1 Timing Slack in Arithmetic Units
All of the timing in CMOS logic paths, including those responsible
for producing DTS, are heavily influenced by data placed on the
inputs. In the case of a processor pipeline, the quantity of timing
slack is a function of the circuit structure and the instructions (and
their data) currently executing. Via logical structures in the circuit,
input data patterns will activate gate switching on various portions
of the fanout tree, causing different timing paths to appear. The exact
data sequencing that causes the DTS to be present depends on the
circuit-level implementation of the logic.

For DTS on tiny devices, the adder carry chain will likely play an
out-sized role due to its status as a critical path structure. Previous
empirical studies on commercially available server-class processors
has shown timing slack in compute units [35]. Addition is a basic
atomic operation which is required to finish within one cycle to main-
tain good performance for many operations. There are many design
consideration in construction of a fast carry look ahead adder [36],
and length of the carry chain figures heavily in the performance of
the unit. Some recent adder designs have even relied on speculative
carry-in values to hide carry chain latency [20, 31, 47].

Beyond its prominence as a circuit-level timing critical operation,
adder hardware is heavily utilized because the addition primitive
is prominent in most instruction sets. Addition is used in various
arithmetic computations, branch target address calculation, effective
address generation for memory operations, and value comparison.
The combination of timing criticality and heavy utilization make
addition a natural target for optimization. While commercial designs
typically have large numbers of critical paths, it is important to note
that path activity also plays a large role in the availability of dynamic
timing slack. If many of these other critical paths are connected to
edge cases or infrequent events, they would have low activity and
hence would not set a lower bound on the available slack.

Each of these prominent adder use cases place different collec-
tions of input patterns on the adder hardware, leading to different
degrees of stress on critical paths and distinct types of DTS. With-
out loss of generality, adder inputs can be viewed as two unsigned
integers and a carry in signal. Via two’s complement representa-
tion, signed values and subtraction/comparison are also supported.
Due to gate-level switching, various sequences of inputs would lead
to different amounts of activity on the carry chain. For instance, a
stream of small magnitude values would neither generate or propa-
gate signals that would stress the long carry chain. This means that
DTS may be present when small magnitude values are added. On
the other hand, a mixture of large and small magnitude values would
have a much greater chance of stressing the carry chain. This is
particularly relevant in the case of subtraction and comparison with
small magnitude values. With two’s complement representation, a
likely outcome is that large and small magnitude values appear on
the adder and consequently stress the carry chain. As a result, these
types of operations do not create significant timing slack.

2.2 Prior Work
Recent work has examined ways to exploit dynamic timing slack
through a number of means that use a combination of hardware
mechanisms and varying amounts of compiler assistance as sum-
marized in Table 1. Compiler support for timing speculation was

Approach Hoa
ng

[24
]

Sato
ri

[43
]

Che
rup

all
i [

7]

Dyn
OR

[9]

CLK-S
ch

ed
[16

]

Tim
eS

qu
ee

ze
r

Speculative
✓ ✓ ✗ ✗ ✓ ✓

Fine Grained
✗ ✗ ✗ ✓ ✓ ✓

Clock Adjustment
Code Transformation

✓ ✓ ✗ ✗ ✗ ✓

Data Aware
✗ ✗ ✗ ✗ ✗ ✓

Data Placement
✗ ✗ ✗ ✗ ✗ ✓

Table 1: Comparing ways of exploiting dynamic timing slack.

examined in early work by Hoang [24] who studied opcode sub-
stitutions to reduce activity on critical paths and Satori [43] who
evaluated several standard compiler optimizations to understand
their impact on timing speculation. More recently, researchers have
identified ways to exploit timing slack in a non-speculative man-
ner [7, 9]. The introduction of fine-grained clock scaling allows
the system to recover more DTS [9, 16] by adapting the frequency
to meet the computational needs of individual instructions. The
CLK-SCHED approach proposed in [16] takes this to an extreme
by allowing the compiler to embed clock control directives within
binaries on systems that support timing speculation. These directives
control a fast PLL which adapts the clock phase to take advantage of
timing slack at a sub-cycle resolution. The presence of speculation
allows the compiler to aggressively scale the clock frequencies to
achieve larger DTS benefits. All of these approaches however ignore
the role that data values themselves play on DTS. In addition, they
do not address the ways in which data placement impacts the DTS
in the system. The TimeSqueezer Compiler presented in this paper
identifies this as an opportunity and applies data aware compilation
and data placement for timing speculative IoT processors.

2.3 Compiler Influence
Attention to the types of data flowing through the pipeline helps to
identify situations where timing slack may or may not be present.
From a programmer’s point of view, subtraction and comparison
operations seem fairly benign, and it seems unreasonable to expect a
developer to re-factor code to avoid these types of instructions. At
the same time, much of the function of the compiler is structuring
code and re-organizing the program to maximize the capabilities of
the underlying hardware. Given knowledge of what are critical path
stressing operations, the compiler is well-equipped to generate code
that creates more dynamic timing slack by substituting code that
places less stress on critical paths for example. Together Figure 1a
and 1b show an example of how differences in code can impact tim-
ing slack. Figure 2 shows how code transformations can drastically
improve the energy profile of a system – additional DTS allows the
system to aggressively scale the voltage to achieve greater energy
savings. More broadly speaking, co-designing the compiler with
the architecture enables new optimizations that expand possibilities
for generating and managing timing slack. The key component is

ISCA ’19, June 22–26, 2019, Phoenix, AZ, USA Fan and Campanoni, et al.

Figure 3: Overview of the Time Squeezer system.

to understand the impact that data has on the timing paths. This
has been a relatively overlooked in previous work where the focus
has been on opcodes associated with timing critical operations. In
this paper, we focus on the use of adder logic for two extremely
common operations: effective address calculation and integer value
comparison.

3 THE TIME SQUEEZER SOLUTION
The Time Squeezer system is the first compiler-architecture co-
design able to coordinate the generation of code and placement of
data to reduce the DTS of the processor pipeline to save energy. To
this end, the compiler performs code generation and memory align-
ment minimizing the resulting DTS. The underlying architecture
assumes such DTS-aware code to aggressively adjust the clock cycle
to the dynamic needs of the workload. This leads to an energy effi-
cient system without compromising performance or output quality
as well as without the need for developer assistance.
Adjusting the clock cycle The Time Squeezer compiler generates
instructions to drive the clock cycle of the underlying architecture
as in [16]. The timing speculative hardware automatically detects
and recovers from potential run-time errors guaranteeing correctness
independently to the clock cycles requested by the code. This clock
management scheme has been proposed by previous work and can
be considered mature [10, 26]. The work described in this paper uses
this scheme as an enabler for our co-design.
Code and DTS: a tight relation More timing slack means more
opportunities to lower supply voltage. Due to the strong connection
between instruction sequences and circuit-level timing slack, the
code that is more likely to produce more timing slack is regarded as
a "good" pattern. To specific hardwares, there may be various "good"
or "bad" patterns. Our compiler focuses on two of the most common
patterns: memory address computation and comparing values.

With a compiler and architecture co-design, the compiler gener-
ates code being aware of its circuit-level criticality, while the archi-
tecture assumes that the "good" patterns are common cases. This
allows a more efficient overall design, compared to any software-
only or hardware-only techniques.

4 DTS-AWARE COMPILER
Adders are used for many purposes in today’s systems and are the
workhorses of ALU and effective address generation units. Their

most straightforward use is adding values stored in general-purpose
registers. However, they are also used as building blocks for two
other purposes: computing addresses needed by memory instructions
(both stack and heap) and value comparison. These last two use
cases are fundamentally different than the first one: one operand
is typically much larger than the second one. This leads to have
different DTSs for different operand orders and/or operand signs.
Current compilers ignore this relation and, therefore, they generate
code with sub-optimal DTS. We need a DTS-aware code generation
design, which we have embedded within our compiler. The DTS-
awareness of our compiler enables the underlying architecture to
shrink the dynamic timing slack. To the best of our knowledge, we
are the first ones to have recognized these opportunities and the first
ones to have empirically evaluated their benefits. The rest of this
section describes the DTS-aware components of our compiler.

4.1 DTS-Aware Stack Accesses
Stack accesses are some of the most common operations in pro-
grams, and current compilers generate the code for them without
considering their DTS. The effective address computation associated
with stack accesses is necessary and critical. Due to a limited number
of registers, a compiler has to map most program variables to stack
locations (this is called spilling and it is performed during register al-
location inside a compiler back-end). This leads to frequent load and
store operations from and to the stack at run time. The frequent use
of stack memory requires their accesses to have a fast response time
making it sensitive to timing constraints. After describing the code
that current compilers generate to access the stack and its memory
layout, we describe our DTS-aware design.
Conventional compilers The stack memory grows downwards from
high memory addresses to low ones on commodity processors (e.g.,
Intel, ARM, IBM chips), as shown in Figure 4. At compile time, a
compiler layouts the allocation frame of a function f reserving a
stack location for each variable of f that could not be mapped to a
processor register by the compiler register allocator (e.g., graph col-
oring). For example, Figure 4 shows the allocation frame of the hot
function susan_principle of the susan benchmark. This function
includes two variables, x_size and y_size, that are spilled to the
stack. The code generated for f includes load and store instructions
for accessing these spilled variables. The effective address of these

Time Squeezing for Tiny Devices ISCA ’19, June 22–26, 2019, Phoenix, AZ, USA

Figure 4: Stack layout of a function in susan

memory instructions is computed by adding a base register and an
offset.

The code generated by DTS-unaware compilers (e.g., clang, gcc,
icc) compute effective addresses of stack locations by subtracting a
small offset from a large unsigned number. Conventional compilers
use the address of the base of the allocation frame, called frame
pointer (fp), of a function f as base register. Because the stack grows
downwards, this base register includes a high unsigned number and
the offset used to compute the effective address is negative. This
operation is commonly implemented using a fast adder architecture
and two’s complement coding.
Opportunity The effective address of stack accesses are computed
by subtracting a small offset from a large unsigned number using
two’s complement coding. The subtraction operation in an adder,
therefore, requires to invert each bit of an offset and set the carry in
bit to 1. This computation in adders exercises timing-critical paths,
which leads to long delays. Such long-delay computation is not a
problem for conventional architectures because such latencies are
still lower than a single clock cycle. Therefore, this long-delay com-
putation does not impact the overall performance of conventional
architectures.

Our proposed architecture dynamically adjusts the clock cycle
from its nominal period to remove the inefficiencies generated by the
dynamic timing slack (DTS). This ability enables a system to reduce
the DTS, but it also makes the long-delay pattern of effective address
computations of stack accesses an important roadblock for additional
energy efficiency: long-delay computations impact the performance
for our architecture even if they are less than the nominal clock cycle.
The roadblock is created by inverting an address offset required by
the related subtraction operation. Removing this operation eliminates
this roadblock and enables the underlying architecture to save more
energy by further reducing the DTS.

Removing the need for inverting an offset can be obtained by
observing that the effective address of a stack location can be ac-
cessed by adding a small offset to the stack pointer (sp), rather than
subtracting an offset from the fp. For example, the spilled variable
x_size of the function susan_principle of Figure 4 can be ac-
cessed by adding 80 to sp rather than subtracting 32 from the fp.
Accessing stack locations by using the sp avoids the inversion of
the offset and, therefore, the related long carry chain. This reduces

Figure 5: Code transformation for a hot function in susan.

significantly the latency of accessing stack locations, as shown in
Figure 6a vs. 6b. This is what the code generated by our compiler
performs. While this opportunity enables our system to gain sig-
nificant energy benefits, it comes with its challenges related to the
dynamic stack allocation that shifts the sp.
The Time Squeezer compiler The code generated by our compiler
computes the effective addresses of stack locations by adding a
small offset to the sp. Figure 5 compares the code generated by the
DTS-unaware clang compiler and the one our DTS-aware compiler
generates for the function susan_principle of Figure 4. This figure
shows that instead of computing the effective address by removing
-32 from the register fp, our compiler generates the code that adds
80 to sp.

Changing the computation of effective addresses of stack vari-
ables reduces their latencies. This is shown in Figure 6. This figure
shows that by adding a small number to a large one rather than
subtracting it blocks the otherwise long carry chain. This reduces
significantly the latency of this operation creating more room for the
underlying architecture to shrink the DTS.

Most program functions allow our compiler to do a simple trans-
formation like the one described above. However, some functions
dynamically expand their allocation frames by using the alloca C
library function. For these functions, the sp changes and, therefore,
the stack variable offsets computed from it change as well. Hence,
variable offsets are not known at compile time anymore and they
must be stored and updated accordingly. To handle these functions,
our compiler creates a new section in their allocation frames to
store the offsets of their spilled variables. Moreover, our compiler
generates extra code (a load, an add, and a store) to update these
offsets according to the dynamic expansion. This offset-update code
is added just after each invocation of alloca. Finally, when neces-
sary load instructions are inserted to access the offsets of spilled
variables.

To reduce the overhead of the offset-update code, our compiler
performs two optimizations. The first one targets the overhead of the
offset updates. The second one targets the overhead of loading the
offsets.
Optimization 1: To reduce the offset update overhead, our compiler
performs the offset loads and stores in batches to reduce the over-
head of multiple alloca invocations. This optimization removes the

ISCA ’19, June 22–26, 2019, Phoenix, AZ, USA Fan and Campanoni, et al.

need for a load and a store at every alloca invocation. Moreover,
this optimization is only enabled when the compiler can guarantee
that no access of the related variable offsets is performed between
the batched alloca invocations. This is performed by an ad-hoc
data-flow analysis that tracks the accesses of the offsets of spilled
variables through the control-flow graph (CFG). This ad-hoc anal-
ysis is a customization of the intra-procedural reaching definition
analysis. The customization is on the definition of GEN and KILL
sets and on the data flow values. Our data flow values are always
either empty or they include a unique symbol S, which represents
all stack variables. This is because we do not need to differentiate
between stack variables: all of them need their offsets to be updated
or none of them do. The GEN set of an instruction i is either S or
nothing. It is S if the instruction i accesses a stack variable; it is
nothing otherwise. The KILL set of an instruction is either S or
nothing; it is S if the instruction is alloca, nothing otherwise. The
IN and OUT sets are computed following the same equations of the
reaching definition analysis.

The optimization related to this data flow analysis is related to
pairs of alloca instructions. Let us assume we have two alloca
instructions A1 and A2. The goal is to avoid (when possible) updat-
ing the stack variable offsets after A1. Our optimization considers
only pairs A1, A2 that are control equivalent (i.e., A1 dominats A2
and A2 post-dominates A1). If IN[A2] is empty (in other words, it
does not have the symbol S), then it is guaranteed that: all paths
between A1 and A2 have no instructions that access a stack variable:
this is guaranteed by the data flow analysis; A1 will always be ex-
ecuted before A2: this is because A1 dominates A2; A2 will always
be executed after A1: this is because A2 post-dominates A1. Hence,
we can avoid updating the offsets of stack variables after A1 and
fold these A1-updates within the ones that have to be done after
A2. The conservativeness of our data flow analysis is of the same
nature of the one for reaching definition analysis: infeasible paths.
In practice, however, we did not see any reduction in optimality due
to this conservativeness. This is because the typical code patterns
followed by developers that use alloca is that they invoke alloca
within the first code block of the function; hence, no infeasible paths
exist yet at that point in the code.
Optimization 2: To reduce the overhead of loading the offset of a
spilled variable, our compiler avoids injecting loads when it can
guarantee that the related variable offset did not change since the last
offset access. This is performed by using another ad-hoc dataflow
analysis. This ad-hoc dataflow analysis is similar to the previous
one with the only difference in the definition of the GEN and KILL
sets of instructions. The GEN set of an instruction i is either S or
nothing. It is S if the instruction i is alloca; it is nothing otherwise.
The KILL set of an instruction is either S or nothing; it is S if the
instruction accesses a stack variable offset, nothing otherwise.

The optimization related to this data flow analysis is related to
pairs of accesses to the same stack variable offset. Let us assume
we have two instructions of this kind, I1 and I2. The goal of this
optimization is to avoid (when possible) re-loading the stack variable
offset accessed by I2 after I1. For this optimization, we consider only
pairs I1, I2 such that the former dominates the latter. If IN[I2] is
empty, then we can avoid re-loading the stack offset in I2 and use
instead the one loaded by I1.

(a) Long delay pattern when using subtraction.

(b) Short delay pattern when using addition.

Figure 6: Delay patterns

4.2 DTS-Aware Memory Alignment
To improve the efficiency of effective address calculation, our com-
piler aligns both the stack allocation frames and the memory objects.
Our underlying architecture assumes such alignments and it com-
putes effective addresses using bit-wise OR operations rather than
the much more error-prone and energy-hungry additions.

Our compiler increases the size of the allocation frame of a com-
piled function f to make the sp a power of two. This alignment
guarantees that the offsets of the spilled variables of f are encoded
only using the lowest significant bits unused (they are always zero)
by the sp. Hence, the computation of the effective address of spilled
variables can be performed by using an bit-wise OR operation rather
than an otherwise-needed additions. Notice that the depth of the
circuit of the bit-wise OR operation is constant (1 gate delay) with
the number of bits which significantly reducing the latency of the ad-
dress computation, as well as saving unnecessary transitions/energy.

Similarly, our compiler aligns the objects (e.g., structures) allo-
cated in the memory heap. To do so, our compiler substitutes calls to
heap allocators to both allocate memory (e.g., malloc) and to free it
(e.g., free). The former substitution is done to increase the amount
of the memory requested to perform the required alignment. The
latter substitution is performed to make the alignment transparent
to heap allocators (e.g., the C standard library). In more detail, we
allocate enough extra memory to force the alignment of the base
address of an allocated object to be a power of two.

Rather than using the address returned by the heap allocator
as base address of the object, the code generated by our compiler
uses the lowest address within the memory allocated after CPU-
word bytes that is a power of two. Similarly for the computation of
stack location addresses, our underlying architecture assumes this
alignment also for heap memory accesses allowing the computation
of effective addresses of fields of heap objects (e.g., a field of a
structure) to be performed using bit-wise OR operations rather than
critical path stressing additions. Finally, to make this transformation
transparent to heap allocators (e.g., the standard C library), our
compiler generates additional code to properly round the address
given to the free/destroy API.

Time Squeezing for Tiny Devices ISCA ’19, June 22–26, 2019, Phoenix, AZ, USA

4.3 DTS-Aware Value Comparisons
Another common use of adders is comparing register values. The
compare instruction in commodity processors (e.g., Intel, ARM)
indicates whether the first register value is less, equal, or greater
than the second one. This is performed via an implied subtraction
operation.
Conventional compilers The two operands of a compare instruction
can be either registers or constants. If both operands are registers,
today’s compilers generate compare instructions keeping the order
of the operands decided by their front-end, which follows the natural
order defined by the source code that does not take into account
architecture-specific characteristics. If an operand of a compare in-
struction is a constant, then today’s compilers change the order of
operands only if the underlying architecture requires it. For example,
the cmpq instruction of Intel processors requires a register for the
second operand (e.g., "cmpq %rax, $10" is an illegal x86_64 in-
struction). However, ARM processors do not have this requirement.
Opportunity To compare register values, today’s architectures sub-
tract the second register value from the first one. Because two’s
complement coding is used, the adder inverts each bit of the second
register value and set the carry-in bit to 1. Then, the first register
value is added to the second one so inverted. The latency of the
subtraction operation directly depends on the propagation of the
carry-in bit of the inversion performed. In more detail, the less is the
propagation of the carry-in bit, the shorter is the critical-path in the
circuit exercised at run-time, the lower is the sub-cycle latency of
the subtraction operation.

Lower integer values are more likely to have longer propagation
when being placed in the second operand. (Try 5− 3 = 2 and 3−
5 = −2, similar to Figure 6) Therefore, it is preferred to subtract
higher values from lower ones. Moreover, we can swap the two
registers used in a compare instruction without affecting the original
semantics of the compiled program. Hence, a compiler can use
this degree of freedom to place the register that is more likely to
hold at run-time low integer values in the first operand of a compare
instruction. This will decrease the critical-path of the inversion of the
related compare instruction if the inference made by such compiler
is more often valid than not. Finally, if the underlying architecture
allows it, a compiler can also exercises this degree of freedom even
when an operand is a constant.
The Time Squeezer compiler Our compiler generates compare in-
structions with a low probability of stressing the circuit-level critical
paths. We achieve this goal by relying on training inputs provided
by developers to construct a bit-level probabilistic representation of
the values being compared. The compiler then applies architecture
specific analysis to select a compare instruction where the second
operand is less likely to propagate the carry-in bit when inverted.
This reduces the length of the dynamic critical path and squeezes the
time needed by the computation to complete and thereby increases
the DTS, which is exploited by our underlying architecture to save
energy.

In more detail, our compiler includes Algorithm 1 to decide
whether or not it should swap the operands given by the front-end.
Profiling The Time Squeezer system includes a code profiler to
estimate the probability that each bit of an operand used in an integer
comparison is equal to 1. The compiler then applies this information

Algorithm 1 Input-aware delay model

1: Instruction: cmp X, Y
2: //Operands are seen as sequence of bits
3: X: {xn, ...x1,x0}
4: Y: {yn, ...y1,y0}
5:

6: Lati := Latency of propagating the carry-in bit from the bit i to
the most significant bit

7: P(x, j) := Probability that the jth bit of x is 1
8:

9: //Probability of x j = 1 and y j = 0
10: Px j ,y j=1,0 := Px, j×1−Py, j
11:

12: //Probability of x j and y j having the same value
13: Px j=y j := Px, j×Py, j+1−Px, j×1−Py, j
14:

15: procedure BOOL should_swap_cmp_operands(x, y)
16: swap = 0
17: for i = 0 : N-1 do // each bit in x/y
18: Pswapi = Px j ,y j=1,0 × k∈{0,i−1} Psamex,y,k
19: Pkeepi = Px j ,y j=0,1 × k∈{0,i−1} Psamex,y,k
20: Lswap+ = Pswapi×Lati+1 +1−Pswapi×Lati
21: Lkeep+ = Pkeepi×Lati+1 +1−Pkeepi×Lati
22: end for
23: return (Lswap < Lkeep)
24: end procedure

to estimate the latency of inverting each operand using architecture-
specific information (i.e., the circuit structure of the adders in the
targeted processor). Specifically, for a compare instruction C that
uses a register X as an operand, our profiler computes the frequency
that each bit j of X was 1 across all invocations of C for all training
inputs. We denote this as Px, j in Algorithm 1. The compiler then
considers two scenarios: one in which the operands keep their initial
ordering and one in which the order is swapped. The compiler then
estimated the most likely latency of the compare instruction for these
two cases (Lswap and Lkeep of Algorithm 1) using a representation
of the gate-level structure of the adders that we describe next. The
model essentially computes gate delays to mimic the dynamic critical
path under these operands. The result of this analysis will help the
compiler to determine whether or not to swap the operands of C.
Latency Our solution to compute latency is based on a conservative
analysis that is both fast (it adds only a small compilation time)
and data driven. We apply the profile analysis and adder-specific
information to arrive at the result. The latency calculation is based
on the following observation: each column-wise pair of operand bits
can potentially allow or suppress the carry on its way to the most
significant bit.

For example, let us assume a compare instruction cmp x y.
If bit i of x and y are respectively 0 and 1, then the carry-in bit
propagation that could have started from the lower significant bits of
i is guaranteed to stop at bit i. This is because y is inverted leading
its i-th bit to 0 and, therefore, the sum of two zeros and a potential
carry-in bit coming from the bit i−1 cannot generate a carry-in bit

ISCA ’19, June 22–26, 2019, Phoenix, AZ, USA Fan and Campanoni, et al.

to propagate to i+1. In other words, the carry-in bit propagation is
blocked at bit i.

Now, let us consider the opposite scenario: the bit i of x and
y are respectively 1 and 0. In this case, we do not have the same
guarantee and the carry-in bit propagation could go through the bit i
leading to higher sub-clock latencies. However, we can swap the two
operands generating the instruction cmp y x bringing back the more
profitable scenario described above. In the later case, swapping the
two operands has reduced the instruction latency. The exact amount
depends on the circuit-level construction of the the adders in the
underlying architecture (this is encoded in Lati of Algorithm 1).

At a high-level, the latency computation applies profile data to
determine under which circumstances the ordering of operands will
be likely or unlikely to stop carry propagation and thereby whether
or not it stresses the critical path. Based on the above discussion, we
can consider Pswapi as the probability that we benefit from swapping
the original operands based on their i-th bit and that the i-th bit is the
lowest significant bit that x and y differ. In other words, we cannot
decide whether or not we should swap x and y based on the lower
bits of i.

We next compute the latency of the compare instruction given as
input when we swap its operands by combining the likelihood that
the need for an operand swap occurs (i.e., Pswapi) with the latency
of the instruction created by the swap. In this computation, Lati+1
represents the longest circuit-level critical path obtained by starting
the carry-in bit propagation at bit i+1. We add to this latency the
one obtained if the need for an operand swap does not occur. In this
case, the worst latency starting at bit i is Lati.

Similarly, the latency of the instruction when we keep the original
order of operands is computed. Finally, we accumulate all latencies
across all bits as each one could block the carry-in propagation.
The compiler decides whether or not to swap the operands based
on the final accumulated latencies (Lswap and Lkeep) in line 28 of
Algorithm 1.

4.4 The Case for a Hw/Sw Co-Design
The transformations described in this section are motivated by co-
designing our compiler with the underlying architecture. In other
words, they should not be used for conventional architectures.

The first transformation, computing effective addresses of stack
locations using sp rather than fp, can lead to unjustified overhead for
conventional architectures. This overhead comes from updating at
run-time stack variable offsets of functions that expand dynamically
their allocation frames. This overhead, however, is not justified for
conventional architectures that cannot take advantage of the extra
DTS generated by this transformation. In more detail, conventional
compilers rely on fp to compute stack variable offsets, which is
constant during the execution of an invocation of the related function.
Therefore, no run-time updates are needed for stack variable offsets
(this is the reason why conventional compilers rely on fp rather than
sp). While our transformation generates a small overhead for these
functions, it creates significantly more room for shrinking the DTS.
Our architecture takes advantage of this extra DTS generating an
overall important energy saving. On the other hand, conventional
architectures do not. Therefore, our transformation should only be
used for the co-designed architecture described in the next section.

Similarly, the stack and heap alignment transformations described
in this section create additional memory consumptions, which are
unjustified for conventional architectures. These transformations
increase (even if slightly) the memory consumption of the compiled
programs to align the base address of the allocated heap objects.
However, conventional architectures are not able to take advantage
of their benefits of shrinking the sub-cycle latencies of the heap
address computations.

Finally, the last transformation described in this section (value
comparison swap) has no run-time effect to conventional architec-
tures. Its use would only increase the compilation time for such
architectures.

5 DTS-OPTIMIZED ARCHITECTURE
Prior work proposed fine-grained clock management schemes to
adjust clock period at cycle-level [9, 26]. Time Squeezer builds on
top of the previous work [9, 26]. The hardware makes heavy use of
timing speculation and ultra fine-grained clock frequency scaling.
Timing Speculation The architecture operates in an overscaled sup-
ply voltage mode and relies on error checking and recovery to ensure
architecturally correct execution. In our proposed design, timing vi-
olations are detected and corrected using the well-known RazorII
mechanism [12]. Note that our approach is completely agnostic to
the checker, and it would be possible to substitute any other mecha-
nism that supports timing speculation.
Clock Control We integrated a multi-phase All-Digital Phase-Locked
Loop (ADPLL) tightly with the pipeline design. In the ADPLL de-
sign, there are multiple equally-spaced phases generated from the
Digital Controlled Oscillator (DCO), which enables real-time clock
period modulation. As different phases are selected, the frequency
of the PLL remains the same, which allows cycle-by-cycle clock
period adjustment. The ADPLL stretches the clock period for instruc-
tions that are likely to trigger errors before they trigger their critical
path, therefore avoiding runtime errors and the corresponding the
recovery cost. The multi-phase ADPLL is programmed by our com-
piler, which inserts directives into the static instruction stream based
on instruction-level delay models, as introduced in [16]. Therefore,
runtime error rates can be largely reduced by adjusting clock at cycle-
level. This allows the whole system to operate at more aggressive
clock frequency or supply voltage. As in previous work([16]), the
compiler uses an adaptive model to predict instruction-level errors.

6 EXPERIMENTAL METHODOLOGY
Time Squeezer introduces a novel architecture and compiler co-
design to exploit DTS and save energy. To empirically evaluate the
proposed system, we have implemented our optimizations within an
industrial strength compiler (clang-llvm [30]) and run IoT workloads
on a gate-level model for an ultra-low power processor. We describe
each of these components below.

6.1 Architecture Design
We develop a simulation infrastructure to study the power and per-
formance of the proposed Time Squeezer system. The required hard-
ware models need to capture the detailed circuit-level timing, energy,
and performance of the CPU and memory system. We achieve these

Time Squeezing for Tiny Devices ISCA ’19, June 22–26, 2019, Phoenix, AZ, USA

Figure 8: Comparison of energy consumption in three systems under the same performance requirement.

Technology Low Power 55nm
Core ARMv7 ISA, 32-bit

single-issue, 6-stage Pipeline
Processor area 0.807mm2

Core power 106.8mW @ 625MHz
Baseline Frequency 625MHz
Vdd 1.2V
PLL area 0.02 mm2

PLL freq. 60 ∼ 1600MHz
PLL power 6.4mW @ 800MHz

Table 2: Chip Implementation Details Figure 7: Die
Photo.

goals by augmenting a detailed gate-level design with a number of
tools and simulators.
Processor The processor pipeline models a 6-stage single issue in-
order ARM pipeline with 8KB 4-way instruction and data caches. We
target an ultra-low power implementation and use industry standard
tools (e.g. Synopsys Design Compiler) to construct the gate-level
implementation, which was also validated by our fabricated chips.
This design was fabricated in a 55nm technology test chip with
an implementation of the dynamic clock adjustment as shown in
Figure 7 and described in Table 2. While we did not directly use
the test chip in our experiments, it served as a useful frame for
validation.

The design is well-optimized, and we do not expect different
outcomes for alternative designs making similar energy-performance
tradeoffs. On the other hand, designs that have different energy-
performance goals would make a different set of design decisions
at the microarchitectural level (e.g. wide issue out-of-order), macro
circuit-level (e.g. high performance but power hungry adders), and
gate-level (e.g. aggressive use of low vt). These types of designs
offer a different set of challenges and opportunities. We are actively
investigating this as a current research direction.
Simulator Our timing model for the processor uses post layout
gate-level models run in Synopsys vcs [34]. Due to the impact of
the proposed code transformations, extra overhead may be added
to the memory system at run-time. We evaluated the overhead by
closely modeling cache and memory using DRAMsim2 [40]. De-
tailed analysis of cache miss rate and memory footprint is described
in Section 7.2. We relied on DRAMsim2 [40] to simulate the mem-
ory system (16 MB) and use the Gem5 architecture simulator [1]

to fast forward to simulation regions, load checkpoint state, and
validate correctness.
Validation We performed extensive critical path analysis and found
that dynamic critical paths in our simulator matched those measured
in the fabricated chip for all the benchmarks that we examined.
We observed some slight differences which we attribute to PVT
variation across chips and environmental conditions. The relative
differences in DTS are large relative to the observed PVT, so we
do not think that this poses a problem for Time Squeezer. More
aggressive techniques that include PVT in the compiler’s delay
models would likely improve the reach of this approach but are
outside the scope of this paper.

We evaluate four different systems: (1) Baseline non-timing spec-
ulative six-stage single issue ARMv7 pipeline running at the nominal
frequency (all results are normalized to this baseline), (2) Razor [12]
based implementation of the baseline design, (3) a system that adds
the ability to dynamically adjust the clock cycle (CLK-sched)(relies
on compiler-generated instructions as in prior work [16]), and (4)
the Time Squeezer co-design proposed in this paper.

6.2 Compiler and Benchmarks
We have extended the industry-strength compiler clang (LLVM
5.0.1 [30]) to build our Time Squeezer compiler. In particular, we
have extended the middle-end of clang by adding a transformation
pass, and we have modified the ARM back-end to implement our
proposed techniques. The programmable clock generator is a multi-
phase ADPLL which can scale the clock at cycle/instruction level
as discussed previously. The compiler selects the conservative clock
period for consecutive instructions. Note that the compiler has knowl-
edge of the instruction schedule because the pipeline is in-order. We
cross-compile and run several benchmarks from the MiBench [23]
suite as well as modern Optical Flow benchmarks [45] always using
the highest optimization level (i.e., -O3). Benchmarks are sampled
using SimPoints [37] with interval size of 100M instructions.

7 EXPERIMENTAL EVALUATION
This section describes the empirical evaluations we performed to
test Time Squeezer.

ISCA ’19, June 22–26, 2019, Phoenix, AZ, USA Fan and Campanoni, et al.

Figure 9: Only Time Squeezer is able to efficiently operate be-
yond the point of first failure. Note: Timing errors in all systems
are detected by hardware and do not affect architecturally cor-
rect execution.

7.1 Energy Evaluation
Time Squeezer aims to automatically save energy without losing
performance or compromising architecturally correct execution. Un-
der these conditions, Time Squeezer saves (on average) 40.5% of
energy compared to the baseline architecture (shown in Figure 8).
The CLK-sched solution, instead, saves only 21.1% of the baseline
energy. Time Squeezer saves more energy than CLK-sched thanks
both to the DTS-aware code generation coupled with the memory
alignment described in Section 4 and to the co-design between the
architecture and the compiler that enables a more energy-effective
address computation. Finally, the Razor design saves only 10.9%.
Razor removes a small portion of timing slack as a byproduct of
eliminating safety margins. Razor’s savings are blocked by its high
recovery cost: as Razor optimizes more aggressively, the error rate
increases and the overall recovery cost quickly becomes prohibitive.
This leads Razor to operate close to the point of first failure. This is
shown in Figure 9: only Time Squeezer is able to efficiently operate
well beyond the point of first failure.

It is clear that Time Squeezer saves a significant amount of energy,
but we conduct a deeper analysis to understand what techniques
contribute most to the savings. Figure 11 shows the breakdown of
energy savings for each aspect of Time Squeezer that targets DTS:
the stack transformation that relies on SP rather than BP, the stack
and the heap alignment, the CMP swapping transformation, and
the clock adjusting at run time. We also include evaluation of a
branch target precomputation optimization proposed by Hoang [24]
for completeness – this is not a contribution of this paper. Figure 11
shows that all five of our proposed DTS-optimizations are necessary
and contribute.

Finally, as Figure 10 shows, with Time Squeezer the system can
operate at a more aggressive clock frequency for a fixed voltage. In
our implementation, the common critical paths in adders are around
85% of the worst-case clock period. After code transformation, the
critical paths observed at run-time are about 65%.

7.2 Overhead Analysis
Time Squeezer saves significant energy compared to the baseline
and prior work despite the potential overheads that it imposes. Our
analysis shows that all of the overheads are relatively small and that

Figure 10: (a) Breakdown of clock scaling cycles for CLK-Sched
and (b) Time Squeezer. Code optimizations reduce dynamic
critical paths during execution, therefore a larger portion of in-
structions are executed under faster clocks.

Figure 11: Breakdown of energy savings of Time Squeezing.

Time Squeezer exposes enough additional DTS that the system can
exploit significant energy savings without losing performance.

The main overheads specific to Time Squeezer are: (1) an increase
in dynamic instruction count, and (2) a larger memory footprint.
The extra instructions executed by Time Squeezer are required for
compiler directives to control the ADPLL (clock squeezing and
stretching) and to force the heap alignment. On average, we find that
the instruction overhead is approximately 4% due to ADPLL control
and 7% due to memory alignment. The extra memory footprint is
due to the stack/heap alignment which leads to some fragmentation
in the program’s memory. Memory footprint shows an overhead of
6.14% on average, as shown in Table 3.

Time Squeezer data alignment could lead to less compact place-
ment of data and hence higher miss rates in caches and extra pressure
in the memory system. However, the IoT workloads typical for this
class of processors are typically small and frequently reuse data
so that cache performance remains relatively good. In our evalua-
tions, we simulate a core with 8KB instruction and data caches in
the system, and the cache miss rates increase less than 0.35% on
average.

Our results show that these overheads have negligible impact on
the system performance. Moreover, our approach frees up enough
additional DTS that we completely hide the overhead! Enough time
can be squeezed to negate the extra instructions and slight increase in
cache misses. This allows us to achieve 40.5% energy savings at the
same performance target. As Table 3 shows, extra DTS analysis does

Time Squeezing for Tiny Devices ISCA ’19, June 22–26, 2019, Phoenix, AZ, USA

add some additional time to the compilation process (less than 9%
on average), but this is comparable to many other common compiler
optimization such as loop hoisting performed by clang-llvm [30].

Benchmark Cache Miss Rate Memory Compilation
Increase (%) Overhead (%) Overhead (%)

basicmath 0.25 7.19 3.09
bitcnts 0.16 5.11 3.14

crc 0.45 3.41 8.16
dijkstra 0.30 4.40 9.80

fft 0.41 11.9 9.59
qsort 0.35 7.16 11.86
susan 0.30 6.85 11.39

rijndael 0.59 10.3 5.88
sha 0.41 12.6 14.06

stringsearch 0.24 4.42 5.17
iiof 0.34 6.10 11.27
hsof 0.28 7.19 6.02
lkof 0.37 11.5 9.45

Avg. 0.35 6.14 8.38

Table 3: Memory overhead.

7.3 Timing Slack Analysis
Time Squeezer saves energy by pursuing two goals: creating more
DTS by changing the code and the memory layout (i.e., critical path
reduction) and by exploiting newly generated DTS to shrink the
clock cycles (i.e., DTS reduction). This section distinguishes the
unique contributions of these two optimization goals obtained by
Time Squeezer. To this end, Figure 12 shows the time spent by Time
Squeezer waiting for the data (i.e., being in the circuit-level critical
path) and waiting for the current clock cycle to end (i.e., remaining
DTS). Figure 12 is computed by averaging the time spent waiting
for these two events across all nominal (fixed) clock cycles that
compose the total execution time of a given system. We performed
this analysis for the four systems we have evaluated.

Time Squeezer drastically reduces the critical path compared
to the baseline and prior work. The fast ADPLL design of Time
Squeezer enables optimization for sub-cycle level timing slack. As
Figure 12 shows, the clock cycle reductions are from two parts: tim-
ing slack reduction and critical path reduction. Compared to Razor,
more timing slack (11%) is removed by applying clock scheduling.
Moreover, the code transformations by the Time Squeezer compiler
further shorten the critical paths by avoiding most of the carry chain
stress within ALU computations and effective address generation.
These instructions compose almost half the total number of instruc-
tions executed at run time (see Figure 13). We could not find any
obvious optimization to target the remaining critical paths. The left-
over paths are fragments related to a variety of different operations
(e.g., branches, divisions, multiplications). We believe that squeezing
the remaining critical paths is going to require significantly more
work on top of what is described in this paper.

7.4 Sensitivity of Timing Model to PVT
Both Time Squeezer and CLK-SCHED depend on instruction-level
delay models to make decisions. We performed PVT variation anal-
ysis to understand how model accuracy impacts the quality of the
code.

The accuracy of the instruction-level delay model is higher in
Time Squeezer. Time Squeezer relies on the instruction-level clock
scheduling to reduce DTS: the compiler inserts control directives
into the program so that the clock phases can be selected correspond-
ingly at run time. The delay model reflects the correlation between
instruction sequences and circuit-level critical paths. As the DTS-
aware code generation of our system avoids the cases that are more
likely to exercise critical paths, the instruction sub-cycle latencies
become more homogeneous and, therefore, the accuracy of delay
models is improved. As Figure 14 shows, the model accuracy in-
creases from 93% to 95.6% under fixed Power-Voltage-Temperature
(PVT) conditions. Moreover, even with PVT variation the accuracy
slightly increases.

8 RELATED WORK
There has been a growing interest in vertical solutions for a num-
ber of important technology scaling problems [13, 41]. Many of
these approaches expect circuits to be utilized outside of tradi-
tional/pessimistic operating conditions. The system still guarantees
reliable computation by either correcting errors or ensuring that
each instruction has enough time to compute its results. We classify
prior work into two broad classes of approaches which expose some
knowledge of circuit timing properties to higher layers of the system
stack to improve performance or energy efficiency. The first cate-
gory includes systems that exploit DTS through purely architectural
support. The second category leverages compilation analysis and
tailors code generation to improve operation.

8.1 DTS-aware microachitecture
Timing resilient and timing speculative microarchitectures were
originally designed to maximize the potential of real silicon by
eliminating the overheads associated with process, voltage, and
temperature margins [8, 12, 15, 19, 42]. Although these systems have
been designed to recover the aforementioned overheads, they are
capable of exploiting dynamic timing slack as well. The on-line error
detection and recovery mechanisms allow the voltage/frequency to
be scaled beyond the margin to speculatively take advantage of any
circuit-level timing slack. Moreover, the amount of timing slack can
be influenced by circuit-level optimizations and the entire design
can be designed from the ground up to make tradeoffs in the way
that slack and timing errors appear [21, 27, 28]. The largest obstacle
to achieving benefit are the recovery costs [15, 22]. Previous work
has therefore applied locality properties to predict timing errors and
appropriately delay the clock to allow calculations to complete [5,
49].

Under the right circumstances, it is also possible to exploit DTS
without use of speculation [7, 25, 26]. To guarantee functionality,
the design must only operate in an over-scaled voltage or frequency
mode when it is impossible to exercise the timing critical paths
which would lead to incorrect results. In some cases, the timing
sensitive paths are closely coupled to specific opcodes. If workload
analysis can determine that these opcodes are not present in an
application, the design can operate in an over-scaled mode [7]. This
approach can be low overhead, but only allows for extremely coarse
grained intervals where DTS can be exploited. Fine-grained clock
management can improve the reach of exploitable DTS by expanding

ISCA ’19, June 22–26, 2019, Phoenix, AZ, USA Fan and Campanoni, et al.

Figure 12: Breakdown of clock cycle in Razor, clock-sched., and Time Squeezer sytems. Compared to the other two, Time Squeezing
both reduces the slack in clock cyles and reduce the length of critical paths during execution.

Figure 13: Breakdown of operations in program.

Figure 14: Due to the removal of some dynamic critical paths,
Time Squeezing also improves the accuracy of instruction-level
delay models.

coverage to smaller intervals where slack is found to be present.
Instruction-level identification of the slack can be performed by
the hardware dynamically or statically at compile time [10, 11].
Once the program regions with slack have been found, fine-grained,
programmable PLL can shrink the clock when slack is present and
stretch the clock when compute latencies are too long. Approaches
that dynamically modify clocking behavior require more complex
hardware but improve the amount of slack that can be leveraged.

8.2 DTS-aware compilers
Given the impact that instructions have on dynamic circuit-level
timing, it is natural to involve the compiler in solutions that exploit

timing slack. Moreover, the co-design of the compiler and architec-
ture would seem to offer the greatest benefits. Previous work has
examined the potential for considering impact of circuit-level timing
at several levels of the system stack including the compiler and archi-
tecture [24]. That effort identified several simple code optimizations
and associated hardware modifications that increase over-scaling
opportunities for timing speculative architectures. The optimizations
included NOP padding to lend extra time to critical operations, a
broken increment instruction which allows modified addition oper-
ations with a truncated carry chain, branch target precomputation,
and code substitution which replaces carry chain stressing subtrac-
tion operations with add instructions. Subsequent work in compiler
support for timing speculation examined a wide variety of exist-
ing compiler optimizations and demonstrated that it is possible to
achieve substantial benefit on timing speculative architectures when
these techniques are applied [43]. Specifically, the authors examined
loop unrolling, loop splitting, loop fusion, and ILP balancing as well
as tuning the gcc optimization level (O0-O3). This approach does
not require hardware support and leverages optimizations already
present in the compiler. More recently, the compiler has been shown
to be useful in identifying timing critical patterns and providing
guidance to adaptive clock generators via annotations within the bi-
nary [16]. Research has also examined compiler support for reducing
the impact of inductive voltage noise [38].

Our work differs from prior efforts in several ways. First we take a
broader view of reasons why timing slack appears and this allows us
to recognize the impact of data as well as instructions. Specifically,
our techniques are built around recognizing how specific types of
data will impact the instruction-level timing. Second, we introduce
use of data management as a powerful tool in shaping the way that
the program needs to compute effective addresses. Prior work at the
compiler level has examined the impact of the carry chain on some
types of computation [24], but did not consider address computations
and placement of data. This represents a significantly higher degree
of complexity and is a unique contribution of this paper.

Finally, we take a holistic view of the system which allows us to
create additional DTS opportunities in both the hardware and code
generation that would not otherwise be possible.

Time Squeezing for Tiny Devices ISCA ’19, June 22–26, 2019, Phoenix, AZ, USA

9 LIMITATIONS AND FUTURE WORK
The above section shows the results of the Time Squeezer system.
In this section, the discussion includes some limitations and future
works.
Generality and limitations One of the key ideas in the Time Squeezer
system is that the compiler needs to be aware of the critical paths in
the architecture design. In this work, we focus on the most common
operations in IoT applications/benchmarks, including effective ad-
dress generation, value comparison, addition and subtraction, which
comprise a majority of the critical execution. The next class of in-
structions to address would be less frequent primitive operations (e.g.
multiplication, division) – targets for future work. Devices in the IoT
space tend to use in-order shallow pipelines for energy efficiency
and fit the proposed technique very well, for example the one shown
in [7]. In these types of processors, execution logic is responsible
for many of the critical paths and the Time Squeezer techniques
introduced here can be impactful. However, as the hardware com-
plexity increases, critical paths will become prominent in many other
parts of the pipeline, especially in control logic. In that case, Time
Squeezer would need to consider a wider range of instruction and
data interactions to obtain similar benefits.
Pathological behavior A worst case would likely arise if there
were a large number of objects that forced poor alignment. We
believe that this will be unlikely for the systems and workloads
targeted in this work. In particular, it is unlikely that programs
written in commercially ubiquitous object oriented (OO) languages
will lead to higher overhead. Applications written in some of the
most common OO languages, namely Java or C#, characteristically
instantiate mostly small objects. Hence, the overhead of aligning
small objects to a power of two will be small. Moreover, our compiler
can disable this alignment for the few large objects that will be
allocated avoiding these pathological cases. This is similar to the
ability to disable the power-of-two alignment for large data structures
in C programs. While our compiler is capable of disabling this
alignment per allocation, we did not see the need for this for the
benchmarks we targeted in this paper. Table 3 shows that the memory
overhead is small even if we have aligned all memory objects and
stack variables.
Libraries, third-party code, and interoperability In the IoT space,
it is common for systems to be hardware/software co-designed and
in some cases run on bare metal (without benefit of an operating
system). We correspondingly assume that all the code is generated
by our compiler and that the designer has complete control of the
entire system stack. On the other hand, in the case where third party
software (e.g. external libraries) is important, the cleanest solution
would be to extend the ISA to support two kinds of effective address
computation (1) [base+displacement] and (2) [base|displacement]
and assume that our approach is used to manage heap data. Note
that third party software will still be able to reference objects in
memory (e.g. heap, locals, and spills) using option (1), but that this
may trigger (recoverable) timing errors affecting performance but
not correctness. This is a simple extension to our work, which does
not require any fundamental change.
Future work Our work focused on processors for tiny embedded
devices because they simultaneously have extremely tight power
constraints and no obvious excess resources which can be sacrificed

without losing performance. In these devices the system designer
typically has control over the hardware/software stack and hence
there is considerable room for cross-layer optimizations like the one
we propose.

In future work, we plan to explore dynamism in the system in
two important ways. First, we will investigate more aggressive out-
of-order cores. In a deep, well-balanced pipeline, there are critical
paths in every stage. We expect that timing critical execution paths
addressed in this paper will remain important, but they will be ac-
companied by other paths related to extracting ILP and supporting
speculation. We anticipate that our proposed techniques will remain
valid, but the compiler will likely need to consider a wider variety
of code optimizations to reach its full potential. Second, we will
examine the role that just in time (JIT) compilation can play in man-
aging dynamic timing slack. JIT compilation should offer a number
of interesting opportunities to respond to changing patterns in the
workload and environment.

10 CONCLUSION
As we near the end of Moore’s Law scaling, there has been growing
interest in clawing back energy savings through any means necessary.
Dynamic timing slack presents interesting opportunities for realizing
some of these savings. In this paper, we introduced compiler and
architecture co-design where the compiler squeezes time at the sub-
cycle level to create new amounts of dynamic timing slack. Our
evaluations show that the architecture can efficiently exploit the
slack to produce 40.5% energy savings on average. This results
holds particular promise for the emerging class of tiny embedded
devices.

ACKNOWLEDGMENTS
We wish to thank the anonymous reviewers for their helpful feed-
back. We thank Tianyu Jia and Jie Gu for their contributions to the
silicon fabrication and measurement. We thank Enrico A. Deiana
for creating the TimeSqueezer logo used in Figure 3. This work was
partially supported by the National Science Foundation of the United
States under grant # CCF-1618065.

REFERENCES
[1] Nathan Binkert, Bradford Beckmann, Gabriel Black, Steven K. Reinhardt, Ali

Saidi, Arkaprava Basu, Joel Hestness, Derek R. Hower, Tushar Krishna, Somayeh
Sardashti, Rathijit Sen, Korey Sewell, Muhammad Shoaib, Nilay Vaish, Mark D.
Hill, and David A. Wood. 2011. The Gem5 Simulator. SIGARCH Comput. Archit.
News 39, 2 (Aug. 2011), 1–7. https://doi.org/10.1145/2024716.2024718

[2] Shekhar Borkar. 2005. Designing reliable systems from unreliable components:
the challenges of transistor variability and degradation. Ieee Micro 25, 6 (2005),
10–16.

[3] Shekhar Borkar, Tanay Karnik, Siva Narendra, Jim Tschanz, Ali Keshavarzi, and
Vivek De. 2003. Parameter variations and impact on circuits and microarchitecture.
In Proceedings of the 40th annual Design Automation Conference. ACM, 338–
342.

[4] Peter D Bradley. 2006. An ultra low power, high performance medical implant
communication system (MICS) transceiver for implantable devices. In Biomedical
Circuits and Systems Conference, 2006. BioCAS 2006. IEEE. IEEE, 158–161.

[5] Koushik Chakraborty, Brennan Cozzens, Sanghamitra Roy, and Dean M Ancajas.
2013. Efficiently tolerating timing violations in pipelined microprocessors. In
Proceedings of the 50th Annual Design Automation Conference. ACM, 102.

[6] Sriram Cherukuri, Krishna K Venkatasubramanian, and Sandeep KS Gupta. 2003.
Biosec: A biometric based approach for securing communication in wireless
networks of biosensors implanted in the human body. In Parallel Processing
Workshops, 2003. Proceedings. 2003 International Conference on. IEEE, 432–
439.

https://doi.org/10.1145/2024716.2024718

ISCA ’19, June 22–26, 2019, Phoenix, AZ, USA Fan and Campanoni, et al.

[7] Hari Cherupalli, Rakesh Kumar, and John Sartori. 2016. Exploiting dynamic
timing slack for energy efficiency in ultra-low-power embedded systems. In ACM
SIGARCH Computer Architecture News, Vol. 44. IEEE Press, 671–681.

[8] Mihir Choudhury, Vikas Chandra, Kartik Mohanram, and Robert Aitken. 2010.
TIMBER: Time borrowing and error relaying for online timing error resilience.
In Design, Automation & Test in Europe Conference & Exhibition (DATE), 2010.
IEEE, 1554–1559.

[9] Jeremy Constantin, Lai Wang, Georgios Karakonstantis, Anupam Chattopadhyay,
and Andreas Burg. 2015. Exploiting Dynamic Timing Margins in Micropro-
cessors for Frequency-Over-Scaling with Instruction-Based Clock Adjustment.
Proceedings of the 2015 Design, Automation & Test in Europe (2015), 381–386.

[10] Jeremy Constantin, Lai Wang, Georgios Karakonstantis, Anupam Chattopadhyay,
and Andreas Burg. 2015. Exploiting dynamic timing margins in microprocessors
for frequency-over-scaling with instruction-based clock adjustment. In Proceed-
ings of the 2015 Design, Automation & Test in Europe Conference & Exhibition.
EDA Consortium, 381–386.

[11] Jeremy Hugues-Felix Constantin, Andrea Bonetti, Adam Shmuel Teman,
Thomas Christoph Müller, Lorenz Flavio Schmid, and Andreas Peter Burg. 2016.
DynOR: A 32-bit microprocessor in 28 nm FD-SOI with cycle-by-cycle dynamic
clock adjustment. In Esscirc Conference 2016. Ieee, 261–264.

[12] S. Das, C. Tokunaga, S. Pant, W. H. Ma, S. Kalaiselvan, K. Lai, D. M. Bull, and
D. T. Blaauw. 2009. RazorII: In Situ Error Detection and Correction for PVT and
SER Tolerance. IEEE Journal of Solid-State Circuits 44, 1 (Jan 2009), 32–48.
https://doi.org/10.1109/JSSC.2008.2007145

[13] Marc De Kruijf, Shuou Nomura, and Karthikeyan Sankaralingam. 2010. Relax: An
architectural framework for software recovery of hardware faults. ACM SIGARCH
Computer Architecture News 38, 3 (2010), 497–508.

[14] Touby Drew and Maria Gini. 2006. Implantable medical devices as agents and part
of multiagent systems. In Proceedings of the fifth international joint conference
on Autonomous agents and multiagent systems. ACM, 1534–1541.

[15] Dan Ernst, Nam Sung Kim, Shidhartha Das, Sanjay Pant, Rajeev Rao, Toan
Pham, Conrad Ziesler, David Blaauw, Todd Austin, Krisztian Flautner, Trevor
Mudge, Beal Ave, and Ann Arbor. 2003. Razor : A Low-Power Pipeline Based on
Circuit-Level Timing Speculation. December (2003).

[16] Yuanbo Fan, Tianyu Jia, Jie Gu, Simone Campanoni, and Russ Joseph. 2018.
Compiler-guided Instruction-level Clock Scheduling for Timing Speculative
Processors. In Proceedings of the 55th Annual Design Automation Confer-
ence (DAC ’18). ACM, New York, NY, USA, Article 40, 6 pages. https:
//doi.org/10.1145/3195970.3196013

[17] Maria Fazio, Maurizio Paone, Antonio Puliafito, and Massimo Villari. 2012. Het-
erogeneous sensors become homogeneous things in smart cities. In Innovative
Mobile and Internet Services in Ubiquitous Computing (IMIS), 2012 Sixth Inter-
national Conference on. IEEE, 775–780.

[18] Dario Floreano and Robert J Wood. 2015. Science, technology and the future of
small autonomous drones. Nature 521, 7553 (2015), 460.

[19] Matthew Fojtik, David Fick, Yejoong Kim, Nathaniel Pinckney, David Money
Harris, David Blaauw, and Dennis Sylvester. 2013. Bubble razor: Eliminating
timing margins in an ARM cortex-M3 processor in 45 nm CMOS using architec-
turally independent error detection and correction. IEEE Journal of Solid-State
Circuits 48, 1 (2013), 66–81.

[20] Ali Murat Gok and Nikos Hardavellas. 2017. VaLHALLA: Variable Latency
History Aware Local-carry Lazy Adder. In Proceedings of the on Great Lakes
Symposium on VLSI 2017. ACM, 17–22.

[21] Brian Greskamp, Lu Wan, Ulya R Karpuzcu, Jeffrey J Cook, Josep Torrellas,
Deming Chen, and Craig Zilles. 2009. Blueshift: Designing processors for timing
speculation from the ground up.. In High Performance Computer Architecture,
2009. HPCA 2009. IEEE 15th International Symposium on. IEEE, 213–224.

[22] Meeta S Gupta, Jude A Rivers, Pradip Bose, Gu-Yeon Wei, and David Brooks.
2009. Tribeca: design for PVT variations with local recovery and fine-grained
adaptation. In Proceedings of the 42nd Annual IEEE/ACM International Sympo-
sium on Microarchitecture. ACM, 435–446.

[23] M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin, T. Mudge, and R. B.
Brown. 2001. MiBench: A Free, Commercially Representative Embedded Bench-
mark Suite. In Proceedings of the Workload Characterization, 2001. WWC-4. 2001
IEEE International Workshop (WWC ’01). IEEE Computer Society, Washington,
DC, USA, 3–14. https://doi.org/10.1109/WWC.2001.15

[24] Giang Hoang, Robby Bruce Findler, and Russ Joseph. 2011. Exploring circuit
timing-aware language and compilation. In ACM SIGPLAN Notices, Vol. 46. ACM,
345–356.

[25] Tianyu Jia, Yuanbo Fan, Russ Joseph, and Jie Gu. 2016. Exploration of associative
power management with instruction governed operation for ultra-low power design.
In Design Automation Conference (DAC), 2016 53nd ACM/EDAC/IEEE. IEEE,
1–6.

[26] T. Jia, R. Joseph, and Jie Gu. 2017. Greybox design methodology: A program
driven hardware co-optimization with ultra-dynamic clock management. In 2017
54th ACM/EDAC/IEEE Design Automation Conference (DAC). 1–6. https://doi.
org/10.1145/3061639.3062255

[27] Andrew B Kahng, Seokhyeong Kang, Rakesh Kumar, and John Sartori. 2010.
Designing a processor from the ground up to allow voltage/reliability tradeoffs. In
High Performance Computer Architecture (HPCA), 2010 IEEE 16th International
Symposium on. IEEE, 1–11.

[28] Andrew B Kahng, Seokhyeong Kang, Rakesh Kumar, and John Sartori. 2010.
Slack redistribution for graceful degradation under voltage overscaling. In Design
Automation Conference (ASP-DAC), 2010 15th Asia and South Pacific. IEEE,
825–831.

[29] Kaivan Karimi and Gary Atkinson. 2013. What the Internet of Things (IoT) needs
to become a reality. White Paper, FreeScale and ARM (2013), 1–16.

[30] Chris Lattner and Vikram Adve. 2004. LLVM: A Compilation Framework for
Lifelong Program Analysis & Transformation. In Proceedings of the 2004 Inter-
national Symposium on Code Generation and Optimization (CGO’04). Palo Alto,
California.

[31] Gai Liu, Ye Tao, Mingxing Tan, and Zhiru Zhang. 2014. CASA: correlation-
aware speculative adders. In Low Power Electronics and Design (ISLPED), 2014
IEEE/ACM International Symposium on. IEEE, 189–194.

[32] Krishna T Malladi, Frank A Nothaft, Karthika Periyathambi, Benjamin C Lee,
Christos Kozyrakis, and Mark Horowitz. 2012. Towards energy-proportional
datacenter memory with mobile DRAM. In Computer Architecture (ISCA), 2012
39th Annual International Symposium on. IEEE, 37–48.

[33] Online. [n. d.]. Edge TPU. Available from https://cloud.google.com/edge-tpu.
[34] Online. [n. d.]. Synopsys VCS User Guide. Available from

https://www.synopsys.com/verification/simulation/vcs.html.
[35] George Papadimitriou, Manolis Kaliorakis, Athanasios Chatzidimitriou, Dimitris

Gizopoulos, Peter Lawthers, and Shidhartha Das. 2017. Harnessing voltage
margins for energy efficiency in multicore CPUs. In Proceedings of the 50th
Annual IEEE/ACM International Symposium on Microarchitecture. ACM, 503–
516.

[36] Dinesh Patil, Omid Azizi, Mark Horowitz, Ron Ho, and Rajesh Ananthraman.
2007. Robust energy-efficient adder topologies. In Computer Arithmetic, 2007.
ARITH’07. 18th IEEE Symposium on. IEEE, 16–28.

[37] Erez Perelman, Greg Hamerly, Michael Van Biesbrouck, Timothy Sherwood,
and Brad Calder. 2003. Using SimPoint for Accurate and Efficient Simulation.
SIGMETRICS Perform. Eval. Rev. 31, 1 (June 2003), 318–319. https://doi.org/10.
1145/885651.781076

[38] Vijay Janapa Reddi, Simone Campanoni, Meeta S Gupta, Michael D Smith,
Gu-Yeon Wei, David Brooks, and Kim Hazelwood. 2010. Eliminating voltage
emergencies via software-guided code transformations. ACM Transactions on
Architecture and Code Optimization (TACO) 7, 2 (2010), 12.

[39] Jeremy Rifkin. 2014. The zero marginal cost society: The internet of things, the
collaborative commons, and the eclipse of capitalism. St. Martin’s Press.

[40] Paul Rosenfeld, Elliott Cooper-Balis, and Bruce Jacob. 2011. DRAMSim2: A
Cycle Accurate Memory System Simulator. IEEE Comput. Archit. Lett. 10, 1 (Jan.
2011), 16–19. https://doi.org/10.1109/L-CA.2011.4

[41] Adrian Sampson, Werner Dietl, Emily Fortuna, Danushen Gnanapragasam, Luis
Ceze, and Dan Grossman. 2011. EnerJ: Approximate data types for safe and
general low-power computation. In ACM SIGPLAN Notices, Vol. 46. ACM, 164–
174.

[42] Smruti Sarangi, Brian Greskamp, Abhishek Tiwari, and Josep Torrellas. 2008.
EVAL: Utilizing processors with variation-induced timing errors. In Microarchi-
tecture, 2008. MICRO-41. 2008 41st IEEE/ACM International Symposium on.
IEEE, 423–434.

[43] John Sartori and Rakesh Kumar. 2012. Compiling for energy efficiency on timing
speculative processors. In Proceedings of the 49th Annual Design Automation
Conference. ACM, 1301–1308.

[44] Robert R Schaller. 1997. Moore’s law: past, present and future. IEEE spectrum
34, 6 (1997), 52–59.

[45] D. Sun, S. Roth, and M. J. Black. 2010. Secrets of optical flow estimation and their
principles. In 2010 IEEE Computer Society Conference on Computer Vision and
Pattern Recognition. 2432–2439. https://doi.org/10.1109/CVPR.2010.5539939

[46] Thomas N Theis and H-S Philip Wong. 2017. The end of moore’s law: A new
beginning for information technology. Computing in Science & Engineering 19, 2
(2017), 41–50.

[47] Ajay K Verma, Philip Brisk, and Paolo Ienne. 2008. Variable latency speculative
addition: A new paradigm for arithmetic circuit design. In Proceedings of the
conference on Design, automation and test in Europe. ACM, 1250–1255.

[48] Joseph Wei. 2014. How Wearables Intersect with the Cloud and the Internet
of Things: Considerations for the developers of wearables. IEEE Consumer
Electronics Magazine 3, 3 (2014), 53–56.

[49] Jing Xin and Russ Joseph. 2011. Identifying and predicting timing-critical instruc-
tions to boost timing speculation. In Proceedings of the 44th Annual IEEE/ACM
International Symposium on Microarchitecture. ACM, 128–139.

[50] Andrea Zanella, Nicola Bui, Angelo Castellani, Lorenzo Vangelista, and Michele
Zorzi. 2014. Internet of things for smart cities. IEEE Internet of Things journal 1,
1 (2014), 22–32.

https://doi.org/10.1109/JSSC.2008.2007145
https://doi.org/10.1145/3195970.3196013
https://doi.org/10.1145/3195970.3196013
https://doi.org/10.1109/WWC.2001.15
https://doi.org/10.1145/3061639.3062255
https://doi.org/10.1145/3061639.3062255
https://doi.org/10.1145/885651.781076
https://doi.org/10.1145/885651.781076
https://doi.org/10.1109/L-CA.2011.4
https://doi.org/10.1109/CVPR.2010.5539939

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Timing Slack in Arithmetic Units
	2.2 Prior Work
	2.3 Compiler Influence

	3 The Time Squeezer Solution
	4 DTS-Aware Compiler
	4.1 DTS-Aware Stack Accesses
	4.2 DTS-Aware Memory Alignment
	4.3 DTS-Aware Value Comparisons
	4.4 The Case for a Hw/Sw Co-Design

	5 DTS-Optimized Architecture
	6 Experimental Methodology
	6.1 Architecture Design
	6.2 Compiler and Benchmarks

	7 Experimental Evaluation
	7.1 Energy Evaluation
	7.2 Overhead Analysis
	7.3 Timing Slack Analysis
	7.4 Sensitivity of Timing Model to PVT

	8 Related Work
	8.1 DTS-aware microachitecture
	8.2 DTS-aware compilers

	9 Limitations and Future Work
	10 Conclusion
	Acknowledgments
	References

