Compiling L1 to x86-64

High-level overview:

* Generate some small number of x86-64 instructions
for each L2 instruction, save in prog. S file,

generating calls into C-defined runtime system to
implement read, print, allocate, and
array-error

» Compile prog.S like this:
as -0 prog.o prog.S
* Compile the runtime system like this:
gce -02 -¢ -g -o runtime.o runtime.c

* Combine them into an executable like this:

gcec -o a.out prog.o runtime.o

Use linux to avoid Mac OS X stack alignment issues

Compiling the main function; generate this code:

. text
.globl go
go:
save callee-saved registers
pushq 3rbx
pushg srbp
pushq $rl2
pushq %rl3
pushq $rl4
pushq %rl5

call «main labely

restore callee-saved registers and return
popq %rl5

popq $rl4

popq %rl3

popdq $rl2

popq %rbp

popq $rbx

retq

It matches runtime. c’s main (), which calls go ()

Compiling simple assignments: prefix registers with %
and constants and labels with $; note the destination is
on the right

(rax <- 1) - movq $1, %$rax

(rax <- rbx) = movqg %rbx, S%rax

(rax <- :f) - movqg $ f, %rax

For memory references, put parens around the register
and prefix it with the offset

((mem rsp 0) <- rdi)

=

movq 3rdi, O (%rsp)

(rdi <- (mem rsp 8))

=

movq 8 (%rsp), %rdi

Each of the aop= operations correspond to their own

assembly instruction

(rdi +=

(rdi

(rlO

(rl4

rax)

rax)

rl2)

rl5)

addg %rax, 3%rdi

subq %rax, %rdi

imulqg %rl2, %rl0

andg 5%rl5, 5%rl4

Saving the result of a comparison requires a few extra
instructions

cmpg 3srbx, 3%rax
(rdi <- rax <= rbx) = setle %dil

movzbg 3%dil, 3%rdi

the cmpq instruction updates a condition code in some
hidden place and then we need to use setle to extract
the condition code from the hidden place. The setle
instruction, however, needs an 8 bit register as its
destination. So we use $dil here because that’s an 8 bit
register that overlaps with the lowest 8 bits of $rdi.

That updates only those 8 bits, however so we need
movzbqg to zero out the rest

Saving the result of a comparison requires a few extra

instructions

(rdi <- rax <= rbx)

cmpqg 3srbx, 3%rax

- setle 3dil
movzbg 3%dil, 3%rdi

Here’s the table mapping regular register names to their

8-bit variants

rl0 - rl0b
rl3 - rl3b
r8 - r8b
rbp - bpl
rdi - dil

rll
rl4
r9

rbx

rdx

- rllb
- rldb
— r9b

bl
dl

rl2
rl5
rax
rcx

rsi

- rl2b
— rlb5b
- al
- cl

- s1il

Saving the result of a comparison requires a few extra
instructions

cmpg 3srbx, 3%rax
(rdi <- rax <= rbx) = setle %dil
movzbg 3%dil, 3%rdi

And if we had < we'd need to use setg or setl (for
less than or greater than) and if we had = then we
would use sete

The shifting, sop=, operations also use the 8-bit
registers, this time for their sources

(rdi <<= rcx) = salqgq %cl, 5%rdi

(rdi >>= 3) -~ sarqg $3, %rdi

The 1 is for “left shift” and the r stands for “right shift”.

10

The same three instructions also work great when there
is a constant on the left

cmpgqg $10, %rax
(rdi <- rax <= 10) = setle %dil
movzbg 3%dil, 3%rdi

11

But when the constant is on the right, we need to flip
things around

cmpqg $10, %rax
(rdi <- 10 <= rax) = setge 3%dil
movzbg 3dil, 3%rdi

Why!? Because cmpqg needs a register “destination” for
reasons that make little sense to me

12

So when we don’t have any registers at all, we need to
compute the answer at compile time and just use that

(rdi <- 10 <= 11) - movq $1, $rdi

(rax <- 12 <= 11) = movq $0, %$rax

13

Labels and gotos are what you might guess; just replace
the leading colon with an underscore and add a colon
suffix when you define the label

:a_ label =» _a label:

(goto :a label) = Jjmp a label

14

For conditional jumps, we have the three same cases as
we did for conditional comparisons, but we use two
jumps instead of storing the result in a register

(cjump rax <= rdi :yes :no)
=

cmpg %rdi, 3rax
Jle _yes
Jmp no

For less than or equal to, <=, use jge (jump greater
than or equal) or j1le (jump less than or equal). For
strictly less than, <, use jg (jump greater than) or jl
(jump less than) and for equality, =, use je

15

Finally, compiling the instructions that modify rsp:

* Function header (entry to a function)

* The call, tail-call, and return instructions

16

Allocating local storage is the function header’s job; for
each stack variable, push 8 bytes, e.g.

(:myfunction 0 3stuff...)

=

_myfunction:
subg $24, %rsp # allocate spill
...compiled stuff...

17

The (return) instruction frees local storage, pops the
return address from the stack and jumps to it, e.g.,

(:myfunction 0 3 (return))

=

_myfunction:
subg $24, %rsp # allocate spill
addgqg $24, %rsp # free spill & args
ret

18

The (call) instruction moves rsp based on the

number of arguments and the return address and then
jumps to the new function, e.g.

(call :anotherfunction 11)

=

subg $48, $rsp # call L1 function
jmp anotherfunction

Argument storage allocationis (* (- 11 6) 8) =
40 bytes, plus 8 more to move past the return address

19

The (call) also calls funtions defined in runtime. c.

In that case, we can just use the call assembly
Instruction.

(call array-error 2)

=

call array error # runtime system call

20

The (tail-call) instruction moves rsp back to
free the local storage and then jumps, e.g.

(:£ 11 3 (tail-call :g 5))
—

f:
subg $24, %rsp # allocate spill
addgqg $64, %rsp # free spill & args
jmp g # tail call

Free (* (- 11 6) 8) =40 bytes for :£’s args,
plus 24 more for : £’s spill. Functions can only be called

in tail position when they have six or fewer args, so we
don’t have to move the arguments around on the stack
(since there aren’t any).

21

If the call or tail-call instruction gets a register

instead of a direct label, the generated assembly code
needs an extra asterisk, e.g.:

(:£ 1 0 (tail-call rdi 0))

—

f:
jmp *$rdi # tail call

22

