L4 grammar

p:= (e (label (var ...) e) ...)
e:=(let ((var e)) e)
| (1f e e e)

| (biop e e)

| (pred e)

| (e e ...)

| (new-array e e)

| (new-tuple e ...)

| (aref e e)

| (aset e e e)

| (alen e)

| (begin e e)

| (read)

| (print e)

| (nake-closure label e)

| (closure-proc e)

| (closure-vars e)

|var

| label

| num
biop:=+|-| * | cmpop
cmpop =< |<=|=
pred:=number? | a?

L4 vs. L3

p:= (e (label (var ...) e) ...) p:= (e (label (var ...) e)
e:=(let ((var e)) e) e:=(let ((var d)) e)

| (1f e e e)

| (biop e e)

| (pred e)

| (e e ...)

| (new-array e e)

| (new-tuple e ...)
| (aref e e)

| (aset e e e)

| (alen e)

| (begin e e)

| (read)

| (print e)

| (nake-closure label e)
| (closure-proc e)
| (closure-vars e)

| (Lf v e e)

|d
d:= (biop v v)
| (pred v)
| (v v ...)
| (new-array v v)
| (new-tuple v ...)

| (aref v v)
| (aset v v v)
| (alen v)

| (read)

| (print v)

| (make-closure label v)
| (closure-proc v)

| (closure-vars v)

|var | v
| label v:=var | label | num
| num

biop:=+|-| * | cmpop biop:=+|-| * | cmpop

cmpop =< |<=|=
pred:=number? | a?

cmpop:=<|<=|=
pred:=number? | a?

L4 — L3 Example

; results = (new-tuple nat[passed] nat[tried])
; :update : int[bool] results - results
; called after each test case has run

> (:update 1 (new-tuple 3 4))
(new-tuple 4 5)
> (:update 0 (new-tuple 3 4))
(new-tuple 3 5)

(:update
(pass? results)
(new-tuple
(let ((passed (aref results 0)))
(Lf pass? (+ 1 passed) passed))
(+ 1 (aref results 1))))

L4 — L3 Example

(:update
(pass? results)
(new-tuple
(let ((passed (aref results 0)))
(1f pass? (+ 1 passed) passed))
(+ 1 (aref results 1))))

L4 — L3 Example

(:update
(pass? results)
(new-tuple
(let ((passed (aref results 0)))
(1f pass? (+ 1 passed) passed))
(+ 1 (aref results 1))))

First: lift (aref results 0)

L4 — L3 Example

(:update
(pass? results)
(let ((x_ 1 (aref results 0)))
(new-tuple
(let ((passed x 1))
(Lf pass? (+ 1 passed) passed))
(+ 1 (aref results 1)))))

L4 — L3 Example

(:update
(pass? results)
(let ((x_ 1 (aref results 0)))
(new-tuple
(let ((passed x 1))
(Lf pass? (+ 1 passed) passed))
(+ 1 (aref results 1)))))

Next:lift (Llet ((passed x 1)) ...)

L4 — L3 Example

(:update
(pass? results)
(let ((x_ 1 (aref results 0)))
(let ((passed x 1))
(new-tuple
(Lf pass? (+ 1 passed) passed)
(+ 1 (aref results 1))))))

L4 — L3 Example

(:update
(pass? results)
(let ((x_ 1 (aref results 0)))
(let ((passed x 1))
(new-tuple
(Lf pass? (+ 1 passed) passed)
(+ 1 (aref results 1))))))

Next: lift (1f pass? ...)

L4 — L3 Example

(:update
(pass? results)
(let ((x_1 (aref results 0)))
(let ((passed x 1))
(Lf pass?

(new-tuple
(+ 1 passed)
(+ 1 (aref results 1)))
(new-tuple
passed
(+ 1 (aref results 1)))))))

10

L4 — L3 Example

(:update
(pass? results)
(let ((x_1 (aref results 0)))
(let ((passed x 1))
(Lf pass?

(new-tuple
(+ 1 passed)
(+ 1 (aref results 1)))
(new-tuple
passed
(+ 1 (aref results 1)))))))

Next: lift (+ 1 passed)

11

L4 — L3 Example

(:update
(pass? results)
(let ((x_1 (aref results 0)))
(let ((passed x 1))
(Lf pass”?
(let ((x 2 (+ 1 passed)))
(new-tuple
X 2
(+ 1 (aref results 1))))
(new-tuple
passed
(+ 1 (aref results 1)))))))

12

L4 — L3 Example

(:update
(pass? results)
(let ((x_1 (aref results 0)))
(let ((passed x 1))
(Lf pass”?
(let ((x 2 (+ 1 passed)))
(new-tuple
X 2
(+ 1 (aref results 1))))
(new-tuple
passed
(+ 1 (aref results 1)))))))

Next: lift (aref results 1)

13

L4 — L3 Example

(:update
(pass? results)
(let ((x_1 (aref results 0)))
(let ((passed x 1))
(Lf pass?
(let ((x 2 (+ 1 passed)))
(let ((x_3 (aref results 1)))
(new-tuple x 2 (+ 1 x 3))))
(new-tuple
passed
(+ 1 (aref results 1)))))))

14

L4 — L3 Example

(:update
(pass? results)
(let ((x_1 (aref results 0)))
(let ((passed x 1))
(Lf pass?
(let ((x 2 (+ 1 passed)))
(let ((x_3 (aref results 1)))
(new-tuple x 2 (+ 1 x 3))))
(new-tuple
passed
(+ 1 (aref results 1)))))))

Next:lift (+ 1 x 3)

15

L4 — L3 Example

(:update
(pass? results)
(let ((x_1 (aref results 0)))
(let ((passed x 1))
(1Lf pass®?
(let ((x 2 (+ 1 passed)))
(let ((x_3 (aref results 1)))
(let ((x 4 (+ 1 x 3)))
(new-tuple x 2 x 4))))
(new-tuple
passed
(+ 1 (aref results 1)))))))

16

L4 — L3 Example

(:update
(pass? results)
(let ((x_1 (aref results 0)))
(let ((passed x 1))
(1Lf pass®?
(let ((x 2 (+ 1 passed)))
(let ((x_3 (aref results 1)))
(let ((x 4 (+ 1 x 3)))
(new-tuple x 2 x 4))))
(new-tuple
passed
(+ 1 (aref results 1)))))))

Next: lift (aref results 1)

17

L4 — L3 Example

(:update
(pass? results)
(let ((x_1 (aref results 0)))
(let ((passed x 1))
(1f pass?
(let ((x 2 (+ 1 passed)))
(let ((x_ 3 (aref results 1)))
(let ((x 4 (+ 1 x 3)))
(new-tuple x 2 x 4))))
(let ((x 5 (aref results 1)))
(new-tuple
passed

(+ 1 x5)))))))

18

L4 — L3 Example

(:update
(pass? results)
(let ((x_1 (aref results 0)))
(let ((passed x 1))
(1f pass?
(let ((x 2 (+ 1 passed)))
(let ((x_ 3 (aref results 1)))
(let ((x 4 (+ 1 x 3)))
(new-tuple x 2 x 4))))
(let ((x 5 (aref results 1)))
(new-tuple
passed

(+ 1 x 5)))))))
Next:lift (+ 1 x 5)

19

L4 — L3 Example

(:update
(pass? results)
(let ((x 1 (aref results 0)))
(let ((passed x 1))
(Lf pass?
(let ((x 2 (+ 1 passed)))
(let ((x 3 (aref results 1)))
(let ((x 4 (+ 1 x 3)))
(new-tuple x 2 x 4))))
(let ((x 5 (aref results 1)))
(let ((x 6 (+ 1 x 5)))
(new-tuple passed x 6)))))))

20

L4 — L3 Example

(:update
(pass? results)
(let ((x 1 (aref results 0)))
(let ((passed x 1))
(Lf pass?
(let ((x 2 (+ 1 passed)))
(let ((x 3 (aref results 1)))
(let ((x 4 (+ 1 x 3)))
(new-tuple x 2 x 4))))
(let ((x 5 (aref results 1)))
(let ((x 6 (+ 1 x 5)))
(new-tuple passed x 6)))))))

Done

21

Normalization Rules: lift-app

If a d that’s not already a v would be evaluated next, lift
it into a 1let (if it’s not already there).

(new-tuple
(+ 1 passed)
(+ 1 (aref results 1)))

= (let ((x 1 (+ 1 passed)))
(new-tuple
x 1
(+ 1 (aref results 1))))

22

Normalization Rules: lift-if

If an 1f would be evaluated next, lift it and push the
context into its branches.

(new-tuple
(1f pass? (+ 1 passed) passed)
(+ 1 (aref results 1)))

= (i1f pass?
(new-tuple
(+ 1 passed)
(+ 1 (aref results 1)))
(new-tuple
passed
(+ 1 (aref results 1))))

23

Normalization Rules: lift-let

If a 1et would be evaluated next, lift it and push the
context into its body.

(let ((x_ 1 (aref results 0)))
(new-tuple
(let ((passed x 1))
(Lf pass? (+ 1 passed) passed))
(+ 1 (aref results 1))))

= (let ((x_ 1 (aref results 0)))
(let ((passed x 1))
(new-tuple
(Lf pass? (+ 1 passed) passed)
(+ 1 (aref results 1)))))

24

Normalization Rules: lift-let

The let-bound variable must not be free in the
context.

((let ((c a))
(b c))
c)

(let ((c a))
((b c) c))

Rename the variable if necessary.

25

Normalization Rules: lift-let

We may consider a 1et to be “next” even if its RHS is a
function or primitive application.

(new-tuple

(let ((passed (aref results 0)))
(1f pass? (+ 1 passed) passed))

(+ 1 (aref results 1)))

= (let ((passed (aref results 0)))
(new-tuple
(Lf pass? (+ 1 passed) passed)
(+ 1 (aref results 1))))

26

Normalization Algorithm

Repeatedly applying the preceding rules turns an L4
expression into an L3 expression.

|. Following the order of evaluation, search the
expression to find the first non-value that appears
in a position where the L3 grammar expects a
value.

2. Lift that non-value out of its context and into a
let.

3. Repeat until we have an L3 program.

27

Normalization Algorithm

Revisit the sequence of intermediate expressions
produced while converting :update to L3.

28

Normalization Algorithm

Revisit the sequence of intermediate expressions
produced while converting :update to L3.

Observe: the portion of the expression above the most
recently lifted expression is always already in L3. But the
next step always begins by rescanning that region!

29

Normalization Algorithm

This observation suggests an optimization:

|. Following the order of evaluation, search the
expression to find the first non-value that appears
in a position where the L3 grammar expects a
value.

2. Lift that non-value out of its context and into a
let.

3. Resume search from the point of the lifted non-value.

30

Normalization Algorithm

For example, find the first expression to lift.

(£1 (£2 (£ x) (gl (92 (g ¥)))))

Lift it into a 1let.

(let ([t (f x)])
(£1 (£2 t (g1 (92 (g ¥))))))

Resume with the next lift-candidate.

(let ([t (f x)])
(f1 (£2 t (gl (92 (g y))))))

31

Normalization Algorithm

In general, the optimized algorithm alternates between
two modes.

© down mode — find the next expression evaluated
and go to up mode

© up mode — lift the expression into a let, if

necessary, and proceed in down mode on the next
expression evaluated.

32

Normalization Algorithm

Let’s step through some examples of the optimized
algorithm. We'll illustrate its progress by annotating the
expression it rewrites.

© “$” marks the current position when in down
mode.

© “#” marks the current position when in up mode.

© “@” marks where to place the next lifted
expression.

33

Algorithm Example: nested application

%¥a ((b c) ((de) £)))

34

Algorithm Example: nested application

(@ ((b c) ((de) £)))

35

Algorithm Example: nested application

(@ ((b c) ((de) £)))

36

Algorithm Example: nested application

(a ¥(b c) ((d e) £)))

37

Algorithm Example: nested application

(a (b c) ((d e) £)))

38

Algorithm Example: nested application

(a ((Bc) ((de) £)))

39

Algorithm Example: nested application

(a ((Bc) ((de) £)))

40

Algorithm Example: nested application

(a ((b @ ((de) £)))

41

Algorithm Example: nested application

(a ((b e) ((de) £)))

42

Algorithm Example: nested application

(a (#b c) ((d e) £)))

lift out to let:
(let ((x_l (b c)))
(a (x 1 #(d e) £))))

43

Algorithm Example: nested application

(let ((x_1 (b c)))
(a (x_1 #(d e) £))))

44

Algorithm Example: nested application

(let ((x_1 (b c)))
fa (x_1 (4d e) £))))

45

Algorithm Example: nested application

(let ((x_1 (b c)))
(a (x_ 1 ((&e) £))))

46

Algorithm Example: nested application

(let ((x_1 (b c)))
(a (x_ 1 ((&e) £))))

47

Algorithm Example: nested application

(let ((x_1 (b c)))
(a (x_1 ((d &) £))))

48

Algorithm Example: nested application

(let ((x_1 (b c)))
(a (x_1 ((d e) £))))

49

Algorithm Example: nested application

(let ((x_1 (b c)))
fa (x_1 (4d e) £))))

lift out to let:
(let ((x. 1 (b c)))
(let ((x 2 (d e)))
(a (x1 (x 2 #%)))))

50

Algorithm Example: nested application

(let ((x_1 (b c)))
(let ((x_2 (d e)))
(a (x 1 (x 2 §)))))

51

Algorithm Example: nested application

(let ((x_1 (b c)))
(let ((x_2 (d e)))
(a (x 1 (x 2 €)))))

52

Algorithm Example: nested application

(let ((x_1 (b c)))
(let ((x_2 (d e)))
(a (x_1 4x_2 £)))))

lift out to let:
(let ((x. 1 (b c)))
(let ((x 2 (d e)))
(let ((x 3 (x 2 £f)))
(a 4x_ 1 x 3)))))

53

Algorithm Example: nested application

(let ((x.1 (b c)))
(let ((x 2 (d e)))
(let ((x 3 (x 2 £f)))
(a #x_1 x_3)))))

lift out to let:
(let ((x. 1 (b c)))
(let ((x 2 (d e)))
(let ((x 3 (x 2 £f)))
(let ((x 4 (x 1 x 3)))
ta x 4)))))

54

Algorithm Example: nested application

(let ((x 1 (b c)))
(let ((x 2 (d e)))
(let ((x 3 (x 2 £f)))
(let ((x 4 (x 1 x 3)))
ta x 4)))))

55

Algorithm Example: nested application

(let ((x 1 (b c)))
(let ((x 2 (d e)))
(let ((x 3 (x 2 £f)))
(let ((x 4 (x 1 x 3)))
(a x_4)))))

56

Algorithm Example: nested let

¥(let ((x (a b))) (c x))
(d (let ((y e)) (£ y))))

57

Algorithm Example: nested let

(#let ((x (a b))) (c x))
(d (let ((y e)) (£ y))))

58

Algorithm Example: nested let

((let ((x ¥a b))) (c x))
(d (let ((y e)) (£ y))))

59

Algorithm Example: nested let

((let ((x (& b))) (c x))
(d (let ((y e)) (£ y))))

60

Algorithm Example: nested let

((let ((x (& b))) (c x))
(d (let ((y e)) (£ y))))

61

Algorithm Example: nested let

((let ((x (a B))) (c x))
(d (let ((y e)) (£ y))))

62

Algorithm Example: nested let

((let ((x (a2 ®))) (c x))
(d (let ((y e)) (£ y))))

63

Algorithm Example: nested let

((let ((x #€a b))) (c x))
(d (let ((y e)) (£ y))))

lift out to let:
(let ((x (a b)))
(¥c x)
(d (let ((y e)) (£ y)))))

64

Algorithm Example: nested let

(let ((x (a b)))
(fc x)
(d (let ((y e)) (£ y)))))

65

Algorithm Example: nested let

(let ((x (a b)))
((& x)
(d (let ((y e)) (£ ¥)))))

66

Algorithm Example: nested let

(let ((x (a b)))
((e x)
(d (let ((y e)) (£ ¥)))))

67

Algorithm Example: nested let

(let ((x (a b)))
((c #)
(d (let ((y e)) (£ y)))))

68

Algorithm Example: nested let

(let ((x (a b)))
((c #)
(d (let ((y e)) (£ y)))))

69

Algorithm Example: nested let

(let ((x (a b)))
(fc x)
(d (let ((y e)) (£ y)))))

lift out to let:
(let ((x (a b)))
(let ((x 1 (c x)))
(x 1
$d
(let ((y e))
(£ ¥))))))

70

Algorithm Example: nested let

(let ((x (a b)))
(let ((x 1 (c x)))
(x 1
¥d
(let ((y e))
(f ¥))))))

71

Algorithm Example: nested let

(let ((x (a b)))
(let ((x 1 (c x)))
(x 1
(&
(let ((y e))
(f ¥))))))

72

Algorithm Example: nested let

(let ((x (a b)))
(let ((x_1 (c x)))
(x 1
(&
(let ((y e))
(£ ¥))))))

73

Algorithm Example: nested let

(let ((x (a b)))
(let ((x 1 (c x)))
(x 1
(d
tlet ((y e))
(f ¥))))))

74

Algorithm Example: nested let

(let ((x (a b)))
(let ((x_ 1 (c x)))
(x 1
(d
(let ((y €))
(£ ¥))))))

75

Algorithm Example: nested let

(let ((x (a b)))
(let ((x_ 1 (c x)))
(x 1
(d
(let ((y €))
(£ ¥))))))

lift out to let:
(let ((x (a b)))
(let ((x 1 (c x)))
(let ((y e))
(x 1 (d ¥£ y))))))

76

Algorithm Example: nested let

(let ((x (a b)))
(let ((x_1 (c x)))
(let ((y e))
(x_1 (d #£ y))))))

77

Algorithm Example: nested let

(let ((x (a b)))
(let ((x_1 (c x)))
(let ((y e))
(x_1 (d (£ y))))))

78

Algorithm Example: nested let

(let ((x (a b)))
(let ((x_1 (c x)))
(let ((y e))
(x_1 (d (£ y))))))

79

Algorithm Example: nested let

(let ((x (a b)))
(let ((x_1 (c x)))
(let ((y e))
(x_1 (d (£ $))))))

80

Algorithm Example: nested let

(let ((x (a b)))
(let ((x_1 (c x)))
(let ((y e))
(x_1 (d (£))))))

81

Algorithm Example: nested let

(let ((x (a b)))
(let ((x_1 (c x)))
(let ((y e))
(x_1 (d 4£ y))))))

lift out to let:
(let ((x (a b)))
(let ((x 1 (c x)))
(let ((y e))
(let ((x_ 2 (f y)))
)))

(x 1 #d x 2)))

82

Algorithm Example: nested let

(let ((x (a b)))
(let ((x 1 (c x)))
(let ((y e))
(let ((x_2 (f y)))
(x_1 #d x 2))))))

lift out to let:
(let ((x (a b)))
(let ((x 1 (c x)))
(let ((y e))
(let ((x 2 (f y)))
(let ((x_3 (d x_2)))
< 1 x 3))))))

83

Algorithm Example: nested let

(let ((x (a b)))
(let ((x_1 (c x)))
(let ((y e))
(let ((x_ 2 (f y)))
(let ((x 3 (d x 2)))
=x_1 x 3))))))

84

Algorithm Example: nested let

(let ((x (a b)))
(let ((x_1 (c x)))
(let ((y e))
(let ((x_ 2 (f y)))
(let ((x 3 (d x 2)))
(x 1 x 3))))))

85

Algorithm Example: nested if

®((1f (a b) c (1f de £f)) g) h)

86

Algorithm Example: nested if

(¢(1f (a b) c (if d e f)) g) h)

87

Algorithm Example: nested if

((#1f (a b) c (if d e f)) g) h)

88

Algorithm Example: nested if

(((1f 42 b) c (if d e f)) g) h)

89

Algorithm Example: nested if

(((1f (& b) c (1if d e f)) g) h)

90

Algorithm Example: nested if

(((if (@ b) ¢ (if d e £f)) g) h)

91

Algorithm Example: nested if

(((1f (2 B) c (1if de £f)) g) h)

92

Algorithm Example: nested if

(((1f (2 ®) c (if de £f)) g) h)

93

Algorithm Example: nested if

(((1f #a b) c (if d e f)) g) h)

lift out to let:
(let ((x. 1 (a b)))
(if x 1
((& g) h)
(($1f d e £f) g) h)))

94

Algorithm Example: nested if

(let ((x. 1 (a b)))
(if x 1
((& g) h)
(($1f d e £f) g) h)))

95

Algorithm Example: nested if

(let ((x. 1 (a b)))
(if x 1
((¢ g) h)
(($1f d e £f) g) h)))

96

Algorithm Example: nested if

(let ((x 1 (a b)))
(if x 1
((c § h)
((#1f d e £f) g) h)))

97

Algorithm Example: nested if

(let ((x 1 (a b)))
(if x 1
((c ¢) h)
((#1f d e £f) g) h)))

98

Algorithm Example: nested if

(let ((x 1 (a b)))
(if x 1
(#c g) h)
((#1f d e £f) g) h)))

lift out to let:
(let ((x. 1 (a b)))
(if x 1
(let ((x_2 (c g))) (x_2 B))
(($¢if d e £f) g) h)))

99

Algorithm Example: nested if

(let ((x 1 (a b)))
(if x 1
(let ((x_2 (c g))) (x_2 B))
((#1f d e £f) g) h)))

100

Algorithm Example: nested if

(let ((x 1 (a b)))
(if x 1
(let ((x_2 (c g))) (x_2 b))
((#1f d e £f) g) h)))

101

Algorithm Example: nested if

(let ((x 1 (a b)))
(if x 1
(let ((x_2 (c g))) 4x_2 h))
((#1f d e £f) g) h)))

102

Algorithm Example: nested if

(let ((x 1 (a b)))
(if x 1
(let ((x_2 (c g))) (x_2 h))
((#1f d e £f) g) h)))

103

Algorithm Example: nested if

(let ((x 1 (a b)))
(if x 1
(let ((x_2 (c g))) (x_2 h))
(((1f & e £f) g) h)))

104

Algorithm Example: nested if

(let ((x 1 (a b)))
(if x 1
(let ((x_2 (c g))) (x_2 h))
(((1f @ e £f) g) h)))

lift out to let:
(let ((x. 1 (a b)))
(if x 1
(let ((x_2 (c g))) (x_2 h))
(if d ¢(& g) h) ¢(#£ g) h))))

105

Algorithm Example: nested if

(let ((x 1 (a b)))
(if x 1
(let ((x_2 (c g))) (x_2 h))
(1f 4 ¢(& g) h) (¥ g) h))))

106

Algorithm Example: nested if

(let ((x 1 (a b)))
(if x 1
(let ((x_2 (c g))) (x_2 h))
(1f d ¢(e g) h) (¥ g) h))))

107

Algorithm Example: nested if

(let ((x 1 (a b)))
(if x 1
(let ((x_2 (c g))) (x_2 h))
(1f d ((e &) h) (¥ g) h))))

108

Algorithm Example: nested if

(let ((x 1 (a b)))
(if x 1
(let ((x_2 (c g))) (x_2 h))
(1f d ((e @) h) ((F# g) h))))

109

Algorithm Example: nested if

(let ((x 1 (a b)))
(if x 1
(let ((x_2 (c g))) (x_2 h))
(1f 4 (e g) h) (¥ g) h))))

lift out to let:
(let ((x. 1 (a b)))
(if x 1
(let ((x_2 (c g))) (x_2 h))
(1f d

(let ((x 3 (e g))) 4x 3 h))
((£ g) h))))

110

Algorithm Example: nested if

(let ((x 1 (a b)))
(if x 1
(let ((x_2 (c g))) (x_2 h))
(if d
(let ((x. 3 (e g))) (x 3 W))
((# g) h))))

111

Algorithm Example: nested if

(let ((x 1 (a b)))
(if x 1
(let ((x_2 (c g))) (x_2 h))
(if d
(let ((x. 3 (e g))) (x 3 0))
((# g) h))))

112

Algorithm Example: nested if

(let ((x 1 (a b)))
(if x 1
(let ((x_2 (c g))) (x_2 h))
(1£f d
(let ((x_3 (e g))) 4x_3 h))
((# g) h))))

113

Algorithm Example: nested if

(let ((x 1 (a b)))
(if x 1
(let ((x_2 (c g))) (x_2 h))
(1£f d
(let ((x_3 (e g))) (x_3 h))
((# g) h))))

114

Algorithm Example: nested if

(let ((x 1 (a b)))
(if x 1
(let ((x_2 (c g))) (x_2 h))
(1£f d
(let ((x_3 (e g))) (x_3 h))
((€ g) h))))

115

Algorithm Example: nested if

(let ((x 1 (a b)))
(if x 1
(let ((x_2 (c g))) (x_2 h))
(1£f d
(let ((x_3 (e g))) (x_3 h))
((£f § h))))

116

Algorithm Example: nested if

(let ((x 1 (a b)))
(if x 1
(let ((x_2 (c g))) (x_2 h))
(1£f d
(let ((x_3 (e g))) (x_3 h))
((f ¢ h))))

117

Algorithm Example: nested if

(let ((x 1 (a b)))
(if x 1
(let ((x_2 (c g))) (x_2 h))
(1£f d
(let ((x_3 (e g))) (x_3 h))
(£ g) h))))

lift out to let:
(let ((x. 1 (a b)))
(if x 1
(let ((x_2 (c g))) (x_2 h))
(1f d

(let ((x_3 (e g))) (x_3 h))
(let ((x_4 (£ g)))
(x_4 B)))))

118

Algorithm Example: nested if

(let ((x 1 (a b)))
(if x 1
(let ((x_2 (c g))) (x_2 h))
(1£f d
(let ((x_3 (e g))
(let ((x_4 (£ qg))
(x 4 B)))))

(x_3 h))

-

119

Algorithm Example: nested if

(let ((x 1 (a b)))
(if x 1
(let ((x_2 (c g))) (x_2 h))
(1£f d
(let ((x_3 (e g))
(let ((x_4 (£ qg))
(x 4 B)))))

(x_3 h))

-

120

Algorithm Example: nested if

(let ((x 1 (a b)))
(if x 1
(let ((x_2 (c g))) (x_2 h))
(1£f d
(let ((x_3 (e g))
(let ((x_4 (£ qg))
4x_4 h)))))

(x_3 h))

-

121

Algorithm Example: nested if

(let ((x 1 (a b)))
(if x 1
(let ((x_2 (c g))) (x_2 h))
(1£f d
(let ((x_3 (e g))
(let ((x_4 (£ qg))
(x_ 4 h)))))

(x_3 h))

-

122

Algorithm Implementation

We'll implement the algorithm for a subset of L4.

e:= (e e)
| (Lf e e e)
| v

v:=x | number

Extending the implementation to the rest of L4 is
assighment 4.

123

Algorithm Implementation

The algorithm’s execution defines a sequence of partially

normalized expressions, each of which can be divided
into three pieces:

|. the expression at the arrow,

2. the portion of the expression outside the circle,
and

3. the portion of the expression outside (1) but
inside (2).

(2) is irrelevant in subsequent steps, since it’s already
fully normalized, but we need a representation for (3).

124

Algorithm Implementation

A context is an expression with a hole in it. We’'ll

represent it inside-out, so we can easily access what’s
just outside the arrow.

(define-type context

[if-ctxt (t L4-e?)

(e L4-e?)

(k context?)]
[fun-ctxt (a L4-e?)

(k context?)]
[arg-ctxt (f val?)

(k context?)]
[no-ctxt])

125

Algorithm Implementation

For this partially normalized expression
(... ©®(a ¥b c)) e))

we represent the unnormalized context outside the
arrow with this structure

(arg-ctxt
'a
(fun-ctxt 'e (no-ctxt)))

126

Algorithm Implementation

A pair of mutually recursive functions implement the
steps shown in the illustrated traces.

; find: L4-e context - L3-e

; £find takes the next step when a

; downward arrow points to e. k

; records the context between the
arrow and the enclosing circle

(deflne (find e k)

-)

; £ill: L3-d context - L3-e

; £111 does the same for an upward
; arrow

(define (fill d k)

-)

127

Algorithm Implementation

We'll start with £ind, which dispatches on the form of
the expression at the arrow.

(define (find e k)
(match e
[(,£ ,a)
e o]
[(1f ,c ,t ,e)
-]
[(? wval?)

...1))

128

Algorithm Implementation

When the arrow points down at an application, the
search proceeds into the function position, extending
the context with a fun-ctxt layer.

(define (find e k)
(match e

[(,£ ,a)
(find £ (fun-ctxt a k))]
c..))

129

Algorithm Implementation

When the arrow points down at an i £, the search

proceeds into the test position, extending the context
with an if-ctxt layer.

(define (find e k)
(match e

i:kif ,¢ ,t ,e)
(find ¢ (1f-ctxt t e k))]
c.o.))

130

Algorithm Implementation

When the arrow points down at a value, leave it in place
by calling £111 (which will resume the search for the

next expression by examining the context).

(define (find e k)
(match e

[(? val?)
(£111 e k)]
cee))

131

Algorithm Implementation

We'll now define £111, which dispatches on the form
of the enclosing context.

(define (f£ill 4d k)
(type-case context k
[if-ctxt (t e k)
e o]
[fun-ctxt (a k)
e o]
[arg-ctxt (f k)
ce]
[no-ctxt ()
1))

132

Algorithm Implementation

In defining £111's cases, it will be helpful to examine

some examples. For example, consider these steps, in
which the context is a fun-ctxt.

(let ((x_1 (b c)))
(a (x_1 ((&¢ e) £))))

L, (let ((x.1 (b c)))
(a (x 1 ((d &) £))))

(let ((x. 1 (b c)))
(a (x_1 (4d e) £))))

- (let ((x.1 (b c)))
(let ((x 2 (d e)))
(a (x1 (x 2 #)))))

133

Algorithm Implementation

These examples suggest that the fun-ctxt case has
two sub-cases:

© when the function position is a value, leave it in
place and continue with the argument position;

o otherwise, lift it into a 1et then do the same.

134

Algorithm Implementation

The second sub-case lifts d just outside of k making it
the last 1et in the normalized portion of the program.

(define (fill d k)
(type-case context k

[fun-ctxt

(a k)
(1£f (wval? 4d)

(find a (arg-ctxt d k))

(let ([x (fresh-wvar)])

“(let ([,x ,d])
, (find a
(arg-ctxt x k)))))]

-))

135

Algorithm Implementation

Now consider these examples, in which the context is
an arg-ctxt.

(let ((x. 1 (b c)))
(a (x 1 ((d e) £))))

. (let ((x 1 (b c)))
(a (x 1 (#4d e) £))))

(let ((x.1 (b c)))
(let ((x_2 (d e)))
(a (x_ 1 4x 2 £)))))

- (let ((x.1 (b c)))
(let ((x 2 (d e)))
(let ((x 3 (x 2 £f)))
(2 #x 1 x 3)))))

136

Algorithm Implementation

These examples suggest that the arg-ctxt case has
two sub-cases:

© when the argument position is a value, rebuild the
application and examine its enclosing context;

o otherwise, lift it into a 1et then do the same.

137

Algorithm Implementation

(define (fill d k)
(type-case context k

[arg-ctxt
(£ k)
(1£f (wval? 4d)

(£111 (,£f ,d) k)

(let ([x (fresh-wvar)])

“(let ([,x ,d])
, (£111 " (,£ ,x) k))))]

.-))

138

Algorithm Implementation

Now consider these examples, in which the context is

an 1f-ctxt.

—

(((1f a2 b) ¢ (if d e £f))

g)
h)

(let ((x 1 (a b)))
(if x 1
((& g) h)
((#if d e f) g) h)))

—>

(let ((x_ 1 (a b)))
(if x 1
(let ((x. 2 (c g)))
(x_2 h))
(((if ¢ e £f) g) h)))

(let ((x_1 (a b)))
(if x 1
(let ((x_2 (c g)))
(x_2 h))
(if d
((& g) h)
((#£ g) h))))

139

Algorithm Implementation

These examples suggest that the 1£-ctxt case has
two sub-cases:

© if the test position is a value, leave it in place and
push the context into the branches;

o otherwise, lift it into a 1et then do the same.

140

Algorithm Implementation

(define (f£ill d4d k)
(type-case context k

[1f-ctxt

(t e k)
(1£f (wval? d)
“(1f ,d

, (find t k)
, (find e k))
(let ([x (fresh-wvar)])
“(let ([,x ,d])
(1f ,x
, (find t k)
, (find e k)))))]

..))

141

Algorithm Implementation

There’s one more case, no-ctxt. When there’s
nothing between the (normalized) expression at the

(upward) arrow and the normalized portion of the
program, we’re done.

(define (f£ill d4d k)
(type-case context k

igé—ctxt () di
c..))

142

Algorithm Implementation

The top-level function norm calls £ind with the empty
context.

; norm: L4-e - L3-e
(define (norm e)
(find e (no-ctxt)))

143

Context Duplication

i £-lifting rule duplicates the content. What happens
when an 1f appears in the context of an 1 £!?

(1f (1if x1 x2 x3) x4 x5)

= (i1f x1 (if x2 x4 x5) (if x3 x4 x5))

x4 and x5 each appear twice.

144

Context Duplication

What about an i f outside an i f outside an 1 f?
(1f (1f (1f x1 x2 x3) x4 x5) x6 x7)

= (i1f x1
(1f x2 (if x4 x6 x7) (1f x5 x6 x7))
(1f x3 (1if x4 x6 x7) (1f x5 x6 x7)))

x6 and x7 each appear four times.

145

Context Duplication

What about an 1f outside an 1f outside an if outside
an 1£?

(1f (if (if (1f x1 x2 x3) x4 x5) x6 x7)
x8
x9)

= (1f x1
(1f x2
(1f x4 (if x6 x8 x9) (1f x7 x8 x9))
(1f x5 (1f x6 x8 x9) (i1f x7 x8 x9)))
(1f x3
(if x4 (if x6 x8 x9) (i1f x7 x8 x9))
(1f x5
(1f x6 x8 x9)
(1f x7 x8 x9))))

x8 and x9 each appear eight times.

146

Context Duplication

Ighore this problem in assighment 4.

147

Context Duplication

We can avoid exponential growth by turning the context
into a function, to be tail-called by the branches. For
example,

(+ (if vele 2) e big)

= (let ((ctxt
(A (ret-val) (+ ret-val e big))))
(1f v (ctxt e 1) (ctxt e 2)))

148

Full L4: begin

Transform begin expressions into 1let expressions
using the rule

(begin el e2)
= (let ((x el)) e2)

which holds when x is not free in e2.

149

Full L4: multi-arg apps

Extend the context variant representing application
expressions to accommodate multiple arguments by
recording

© the sub-expressions that have already been
normalized, and

© the sub-expressions remaining.

When none remain, rebuild the application and call
£ill as in the single argument case.

150

Full L4: primitive operators

biop, pred, and array/tuple expressions are like

applications, if you pretend that the operator is a
variable.

151

Full L4: variable freshness

The rules for lifting 1ets and eliminating begins

assume that the bound variable does not appear free in
certain expressions.

Guarantee this constraint by giving every bound variable
a fresh name in a pre-normalization pass.

152

Cleaning Up: copied code

In several £111 cases, we repeated this pattern

“If d is a value, do something; if it isn’t, let it into a
let and do the same thing to the 1let-bound
variable.”

Repetition is bad practice.

153

Cleaning Up: copied code

We should abstract over this pattern.

; maybe-let: L3-d (val - L3-e) - L3-e
(define (maybe-let d f)
(1£ (wval? 4d)
(£ d)
(let ([x (fresh-var)])
"(let ([,x ,d])
y (£ x)))))

154

Cleaning Up: copied code

(define (fill d k)

[fun-ctxt
(a k)
(maybe-let d
(A (v)
(find a (arg-ctxt v k))))]
..)

155

Cleaning Up: copied code

(define (fill d k)

[arg-ctxt
(£ k)
(maybe-let d
(A (v)
(£i11 " (,£ ,v) k)))]
..)

156

Cleaning Up: copied code

(define (f£fill 4 k)
(type-case context k

[1f-ctxt
(t e k)
(maybe-let d
(A (v)
“(if v
, (find t k)
, (find e k))))]

..))

157

Cleaning Up: avoiding dispatch

Some calls to £ind add a layer to the context; calls to
£ill eventually remove the layer and switch on it.

Observe that for each call to £ind, we know which
£ill case eventually fires.

158

Cleaning Up: avoiding dispatch

(define (find e k)
(match e

[(,£ ,a)
(find £ (fun-ctxt a k))]
)

(define (fill'd k)

[fun-€&txt
(a k)
(maybe-let d
(A (v)
(find a (arg-ctxt v k))))]

. .)

159

Cleaning Up: avoiding dispatch

(define (find e k)
(match e

[(if ,c ,t ,e)
(find ¢ (i1f-ctx
c..))

(define (fill
(type-case context k

t e k))]

[1f-ftxt
(t e k)
(maybe-let d
(A (v)
“(1if ,v
, (find t k)
, (find e k))))]

--))

160

Cleaning Up: avoiding dispatch
(define (£ill d k)

[fun-ctxt
(a k)
(maybe-let d
(A (v)

iéég— Xt

(f k)
(maybe-let d
(A (v)
(£111 "(,£ ,v) k)))]
..)

161

Cleaning Up: avoiding dispatch

(define (norm e)
(find e (no-¢txt)))

(define (filY d k)

162

Cleaning Up: avoiding dispatch

Knowing which case eventually fires lets us eliminate the
switch by replacing the context structures with

functions that do whatever £i11 would do in the

corresponding case.

163

