Problem Definitions, Reductions & Expressing Them as Programs

Chenhao Zhang

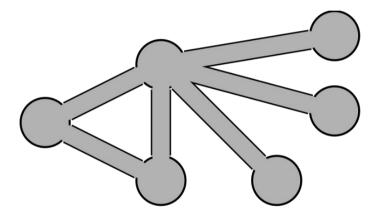
CS396 Fall 2023 Northwestern

Plan of the week

- NP Problem & Reduction -- Monday
- Examples, Reduction in Karp (Today)
- Lab, Assignment 4 -- Friday

Review – NP problem

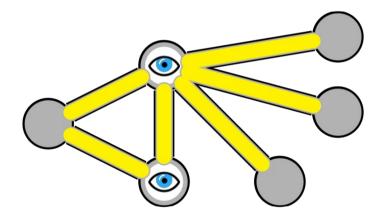
Can we cover all edges by selecting only **2** vertices?



VERTEX-COVER

Review – NP problem

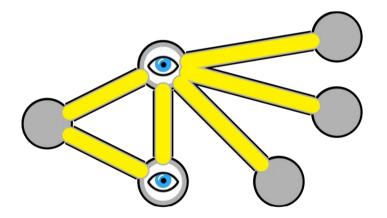
Can we cover all edges by selecting only **2** vertices?



VERTEX-COVER

Review – NP problem

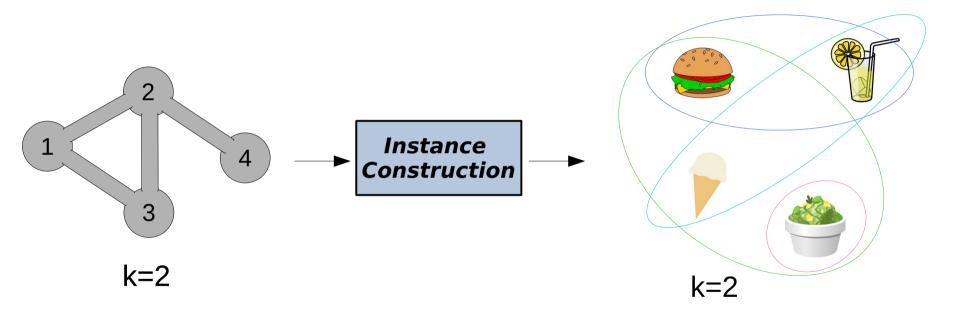
Can we cover all edges by selecting only **2** vertices?



VERTEX-COVER

Yes-instance has easy to check certificates

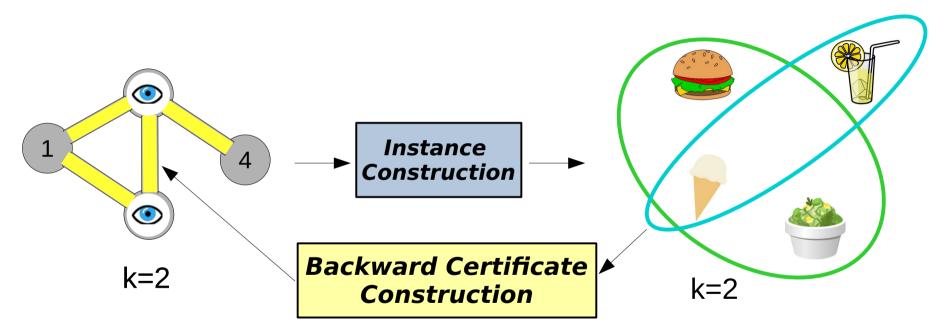
Review – Reduction and Justification



VERTEX-COVER

Set-Cover

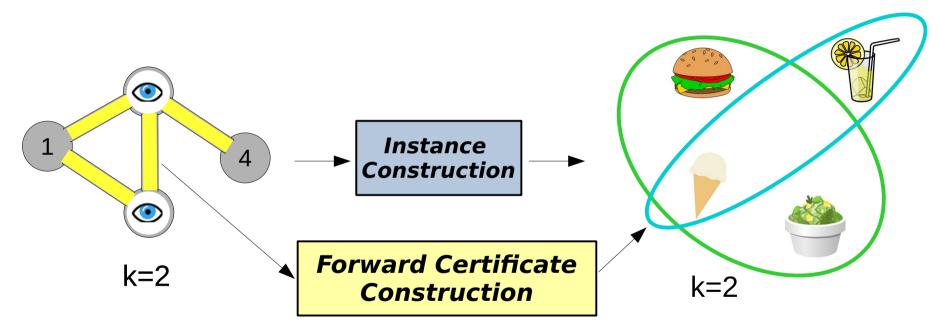
Backward Certificate Construction



VERTEX-COVER

Set-Cover

Forward Certificate Construction



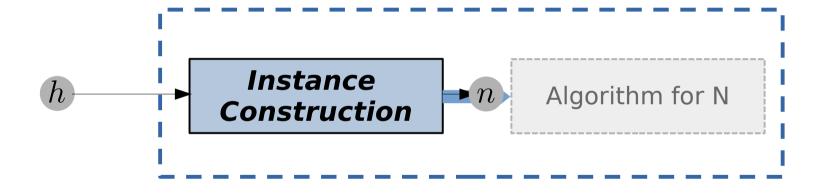
VERTEX-COVER

Set-Cover

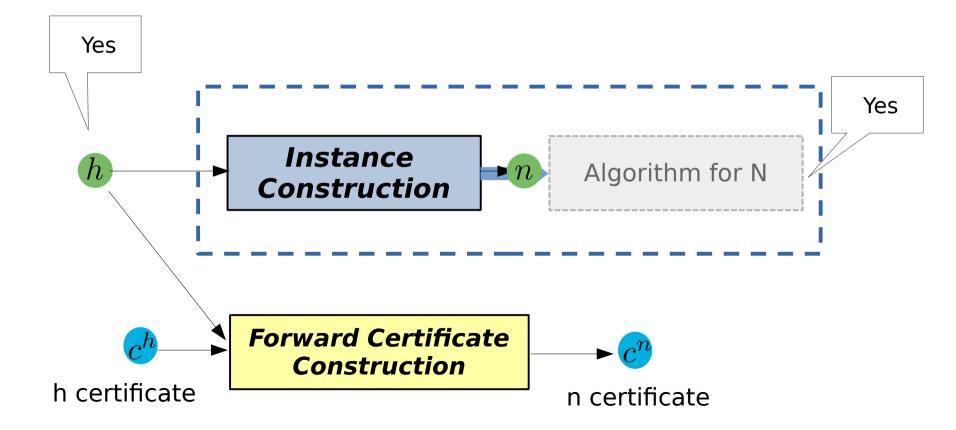
(named after Richard M. Karp)

Reduction ExampleH = 3-SATN = INDEPENDENT-SET

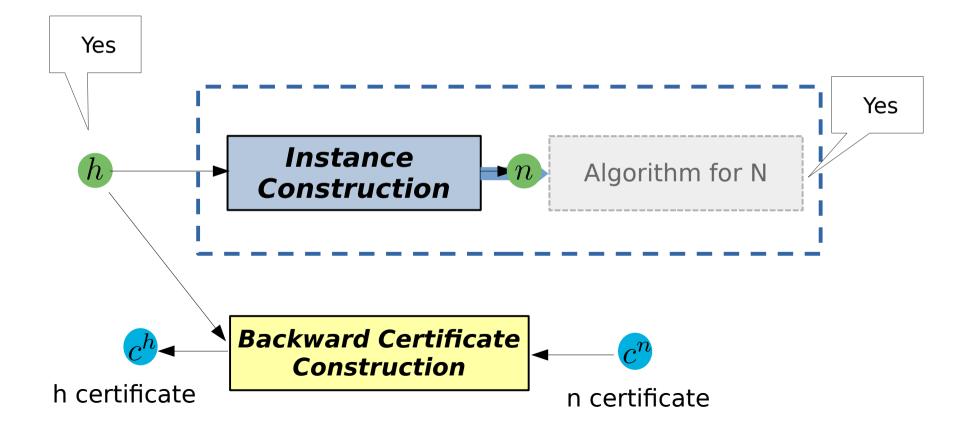
Problem Definitions



Justifying N No => H No

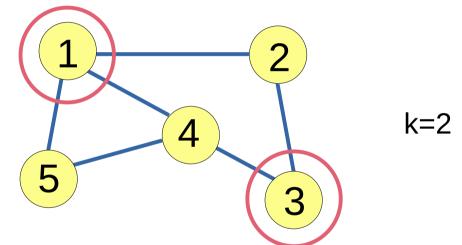


Justifying N Yes => H Yes



INDEPENDENT-SET

Exists a set of k vertices s.t. no two are neighbors of each other?



Instance: a graph G and a threshold number k

Certificate: a subset of the vertices of G

Instance: graph G and natural k

Instance: graph G and natural k

Certificate: subset of vertices of G

Instance: graph G and natural k

Certificate: subset of vertices of **G**

Assertion for valid certificate C of (G,k): Forall e in edges of G:

Instance: graph G and natural k

Certificate: subset of vertices of **G**

Assertion for valid certificate C of (G,k): Forall e in edges of G: Not (And <u>one vertex of</u> e in C <u>the other vertex of</u> e in C)

Instance: graph G and natural k

Certificate: subset of vertices of **G**

Assertion for valid certificate C of (G,k): Forall e in edges of G: Not (And <u>one vertex of</u> e in C <u>the other vertex of</u> e in C)

and

Size of C >= k

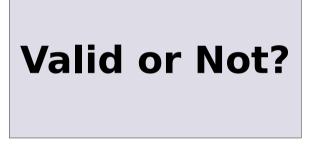
3-SAT – Mother of All NP-Problems

Exists true/false assignment of the variable satisfying all clauses?

$$(\neg x_1 \lor x_2 \lor x_3)$$

$$(x_1 \lor \neg x_2 \lor x_4)$$

$$(x_2 \vee \neg x_3 \vee \neg x_4)$$



Instance: A Boolean formula in 3-conjunctive normal form (CNF)

$$x_1 \rightsquigarrow F \qquad x_2 \rightsquigarrow T \qquad x_3 \rightsquigarrow F \qquad x_4 \rightsquigarrow F$$

Certificate: Assignment from variables of the CNF to Boolean

3-SAT Instance and Certificate

Instance: 3CNF formula Phi

3-SAT Instance and Certificate

Instance: 3CNF formula Phi

Certificate: mapping from variables of **Phi** to Booleans

3-SAT Instance and Certificate

Instance: 3CNF formula Phi

Certificate: mapping from variables of **Phi** to Booleans

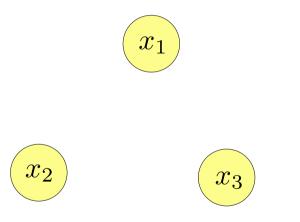
Assertion for valid certificate C of Phi: Forall c in clauses of Phi: Exists (literal I in c s.t I is satisfied under c)

Reductions

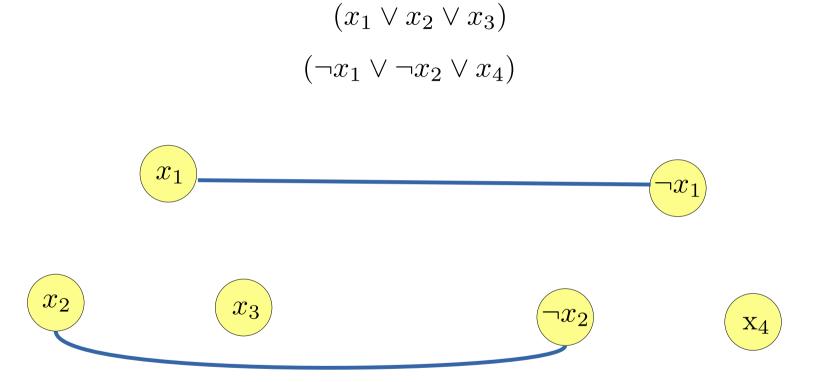
 $(x_1 \lor x_2 \lor x_3)$

$$(\neg x_1 \lor \neg x_2 \lor x_4)$$

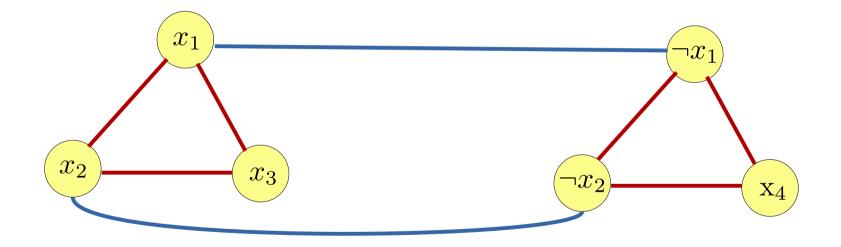
 $(x_1 \lor x_2 \lor x_3)$ $(\neg x_1 \lor \neg x_2 \lor x_4)$



 $(x_1 \lor x_2 \lor x_3)$ $(\neg x_1 \lor \neg x_2 \lor x_4)$

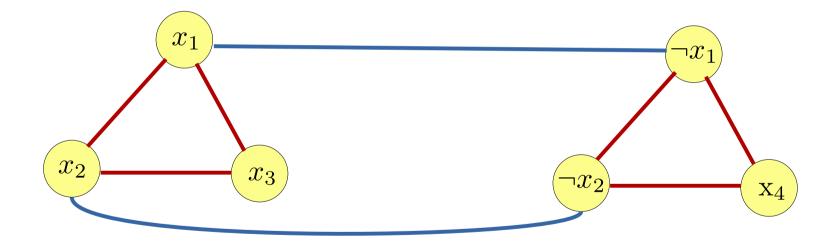


 $(x_1 \lor x_2 \lor x_3)$ $(\neg x_1 \lor \neg x_2 \lor x_4)$



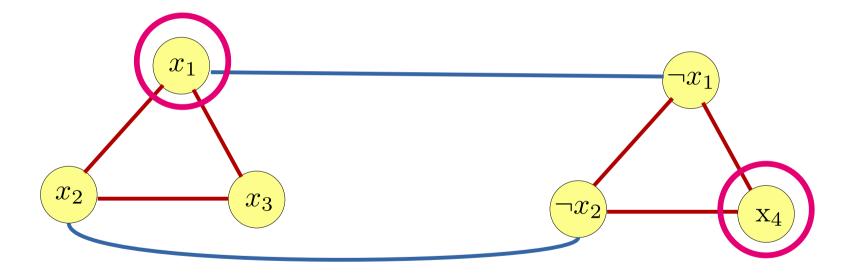
Forward Certificate Construction

$$(x_1 \lor x_2 \lor x_3) \qquad x_1 = T$$
$$(\neg x_1 \lor \neg x_2 \lor x_4) \qquad x_4 = T$$



Forward Certificate Construction

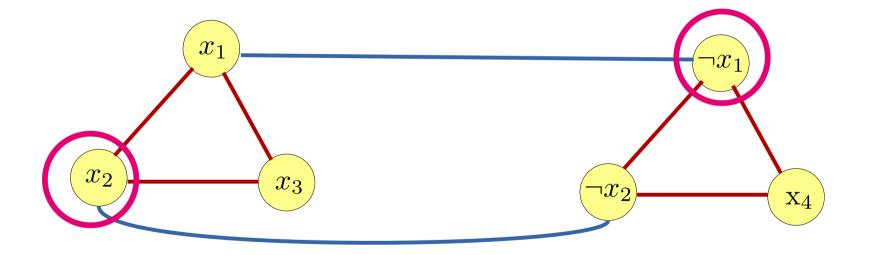
$$(x_1 \lor x_2 \lor x_3) \qquad x_1 = T$$
$$(\neg x_1 \lor \neg x_2 \lor x_4) \qquad x_4 = T$$



Backward Certificate Construction

 $(x_1 \lor x_2 \lor x_3)$

 $(\neg x_1 \lor \neg x_2 \lor x_4)$



Backward Certificate Construction

$$(x_1 \lor x_2 \lor x_3) \qquad x_2 = T$$
$$(\neg x_1 \lor \neg x_2 \lor x_4) \qquad x_1 = F$$

