Reduction of NP Problems \& Property-Based Testing

Chenhao Zhang
CS396 Spring 2023
Northwestern

Plan of the week

- NP Problem \& Reduction (Today)
- Examples, Reduction in Karp -- Wednesday
- Lab, Assignment 4 -- Friday

Many problems have efficient algorithms

Minimum Spanning Tree

Many problems have efficient algorithms

Minimum Spanning Tree

Shortest path

version with Yes/No answer

Has Spanning Tree w/ Cost <=15 ?

Has S-T path w/ Cost <=5 ?

version with Yes/No answer - decision problem

Has Spanning Tree w/ Cost <=15?

Has S-T path w/ Cost <=5 ?

version with Yes/No answer - decision problem

Has Spanning Tree w/ Cost <=15?

Has S-T path w/ Cost <=5 ?

$1+4=5$

version with Yes/No answer - decision problem

Has Spanning Tree w/ Cost <=15 ?

Has S-T path w/ Cost <=5 ?

$1+4=5$

version with Yes/No answer - decision problem

Has Spanning Tree w/ Cost <=15 ?

Has S-T path w/ Cost <=5 ?

$1+4=5$

Yes-Instance has a certificate, i.e., proof of yes

Has Spanning Tree w/ Cost <=15 ?

Has S-T path w/ Cost <=5 ?

$1+4=5$

No-Instance has no certificate, proof of yes

Has Spanning Tree w/ Cost <=14 ?

Has S-T path w/ Cost <=4?

$$
1+4=5>4
$$

No-Instance has no certificate, proof of yes

Has Spanning Tree w/ Cost <=14 ?

Has S-T path w/ Cost <=4?

$1+4=5>4$

No-Instance has no certificate, proof of yes

Has Spanning Tree w/ Cost <=14 ?

Has S-T path w/ Cost <=4?

$$
1+4=5>4
$$

No-Instance has no certificate, proof of yes

Has Spanning Tree w/ Cost <=14 ?

$$
1+5+4+2=12<=14
$$

Has S-T path w/ Cost <=4?

$$
1+4=5>4
$$

No-Instance has no certificate, proof of yes

Has Spanning Tree w/ Cost <=14 ?

$$
1+5+4+2=12<=14
$$

Has S-T path w/ Cost <=4?

$$
4=4<=4
$$

No-Instance has no certificate, proof of yes

Has Spanning Tree w/ Cost <=14 ?

Has S-T path w/ Cost <=4?

$$
4=4<=4
$$

No-Instance has no certificate, proof of yes

Has Spanning Tree w/ Cost <=14 ?

Has S-T path w/ Cost <=4?

$$
4=4<=4
$$

There are also many other problems...

Can we get all by buying only 2 bundles?

Set-Cover

There are also many other problems...

Can we get all by buying only 2 bundles?

Set-Cover

There are also many other problems...

Can we watch all roads by setting only $\mathbf{2}$ sentry points?

Vertex-Cover

There are also many other problems...

Can we watch all roads by setting only $\mathbf{2}$ sentry points?

Vertex-Cover

There are also many other problems...

Can we watch all roads by setting only $\mathbf{2}$ sentry points?

Vertex-Cover

There are also many other problems...

Is there a cycle that visits all vertices?

Hamiltonian-Cycle

There are also many other problems...

Is there a cycle that visits all vertices?

[^0]

Minimum-Spanning-Tree

Set-Cover

Vertex-Cover

Hamiltonian-Cycle

Q: What do they have in common?

Q: What do they have in common?

A: Validity of certificate EASY to check! (can be done in polynomial-time)

Q: What do they have in common?

A: Validity of certificate EASY to check! (can be done in polynomial-time)

$$
O(n) \quad O\left(n^{2}\right)
$$

Q: What do they have in common?

A: Validity of certificate EASY to check! (can be done in polynomial-time)

$$
O(n) \quad O\left(n^{2}\right) \quad O\left(n^{10^{10}}\right)
$$

Q: What do they have in common?

A: Validity of certificate EASY to check! (can be done in polynomial-time)

$$
O(n) \quad O\left(n^{2}\right) \quad O\left(n^{10^{10}}\right) \Theta\left(1.01^{n}\right)
$$

Q: What do they have in common?

A: Validity of certificate EASY to check! (can be done in polynomial-time)

NP-Problems

(Non-deterministic Polynomial-time)

Minimum-Spanning-Tree

Set-Cover

Vertex-Cover

Hamiltonian-Cycle

Q: Any difference?

"Easy"

Minimum-Spanning-Tree

4-aron

Set-Cover

Vertex-Cover

Hamiltonian-Cycle

$Q:$ Any difference?

A: It is generally believed that: "Hard" problems have NO efficient algorithms

Q : Any difference?

A: It is generally believed that: "Hard" problems have NO efficient algorithms

But there's no proof for it yet...

Q : Any difference?

A: It is generally believed that: "Hard" problems have NO efficient algorithms

But there's no proof for it yet...

How do you prove that an NP-problem is "Hard"?

Design an efficient algorithm for problem N!

How do you prove that an NP-problem is "Hard"?

Design an efficient algorithm for problem N!

But... problem N is "Hard"

How do you prove that an NP-problem is "Hard"?

If N could be solved, a known hard problem \mathbf{H} could be also solved.

How do you prove that an NP-problem is "Hard"?

"reduction"

If N could be solved, a known hard problem \mathbf{H} could be also solved.

One-Call Reduction

One-Call Reduction - Correctness Property

H is the problem known to be hard
n is the new problem

\exists ©
n certificate

One-Call Reduction - Correctness Property

h certificate

One-Call Reduction

Vertex-Cover
Set-Cover

One-Call Reduction

Suppose there is an algorithm for N

Algorithm for N

One-Call Reduction

One-Call Reduction

Algorithm for H

One-Call Reduction

Algorithm for H

One-Call Reduction

Algorithm for H

One-Call Reduction

Algorithm for H

Reduction and Justifications of Correctness

Call this part "instance construction" from now on

Instance Construction

Vertex-Cover
Set-Cover

Instance Construction

Vertex-Cover
Set-Cover

Instance Construction

Vertex-Cover
Set-Cover

Justifying N Yes => H Yes

Justifying N Yes => H Yes

Backward Certificate Construction

Vertex-Cover
Set-Cover

Justifying N No => H No

h certificate
ncertificate

Justifying N No => H No

$\neg \exists c^{x} \Longleftarrow \neg \exists c^{9}$

Justifying N No => H No

Justifying N No => H No

Forward Certificate Construction

Vertex-Cover
Set-Cover

Forward Certificate Construction

Vertex-Cover

$$
\mathrm{k}=2
$$

SEt-Cover

Forward Certificate Construction

Forward Certificate Construction

Vertex-Cover
Set-Cover

Forward Certificate Construction

Vertex-Cover
Set-Cover

[^0]: Hamiltonian-Cycle

