
Proving Properties of Programs
What is a Correctness Proof?

PLT @ Northwestern

Computer Science, Northwestern University

1

Testing Sorting Algorithms

• output is ordered
For all lists 𝑙, (sorted? (sort 𝑙))

• output is a permutation of the input
For all lists 𝑙, (permutation-of? 𝑙 (sort 𝑙))

• .. for some sorting algorithms: sort is stable

2

Proving Programs Correct

• How to state properties of programs?

3

Proving Programs Correct

• How to state properties of programs?
• output is ordered: for all lists 𝑙, Sorted ((sort 𝑙))
• output is a permutation of the input: for all lists 𝑙, 𝑙 ↭ (sort 𝑙)

• How to prove programs correct?

4

Proving Programs Correct

• How to state properties of programs?
• output is ordered: for all lists 𝑙, Sorted ((sort 𝑙))
• output is a permutation of the input: for all lists 𝑙, 𝑙 ↭ (sort 𝑙)

• How to prove programs correct?

• What is a correctness proof?

5

Correctness Proof is Not Just About Algorithms!

struct Node { int data;
Node* next; };

void insert(Node* head, int data) {
while (head->next != nullptr)

head = head->next;
head->next = new Node{data, nullptr};

}

6

Correctness Proof is Not Just About Algorithms!

struct Node { int data;
Node* next; };

void insert(Node* head, int data) {
while (head->next != nullptr)

head = head->next;
head->next = new Node{data, nullptr};

}

Node *rest = new Node{10, nullptr};
Node *A = new Node{1, rest};

insert(A, 99);

7

Correctness Proof is Not Just About Algorithms!

struct Node { int data;
Node* next; };

void insert(Node* head, int data) {
while (head->next != nullptr)

head = head->next;
head->next = new Node{data, nullptr};

}

Node *rest = new Node{10, nullptr};
Node *A = new Node{1, rest};
Node *B = new Node{2, rest};
insert(A, 99);
// breaks statements about B!

8

Correctness Proof is Not Just About Algorithms!

• A model of programming languages, e.g. how program runs

9

Correctness Proof is Not Just About Algorithms!

• A model of programming languages, e.g. how program runs

• Powerful tools for expressing properties & making deductions

10

Correctness Proof is Not Just About Algorithms!

• A model of programming languages, e.g. how program runs

• Powerful tools for expressing properties & making deductions
Separation Logic: “These two pieces of programs shall share no
memory”

11

Correctness Proof is Not Just About Algorithms!

• A model of programming languages, e.g. how program runs

• Powerful tools for expressing properties & making deductions
Separation Logic: “These two pieces of programs shall share no
memory”

• Can the proof guide the implementation of programs?

12

Correctness Proof is Not Just About Algorithms!

• A model of programming languages, e.g. how program runs

• Powerful tools for expressing properties & making deductions
Separation Logic: “These two pieces of programs shall share no
memory”

• Can the proof guide the implementation of programs?

For now, we restrict our attention to a tiny subset of Racket.

13

Our Goal: Correctness of Insertion Sort

• output is ordered
• output is a permutation of the input
(define (sort l)
(match l

['() l]
[(cons hd tl) (insert hd (sort tl))]))

(define (insert x l)
(match l

['() (cons x '())]
[(cons hd tl) (if (< x hd)

(cons x l)
(cons hd (insert x tl)))]))

14

Example Properties Involving Lists

Example. The length function distributes over append:
(length (append 𝑙 𝑙1)) = (length 𝑙) + (length 𝑙1).

> (length (append (cons 5 (cons 2 '()))
(cons 9 '())))

3

> (+ (length (cons 5 (cons 2 '())))
(length (cons 9 '())))

3

15

The Data Definition of Lists

A list 𝑙 is either:
• An empty list '()
• A cons cell (cons 𝑦 𝑙′) where 𝑙′ is another list.

16

The Data Definition of Lists

A list 𝑙 is either:
• An empty list '()
• A cons cell (cons 𝑦 𝑙′) where 𝑙′ is another list.

(cons 5 (cons 2 '())) is a list because:

17

The Data Definition of Lists

A list 𝑙 is either:
• An empty list '()
• A cons cell (cons 𝑦 𝑙′) where 𝑙′ is another list.

(cons 5 (cons 2 '())) is a list because:
• (cons 5 (cons 2 '())) looks like (cons 𝑦 𝑙′) where 𝑙′ is (cons 2 '())

• (cons 2 '()) is a (another) list because:

18

The Data Definition of Lists

A list 𝑙 is either:
• An empty list '()
• A cons cell (cons 𝑦 𝑙′) where 𝑙′ is another list.

(cons 5 (cons 2 '())) is a list because:
• (cons 5 (cons 2 '())) looks like (cons 𝑦 𝑙′) where 𝑙′ is (cons 2 '())

• (cons 2 '()) is a (another) list because:
• (cons 2 '()) looks like (cons 𝑧 𝑙′′) where 𝑙′′ is '()
• '() is a list

19

A Template of Induction Over Lists

Example. The length function distributes over append:
(length (append 𝑙 𝑙1)) = (length 𝑙) + (length 𝑙1).

20

A Template of Induction Over Lists

Example. The length function distributes over append:
(length (append 𝑙 𝑙1)) = (length 𝑙) + (length 𝑙1).
Proof Template. (This is not a complete proof.)

21

A Template of Induction Over Lists

Example. The length function distributes over append:
(length (append 𝑙 𝑙1)) = (length 𝑙) + (length 𝑙1).
Proof Template. (This is not a complete proof.)
• Case 𝑙 is '(): show that

(length (append '() 𝑙1)) = (length '()) + (length 𝑙1).

22

A Template of Induction Over Lists

Example. The length function distributes over append:
(length (append 𝑙 𝑙1)) = (length 𝑙) + (length 𝑙1).
Proof Template. (This is not a complete proof.)
• Case 𝑙 is '(): show that

(length (append '() 𝑙1)) = (length '()) + (length 𝑙1).
• Case 𝑙 is (cons 𝑦 𝑙′): assuming that for any 𝑙′′,

(length (append 𝑙′ 𝑙′′)) = (length 𝑙′) + (length 𝑙′′),

23

A Template of Induction Over Lists

Example. The length function distributes over append:
(length (append 𝑙 𝑙1)) = (length 𝑙) + (length 𝑙1).
Proof Template. (This is not a complete proof.)
• Case 𝑙 is '(): show that

(length (append '() 𝑙1)) = (length '()) + (length 𝑙1).
• Case 𝑙 is (cons 𝑦 𝑙′): assuming that for any 𝑙′′,

(length (append 𝑙′ 𝑙′′)) = (length 𝑙′) + (length 𝑙′′),
we need to show that
(length (append (cons 𝑦 𝑙′) 𝑙1)) = (length (cons 𝑦 𝑙′)) + (length 𝑙1).

24

A Template of Induction Over Lists

Example. The length function distributes over append:
(length (append 𝑙 𝑙1)) = (length 𝑙) + (length 𝑙1).
Proof Template. (This is not a complete proof.)
• Case 𝑙 is '(): show that

(length (append '() 𝑙1)) = (length '()) + (length 𝑙1).
• Case 𝑙 is (cons 𝑦 𝑙′): assuming that for any 𝑙′′,

(length (append 𝑙′ 𝑙′′)) = (length 𝑙′) + (length 𝑙′′),
we need to show that
(length (append (cons 𝑦 𝑙′) 𝑙1)) = (length (cons 𝑦 𝑙′)) + (length 𝑙1).

• By induction, (length (append 𝑙 𝑙1)) = (length 𝑙) + (length 𝑙1) holds
for all lists 𝑙 and 𝑙1.

25

Proving Properties of List Functions by Induction

Example. The length function distributes over append:
(length (append 𝑙 𝑙1)) = (length 𝑙) + (length 𝑙1).
Proof (1/4). Induction on 𝑙 .
• Case 𝑙 is '(): we need to show that
(length (append '() 𝑙1)) = (length '()) + (length 𝑙1).

26

Proving Properties of List Functions by Induction

Example. The length function distributes over append:
(length (append 𝑙 𝑙1)) = (length 𝑙) + (length 𝑙1).
Proof (1/4). Induction on 𝑙 .
• Case 𝑙 is '(): we need to show that
(length (append '() 𝑙1)) = (length '()) + (length 𝑙1).
We are stuck: can’t make progress with (length (append '() 𝑙1)) and
(length '()).

27

“Running” Programs in Math

We will assume a programming language that
• Uses only lists, if, match, functions, number & arithmetic

• Does not use mutable variables

• All expression terminates

This way, we can partition programs into sets that “behave the same”. For
example, (if #t 5 3) should be the same as 5.

Let 𝑒1 ≡ 𝑒2 means that the programs 𝑒1 and 𝑒2 are equivalent.

28

“Running” Programs in Math

In the end, we want to be able to deduce that:
• (append (cons 1 (cons 2 '())) (cons 3 (cons 4 '()))) ≡
(cons 1 (cons 2 (cons 3 (cons 4 '()))))

• (length (cons 3 (cons 4 '()))) ≡ 2

• (length (append '() 𝑙1)) ≡ (length 𝑙1)

and more.

We will bake some program execution rules into “≡”.

29

Rules for “Running” Functions

(define (append xs ys)
(match xs

['() ys]
[(cons hd tl) (cons hd (append tl ys))]))

30

Rules for “Running” Functions

(define (append xs ys)
(match xs

['() ys]
[(cons hd tl) (cons hd (append tl ys))]))

We can replace (append '() 𝑙1) by
(append '() 𝑙1)

≡
(match '()
['() 𝑙1]
[(cons hd tl) (cons hd (append tl 𝑙1))])

31

Rules for “Running” Functions

(define (append xs ys)
(match xs

['() ys]
[(cons hd tl) (cons hd (append tl ys))]))

Similarly, we can replace (append (cons 𝑦 𝑙′) 𝑙1) by
(append (cons 𝑦 𝑙′) 𝑙1)

≡
(match (cons 𝑦 𝑙′)

['() 𝑙1]
[(cons hd tl) (cons hd (append tl 𝑙1))])

32

Rules of “Running” Matches (1)

(match '()
['() 𝑒1] ≡ 𝑒1
[(cons hd tl) 𝑒2])

33

Rules of “Running” Matches (1)

(match '()
['() 𝑒1] ≡ 𝑒1
[(cons hd tl) 𝑒2])

Example:
(match '()
['() 𝑙1]
[(cons hd tl) (cons hd (append tl 𝑙1))])

≡
𝑙1

34

Rules of “Running” Matches (2)

(match (cons 𝑦 𝑙′)
['() 𝑒1] ≡ 𝑒2{hd← 𝑦, tl← 𝑙′}
[(cons hd tl) 𝑒2])

35

Rules of “Running” Matches (2)

(match (cons 𝑦 𝑙′)
['() 𝑒1] ≡ 𝑒2{hd← 𝑦, tl← 𝑙′}
[(cons hd tl) 𝑒2])

Example:
(match (cons 𝑦 𝑙′)

['() 𝑙1]
[(cons hd tl) (cons hd (append tl 𝑙1))])

≡
(cons 𝑦 (append 𝑙′ 𝑙1))

36

Proving Properties of List Functions by Induction

Example. The length function distributes over append:
(length (append 𝑙 𝑙1)) = (length 𝑙) + (length 𝑙1).
Proof (1/4). Induction on 𝑙 .
• Case 𝑙 is '(): we need to show that
(length (append '() 𝑙1)) = (length '()) + (length 𝑙1).
By calculation in earlier slides,

(length (append '() 𝑙1))
≡ (length 𝑙1)

37

Proving Properties of List Functions by Induction

Example. The length function distributes over append:
(length (append 𝑙 𝑙1)) = (length 𝑙) + (length 𝑙1).
Proof (1/4). Induction on 𝑙 .
• Case 𝑙 is '(): we need to show that
(length (append '() 𝑙1)) = (length '()) + (length 𝑙1).
By calculation in earlier slides,

(length (append '() 𝑙1))
≡ (length 𝑙1)

≡ (length '()) + (length 𝑙1)

38

Running the Length function

(define (length xs)
(match xs

['() 0]
[(cons hd tl) (+ 1 (length tl))]))

39

Running the Length function

(define (length xs)
(match xs

['() 0]
[(cons hd tl) (+ 1 (length tl))]))

We calculate:
(length '())

≡
(match '()

['() 0]
[(cons hd tl) (+ 1 (length tl))])

40

Running the Length function

(define (length xs)
(match xs

['() 0]
[(cons hd tl) (+ 1 (length tl))]))

We calculate:
(length '())

≡
(match '()

['() 0]
[(cons hd tl) (+ 1 (length tl))])

≡
0

41

Proving Properties of List Functions by Induction (cont’d)

Example. The length function distributes over append:
(length (append 𝑙 𝑙1)) = (length 𝑙) + (length 𝑙1).
Proof (1/4). Induction on 𝑙 .
• Case 𝑙 is '(): we need to show that
(length (append '() 𝑙1)) = (length '()) + (length 𝑙1).
By calculation in earlier slides,

(length (append '() 𝑙1))
≡ (length 𝑙1)

≡ (length '()) + (length 𝑙1)

42

Proving Properties of List Functions by Induction (cont’d)

Example. The length function distributes over append:
(length (append 𝑙 𝑙1)) = (length 𝑙) + (length 𝑙1).
Proof (2/4). Induction on 𝑙 .
• Case 𝑙 is '(): we need to show that
(length (append '() 𝑙1)) = (length '()) + (length 𝑙1).
By calculation in earlier slides,

(length (append '() 𝑙1))
≡ (length 𝑙1)
= 0 + (length 𝑙1)
≡ (length '()) + (length 𝑙1)

43

Recap: Proving Properties of List Functions by Induction

Example. The length function distributes over append:
(length (append 𝑙 𝑙1)) = (length 𝑙) + (length 𝑙1).
Proof Template.
• ✓ Case 𝑙 is '(): show that

(length (append '() 𝑙1)) = (length '()) + (length 𝑙1).
• TODO Case 𝑙 is (cons 𝑦 𝑙′): assuming that for any 𝑙′′,
(length (append 𝑙′ 𝑙′′)) = (length 𝑙′) + (length 𝑙′′), we need to show
(length (append (cons 𝑦 𝑙′) 𝑙1)) = (length (cons 𝑦 𝑙′)) + (length 𝑙1).

• By induction, (length (append 𝑙 𝑙1)) = (length 𝑙) + (length 𝑙1) holds
for all lists 𝑙 and 𝑙1.

44

Proving Properties of List Functions by Induction (cont’d)

Example. The length function distributes over append:
(length (append 𝑙 𝑙1)) = (length 𝑙) + (length 𝑙1).
Proof (3/4).
• Case 𝑙 is (cons 𝑦 𝑙′): we need to show that if for any 𝑙′′,
(length (append 𝑙′ 𝑙′′)) = (length 𝑙′) + (length 𝑙′′) then we have
(length (append (cons 𝑦 𝑙′) 𝑙1)) = (length (cons 𝑦 𝑙′)) + (length 𝑙1):

45

More Calculation (1)

(length (append (cons 𝑦 𝑙′) 𝑙1))
≡ (the rule of function call)

(length (match (cons 𝑦 𝑙′)
['() 𝑙1]
[(cons hd tl) (cons hd (append tl 𝑙1))]))

(define (append xs ys)
(match xs
['() ys]
[(cons hd tl) (cons hd (append tl ys))]))

46

More Calculation (1)

(length (append (cons 𝑦 𝑙′) 𝑙1))
≡ (the rule of function call)

(length (match (cons 𝑦 𝑙′)
['() 𝑙1]
[(cons hd tl) (cons hd (append tl 𝑙1))]))

≡ (the rules of match)
(length (cons 𝑦 (append 𝑙′ 𝑙1)))

(define (length xs)
(match xs
['() 0]
[(cons hd tl) (+ 1 (length tl))]))

47

More Calculation (2)

(length (append (cons 𝑦 𝑙′) 𝑙1))
≡ (the rule of function call)

(length (match (cons 𝑦 𝑙′)
['() 𝑙1]
[(cons hd tl) (cons hd (append tl 𝑙1))]))

≡ (the rules of match)
(length (cons 𝑦 (append 𝑙′ 𝑙1)))

≡ (the rule of function call)
(match (cons 𝑦 (append 𝑙′ 𝑙1))

['() 0]
[(cons hd tl) (+ 1 (length tl))])

48

More Calculation (2)

(length (append (cons 𝑦 𝑙′) 𝑙1))
≡ (the rule of function call)

(length (match (cons 𝑦 𝑙′)
['() 𝑙1]
[(cons hd tl) (cons hd (append tl 𝑙1))]))

≡ (the rules of match)
(length (cons 𝑦 (append 𝑙′ 𝑙1)))

≡ (the rule of function call)
(match (cons 𝑦 (append 𝑙′ 𝑙1))

['() 0]
[(cons hd tl) (+ 1 (length tl))])

≡ (the rules of match)
(+ 1 (length (append 𝑙′ 𝑙1)))

49

Proving Properties of List Functions by Induction (cont’d)

Example. The length function distributes over append:
(length (append 𝑙 𝑙1)) = (length 𝑙) + (length 𝑙1).
Proof (3/4).
• Case 𝑙 is (cons 𝑦 𝑙′): we need to show that if for any 𝑙′′,
(length (append 𝑙′ 𝑙′′)) = (length 𝑙′) + (length 𝑙′′) then we have
(length (append (cons 𝑦 𝑙′) 𝑙1)) = (length (cons 𝑦 𝑙′)) + (length 𝑙1):

(length (append (cons 𝑦 𝑙′) 𝑙1)) ≡ (length (cons 𝑦 (append 𝑙′ 𝑙1)))
≡ 1 + (length (append 𝑙′ 𝑙1))

50

Proving Properties of List Functions by Induction (cont’d)

Example. The length function distributes over append:
(length (append 𝑙 𝑙1)) = (length 𝑙) + (length 𝑙1).
Proof (3/4).
• Case 𝑙 is (cons 𝑦 𝑙′): we need to show that if for any 𝑙′′,
(length (append 𝑙′ 𝑙′′)) = (length 𝑙′) + (length 𝑙′′) then we have
(length (append (cons 𝑦 𝑙′) 𝑙1)) = (length (cons 𝑦 𝑙′)) + (length 𝑙1):

(length (append (cons 𝑦 𝑙′) 𝑙1)) ≡ (length (cons 𝑦 (append 𝑙′ 𝑙1)))
≡ 1 + (length (append 𝑙′ 𝑙1))

1 + (length 𝑙′) + (length 𝑙1)
≡ (length (cons 𝑦 𝑙′)) + (length 𝑙1)

51

Proving Properties of List Functions by Induction (cont’d)

Example. The length function distributes over append:
(length (append 𝑙 𝑙1)) = (length 𝑙) + (length 𝑙1).
Proof (4/4).
• Case 𝑙 is (cons 𝑦 𝑙′): we need to show that if for any 𝑙′′,
(length (append 𝑙′ 𝑙′′)) = (length 𝑙′) + (length 𝑙′′) then we have
(length (append (cons 𝑦 𝑙′) 𝑙1)) = (length (cons 𝑦 𝑙′)) + (length 𝑙1):

(length (append (cons 𝑦 𝑙′) 𝑙1)) ≡ (length (cons 𝑦 (append 𝑙′ 𝑙1)))
≡ 1 + (length (append 𝑙′ 𝑙1))
≡ (induction hypothesis)

1 + (length 𝑙′) + (length 𝑙1)
≡ (length (cons 𝑦 𝑙′)) + (length 𝑙1)

52

Proving Properties of List Functions by Induction (cont’d)

Example. The length function distributes over append:
(length (append 𝑙 𝑙1)) = (length 𝑙) + (length 𝑙1).
Proof (4/4).
• Case 𝑙 is (cons 𝑦 𝑙′): we need to show that if for any 𝑙′′,
(length (append 𝑙′ 𝑙′′)) = (length 𝑙′) + (length 𝑙′′) then we have
(length (append (cons 𝑦 𝑙′) 𝑙1)) = (length (cons 𝑦 𝑙′)) + (length 𝑙1):

(length (append (cons 𝑦 𝑙′) 𝑙1)) ≡ (length (cons 𝑦 (append 𝑙′ 𝑙1)))
≡ 1 + (length (append 𝑙′ 𝑙1))
≡ (induction hypothesis)

1 + (length 𝑙′) + (length 𝑙1)
≡ (length (cons 𝑦 𝑙′)) + (length 𝑙1)

By induction, (length (append 𝑙 𝑙1)) ≡ (length 𝑙) + (length 𝑙1).
53

Sum Up: Proving Properties of List Functions by Induction

Property: “For all lists 𝑙 , ... 𝑙 ...”
Proof (template).
Induction on 𝑙 :
• Case 𝑙 is '(): ... '() ...

• Case 𝑙 is (cons 𝑦 𝑙′): if ... 𝑙′ ... then ... (cons 𝑦 𝑙′)

By induction, ... 𝑙

54

How Induction “Runs”

Example. The length function distributes over append:
(length (append 𝑙 𝑙1)) = (length 𝑙) + (length 𝑙1).

1. (length (append '() (cons 9 '()))) =
(length '()) + (length (cons 9 '()))

We have shown that (length (append '() 𝑙1)) = (length '())+ (length 𝑙1).
In this specific instance, 𝑙1 is (cons 9 '()).

55

How Induction “Runs”

Example. The length function distributes over append:
(length (append 𝑙 𝑙1)) = (length 𝑙) + (length 𝑙1).

1. (length (append '() (cons 9 '()))) =
(length '()) + (length (cons 9 '()))

2. (length (append (cons 2 '()) (cons 9 '()))) =
(length (cons 2 '())) + (length (cons 9 '()))

We have shown that if for any 𝑙′′,
(length (append 𝑙′ 𝑙′′)) = (length 𝑙′) + (length 𝑙′′) then we have
(length (append (cons 𝑦 𝑙′) 𝑙1)) = (length (cons 𝑦 𝑙′)) + (length 𝑙1).
Here the premise is true by (1), 𝑦 := 2 and 𝑙′ := '().

56

How Induction “Runs”

Example. The length function distributes over append:
(length (append 𝑙 𝑙1)) = (length 𝑙) + (length 𝑙1).

1. (length (append '() (cons 9 '()))) =
(length '()) + (length (cons 9 '()))

2. (length (append (cons 2 '()) (cons 9 '()))) =
(length (cons 2 '())) + (length (cons 9 '()))

3. (length (append (cons 5 (cons 2 '())) (cons 9 '()))) =
(length (cons 5 (cons 2 '()))) + (length (cons 9 '()))

We have shown that if for any 𝑙′′,
(length (append 𝑙′ 𝑙′′)) = (length 𝑙′) + (length 𝑙′′) then we have
(length (append (cons 𝑦 𝑙′) 𝑙1)) = (length (cons 𝑦 𝑙′)) + (length 𝑙1).
Here the premise is true by (2), 𝑦 := 5 and 𝑙′ := (cons 2 '()).

57

Appendix: Rules of Function Calls

For any function definition
(define (𝑓 𝑥1 𝑥2 . . .)

𝑒)

We have the computation rule
(𝑓 𝑒1 𝑒2 . . .) ≡ 𝑒{𝑥1 ← 𝑒1, 𝑥2 ← 𝑒2, . . . }

58

Appendix: Rules of Match

(match '()
['() 𝑒1] ≡ 𝑒1
[(cons hd tl) 𝑒2])

(match (cons 𝑥 𝑙)
['() 𝑒1] ≡ 𝑒2{hd← 𝑥, tl← 𝑙}
[(cons hd tl) 𝑒2])

59

Appendix: Rules of If

(if #t
𝑒1 ≡ 𝑒1
𝑒2)

(if #f
𝑒1 ≡ 𝑒2
𝑒2)

60

