Proving Properties of Programs What is a Correctness Proof?

PLT @ Northwestern
Computer Science, Northwestern University

Testing Sorting Algorithms

- output is ordered

$$
\text { For all lists } l \text {, (sorted? (sort l)) }
$$

- output is a permutation of the input

For all lists l, (permutation-of? $l(\operatorname{sort} l)$)

- .. for some sorting algorithms: sort is stable

Proving Programs Correct

- How to state properties of programs?

Proving Programs Correct

- How to state properties of programs?
- output is ordered: for all lists l, Sorted ((sort $l)$)
- output is a permutation of the input: for all lists $l, l \leadsto($ sort l)
- How to prove programs correct?

Proving Programs Correct

- How to state properties of programs?
- output is ordered: for all lists l, Sorted ((sort $l)$)
- output is a permutation of the input: for all lists $l, l \leadsto($ sort l)
- How to prove programs correct?
- What is a correctness proof?

Correctness Proof is Not Just About Algorithms!

```
struct Node { int data;
    Node* next; };
void insert(Node* head, int data) {
    while (head->next != nullptr)
        head = head->next;
    head->next = new Node{data, nullptr};
}
```


Correctness Proof is Not Just About Algorithms!

```
struct Node { int data;
    Node* next; };
void insert(Node* head, int data) {
    while (head->next != nullptr)
        head = head->next;
    head->next = new Node{data, nullptr};
}
Node *rest = new Node{10, nullptr};
Node *A = new Node{1, rest};
insert(A, 99);
```


Correctness Proof is Not Just About Algorithms!

```
struct Node { int data;
        Node* next; };
void insert(Node\star head, int data) {
    while (head->next != nullptr)
        head = head->next;
    head->next = new Node{data, nullptr};
}
Node *rest = new Node{10, nullptr};
Node *A = new Node{1, rest};
Node *B = new Node{2, rest};
insert(A, 99);
// breaks statements about B!
```


Correctness Proof is Not Just About Algorithms!

- A model of programming languages, e.g. how program runs

Correctness Proof is Not Just About Algorithms!

- A model of programming languages, e.g. how program runs
- Powerful tools for expressing properties \& making deductions

Correctness Proof is Not Just About Algorithms!

- A model of programming languages, e.g. how program runs
- Powerful tools for expressing properties \& making deductions Separation Logic: "These two pieces of programs shall share no memory"

Correctness Proof is Not Just About Algorithms!

- A model of programming languages, e.g. how program runs
- Powerful tools for expressing properties \& making deductions Separation Logic: "These two pieces of programs shall share no memory"
- Can the proof guide the implementation of programs?

Correctness Proof is Not Just About Algorithms!

- A model of programming languages, e.g. how program runs
- Powerful tools for expressing properties \& making deductions Separation Logic: "These two pieces of programs shall share no memory"
- Can the proof guide the implementation of programs?

For now, we restrict our attention to a tiny subset of Racket.

Our Goal: Correctness of Insertion Sort

- output is ordered
- output is a permutation of the input

```
(define (sort l)
    (match l
        ['() l]
        [(cons hd tl) (insert hd (sort tl))]))
    (define (insert x l)
        (match l
        ['() (cons x '())]
        [(cons hd tl) (if (< x hd)
                        (cons x l)
                        (cons hd (insert x tl)))]))
```


Example Properties Involving Lists

Example. The length function distributes over append:
$\left(\right.$ length $\left(\right.$ append $\left.\left.l l_{1}\right)\right)=($ length $l)+\left(\right.$ length $\left.l_{1}\right)$.

```
> (length (append (cons 5 (cons 2 '()))
                        (cons 9 '())))
```

3
> (+ (length (cons 5 (cons 2 '()))) (length (cons 9 '())))
3

The Data Definition of Lists

A list l is either:

- An empty list ' ()
- A cons cell (cons $y l^{\prime}$) where l^{\prime} is another list.

The Data Definition of Lists

A list l is either:

- An empty list ' ()
- A cons cell (cons $y l^{\prime}$) where l^{\prime} is another list.
(cons 5 (cons 2 '())) is a list because:

The Data Definition of Lists

A list l is either:

- An empty list ' ()
- A cons cell (cons $y l^{\prime}$) where l^{\prime} is another list.
(cons 5 (cons 2 '())) is a list because:
- (cons 5 (cons $\left.2{ }^{\prime}()\right)$) looks like (cons $\left.y l^{\prime}\right)$ where l^{\prime} is (cons $2{ }^{\prime}()$)
- (cons 2 '()) is a (another) list because:

The Data Definition of Lists

A list l is either:

- An empty list ' ()
- A cons cell (cons $y l^{\prime}$) where l^{\prime} is another list.
(cons 5 (cons 2 '())) is a list because:
- (cons 5 (cons $\left.2{ }^{\prime}()\right)$) looks like (cons $\left.y l^{\prime}\right)$ where l^{\prime} is (cons $2{ }^{\prime}()$)
- (cons 2 '()) is a (another) list because:
- (cons 2 '()) looks like (cons $z l^{\prime \prime}$) where $l^{\prime \prime}$ is '()
- ' () is a list

A Template of Induction Over Lists

Example. The length function distributes over append:
$\left(\right.$ length $\left(\right.$ append $\left.\left.l l_{1}\right)\right)=($ length $l)+\left(\right.$ length $\left.l_{1}\right)$.

A Template of Induction Over Lists

Example. The length function distributes over append:
$\left(\right.$ length $\left(\right.$ append $\left.\left.l l_{1}\right)\right)=($ length $l)+\left(\right.$ length $\left.l_{1}\right)$.
Proof Template. (This is not a complete proof.)

A Template of Induction Over Lists

Example. The length function distributes over append:
$\left(\right.$ length $\left(\right.$ append $\left.\left.l l_{1}\right)\right)=($ length $l)+\left(\right.$ length $\left.l_{1}\right)$.
Proof Template. (This is not a complete proof.)

- Case l is ' (): show that

$$
\left(\text { length }\left(\text { append } '() l_{1}\right)\right)=(\text { length ' }())+\left(\text { length } l_{1}\right) .
$$

A Template of Induction Over Lists

Example. The length function distributes over append:
$\left(\right.$ length $\left(\right.$ append $\left.\left.l l_{1}\right)\right)=($ length $l)+\left(\right.$ length $\left.l_{1}\right)$.
Proof Template. (This is not a complete proof.)

- Case l is ' (): show that

$$
\left(\text { length }\left(\text { append } '() l_{1}\right)\right)=(\text { length ' }())+\left(\text { length } l_{1}\right) .
$$

- Case l is (cons $y l^{\prime}$): assuming that for any $l^{\prime \prime}$,

$$
\left(\text { length }\left(\text { append } l^{\prime} l^{\prime \prime}\right)\right)=\left(\text { length } l^{\prime}\right)+\left(\text { length } l^{\prime \prime}\right),
$$

A Template of Induction Over Lists

Example. The length function distributes over append:
$\left(\right.$ length $\left(\right.$ append $\left.\left.l l_{1}\right)\right)=($ length $l)+\left(\right.$ length $\left.l_{1}\right)$.
Proof Template. (This is not a complete proof.)

- Case l is ' (): show that

$$
\left(\text { length }\left(\text { append } '() l_{1}\right)\right)=(\text { length ' }())+\left(\text { length } l_{1}\right) .
$$

- Case l is (cons $y l^{\prime}$): assuming that for any $l^{\prime \prime}$,

$$
\left(\text { length }\left(\text { append } l^{\prime} l^{\prime \prime}\right)\right)=\left(\text { length } l^{\prime}\right)+\left(\text { length } l^{\prime \prime}\right),
$$

we need to show that
$\left(\right.$ length $\left(\right.$ append $\left.\left.\left(\operatorname{cons} y l^{\prime}\right) l_{1}\right)\right)=\left(\right.$ length $\left.\left(\operatorname{cons} y l^{\prime}\right)\right)+\left(\right.$ length $\left.l_{1}\right)$.

A Template of Induction Over Lists

Example. The length function distributes over append:
$\left(\right.$ length $\left(\right.$ append $\left.\left.l l_{1}\right)\right)=($ length $l)+\left(\right.$ length $\left.l_{1}\right)$.
Proof Template. (This is not a complete proof.)

- Case l is ' (): show that

$$
\left(\text { length }\left(\text { append } '() l_{1}\right)\right)=(\text { length ' }())+\left(\text { length } l_{1}\right) .
$$

- Case l is (cons $y l^{\prime}$): assuming that for any $l^{\prime \prime}$,

$$
\left(\text { length }\left(\text { append } l^{\prime} l^{\prime \prime}\right)\right)=\left(\text { length } l^{\prime}\right)+\left(\text { length } l^{\prime \prime}\right),
$$

we need to show that
$\left(\right.$ length $\left(\right.$ append $\left.\left.\left(\operatorname{cons} y l^{\prime}\right) l_{1}\right)\right)=\left(\right.$ length $\left(\right.$ cons $\left.\left.y l^{\prime}\right)\right)+\left(\right.$ length $\left.l_{1}\right)$.

- By induction, (length $\left(\right.$ append $\left.\left.l l_{1}\right)\right)=($ length $l)+\left(\right.$ length $\left.l_{1}\right)$ holds for all lists l and l_{1}.

Proving Properties of List Functions by Induction

Example. The length function distributes over append:
$\left(\right.$ length $\left(\right.$ append $\left.\left.l l_{1}\right)\right)=($ length $l)+\left(\right.$ length $\left.l_{1}\right)$.
Proof (1/4). Induction on l.

- Case l is ' (): we need to show that
$\left(\right.$ length $\left(\right.$ append ' ()$\left.\left.l_{1}\right)\right)=($ length ' ()$)+\left(\right.$ length $\left.l_{1}\right)$.

Proving Properties of List Functions by Induction

Example. The length function distributes over append:
$\left(\right.$ length $\left(\right.$ append $\left.\left.l l_{1}\right)\right)=($ length $l)+\left(\right.$ length $\left.l_{1}\right)$.
Proof (1/4). Induction on l.

- Case l is ' (): we need to show that
(length (append ' () l_{1})) $=($ length ' ()$)+\left(\right.$ length $\left.l_{1}\right)$.
We are stuck: can't make progress with (length (append '() l_{1})) and (length '()).

"Running" Programs in Math

We will assume a programming language that

- Uses only lists, if, match, functions, number \& arithmetic
- Does not use mutable variables
- All expression terminates

This way, we can partition programs into sets that "behave the same". For example, (if \#t 5 3) should be the same as 5.

Let $e_{1} \equiv e_{2}$ means that the programs e_{1} and e_{2} are equivalent.

"Running" Programs in Math

In the end, we want to be able to deduce that:

- (append (cons 1 (cons $\left.\left.2^{\prime}()\right)\right)$ (cons 3 (cons $\left.\left.4^{\prime}()\right)\right)$) \equiv (cons 1 (cons 2 (cons 3 (cons $\left.\left.4{ }^{\prime}()\right)\right)$))
- (length (cons 3 (cons $\left.\left.4{ }^{\prime}()\right)\right)$) $\equiv 2$
- (length (append ' () $\left.\left.l_{1}\right)\right) \equiv\left(\right.$ length $\left.l_{1}\right)$
and more.
We will bake some program execution rules into " \equiv ".

Rules for "Running" Functions

(define (append xs ys)
(match xs
['() ys]
[(cons hd tl) (cons hd (append tl ys))]))

Rules for "Running" Functions

(define (append xs ys)
(match xs
['() ys]
[(cons hd tl) (cons hd (append tl ys))]))

We can replace (append '() l_{1}) by

```
    (append '() ll)
三
    (match '()
    ['() ll]
    [(cons hd tl) (cons hd (append tl ll))])
```


Rules for "Running" Functions

(define (append xs ys)
(match xs
['() ys]

Similarly, we can replace (append (cons $y l^{\prime}$) l_{1}) by

```
    (append (cons y l') l}\mp@subsup{l}{1}{}
    \equiv
    (match (cons y l')
    ['() ll]
    [(cons hd tl) (cons hd (append tl ll))])
```


Rules of "Running" Matches (1)

```
(match '()
    [' () \(\left.e_{1}\right] \quad \equiv e_{1}\)
    [(cons hd tl) \(e_{2}\) ])
```


Rules of "Running" Matches (1)

```
(match '()
    ['() e e ] \equiv e
    [(cons hd tl) e}\mp@subsup{e}{2}{}]
```

Example:
(match '()
['() $\left.l_{1}\right]$
[(cons hd tl$)\left(\right.$ cons hd (append $\left.\left.\left.\mathrm{tl} l_{1}\right)\right)\right]$)
\equiv
l_{1}

Rules of "Running" Matches (2)

$$
\begin{aligned}
& \text { (match (cons } \left.y l^{\prime}\right) \\
& \quad\left[\text { '() } e_{1}\right] \\
& \left.\quad\left[(\text { cons hd } \mathrm{tl}) e_{2}\right]\right)
\end{aligned} \quad \equiv \quad e_{2}\left\{\mathrm{hd} \leftarrow y, \mathrm{tl} \leftarrow l^{\prime}\right\}
$$

Rules of "Running" Matches (2)

```
(match (cons y l')
    ['() e e] }\quad\equiv\quad\mp@subsup{e}{2}{}{\textrm{hd}\leftarrowy,\textrm{tl}\leftarrow\mp@subsup{l}{}{\prime}
    [(cons hd tl) e}\mp@subsup{e}{2}{}]
```

Example:

```
    (match (cons y l')
        ['() ll
        [(cons hd tl) (cons hd (append tl ll))])
\equiv
    (cons y (append l' l}\mp@subsup{l}{1}{\prime}
```


Proving Properties of List Functions by Induction

Example. The length function distributes over append:
$\left(\right.$ length $\left(\right.$ append $\left.\left.l l_{1}\right)\right)=($ length $l)+\left(\right.$ length $\left.l_{1}\right)$.
Proof (1/4). Induction on l.

- Case l is ' (): we need to show that
(length (append ' ()$\left._{1}\right)$) $=($ length ' ()$)+\left(\right.$ length $\left.l_{1}\right)$.
By calculation in earlier slides,

$$
\equiv \quad \begin{gathered}
\left(\text { length }\left(\text { append } '() l_{1}\right)\right) \\
\left(\text { length } l_{1}\right)
\end{gathered}
$$

Proving Properties of List Functions by Induction

Example. The length function distributes over append:
$\left(\right.$ length $\left(\right.$ append $\left.\left.l l_{1}\right)\right)=($ length $l)+\left(\right.$ length $\left.l_{1}\right)$.
Proof (1/4). Induction on l.

- Case l is ' (): we need to show that
(length (append ' () $\left.l_{1}\right)$) $=($ length ' ()$)+\left(\right.$ length $\left.l_{1}\right)$.
By calculation in earlier slides,

$$
\begin{array}{lc}
& \left.\left.\left.\begin{array}{c}
(\text { length }(\text { append } \\
\\
\\
\\
\left(\text { length } l_{1}\right)
\end{array}\right) l_{1}\right)\right) \\
\equiv & (\text { length } '())+\left(\text { length } l_{1}\right)
\end{array}
$$

Running the Length function

(define (length xs)
(match xs
['() 0]
[(cons hd tl) (+ $1($ length $t l))])$

Running the Length function

```
(define (length xs)
    (match xs
    ['() 0]
    [(cons hd tl) (+ 1 (length tl))]))
```

We calculate:
(length '())
\equiv
(match '()
['() 0]
[(cons hd tl) (+ 1 (length tl))])

Running the Length function

```
(define (length xs)
    (match xs
    ['() 0]
    [(cons hd tl) (+ 1 (length tl))]))
```

We calculate:

```
    (length '())
三
    (match '()
        ['() 0]
        [(cons hd tl) (+ 1 (length tl))])
三
    0
```


Proving Properties of List Functions by Induction (cont'd)

Example. The length function distributes over append:
$\left(\right.$ length $\left(\right.$ append $\left.\left.l l_{1}\right)\right)=($ length $l)+\left(\right.$ length $\left.l_{1}\right)$.
Proof (1/4). Induction on l.

- Case l is ' (): we need to show that
(length (append ' () $\left.l_{1}\right)$) $=($ length ' ()$)+\left(\right.$ length $\left.l_{1}\right)$.
By calculation in earlier slides,

$$
\begin{array}{lc}
& \left.\left.\left.\begin{array}{c}
(\text { length }(\text { append } \\
\\
\\
\\
\left(\text { length } l_{1}\right)
\end{array}\right) l_{1}\right)\right) \\
\equiv & (\text { length } '())+\left(\text { length } l_{1}\right)
\end{array}
$$

Proving Properties of List Functions by Induction (cont'd)

Example. The length function distributes over append:
$\left(\right.$ length $\left(\right.$ append $\left.\left.l l_{1}\right)\right)=($ length $l)+\left(\right.$ length $\left.l_{1}\right)$.
Proof (2/4). Induction on l.

- Case l is ' (): we need to show that
(length (append ' () $\left.l_{1}\right)$) $=($ length ' ()$)+\left(\right.$ length $\left.l_{1}\right)$.
By calculation in earlier slides,

$$
\begin{array}{cc}
& \left(\text { length }\left(\text { append }{ }^{\prime}() l_{1}\right)\right) \\
\equiv & \left(\text { length } l_{1}\right) \\
= & 0+\left(\text { length } l_{1}\right) \\
\equiv & (\text { length } '())+\left(\text { length } l_{1}\right)
\end{array}
$$

Recap: Proving Properties of List Functions by Induction

Example. The length function distributes over append:
$\left(\right.$ length $\left(\right.$ append $\left.\left.l l_{1}\right)\right)=($ length $l)+\left(\right.$ length $\left.l_{1}\right)$.
Proof Template.

- $\checkmark \quad$ Case l is ' (): show that

$$
\left(\text { length }\left(\text { append } '() l_{1}\right)\right)=(\text { length ' }())+\left(\text { length } l_{1}\right) .
$$

- TODO Case l is (cons $y l^{\prime}$): assuming that for any $l^{\prime \prime}$, (length (append $\left.l^{\prime} l^{\prime \prime}\right)$) $=\left(\right.$ length $\left.l^{\prime}\right)+\left(\right.$ length $\left.l^{\prime \prime}\right)$, we need to show (length $\left(\right.$ append $\left.\left.\left(\operatorname{cons} y l^{\prime}\right) l_{1}\right)\right)=\left(\right.$ length $\left.\left(\operatorname{cons} y l^{\prime}\right)\right)+\left(\right.$ length $\left.l_{1}\right)$.
- By induction, (length $\left(\right.$ append $\left.\left.l l_{1}\right)\right)=($ length $l)+\left(\right.$ length $\left.l_{1}\right)$ holds for all lists l and l_{1}.

Proving Properties of List Functions by Induction (cont'd)

Example. The length function distributes over append:
$\left(\right.$ length $\left(\right.$ append $\left.\left.l l_{1}\right)\right)=($ length $l)+\left(\right.$ length $\left.l_{1}\right)$.
Proof (3/4).

- Case l is (cons $y l^{\prime}$): we need to show that if for any $l^{\prime \prime}$, (length (append $\left.\left.l^{\prime} l^{\prime \prime}\right)\right)=\left(\right.$ length $\left.l^{\prime}\right)+\left(\right.$ length $\left.l^{\prime \prime}\right)$ then we have $\left(\right.$ length $\left(\right.$ append $\left.\left.\left(\operatorname{cons} y l^{\prime}\right) l_{1}\right)\right)=\left(\right.$ length $\left.\left(\operatorname{cons} y l^{\prime}\right)\right)+\left(\right.$ length $\left.l_{1}\right)$:

More Calculation (1)

```
    (length (append (cons y l') l}\mp@subsup{l}{1}{\prime}
\equiv\quad (the rule of function call)
    (length (match (cons yl')
        ['() ll]
        [(cons hd tl) (cons hd (append tl l1))]))
```

(define (append xs ys)
(match xs
['() ys]
[(cons hd tl) (cons hd (append tl ys))]))

More Calculation (1)

```
    (length (append (cons y l') l}\mp@subsup{l}{1}{\prime}
        (the rule of function call)
    (length (match (cons yl')
        ['() l l]
        [(cons hd tl) (cons hd (append tl l1))]))
\equiv (the rules of match)
    (length (cons y (append l' l)))
    (define (length xs)
        (match xs
        ['() 0]
        [(cons hd tl) (+ 1 (length tl))]))
```


More Calculation (2)

```
    (length (append (cons y l') l}\mp@subsup{l}{1}{\prime}
        (the rule of function call)
    (length (match (cons y l')
        ['() ll]
        [(cons hd tl) (cons hd (append tl l1))]))
\equiv (the rules of match)
    (length (cons y (append l}\mp@subsup{l}{}{\prime}\mp@subsup{l}{1}{\prime)))
# (the rule of function call)
    (match (cons y (append l' l})
        ['() 0]
        [(cons hd tl) (+ 1 (length tl))])
```


More Calculation (2)

```
    (length (append (cons y l') l}\mp@subsup{l}{1}{\prime}
    \equiv\quad (the rule of function call)
    (length (match (cons y l')
                ['() ll]
                [(cons hd tl) (cons hd (append tl l1))]))
\equiv (the rules of match)
    (length (cons y (append l' l)))
# (the rule of function call)
    (match (cons y (append l' l}\mp@subsup{l}{1}{\prime}
        ['() 0]
        [(cons hd tl) (+ 1 (length tl))])
\equiv\quad (the rules of match)
    (+ 1 (length (append l' l )))
```


Proving Properties of List Functions by Induction (cont'd)

Example. The length function distributes over append:
$\left(\right.$ length $\left(\right.$ append $\left.\left.l l_{1}\right)\right)=($ length $l)+\left(\right.$ length $\left.l_{1}\right)$.
Proof (3/4).

- Case l is (cons $y l^{\prime}$): we need to show that if for any $l^{\prime \prime}$, $\left(\right.$ length $\left(\right.$ append $\left.\left.l^{\prime} l^{\prime \prime}\right)\right)=\left(\right.$ length $\left.l^{\prime}\right)+\left(\right.$ length $\left.l^{\prime \prime}\right)$ then we have $\left(\right.$ length $\left(\right.$ append $\left.\left.\left(\operatorname{cons} y l^{\prime}\right) l_{1}\right)\right)=\left(\right.$ length $\left.\left(\operatorname{cons} y l^{\prime}\right)\right)+\left(\right.$ length $\left.l_{1}\right)$:
$\left(\right.$ length $\left.\left(\operatorname{append}\left(\operatorname{cons} y l^{\prime}\right) l_{1}\right)\right) \equiv\left(\right.$ length $\left.\left(\operatorname{cons} y\left(\operatorname{append} l^{\prime} l_{1}\right)\right)\right)$

$$
\equiv \quad 1+\left(\text { length }\left(\text { append } l^{\prime} l_{1}\right)\right)
$$

Proving Properties of List Functions by Induction (cont'd)

Example. The length function distributes over append:
$\left(\right.$ length $\left(\right.$ append $\left.\left.l l_{1}\right)\right)=($ length $l)+\left(\right.$ length $\left.l_{1}\right)$.
Proof (3/4).

- Case l is (cons $y l^{\prime}$): we need to show that if for any $l^{\prime \prime}$, $\left(\right.$ length $\left(\right.$ append $\left.\left.l^{\prime} l^{\prime \prime}\right)\right)=\left(\right.$ length $\left.l^{\prime}\right)+\left(\right.$ length $\left.l^{\prime \prime}\right)$ then we have $\left(\right.$ length $\left(\right.$ append $\left.\left.\left(\operatorname{cons} y l^{\prime}\right) l_{1}\right)\right)=\left(\right.$ length $\left.\left(\operatorname{cons} y l^{\prime}\right)\right)+\left(\right.$ length $\left.l_{1}\right)$:
$\left(\right.$ length $\left.\left(\operatorname{append}\left(\operatorname{cons} y l^{\prime}\right) l_{1}\right)\right) \equiv\left(\right.$ length $\left.\left(\operatorname{cons} y\left(\operatorname{append} l^{\prime} l_{1}\right)\right)\right)$

$$
\begin{aligned}
& \equiv \quad 1+\left(\text { length }\left(\text { append } l^{\prime} l_{1}\right)\right) \\
& 1+\left(\text { length } l^{\prime}\right)+\left(\text { length } l_{1}\right) \\
& \equiv\left(\text { length }\left(\text { cons } y l^{\prime}\right)\right)+\left(\text { length } l_{1}\right)
\end{aligned}
$$

Proving Properties of List Functions by Induction (cont'd)

Example. The length function distributes over append:
$\left(\right.$ length $\left(\right.$ append $\left.\left.l l_{1}\right)\right)=($ length $l)+\left(\right.$ length $\left.l_{1}\right)$.
Proof (4/4).

- Case l is (cons $y l^{\prime}$): we need to show that if for any $l^{\prime \prime}$, $\left(\right.$ length $\left(\right.$ append $\left.\left.l^{\prime} l^{\prime \prime}\right)\right)=\left(\right.$ length $\left.l^{\prime}\right)+\left(\right.$ length $\left.l^{\prime \prime}\right)$ then we have $\left(\right.$ length $\left(\right.$ append $\left.\left.\left(\operatorname{cons} y l^{\prime}\right) l_{1}\right)\right)=\left(\right.$ length $\left.\left(\operatorname{cons} y l^{\prime}\right)\right)+\left(\right.$ length $\left.l_{1}\right)$:
$\left(\right.$ length $\left.\left(\operatorname{append}\left(\operatorname{cons} y l^{\prime}\right) l_{1}\right)\right) \equiv\left(\right.$ length $\left.\left(\operatorname{cons} y\left(\operatorname{append} l^{\prime} l_{1}\right)\right)\right)$

$$
\begin{array}{lc}
\equiv & 1+\left(\text { length }\left(\text { append } l^{\prime} l_{1}\right)\right) \\
\equiv & \text { (induction hypothesis) } \\
\equiv & 1+\left(\text { length } l^{\prime}\right)+\left(\text { length } l_{1}\right) \\
\equiv & \left(\text { length }\left(\text { cons } y l^{\prime}\right)\right)+\left(\text { length } l_{1}\right)
\end{array}
$$

Proving Properties of List Functions by Induction (cont'd)

Example. The length function distributes over append:
$\left(\right.$ length $\left(\right.$ append $\left.\left.l l_{1}\right)\right)=($ length $l)+\left(\right.$ length $\left.l_{1}\right)$.
Proof (4/4).

- Case l is (cons $y l^{\prime}$): we need to show that if for any $l^{\prime \prime}$, $\left(\right.$ length $\left(\right.$ append $\left.\left.l^{\prime} l^{\prime \prime}\right)\right)=\left(\right.$ length $\left.l^{\prime}\right)+\left(\right.$ length $\left.l^{\prime \prime}\right)$ then we have $\left(\right.$ length $\left(\right.$ append $\left.\left.\left(\operatorname{cons} y l^{\prime}\right) l_{1}\right)\right)=\left(\right.$ length $\left.\left(\operatorname{cons} y l^{\prime}\right)\right)+\left(\right.$ length $\left.l_{1}\right)$:
$\left(\right.$ length $\left.\left(\operatorname{append}\left(\operatorname{cons} y l^{\prime}\right) l_{1}\right)\right) \equiv\left(\right.$ length $\left.\left(\operatorname{cons} y\left(\operatorname{append} l^{\prime} l_{1}\right)\right)\right)$

$$
\equiv \quad 1+\left(\text { length }\left(\text { append } l^{\prime} l_{1}\right)\right)
$$

$\equiv \quad$ (induction hypothesis)
$1+\left(\right.$ length $\left.l^{\prime}\right)+\left(\right.$ length $\left.l_{1}\right)$
$\equiv\left(\right.$ length $\left(\right.$ cons $\left.\left.y l^{\prime}\right)\right)+\left(\right.$ length $\left.l_{1}\right)$
By induction, (length $\left(\right.$ append $\left.\left.l l_{1}\right)\right) \equiv($ length $l)+\left(\right.$ length $\left.l_{1}\right)$.

Sum Up: Proving Properties of List Functions by Induction

Property: "For all lists $l, \ldots . l$..."
Proof (template).
Induction on l :

- Case l is '(): ... '() ...
- Case l is (cons $y l^{\prime}$): if ... $l^{\prime} \ldots$ then ... (cons $y l^{\prime}$)

By induction, ... $l . . .$.

How Induction "Runs"

Example. The length function distributes over append:
$\left(\right.$ length $\left(\right.$ append $\left.\left.l l_{1}\right)\right)=($ length $l)+\left(\right.$ length $\left.l_{1}\right)$.

1. (length (append '() (cons $\left.\left.\left.9^{\prime}()\right)\right)\right)=$ (length '()) + (length (cons $\left.9^{\prime}()\right)$)

We have shown that (length (append '() $\left.l_{1}\right)$) $=($ length ' ()$)+\left(\right.$ length $\left.l_{1}\right)$. In this specific instance, l_{1} is (cons 9 '()).

How Induction "Runs"

Example. The length function distributes over append:
$\left(\right.$ length $\left(\right.$ append $\left.\left.l l_{1}\right)\right)=($ length $l)+\left(\right.$ length $\left.l_{1}\right)$.

1. (length (append '() (cons $\left.\left.9^{\prime}()\right)\right)$) $=$ (length '()) $+\left(\right.$ length (cons $\left.\left.9^{\prime}()\right)\right)$
2. (length (append (cons $\left.2^{\prime}()\right)\left(\right.$ cons $\left.\left.\left.9^{\prime}()\right)\right)\right)=$ (length (cons $\left.\left.2{ }^{\prime}()\right)\right)+\left(l e n g t h\left(c o n s 9^{\prime}()\right)\right)$

We have shown that if for any $l^{\prime \prime}$, $\left(\right.$ length (append $\left.\left.l^{\prime} l^{\prime \prime}\right)\right)=\left(\right.$ length $\left.l^{\prime}\right)+\left(\right.$ length $\left.l^{\prime \prime}\right)$ then we have $\left(\right.$ length $\left(\right.$ append $\left.\left.\left(\operatorname{cons} y l^{\prime}\right) l_{1}\right)\right)=\left(\right.$ length $\left.\left(\operatorname{cons} y l^{\prime}\right)\right)+\left(\right.$ length $\left.l_{1}\right)$.
Here the premise is true by (1), $y:=2$ and $l^{\prime}:='()$.

How Induction "Runs"

Example. The length function distributes over append:
$\left(\right.$ length $\left(\right.$ append $\left.\left.l l_{1}\right)\right)=($ length $l)+\left(\right.$ length $\left.l_{1}\right)$.

1. (length (append '() (cons $\left.\left.\left.9^{\prime}()\right)\right)\right)=$ (length '()) + (length (cons $\left.9^{\prime}()\right)$)
2. (length (append (cons $\left.2^{\prime}()\right)\left(\right.$ cons $\left.\left.\left.9^{\prime}()\right)\right)\right)=$ (length (cons $\left.\left.2^{\prime}()\right)\right)+\left(\right.$ length (cons $\left.\left.9^{\prime}()\right)\right)$
3. (length (append (cons 5 (cons $\left.\left.2^{\prime}()\right)\right)\left(\right.$ cons $\left.\left.\left.9^{\prime}()\right)\right)\right)=$ (length (cons 5 (cons 2 '()))) $+\left(\right.$ length (cons $\left.\left.9^{\prime}()\right)\right)$

We have shown that if for any $l^{\prime \prime}$, $\left(\right.$ length $\left(\right.$ append $\left.\left.l^{\prime} l^{\prime \prime}\right)\right)=\left(\right.$ length $\left.l^{\prime}\right)+\left(\right.$ length $\left.l^{\prime \prime}\right)$ then we have $\left(\right.$ length $\left(\right.$ append $\left.\left.\left(\operatorname{cons} y l^{\prime}\right) l_{1}\right)\right)=\left(\right.$ length $\left.\left(\operatorname{cons} y l^{\prime}\right)\right)+\left(\right.$ length $\left.l_{1}\right)$.
Here the premise is true by (2), $y:=5$ and $l^{\prime}:=\left(\operatorname{cons} 2^{\prime}()\right)$.

Appendix: Rules of Function Calls

For any function definition

```
(define (f x 利 ...)
    e)
```

We have the computation rule

$$
\left(f e_{1} e_{2} \ldots\right) \quad \equiv \quad e\left\{x_{1} \leftarrow e_{1}, x_{2} \leftarrow e_{2}, \ldots\right\}
$$

Appendix: Rules of Match

```
(match '()
    ['() e ] \equiv e e
    [(cons hd tl) e}\mp@subsup{e}{2}{}]
(match (cons x l)
    ['() e e ] }\quad\equiv\quad\mp@subsup{e}{2}{}{\textrm{hd}\leftarrowx,\textrm{tl}\leftarrowl
    [(cons hd tl) e}\mp@subsup{e}{2}{}]
```


Appendix: Rules of If

