
Modular Set-Based Analysis from Contracts

Philippe Meunier
College of Computer and Information

Science, Northeastern University
meunier@ccs.neu.edu

Robert Bruce Findler
Department of Computer Science,

University of Chicago
robby@cs.uchicago.edu

Matthias Felleisen
College of Computer and Information

Science, Northeastern University
matthias@ccs.neu.edu

Abstract
In PLT Scheme, programs consist of modules with contracts. The
latter describe the inputs and outputs of functions and objects
via predicates. A run-time system enforces these predicates; if
a predicate fails, the enforcer raises an exception that blames a
specific module with an explanation of the fault.

In this paper, we show how to use such module contracts to turn
set-based analysis into a fully modular parameterized analysis. Us-
ing this analysis, a static debugger can indicate for any given con-
tract check whether the corresponding predicate is always satisfied,
partially satisfied, or (potentially) completely violated. The static
debugger can also predict the source of potential errors, i.e., it is
sound with respect to the blame assignment of the contract system.

Categories and Subject Descriptors F.3.2 [Semantics of Pro-
gramming Languages]: Program analysis; D.2.4 [Software / Pro-
gram Verification]: Programming by contract

General Terms Languages, Reliability, Verification.

Keywords Static Debugging, Set-based Analysis, Modular Anal-
ysis, Runtime Contracts.

1. Modules, Contracts, and Static Debugging
A static debugger helps programmers find errors via program anal-
yses. It uses the invariants of the programming language to analyze
the program and determines whether the program may violate one
of them during execution. For example, a static debugger can find
expressions that may dereference null pointers. Some static debug-
gers use lightweight analyses, e.g., Flanagan et al.’s MrSpidey [11]
relies on a variant of set-based analysis [10, 16, 21]; others use a
deep abstract interpretation, e.g., Bourdoncle’s Syntox [4]; and yet
others employ theorem proving, e.g., Detlefs et al.’s ESC [7].

Experience with static debuggers shows that they work well for
reasonably small programs. Using MrSpidey, we have routinely
debugged or re-engineered programs of 2,000 to 5,000 lines of code
in PLT Scheme. Flanagan has successfully analyzed the core of
the interpreter, dubbed MrEd [13], a 40,000 line program. Existing
static debuggers, however, suffer from a monolithic approach to
program analysis. Because their analyses require the availability
of the entire program, programmers cannot analyze their programs
until they have everyone else’s modules.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

POPL’06 January 11–13, 2006, Charleston, South Carolina, USA.
Copyright c© 2006 ACM 1-59593-027-2/06/0001. . . $5.00.

Over the past few years, we have added a first-order module
system to PLT Scheme [12] and have equipped the module system
with a contract system [8]. A contract is roughly a predicate on
the inputs and outputs of (exported) functions, including object
methods and higher-order functions. The contract system monitors
the contracts during program execution. If a module violates a
contract, the contract system pinpoints the guilty party and issues
an explanatory message.

This paper makes five contributions to static debugging and
software contracts. First, it explains how to construct a modular
static debugger for programs with contracts, using those contracts
in a dual role: one as a source of abstract values and one as a
sink for abstract values. Second, we prove that our contract-based,
whole-program analysis computes its results in a modular manner.
That is, our contract-aware set-based analysis produces the same
predictions for a given point in the program regardless of whether
it analyzes the whole program or just the surrounding module.
Third, for any given contract check, the system indicates whether
the corresponding predicate is always satisfied, partially satisfied,
or completely violated. Fourth, the static debugger can also predict
the source of potential errors, i.e., it is sound with respect to the
blame assignment of the contract system. Fifth, the analysis is
parameterized over both a predicate approximation relation and a
predicate domain function.

2. Overview
The paper presents a model of a modular static debugger. The
model consists of two parts: a runtime contract system and a set-
based analysis for modules with contracts. A correctness theorem
ties the two parts together. Figure 1 provides an overview of these
three pieces in graphical form. The vertical column on the left rep-
resents the runtime contract system. A contract compiler translates
a collection of modules and a main expression into a suitably an-
notated form. During execution, which we naturally model via a
reduction system, the contract system keeps track of the contract
obligations; if something goes wrong it blames a specific module.

The first horizontal row of Figure 1 depicts the analysis process,
which consists of three stages. First, it partitions the program into
module-like pieces by lifting expressions with contract annotations
out of the main program. Second, the resulting collection of pro-
gram pieces is analyzed with a parameterized set-based analysis.
This step yields both sets of abstract values and sets of potential er-
rors, including explanations that blame the guilty party; we call the
latter blame sets. Third, the former are summarized as set-of-values
descriptions, dubbed types.

The rest of the grid in Figure 1 explains our proof technique for
the correctness theorem. Since each reduction step creates a com-
plete program, the correctness proof can proceed via subject reduc-
tion. We re-apply the analysis after each reduction step. The proof
then shows that the reductions preserve the types and the blame

Lifted
Program

Lifted
Program

Value sets
Blame sets

Value sets
Blame sets

Value sets
Blame sets

Types
Blame sets

Types
Blame sets

Blame sets

Annotation

Reduction

Reduction

Reduction

Lifting

Lifting

Lifting

Types

Set−based
Analysis

Set−based
Analysis

Set−based
Analysis

Type
Reconstruction

Type
Reconstruction

Type

Program
Annotated
Program

Annotated

Annotated
Program

Program

Lifted

User
Program

Reconstruction

Figure 1. Contract system and analysis overview.

sets. It follows that the predictions of the analysis are conservative.
Our desire to use a subject reduction proof heavily influences the
details of the reduction semantics and the analysis rules.

Finally, after we establish the soundness of the analysis, we also
explain precisely what we mean with “modular analysis” and state
and prove a precise theorem.

3. Contract Calculus
In the first subsection, we recall the basics of Findler and Felleisen’s
contract system [8] with an example. In the second subsection, we
introduce our surface syntax and internal syntax of programs. In
the third subsection, we explain the translation from surface syntax
into internal syntax.

3.1 Sample Contracts, Sample Blame

Let us first illustrate the module and contract system at work.
Figure 2 shows an excerpt from our library for preparing figures
(including Figure 2 itself). The Find module provides a family of
functions that find the positions of pictures inside other pictures.
Each of these functions accepts a main picture and a secondary
picture inside the main picture; each produces a pair of integers
indicating where the secondary picture occurs in the outer picture.
For example, ct-find identifies the center top coordinates of the
embedded picture. The Connect module exports a function that
accepts two of the functions in Find and produces a function
that adds an arrow between sub-pictures. Finally, the Composition
module combines the two other modules, i.e., it instantiates connect
with cb-find and ct-find.

Connect

connect : (pict pict → int[>0] x int[>0])
(pict pict → int[>0] x int[>0])
→
(pict pict pict → pict)

Find

ct-find : pict pict → int[>0] x int[>0]
cb-find : pict pict → int[>0] x int[>0]
...

Composition

connect-bot-to-top : pict pict pict → pict = (connect find-cb find-ct)

Figure 2. Example modules.

The arrows between the modules indicate which contracts bind
which parties. First, consider the connections between Composi-
tion and Find. The contract on ct-find dictates that it should only
receive pictures and produce integers larger than zero. Accordingly,
if Composition passes to ct-find values other than pictures, it is to
be blamed for the contract violation; similarly, if Find returns nega-
tive integers, it is to be blamed. But, Composition does not invoke

the functions. Instead, it passes them to Connect and that inter-
action is governed by the contract between Connect and Compo-
sition. Thus, when connect invokes its argument functions, it too
must call them on pictures and it too expects non-negative integers.

Now imagine that ct-find in Find returns negative numbers. This
failure is only discovered when connect in Connect applies ct-find
to two pictures. To determine which party is guilty, the monitoring
code must trace the connections between the modules back to Find
to blame ct-find. While computing the backtrace is obvious in this
example, higher-order functions (and objects) can greatly obscure
the connections in large programs where it is especially important
to find the guilty party.

3.2 User Syntax and Annotated Syntax

Figure 3 specifies the surface syntax of our model language, where
f is a module-defined variable, n is a number, and x is a lexical
variable. To create a manageable model, we make several simpli-
fying assumptions. First, since Findler and Felleisen [8]’s model
explains contracts in a typed context, we omit types here because
they would only clutter our work with unnecessary details. Second,
each module defines and exports a single variable along with a con-
tract; the defined variable stands for a value; it is uniquely named
throughout the program; and it is automatically visible everywhere.
Third, programs are closed terms and consist of a sequence of mod-
ules followed by a single expression. Fourth, the test part of an if0
expression can return any value; the “then” branch is evaluated if
this value is 0.

The language of contracts uses just four kinds of constructs: one
construct for validating that a value is an integer, which shows how
the model deals with basic types; one construct for validating any
value; a third construct for validating that a value is a function;
and a fourth construct to use arbitrary expressions as contracts. For
example the “positive integer” contracts in Figure 2 restrict the int
contract in our surface syntax. Each occurrence of int[>0] would
be expressed as (pred positive?) in the surface syntax, assuming
the predicate positive? had been defined somewhere. Unlike arrow
contracts, pred is not a constructor that contains other contracts; it
uses plain expressions to create a contract.

P ::= E |MP
M ::= (module f C V)
V ::= n | (λx.E)
E ::= V | x | f | (E E) | (if0 E E E)
C ::= int | any | (C→C) | (pred E)

Figure 3. Surface syntax.

P ::= E |MP

M ::= (module fβ V)`

V ::= n`E... | (λx
β .E)`E...

| ((C ��� � C)``
′

f ⇐ V)`c

E ::= V | xβ | fβ | (E E)` | (if0 E E E)`

| (C⇐ E)` | (blame f S)` | ε`

C ::= int``
′

f | any``
′

f | (C→C)``
′

f

| (C ��� � C)``
′

f | 〈E E C〉``
′

f
S ::= O | R

Figure 4. Annotated syntax.

A program in the surface syntax is ill-suited for monitoring
contracts and for analyzing them. We therefore elaborate such
programs into the internal syntax of Figure 4. This syntax contains
labeled versions of all syntactic phrases—β for labels on variables
and ` for all others—and new forms that are better suited for our
soundness proof than those of the surface syntax.

The major new expression forms are (C⇐ E) and (blame f S).
The former evaluates the expression E to a value and checks
whether the value satisfies the contract C. The latter form aborts
the program and blames a specific module or the main expres-
sion (µ) for violating a contract. Such violations have two possible
severity levels: Red for violating a basic integer or arrow con-
tract, and Orange for violating a user-provided predicate. Integers
and closures have extra subscript annotations to represent contract
predicates that they have satisfied. The ε form is a technical device.

The additional contract forms are (C ���
� C)f and 〈E E C〉f .

We refer to the first as a “blessed” arrow contract and the second as
a contract triple. A blessed arrow contract denotes a partially vali-
dated contract. It is used when the run-time system has confirmed
that a value is a procedure but has yet to confirm that the procedure
satisfies the domain and range checks. The contract triple replaces
the (pred E) contract. Its first expression turns the predicate into a
runtime check; its second expression is the predicate; and the last
part is the contract that describes the domain of the predicate. The
first is used with the semantics and the soundness proof; the second
and third are necessary for the analysis proper.

Consider the following example:

(module f (int→int) (λx.x))
(f 3)

The annotation of this program yields the following:

(module fβ1 (λxβ2 .xβ2)`λ)`f

(((int`1`2µ →int`3`4f)`5`6f ⇐ fβ1)`c 3`n)`a

In the annotated program, each subexpression (except for variables)
has a unique label; each contract has two unique labels and a
module name (or µ). Furthermore, the reference to the module
variable f is wrapped with a contract check that ensures the module
satisfies its contract.

3.3 Annotation

The rules of Figure 5 define the annotation process. The main goal
is to annotate every expression with a unique label (except for
variables) and every contract with two unique labels and a module
name. These annotations are required by the analysis: the label
on an expression represents the abstract values of that expression;
the two labels on a contract represent the contract in its two roles
as both a source (first label) and a sink (second label) of abstract
values; and the module name on a contract is used to assign blame
when the analysis detects a violation of that contract.

The judgement for annotating programs is of the form

`
a
p p � p′

where p is the original program and p′ is the annotated version.
The PROGRAM rule builds two environments ∆ and Γ, the first one
mapping module names to contracts and the second one mapping
variables to labels.

The judgement for modules is of the form

∆,Γ `
a
m m � m′

wherem′ is the annotated version of modulem. The MODULE rule
removes the contract on the defined module variable and annotates
the rest of the module. The remaining rules add the contract to
references of the module variable.

The judgement for expressions is of the form

∆,Γ, f `
a
e e � e′

where f is the name of the module (or µ) in which expression e ap-
pears and e′ is the annotated version of e. Variable references share
their label with their respective binder (rules VAR and MODVAR).

∆,Γ `am mi
� m′

i ∆,Γ, µ `ae e
� e′

where ∆
def
= [fi 7→ ci, . . .] and Γ

def
= [fi 7→ βi, . . .]

given mi = (module fi ci vi)

`ap mi . . . e
� m′

i . . . e
′

(PROGRAM)

Γ(f) = β ∆,Γ, f `ae v
� v′

∆,Γ `am (module f c v) � (module fβ v′)`
(MODULE)

∆,Γ, f `ae n
� n`

(INT)
∆,Γ[x 7→ β], f `ae e

� e′

∆,Γ, f `ae (λx.e) � (λxβ .e′)`
(LAM)

Γ(x) = β

∆,Γ, f `ae x
� xβ

(VAR)

Γ(g) = β ∆(g) = c
∆,Γ, g, f `ac c

� c′

∆,Γ, f `ae g
� (c′⇐ gβ)`

(MODVAR)

∆,Γ, f `ae e1
� e′

1
∆,Γ, f `ae e2

� e′
2

∆,Γ, f `ae (e1 e2)
� (e′1 e

′

2)
`

(APP)

∆,Γ, f `ae e0
� e′

0
∆,Γ, f `ae e1

� e′
1

∆,Γ, f `ae e2
� e′

2

∆,Γ, f `ae (if0 e0 e1 e2) � (if0 e′0 e
′

1 e
′

2)
`

(IF0)

∆,Γ, f, g `ac int � int``
′

f

(INTC)
∆,Γ, f, g `ac any � any``

′

f

(ANYC)

∆,Γ, g, f `ac cd
� c′d

∆,Γ, f, g `ac cr
� c′r

∆,Γ, f, g `ac (cd→cr) � (c′d→c′r)``
′

f

(ARROWC)

∆,Γ, f `ae e
� e′ ∆,Γ, f, g `ac D∆((pred e)) � c′

e′′
def
= F(e′, lab+(c′), f)

∆,Γ, f, g `ac (pred e) � 〈e′′ e′ c′〉``
′

f

(PREDC)

Figure 5. Annotation judgments.

Additionally, references to module variables are wrapped with a
contract check for the contract that was associated with the vari-
able’s definition (rule MODVAR). Module variables that are not
referenced in a program are therefore not checked against their con-
tract, i.e., putting contracts on dead code has no effect.

Finally, the judgement for contracts is of the form

∆,Γ, f, g `
a
c c � c′

where c′ is the annotated version of the contract c. The two module
names f and g represent the two parties that agreed to the contract
c. One is the name of the module variable that uses c in its contract;
the other is the name of the module where that variable is used.
Which of f and g corresponds to which of those two names varies.
The two names switch positions when the annotation process tra-
verses a domain position in a functional contract (rule ARROWC).
The rules ensure that every part of a contract that appears in con-
travariant position is annotated with the name of the module cur-
rently analyzed. This mirrors Findler and Felleisen [8]’s rule for
assigning blame in the presence of higher-order functions.

Annotating contracts is otherwise straightforward, except that
contracts of the form (pred e) are translated into triples of the form

〈F(e′, lab+(c′), f) e′ c′〉``
′

f

according to rule PREDC:

• The expression e′ is the annotated version of e;

• The contract c′ is the annotated version of D∆((pred e)). The
function D∆ computes an approximation of the domain of
predicate e and represents it as a contract. By construction,
that contract does not contain any sub-contracts of the form
(pred E) and can therefore be used as a simple contract that
approximates the complex predicate e.

• F(e′, lab+(c′), f) generates boilerplate code that represents
the application of the predicate to a value in a schematic man-
ner. The lab+ function returns the first one of the two labels of
its contract argument.

The creation of a triple is necessary for the analysis, which needs
to know the program’s syntax, especially e′ and c′. It uses these
terms to determine whether a contract violation is partial—orange:
a value satisfies the simple contract c′ but not the extra predicate
e′—or full—red: a value does not even satisfy the contract c′.

The creation of the boilerplate code is only needed for the
soundness proof, which is based on the preservation of labels and
that no new labels are introduced throughout the reduction process.
Since the analysis requires labels on all expressions, the reductions
must not introduce terms that do not re-use existing labels. The
boilerplate code and its labels are therefore generated during the
annotation phase so that it can be used at an opportune time during
the reduction process.

Let’s take a closer look at the actual code:

F(e, `, f)
def
= (if0 (e ε`)`0 ε` (blame f O)`1)`2

with `0 through `2 fresh. The εs are (non-variable) placeholders for
expressions with the same label; they are never evaluated directly.
Specifically, ε stands either for a runtime value (during the reduc-
tion process) or for a contract representing an abstract value (during
the analysis).

From the runtime perspective, the code means that a predicate
represented by e is applied to the runtime value represented by ε
and the result is checked by the if0 expression. If the predicate does
not accept the runtime value, then the if0 expression reduces to a
blame expression. The severity of the contract violation is orange,
since a user-provided contract is broken. If the predicate accepts
the runtime value, the runtime value is simply returned through the
second ε expression.

From the analysis perspective, the same code means that a
predicate represented by e is applied to the abstract values flowing
into ε and the result is checked by the if0 expression. The analysis
then conservatively assumes that both branches of the if0 can be
taken at runtime and therefore makes the abstract values flow out
of the ε expression in the “then” branch and adds the name f to the
blame set of `1 in the “else” branch.

The role of c′ in the generated triple is to act as an abstract
value simulating the set of all possible values that might satisfy
the predicate e′ at runtime. A conservative approximation of this
set is the domain of the predicate itself, which is computed by
D∆ (Fig. 6). Since we do not want to represent the domain of
a predicate using another predicate, the function D∆ needs to
approximate the domain of a predicate with a contract that uses
only the int and → contract constructors. The only interesting cases
in that definition are therefore the first two:

• If D∆ is applied to a contract of the form (pred f) (where
f is a module variable name), f is looked up in the contract
environment ∆; the resulting contract is itself processed by
D∆ to recursively eliminate all the pred forms from it; and,
if the resulting contract is an arrow contract, the domain of that
arrow contract is returned. If the resulting contract is not an
arrow contract, then the program is trying to use as a predicate

an expression that is not a function.1 That kind of program is
simply rejected by the annotator.

• If D∆ is applied to a contract of the form (pred e), D∆ returns
any. In this case, an expression proper is used as a predicate. It
is the programmer’s responsibility to ensure that the expression
evaluates to a function and that this function can accept any
value as input.

D∆((pred f))
def
= cd when D∆(∆(f)) = (cd→cr)

D∆((pred e))
def
= any

D∆(int)
def
= int

D∆(any)
def
= any

D∆((cd→cr))
def
= (D∆(cd)→D∆(cr))

Figure 6. Predicate domain function.

Consider for example the following program fragment:

(module prime? (int→int) . . .)
(module f (pred prime?) 3)
f

The annotated version has this general form (with many annota-
tions omitted for clarity):

(module prime?β1 . . .)
(module fβ2 3)

(〈(if0 (prime?β1 ε`) ε` (blame f O)) prime? int``
′

f 〉⇐ fβ2)

The annotated code checks the variable reference fβ2 against a
contract triple. The first part of the triple is an if0 expression that
simulates applying the prime? predicate to a value and checking
whether the predicate is satisfied or not. The second part of the
triple is the (name of the) predicate itself. The third part is a
basic integer contract that approximates the prime? predicate; i.e.,
to be a prime number, a given value has to be an integer. That
integer contract is the result of computing the domain of the prime?
predicate using D∆ applied to the prime? predicate’s own contract
(int→int). The resulting int contract is then annotated to get the

int``
′

f contract used in the triple. That contract shares its first label

` with the ε` expressions in the if0 part of the triple.
Once a program has been completely annotated it can then

be either reduced to a value (if it has one) or analyzed. The two
processes are the subject of the next two sections.

4. Reduction Rules
Figure 7 defines the reduction semantics for annotated programs.
The goal of the process is to reduce the main expression to a value
in the module context. The relation −→ is the one-step reduction;
the set of evaluation contexts for expressions is:

E
def
= [] | (E e)` | (v E)` | (if0 E e e)` | (C⇐ E)`

Expression evaluation contexts do not include contexts for con-
tracts and in particular not for contract triples. Expressions in-
side a contract triple are only evaluated after the surrounding con-
tract check has been reduced. The grammar for annotated programs
guarantees that contracts never show up outside a contract check.

1 In an actual static debugger the function D∆ would also check that there
are no reference loops among the contracts for predicates (e.g. trying to
define the contract for a predicate using the predicate itself). We omit this
check here to simplify our model.

((λxβ .e)`λ v`v)`a −→ e[v`v/xβ] SUBST

(n`n v`v)`a −→ (blame λR)`a APP-ERROR

(if0 0`0 e1 e2)` −→ e1 IF0-TRUE

(if0 v`v e1 e2)` −→ e2 IF0-FALSE

(any``
′

f ⇐ v`v)`c −→ v` ANY

(〈e1 e2 any``
′

f 〉`
+`−

f ⇐ v`v
e...)

`c −→ e1[v`e...e2
/ε`] ANY-TRIP

(int``
′

f ⇐ n`n)`c −→ n` INT-INT

(int``
′

f ⇐ ~v`v)`c −→ (blame f R)`
′

INT-LAM

(〈e1 e2 int``
′

f 〉`
+`−

f ⇐ n`n
e...)

`c −→ e1[n`e...e2
/ε`] INT-TRIP-INT

(〈e1 e2 int``
′

f 〉`
+`−

f ⇐ ~v`v)`c −→ (blame f R)`
′

INT-TRIP-LAM

((c1→c2)``
′

f ⇐ ~v`v)`c −→ ((c1 ���
� c2)``

′

f ⇐ ~v`v)`c LAM-LAM

((c1→c2)``
′

f ⇐ n`n)`c −→ (blame f R)`
′

LAM-INT

(〈e1 e2 (c1→c2)``
′

f 〉`
+`−

f ⇐ ~v`v
e...)

`c −→ e1[((c1 ���
� c2)``

′

f ⇐ ~v`v
e...e2

)`c/ε`] LAM-TRIP-LAM

(〈e1 e2 (c1→c2)``
′

f 〉`
+`−

f ⇐ n`n)`c −→ (blame f R)`
′

LAM-TRIP-INT

(((c1 ���
� c2)``

′

f ⇐ ~v`v)`c w`w)`a −→ (c2⇐ (~v`v (c1⇐ w`w)lab+(c1))lab−(c2))lab+(c2) SPLIT

Figure 7. Reduction rules.

The module context becomes relevant in only one situation:

. . . (module fβ v)` . . . E[fβ]

−→ . . . (module fβ v)` . . . E[v] LOOKUP

The LOOKUP rule replaces a reference to a module variable with
its value. Since all module-defined variable references are wrapped
with contract checks during the annotation phase, a contract check
now surrounds the value v.

In Figure 7 we use n to represent runtime integers, ~v to represent
functions or functions with any number of blessed arrow contract
checks wrapped around them, and v and w to represent any values
whatsoever. When necessary we write ve... for a value v that satis-
fies all the predicates e, etc. Finally to simplify the exposition we
decide that a blame redex in any context reduces the entire program
in one step to just that expression, whereupon reduction stops.

The SUBST rule is the usual βv relation for function calls.
Substitution replaces both the variable x and its label β with the
value v and its label `v . The IF0-TRUE and IF0-FALSE rules are
also the usual ones for conditional expressions. The APP-ERROR
rule blames the programmer (represented as λ) when the program
attempts to use an integer as a function, i.e., when the programmer
does not violate a contract but abuses the programming language.2

The rest of the reduction rules concern contract checking:

• The ANY rule shows a contract check that checks nothing. The
check reduces to the tested value. Importantly, the label ` on
any becomes the label on v. The reason is that in the analysis,

label ` acts as an abstract value source for the contract any``
′

f .
The reduction rule thus guarantees that the value v has the same
label as the abstract source it replaces, which is the key to the
relevant step in the soundness proof of the analysis.

• The ANY-TRIP rule is similar to the previous one, except that
it deals with a triple. The rule takes the boilerplate code from
the first part of the triple and replaces the ε expressions with
the value v, again after an appropriate label change on v. The

2 This check is representative of the language designer’s power to restrict
primitive operations (such as function application, array indexing, etc.) Put
differently, it represents the implicit contract between the programmer and
the language designer.

result of these substitutions is code that checks whether the
value satisfies the triple’s predicate or not. The expression e2
does not play any active role during the reduction but is added
to the set of predicates satisfied by v (again for the purpose of
the soundness proof).

• The INT-INT and INT-LAM rules check that a given value is an
integer. If it is, the INT-INT behaves just like the ANY one. If it
is not, the INT-LAM blames the appropriate module. The label
of the blame expression is the second label on the contract: `′

acts as an abstract value sink during the analysis. The severity
level of the contract violation is red since a basic contract has
been broken.

• INT-TRIP-INT and INT-TRIP-LAM correspond to INT-INT and
INT-LAM but cope with triples. When the tested value is an
integer, the evaluation of the triple requires a substitution to
occur, similarly to what happens in the ANY-TRIP rule. In the
INT-TRIP-LAM rule the color of the violation is again red since
a basic contract has been broken. In essence the contract system
is able to show that the value ~v does not satisfy the predicate e2
simply by looking at the contract int that approximates e2.

• LAM-LAM, LAM-INT, LAM-TRIP-LAM, and LAM-TRIP-INT
correspond to the rules INT-INT, INT-LAM, INT-TRIP-INT, and
INT-TRIP-LAM, respectively. The only difference is the pres-
ence of blessed arrows in the LAM-LAM and LAM-TRIP-LAM
rules: once a value has been checked to be a function, we still
need to check that the function’s argument or the function’s
result do not break their respective parts of the contract. It is
impossible to check these contracts now because the function
might be applied only much later [8]. Hence, the two rules
LAM-LAM and LAM-TRIP-LAM introduce a blessed arrow con-
tract check around the function, indicating that the arrow check
has succeeded but that the argument and result of the function
still remain to be checked. If the function already had blessed
arrow contract checks wrapped around it, it now has one more.

• The SPLIT rule breaks a blessed arrow contract into its domain
and range contracts. It distributes those to the actual argument
of the function and to the result of the whole application, re-
spectively. This is how a higher-order contract is, step by step,

transformed into a series of flat contracts [8]. When a function
has multiple blessed arrow contract checks wrapped around it,
this rule also ensures that the multiple domain contracts are
checked outside-in and the multiple range contracts are checked
inside-out. This in turn ensures that blame is correctly assigned
when one of the domain or range contracts is violated. Since
one contract check is replaced by two smaller ones and all ex-
pressions have to be labeled, there is seemingly a need for more
labels in the contractum than in the redex. However by using the
lab+ and lab− functions we can share labels between the appro-
priate terms and avoid the introduction of fresh labels, which
would break the soundness proof of the analysis.

Together the annotation and reduction processes ensure that a
contract check is always present at the interface between expres-
sions that come from different modules, regardless of how far the
reduction process has progressed. This invariant is essential for the
modularity of the analysis.

5. The Analysis
Due to contracts, our analysis problem differs from the usual one.
As a dynamic element, contracts add new behavior to programs.
If a contract fails, the execution stops and the system issues a
blame assignment. As a static element, contracts guarantee basic
properties about the values that flow out of them; i.e., each contract
separates a program into two pieces: those that send values into the
contract and those that receive values from the contract. In short,
contracts are simultaneously value sources and value sinks, and
they naturally partition programs into (analysis) modules.

Based on this insight, we have designed a three-phase analysis.
The first step is to lift contract checks out of their context and
to leave just a copy of the contracts in their place. The resulting
sequence of terms is roughly a modular program with a main
expression. In the second step the analysis uses a parameterized
algorithm to generate constraints from this program. Finally it
produces types from a solution to these constraints.

This makes the analysis applicable to each stage in the reduction
process, rendering it well-suited for a subject reduction argument.

5.1 Lifting

The lifting step splits an annotated program at contract boundaries.
Each contract check (c⇐ e)` is lifted to the top of the program;
the remaining hole in the term is filled with the contract c. The
duplication of the contract allows the analysis to separate its two
roles. At the bottom of a term, the contract is a source of values,
which means the analysis uses only its positive labels. At the top
level, it is a value sink; the analysis uses only the negative labels.

Figure 8 illustrates the lifting process with two examples. In
the upper left part of the figure, the white triangle represents the
primary expression before the reduction process has started. It
contains a grey triangle, which is a reference to a module variable.
The oval between the two trees represents the module contract.
Lifting produces two triangles: the white one, with just the contract
where the grey term was located, and the grey one, with the original
contract check at its top. Naturally, the grey one is just an (indirect)
reference to the module that defines and exports the variable.

The lower row of the figure depicts the main expression after
several reduction steps. The reduction steps copy terms and split
up contracts. The result is, for example, that a single module refer-
ence can turn into numerous embedded terms with contracts. The
triangles in the lower left of the figure depict such a term. Imagine
that a function body under c1 has been duplicated and applied once.
The small white triangle under c0 is the actual argument that was
substituted into the function body. The lifting step for this reduced
program produces four terms.

(c0→c1)⇐

lift

→
(c0→c1)⇐

c0→c1

↓ reduce

...

↓ reduce

c1⇐ c1⇐

c0⇐

lift

→ c1⇐ c0⇐

c1⇐

c0 c1 c1

Figure 8. Lifting subtrees.

Figure 9 defines the lifting process. The four judgements are of
the form

`
l
t t � ts

where t is in p, m, e, and c (for programs, modules, expressions,
and contracts respectively), t is the term to be lifted, and ts repre-
sents the resulting lifted trees.

Most of the rules defining the lifting process are structural rules
that simply gather the terms resulting from lifting subterms and
push all those terms to the program’s top level in the right deter-
ministic order. We omit most of those trivial rules from Figure 9,
except for the PROGRAM, MODULE, LAM, and APP ones.

The only rule of interest is CHECK: a contract check (c′⇐ e′)`

is lifted to the top and a copy c′ of the contract takes its place in
the tree currently being processed. For simplicity, we ignore the
distinction between arrow contracts and their blessed counterparts
(rule BARROWC).

Lifting occurs almost everywhere, including inside the first ex-
pression of triples (rule TRIPC). Since triples are dissolved during
the reduction process and since the resulting expressions contribute
to the final result (or blame), the analysis must predict which values
flow from the first part of triples. It is unnecessary, however, to lift
the third part of the triple because we know from the definition of
D∆ that this component never contains any contract checks. The
second part of the triple is not lifted either, because the analysis
phase of the next section relies on this expression remaining in its
original form.

5.2 Analysis

After the lifting step, programs satisfy additional syntactic invari-
ants: see the grammar in Figure 10. This new grammar differs from
the one in Figure 4 in three ways: (1) contracts are now expressions;
(2) contract checks are no longer expressions and can only appear
at the program’s top-level, like module definitions; (3) blessed ar-
row contracts have disappeared.

The purpose of the analysis is to predict (1) the flow of values
and (2) potential contract violations and violators. Accordingly, the
analysis produces two results: a mapping ϕ from labels to sets of
labels and a mapping ψ from labels to module variable names plus
one of two “violation” colors. The former points to values in the
program. The latter associates contract labels with modules that
might violate the contract. If the associated color is orange (O),

`lm mi
� esi . . .m

′

i `le e
� es . . . e′

`lp mi . . . e
� esi . . .m

′

i . . . es . . . e
′

(PROGRAM)

`le v
� es . . . v′

`lm (module fβ v)` � es . . . (module fβ v′)`
(MODULE)

`le e
� es . . . e′

`le (λxβ .e)`e1...
� es . . . (λxβ .e′)`e1...

(LAM)

`le e1
� es1 . . . e′1 `le e2

� es2 . . . e′2

`le (e1 e2)`
� es1 . . . es2 . . . (e′1 e

′

2
)`

(APP)

`lc c
� esc . . . c′ `le e

� es . . . e′

`le (c⇐ e)` � esc . . . es . . . (c′⇐ e′)`c′
(CHECK)

`lc (cd→cr)``
′

f
� es

`lc (cd ��� � cr)``
′

f
� es

(BARROWC)

`le e1
� es1 . . . e′1

`lc 〈e1 e2 c〉``
′

f
� es1 . . . 〈e′1 e2 c〉

``′
f

(TRIPC)

Figure 9. Lifting judgments.

P ::= E |MP

| (C⇐ E)`P

M ::= (module fβ V)`

V ::= n`E... | (λx
β .E)`E...

E ::= V | xβ | fβ | (E E)` | (if0 E E E)`

| C | (blame f S)` | ε`

C ::= int``
′

f | any``
′

f | (C→C)``
′

f

| 〈E E C〉``
′

f
S ::= O | R

Figure 10. Analyzed syntax.

a part of the contract has been satisfied; otherwise it is red (R),
meaning no part of the contract could be proved to be satisfied.

Our analysis extends and adapts techniques of 0CFA [23, 27]
and SBA [10, 16, 21]. It is parameterized over a predicate approxi-
mation relation 6v, and generates conditional constraints on the sets
of labels and sets of errors that can show up at any given label.
Any pair of mappings from labels to sets of labels and from labels
to module variable names that satisfy these constraints is a sound
approximation to the actual run-time behavior of the program. A
minimal approximation is the solution.

The constraint generation algorithm needs to identify value
sources and value sinks in programs. In the grammar for expres-
sions value sources are syntactic values; numbers and abstrac-
tions are the only expressions that are sources. A value sink con-
sumes values and triggers computations; applications are the pri-
mary value sinks among expressions.

As mentioned before, contracts play the role of both sources and
sinks. Contracts that occur as leaves in an expression are sources;
contracts inside of top-level checks are sinks. Because of this dual
role, contracts have two labels: one represents the contract as a
value source and the other as a value sink. Consider

int`
+`−

f .

The analysis uses `+ when it deals with the contract as an integer
source and `− when it deals with it as an integer sink, i.e., for an
integer contract check.

The matrix in Table 1 describes the essence of the constraint
generation process. It explains how every possible combination of
a source and a sink in the entire program generates constraints
concerning the flow of values and blame assignment. The entries
do not assume anything about the context in which a source or sink
occurs. This implies that, for example, expressions inside contract
triples are analyzed like any other expression.

The next two subsections explain the meaning of the constraints
in Table 1, followed by a subsection presenting a few additional
constraints that do not involve source-sink pairs.

5.2.1 Value Flow Constraints

Let us illustrate how to read Table 1 with some key examples.
We start with the combination of λ-abstractions and applications
because the form of the constraints should be familiar from the
analysis of the simple lambda calculus [23]:

Source
�

Sink (e`5 e`6)`a

(λxβ.e`)`λ
e1...

{`λ}⊆ϕ(`5) ⇒ ϕ(`6)⊆ϕ(β)

{`λ}⊆ϕ(`5) ⇒ ϕ(`)⊆ϕ(`a)

The above specifies the creation of two constraints for every pos-
sible pair of an abstraction and an application in the program. The
first constraint says that, if the abstraction (labeled `λ) flows into
the application’s function position (`5), then the arguments from
the application (`6) flow into the abstraction’s parameter (β). The
second constraint has the same antecedent as the first and implies
that the value of the abstraction’s body (`) flows into the result set
for the function application (`a).

The second example juxtaposes two contracts:3

Source
�

Sink any
`+5 `

−

5

h

(c
`+1 `

−

1
g →c

`+2 `
−

2

f)
`+3 `

−

3

f

{`+3 }⊆ϕ(`−5) ⇒ ϕ(`+5)⊆ϕ(`−1)

{`+3 }⊆ϕ(`−5) ⇒ ϕ(`+2)⊆ϕ(`−5)

The first of those two constraints says that, if values represented
by the function contract (labeled with `+3) flows into the any check
(`−5), then that same any—represented as a value source (`+5)—
flows into the domain part of the arrow contract (`−1).

To understand this flow from the any contract to the function’s
domain contract, remember that any represents the union of all
data, including functions from any to any. This means that a value
checked against any can turn out to be a function and can then
potentially be applied to all sorts of values.4 Naturally these values
flow into the domain position of the arrow contract, which is similar
to what happens in the cell that matches function contracts with
function contracts in the bottom half of Table 1. The analysis must
therefore check for such a possibility and ensure that the domain
part of the arrow contract is coherent with receiving all possible
values. The same argument for the function’s range explains the
second constraint above.

Of course, a practical debugger does not directly re-use the

any
`+5 `

−

5

h contract to check the functional contract as well as its do-

main and range. Instead, it creates a new (any
`+5 `

−

5

h →any
`+5 `

−

5

h)``
′

h

3 To save space, the same cell in Table 1 shares its two constraints with the
cell below as well as with the two cells on the right (each of which has itself
a third constraint not shared with any other cell).
4 At an abstract level this is analogous to Henglein’s notion of a Dynamic �

(Dynamic→Dynamic) coercion [17].

Source� Sink int
`+5 `

−

5

h 〈. . . e5 int
`+5 `

−

5

h 〉
`+6 `

−

6

h any
`+5 `

−

5

h 〈. . . e5 any
`+5 `

−

5

h 〉
`+6 `

−

6

h

n`n
e1...

{`n}⊆ϕ(`−
5

)

e1 . . . 6v e5

� �
� ⇒ {〈h,O〉}⊆ψ(`−

5
)

{`n}⊆ϕ(`−
5

)

e1 . . . 6v e5

� �
� ⇒ {〈h,O〉}⊆ψ(`−

5
)

int
`+
1
`−
1

f {`+
1
}⊆ϕ(`−

5
) ⇒ {〈h,O〉}⊆ψ(`−

5
) {`+

1
}⊆ϕ(`−

5
) ⇒ {〈h,O〉}⊆ψ(`−

5
)

〈. . . e1 int
`+
1
`−
1

f 〉
`+
2
`−
2

f

{`+
1
}⊆ϕ(`−

5
)

e1 6v e5

� �
� ⇒ {〈h,O〉}⊆ψ(`−

5
)

{`+
1
}⊆ϕ(`−

5
)

e1 6v e5

� �
� ⇒ {〈h,O〉}⊆ψ(`−

5
)

any
`+
1
`−
1

f

{`+
1
}⊆ϕ(`−

5
) ⇒ {〈h,R〉}⊆ψ(`−

5
)

{`+
1
}⊆ϕ(`−

5
) ⇒ {〈h,O〉}⊆ψ(`−

5
)

〈. . . e1 any
`+1 `

−

1

f 〉
`+2 `

−

2

f

{`+
1
}⊆ϕ(`−

5
)

e1 6v e5

� �
� ⇒ {〈h,O〉}⊆ψ(`−

5
)

(λxβ .e`)
`λ
e1... {`λ}⊆ϕ(`−

5
) ⇒ {〈h,R〉}⊆ψ(`−

5
)

{`λ}⊆ϕ(`−
5

) ⇒ ϕ(`+
5

)⊆ϕ(β)

{`λ}⊆ϕ(`−
5

) ⇒ ϕ(`)⊆ϕ(`−
5

)

{`λ}⊆ϕ(`−
5

)

e1 . . . 6v e5

� �
� ⇒ {〈h,O〉}⊆ψ(`−

5
)

(c
`+
1
`−
1

g →c
`+
2
`−
2

f)
`+
3
`−
3

f

{`+
3
}⊆ϕ(`−

5
) ⇒ {〈h,R〉}⊆ψ(`−

5
)

{`+
3
}⊆ϕ(`−

5
) ⇒ {〈h,O〉}⊆ψ(`−

5
)

{`+
3
}⊆ϕ(`−

5
) ⇒ ϕ(`+

5
)⊆ϕ(`−

1
)

{`+
3
}⊆ϕ(`−

5
) ⇒ ϕ(`+

2
)⊆ϕ(`−

5
)

〈. . . e3 (c
`+
1
`−
1

g →c
`+
2
`−
2

f)
`+
3
`−
3

f 〉
`+
4
`−
4

f {`+
3
}⊆ϕ(`−

5
)

e3 6v e5

� �
� ⇒ {〈h,O〉}⊆ψ(`−

5
)

Source � Sink (e`5 e`6)`a (c
`+
7
`−
7

i →c
`+
8
`−
8

h)
`+
5
`−
5

h 〈. . . e5 (c
`+
7
`−
7

i →c
`+
8
`−
8

h)
`+
5
`−
5

h 〉
`+
6
`−
6

h

n`n
e1... {`n}⊆ϕ(`5) ⇒ {〈λ,R〉}⊆ψ(`a) {`n}⊆ϕ(`−

5
) ⇒ {〈h,R〉}⊆ψ(`−

5
)

int
`+
1
`−
1

f

{`+
1
}⊆ϕ(`5) ⇒ {〈λ,R〉}⊆ψ(`a) {`+

1
}⊆ϕ(`−

5
) ⇒ {〈h,R〉}⊆ψ(`−

5
)

〈. . . e1 int
`+1 `

−

1

f 〉
`+2 `

−

2

f

any
`+
1
`−
1

f

〈. . . e1 any
`+
1
`−
1

f 〉
`+
2
`−
2

f

(λxβ .e`)
`λ
e1...

{`λ}⊆ϕ(`5) ⇒ ϕ(`6)⊆ϕ(β)

{`λ}⊆ϕ(`5) ⇒ ϕ(`)⊆ϕ(`a)

{`λ}⊆ϕ(`−
5

) ⇒ ϕ(`+
7

)⊆ϕ(β)

{`λ}⊆ϕ(`−
5

) ⇒ ϕ(`)⊆ϕ(`−
8

)

{`λ}⊆ϕ(`−
5

)

e1 . . . 6v e5

� �
� ⇒ {〈h,O〉}⊆ψ(`−

5
)

(c
`+1 `

−

1
g →c

`+2 `
−

2

f)
`+3 `

−

3

f

{`+
3
}⊆ϕ(`5) ⇒ ϕ(`6)⊆ϕ(`−

1
)

{`+
3
}⊆ϕ(`5) ⇒ ϕ(`+

2
)⊆ϕ(`a)

{`+
3
}⊆ϕ(`−

5
) ⇒ {〈h,O〉}⊆ψ(`−

5
)

{`+
3
}⊆ϕ(`−

5
) ⇒ ϕ(`+

7
)⊆ϕ(`−

1
)

{`+
3
}⊆ϕ(`−

5
) ⇒ ϕ(`+

2
)⊆ϕ(`−

8
)

〈. . . e3 (c
`+
1
`−
1

g →c
`+
2
`−
2

f)
`+
3
`−
3

f 〉
`+
4
`−
4

f {`+
3
}⊆ϕ(`−

5
)

e3 6v e5

� �
� ⇒ {〈h,O〉}⊆ψ(`−

5
)

Table 1. Constraints creation for source-sink pairs.

contract on the fly (with ` and `′ fresh) and uses it to check the do-
main and range of the function contract. For deeply nested function
contracts, the process is repeated recursively thereby creating a wit-
ness for each possible contract violation.5 In essence this process
simply makes explicit the sinks for the complex abstract values that

5 The debugger must then be careful to re-use the original any
`+
5
`−
5

h contract

for both the domain and range of the new (any
`+
5
`−
5

h →any
`+
5
`−
5

h)``
′

h con-
tract because the use of new any contracts for the domain and range makes
the analysis fail to terminate when a function with a recursive type flows

into any
`+
5
`−
5

h .

flow into any
`+5 `

−

5

h . The analysis therefore remains sound. Here we

forsake this process and re-use the any
`+5 `

−

5

h contract and its labels
only to simplify the soundness proof.

5.2.2 Blame Constraints

The third example explains blame assignment:

Source
�

Sink (c
`+7 `

−

7

i →c
`+8 `

−

8

h)
`+5 `

−

5

h

int
`+1 `

−

1

f {`+1 }⊆ϕ(`−5) ⇒ {〈h,R〉}⊆ψ(`−5)

It specifies the creation of a single blame set constraint for every
possible pair of abstract integer source and arrow contract check
in the program. The constraint says that, if the abstract integers
represented by `+1 flow into the arrow check represented by `−5 ,
module h has to be blamed because it might produce integers when
only abstractions are expected. The name of the module is tagged
with red (R) because it is a complete violation of the contract.

For a partial contract violation, which is tagged with orange
(O), consider this entry:

Source
�

Sink 〈. . . e5 int
`+5 `

−

5

h 〉
`+6 `

−

6

h

〈. . . e1 int
`+1 `

−

1

f 〉
`+2 `

−

2

f

{`+1 }⊆ϕ(`−5)

e1 6v e5

� �

� ⇒ {〈h,O〉}⊆ψ(`−5)

The cell specifies the creation of a single blame set constraint for
every possible pair of an integer contract triple (viewed as a source)
that has an additional predicate e1 and another triple with an integer
contract check that has an additional predicate e5. The constraint
says that, if the abstract integer (`+1) flows into the integer check
(`−5) and if the source predicate e1 does not imply (6v) the sink
predicate e5, then the hmodule variable is blamed for the violation.
The “blame” color, however, is orange because the analysis can
prove that the abstract values flowing into the contract check are at
least always integers. Note that the boilerplate code in the triples
plays no explicit role here so we use dots for this code.

The blame constraints in Table 1 always use the name h asso-
ciated with the sink (or λ when the module violates the language
specification), never the name f associated with the source. This
makes the analysis consistent with the invariant established via rule
ARROWC during the annotation process of Section 3.3. That rule
switches the two module variable names used by the `

a
c judgment

as it traverses the domain positions in a functional contract. This
switch ensures that when an expression is reduced and triggers a
contract violation at runtime, blame for that violation is always cor-
rectly assigned to the module that originally contained the expres-
sion being reduced. The switch also ensures that, at analysis time,
the name of the module that originally contained the currently ana-
lyzed lifted expression tree is always the name associated with any
contract check that is used at the top of that tree.

For example, in the lower left part of Figure 8, the original grey
module is always blamed when the reduction process triggers a run-
time contract violation in either of the two grey terms. In the lower
right corner of the figure the name of the original grey module is
always associated with the contract checks at the top of both grey
subtrees. By always using the name h associated with such contact
checks when assigning blame, the constraints of Table 1 guarantee
that the analysis is consistent with the runtime behavior in blaming
the original grey module for all contract violations occurring inside
a grey term.

This treatment of blame assignment is also consistent with a
modular analysis. The analysis completely trusts the contracts at
the top and bottom of a lifted expression tree to correctly approx-
imate the outside world, even if analyzing later that outside world
might show that assumption to be untrue. Since it trusts the con-
tracts, the analysis can only assign blame to the analyzed expres-
sion. While this makes blame assignment look easy, it is really a
consequence of a carefully engineered annotation process and lift-
ing phase.

5.2.3 Additional Constraints

Finally, to get the analysis started, we must supplement Table 1
with rules that get the flows initiated for all the value sources. In
general, all value sources must have their label included in their

own value set. Similarly, each blame set is seeded with the names
from blame expressions: see the top two rows of Table 2.

The third row in Table 2 describes the flows from the two
branches of an if0 expression to the whole expression. Naturally
there are no flows out of the test.

The fourth row explains the analysis of contract checks at the
top of the lifted trees. Recall that a contract at the top of a lifted
tree simulates the context in which the tree used to occur. Since
any given contract can be both a value source or a value sink, the
constraint generation algorithm merely connects the outflow of the
sub-expression with the inflow of the contract.

Triples such as 〈e`1 e`2 c``
′

f 〉`
+`−

f also need to create value
flows. Remember that the third part of a triple—the domain con-
tract derived by the D∆ function—shares its label ` with ε expres-
sions in the first part of the triple. There is therefore no need to cre-
ate flows between the first and third parts of the triple. Two flows
are still missing, however. First, the result of the first part flows out
to be the result of the entire triple. Second, the values that flow into
the triple really flow into the `′ position of the contract; this guar-
antees that these in-flowing values are checked against the contract
c. See the fifth row of Table 2 for details on these checks.

One interesting aspect of triples is that they are not themselves
abstract value sources. What acts as a value source is the predicate-
free contract c, which approximates the predicate e in the triple.
When c reaches a value sink it is directly checked against the sink
if the sink is another predicate-free contract, or it is used as an
approximation of e if the sink is another triple.

To be more concrete, consider again the example at the end
of Section 3.3. Starting from the contract (pred prime?) on the
definition of the module variable f the annotation process inserts
around the reference to f a contract check with a triple of the form:

〈(if0 (prime?β1 ε`) ε` (blame f O)) prime? int``
′

f 〉

When considered as a source the int``
′

f contract flows naturally to

the ε` expression, out of the if0 one, and then out of the triple
because of the first constraint from the fifth row of Table 2. If later
that int``

′

f contract flows into a simple arrow contract check then

a red error occurs. If the int``
′

f contract flows into a simple integer
contract check then everything is fine. In both cases the analysis has
reached a conclusion without ever having to consider the predicate
prime?, which is the only information the programmer supplied
for f ’s contract. In essence the analysis has computed that, to
be a prime, a value must first be an integer. It can then use that
knowledge to simplify many of the contract checks.

Similarly if the sink for int``
′

f is a triple with a simple arrow
contract as its third part, the analysis flags a red error without
having to consider either prime? or the predicate in the sink triple.

It is only when int``
′

f flows into a triple with an integer contract as
its third part that the analysis has to compare the predicate prime?
from the source with the predicate from the sink and decide, using
the 6v relation, whether the first implies the second. If not, an orange
error is flagged.

Finally, we are left with modules. Initially, a module contributes
only its single value to the analysis. The last row in Table 2 there-
fore adds a constraint that connects the value to the module vari-
able. Since a variable shares its label with all its references, the
value thus flows from the variable definition to each reference to a
⇐ form that checks the values against the module variable’s con-
tract. The analysis thereby ensures that the expression defining the
module variable satisfies its own contract.

Once all the constraints have been generated from a program’s
text, they have to be solved to obtain the solution. This is done using

n` int``
′

f any``
′

f (λxβ .e`e)` (c1→c2)``
′

f {`}⊆ϕ(`)

(blame f s)` {〈f, s〉}⊆ψ(`)

(if0 e`0 e`1 e`2)`
ϕ(`1)⊆ϕ(`)

ϕ(`2)⊆ϕ(`)

(c``
′

f ⇐ e`e)`c ϕ(`e)⊆ϕ(`′)

〈e`1 e`2 c``
′

f 〉`
+`−

f

ϕ(`1)⊆ϕ(`+)

ϕ(`−)⊆ϕ(`′)

(module fβ v`v)` ϕ(`v)⊆ϕ(β)

Table 2. Additional constraints.

standard technology for solving Horn constraints. See for example
Palsberg and Schwartzbach [25].

5.3 Analysis Parameterization

The analysis is parameterized over the approximation relation 6v
that is used to compare predicates. Intuitively, the relation is a
version of (the negation of) observational approximation. Consider
n + 1 predicates e1,. . . , en, and e, and the question of whether
the relation e1 . . . en 6v e holds or not. Since predicates work on
values, this question only makes sense if it is asked for a given
abstract value v: if v has satisfied each of the predicates ei, does v
then satisfy e? More formally, we define the 6v relation as follows:
given the predicates e1,. . . , en and e, we have e1 . . . en 6v e if and
only if there exists an abstract value v such that (ei v) reduces to 0
for all i and (e v) does not reduce to 0.

In practice a static debugger will only analyze an unreduced
program, where the relation will always be only of the form e1 6v e,
but we have to use the multi-predicate version here for the sake
of the soundness proof. All the e1 . . . en and e predicates should
be non-lifted expressions, otherwise the 6v relation might in some
cases end up comparing contracts rather than expressions.

Since observational approximation is undecidable, an imple-
mentation must use a decidable and conservative version of it. The
selection of a decidable relation is a trade-off between the power of
the analysis and the time complexity of the relation. Many reason-
able choices exist: the vacuous false relation; the equality of predi-
cate names; λ-calculi; or general theorem proving à la ESC [7].

In practice a relation based on predicate names and contract
combinators is a good choice. DrScheme programmers who use the
contract system tend to give names to contract predicates and re-use
those names. For complex contracts they use contract combinators.
Thus, a DrScheme programmer may introduce a contract (and/c
even? prime?) and name it ep. If other modules use ep, the anal-
ysis can avoid false positives when the result of an ep-generating
function flows into the argument of an ep-consuming function. This
works well even though the analysis itself has no notion of the
concept of evenness or primality. The resulting system then is in
essence the idea of type qualifiers [14] applied to contracts.

Of course, the analysis is not able to bless an ep flowing, say,
into a positive? contract, but it is at least possible to check that
both ep and positive? are integer-based predicates and flag that
second contract in orange rather than red. The orange color means
that the analysis has detected that a contract violation has only
been a partial one and it can report that information back to the
programmer who is using the static debugger.

Put from the point of view of that programmer, the red color
means that either an actual violation has been detected or that the
analysis has unknowingly reached its own limit (a limit inherent
to the core value flow analysis). The orange color means that
either an actual violation has been detected or that the analysis
has knowingly reached its own limit. That is, in the orange case

the analysis has detected that the 6v relation is not capable of
proving the desired property, either because the property is wrong
or because the relation is too weak to prove it, while in the red
case the analysis simply concludes that the property is wrong. From
the point of view of the programmer then, getting rid of an orange
false-positive requires using a stronger 6v relation, while getting rid
of a red false-positive requires changing the core of the analysis in
Table 1.

The analysis is also parameterized over the D∆ function (Fig. 6)
used in the annotation process. Looking once more at the example
at the end of Section 3.3, we see that D∆ approximates the prime?
predicate with an int contract. If that int contract flows from the
contract triple into an int check elsewhere in the program then
Table 1 tells us that everything is fine. If instead we weaken the
D∆ function to approximate prime? with an any contract, that any
contract now flows from the triple into the same int check and
Table 1 tells us a red error is flagged. This shows that choosing
a reasonably precise D∆ function is important for the accuracy of
the analysis.6

The only way to get rid of the spurious red error stemming from
such a weakened D∆ function is to modify the cell in Table 1

that has 〈. . . e1 any
`+1 `

−

1

f 〉
`+2 `

−

2

f as a source and int
`+5 `

−

5

h as a sink
to make it use the 6v relation and extend that relation to check
whether e 6v int. After all, even though D∆ poorly approximates
prime?, that predicate by itself mathematically ensures that all
values satisfying it are integers, so there is no reason to flag a
red error if 6v is strong enough to compensate for D∆’s weakness.
In general, the less accurate the D∆ function is in approximating
predicates, the more work the 6v relation has to do to prevent the
appearance of false-positives.

Obviously the parameterization of the analysis over D∆ and 6v
has a strong influence on the analysis’s total running time. There
is no limit to how complex D∆ and 6v can be. Outside of those
two specific running times, the constraints created from the core of
the analysis in Table 1 can still be solved in time proportional to
the cube of the size of the lifted program [25] in the worst case.
Remember that the annotation process duplicates contracts, and in
fact it can do so a linear number of times if there is a linear number
of module variable references in the program. If a given module
variable has a linear number of references and its contract is itself
linear in the size of the original program, the size of the lifted
program is then quadratic in the size of the original program in
the worst case, and the total running time of the constraint solving
part of the analysis is then proportional to the sixth power of the
size of the original program. In practice contracts have a constant
size so the programmer is unlikely to ever experience this worst
case analysis time.

5.4 Type Reconstruction

Given the solution ϕ of the set constraints for value flows, we can
create a type-like description of value sets for each node in the
program. Specifically, for a given mapping ϕ and label `, the two
functions in Figure 11 reconstruct a (recursive) type specification.
It is those types that the static graphical debugger presents to the
programmer together with the blame sets.

The Rϕ function computes the set of all reachable labels from
a label `. The T ϕ function then uses these labels as the names of
types to construct a (potentially) recursive type for `. The recon-
struction itself is straightforward. A set of labels corresponds to
a union; an empty set corresponds to dead code or an expression
that never returns a result. A label on an integer or integer contract

6 Weakening D∆ does not make any difference for the runtime contract
system because the reduction rules always check all the predicates no matter
how weak the approximations that D∆ computes are.

corresponds to an integer type. A label on an any contract corre-
sponds to an any type. Last but not least, a label on an abstraction
or arrow contract corresponds to a function type. The surrounding
rec type constructor takes accounts for the binding of labels for the
function’s argument and result types.

We are not concerned here with the readability of types. Hence,
we skip any simplification steps for the reconstructed types. The
types are, however, useful for the formulation of the analysis sound-
ness theorem and its proof.

Rϕ(`)
def
= {`} ∪ R

ϕ
u (`)

R
ϕ
u (`)

def
= � `i∈ϕ(`) R

ϕ
t (`i)

R
ϕ
t (`)

def
=

�� � {`} if n` or int``
′

f or any``
′

f

{`} ∪Rϕ(`1) ∪Rϕ(`2) if (λx`1 .e`2)` or (c
`′1`1
g →c

`2`
′

2

f)``
′

f

T ϕ(`)
def
= (rec ([`i T

ϕ
u (`i)]`i∈R

ϕ(`) . . .) `)

T
ϕ
u (`)

def
= (union T

ϕ
t (`i)`i∈ϕ(`) . . .)

T
ϕ
t (`)

def
=

���� ��� int if n` or int``
′

f

any if any``
′

f

(`1→`2) if (λx`1 .e`2)` or (c
`′1`1
g →c

`2`
′

2

f)``
′

f

Figure 11. Rϕ and T ϕ functions.

6. Soundness
We adapt Wand and Williamson’s proof technique [30] to prove
the soundness of our analysis. Let � p � be the set of constraints
that the analysis generates when given the lifted program p, and let
|= denote implication between sets of constraints: for two sets of
constraints A and A′, we have A|=A′ if and only if every solution
of A is a solution of A′.

Given this machinery, an adaptation of Wand and Williamson’s
soundness theorem for our analysis is as follows.

Theorem 1. For a given annotated program p, let p′
def
= m′ . . . e`

′

be such that `lp p � p′. Then:

• p reduces to m. . . v` and � p′ � |={`}⊆ϕ(`′);

• p reduces to (blame π s)` and � p′ � |={〈π, s〉}⊆ψ(`);
• or p reduces forever;

where π indicates the party to blame for the violation (either a
module variable name like f , µ for the main expression, or λ for
the user) and s indicates the severity of the violation (O or R).

The proof follows the one by Wand and Williamson, extended
to handle blame sets.

Intuitively, our analysis conservatively predicts the runtime be-
havior of the program. If the program terminates normally by re-
turning a value then the analysis correctly predicts the label on that
value. If the program terminates abnormally because of a contract
violation then the analysis conservatively predicts the violation, its
severity, and the module that is to be blamed for it.

While necessary, the theorem above is not quite enough. It
shows that, if the program reduces to a value, the analysis correctly
predicts the label on that value. This does not automatically mean
that the analysis predicts the value itself; after all, the label on
a given value changes every time the value crosses a contract
boundary. Indeed, one of the invariants of the reduction rules from
Figure 7 is that a value that successfully goes through a contract
check always acquires the label that was on that contract (seen as
an abstract value source).

What we want is a strengthening of the theorem that tells us
something about values and types. Fortunately, contracts ensure
that types are preserved as values cross contract boundaries. For
example, when the analysis encounters the expression

(int``
′

f ⇐ 3`n)`c ,

the analysis predicts that the result is an integer with label `. In this
case we obtain 3` after just one reduction step (INT-INT)

Using this insight, we can state and prove an improved correct-
ness theorem:

Theorem 2. For a given annotated program p, let p′
def
= m′ . . . e`

′

be such that `
l
p p � p′. Then:

• p reduces to m. . . v` and � p′ � |=T ϕ(`) ≤T ϕ(`′),

• p reduces to (blame π s)` and � p′ � |={〈π, s〉}⊆ψ(`);
• or p reduces forever.

where ≤ is subtyping between recursive types [3, 18] and π and s
have the same meaning as before.

Proof Sketch. We adapt Wand and Williamson’s technique as
follows for this proof. Take the set of constraints � p′ � . Replace
every constraint of the form ϕ(`)⊆ϕ(`′) with a constraint of the
form T ϕ(`)≤T ϕ(`′). Now prove the entailment and type preser-
vation properties for these sets of constraints using Wand and
Williamson’s technique and the fact that all contract checking re-
ductions in Figure 7 ensure that types are preserved when a value
crosses a contract boundary.

7. Modularity
Conventionally, an analysis is called modular if it is applied to a
module and a description of the rest of the world. That is, the
approach assumes that a modular analysis is what an analysis
applied to a module is. In contrast, we have formulated the analysis
in terms of the entire program, and we now prove that it is modular,
i.e. that a lifted tree of a program can be analyzed in isolation of the
rest of the program.

Theorem 3. Given an annotated program p, let p′ be such that

`
l
p p � p′. Consider a single lifted tree t′ in p′. Consider the mini-
mal solution ϕp′ of � p′ � and its restriction ϕp′/t′ to the labels that
occur in t′. Consider also the minimal solution ϕt′ of � t′ � . Then
ϕp′/t′ and ϕt′ are the same.

In other words, analyzing a lifted tree (either a module or a lifted
expression) in isolation of the rest of the program produces the
same results as analyzing the whole program and then looking at
the results for just that tree. This is true regardless of how many
times the program has already been reduced.

Proof Sketch. A direct consequence of the lemma below. We
consider minimal solutions because all other pairs of solutions are
incomparable in general.

To show that module contracts are complete descriptions of the
program context, we prove that abstract values cannot flow between
any two lifted trees during the constraint solving phase.

Lemma. Given an annotated program p, let p′ be such that

`
l
p p � p′. Then for two different lifted trees t and t′ that are in
p′, the only labels ` in t and `′ in t′ such that � p′ � |=ϕ(`)⊆ϕ(`′)

are labels where ` = `′ = β with t = (module fβ v`v)`m and

t′ = (c`
+`−

f ⇐ fβ)`c .

Intuitively, the lemma says that the analysis propagates only values
from modules to occurrences of contracted module names. That is,

from a module variable binder to a reference that is wrapped with
a contract check. Of course, such flows do not break modularity
in practice because they merely mean that the module’s value is
checked against its own contract. That such checks create a seem-
ingly intertree flow is an artifact of our lifting function. A practical
implementation simply propagates the module’s value directly into
the check without going through the variable reference. This is in
fact what happens as soon as the LOOKUP rule has been used.7

Proof Sketch. A close look at the syntax of Figure 10 shows
that intertree flows can only occur in the following three cases: (1)
across the same contract seen as a sink at the top of a lifted tree
and as a source at the bottom of another tree; (2) through an ε`

expression that shares its label with another expression in another
tree; or (3) from a lexical or module-defined variable binder in one
tree to a reference to the same variable in another tree.

(1) All contracts are tagged with two labels. The first one is used
when the contract is seen as an abstract value source, the second
one when the contract is seen as a sink. Tables 1 and 2 are defined,
however, in such a way that no abstract value ever flows into a
source contract (apart from the abstract value represented by that
contract itself) or flows out of a sink contract. Leaking values across
contracts is therefore impossible.

(2) By construction the ε` expressions initially occur only inside
triples. Furthermore, they share their labels with the contract in the
same triple and nothing else. The triple’s boilerplate code can only
have contract checks inside the predicate expression in the test part
of the if0 expression (Sec. 3.3). Lifting judgments therefore may
only affect that part of the boilerplate code. Hence, the two ε`

expressions and the contract with the same label all remain in the
same triple after lifting. There is thus no possibility for values to
flow from one tree to another through ε` expressions.

(3a) Similarly, the binder and all the references for a given lex-
ical variable always remain inside the same tree. By construction
contracts are initially only on module-defined variables. No reduc-
tion rule, including the SPLIT rule, ever introduces a contract be-
tween a binder and one of its references. The lifting function there-
fore never separates binder and references into two different trees.
Leaks through lexical variables are thus impossible, too.

(3b) Module variables are the only remaining mechanism for
intertree value propagation. Recall (Sec. 3.3) that the annotation
phase wraps all module variable references with a contract check:

(module f c v)
. . . f . . .

becomes

(module fβ v`v)`m

. . . (c`
+`−

f ⇐ fβ)`c . . .

Now the lifting function lifts all contract checks to the top so that
after lifting, the annotated code above is split into three trees:

(module fβ v`v)`m

(c`
+`−

f ⇐ fβ)`c

. . . c`
+`−

f . . .

And in fact, the analysis of this code propagates the value v`v in
the first tree to fβ in the module and afterwards to the reference fβ

in the contract check.
In short, this last part validates that intertree flows are possible

from a module variable definition to a contract check for just this

7 Putting the contract checks on the module variable binders rather than on
each module reference would make the analysis monovariant in such values.
As it stands, it is naturally polyvariant in module values [32].

variable. No other kind of flow is possible through module variables
because by construction all contract checks are initially on module
variable references. Such references can only disappear by being
substituted for their bound value (LOOKUP rule in Figure 7), which
then makes the second lifted tree in the example above independent
of the first one.

8. Implementation
We have created a proof-of-concept static debugger based on our
analysis. It implements the annotation phase of Section 3.3, and
the lifting, constraints generation, and type reconstruction phases
described in Section 5. We use simple name equality to implement
the 6v relation. In that implementation abstract value sets are rep-
resented as nodes in a graph. Simple inclusion constraints between
value sets such as the ones in Table 2 are represented as direct edges
between nodes. Conditional constraints like the ones in Table 1 are
represented as special edges that create new direct edges whenever
their condition becomes true. Solving the constraint is then a sim-
ple matter of computing the transitive closure of the graph, which
can be done in cubic worst case time in the size of the graph. Con-
straints for blame sets are handled in a similar manner.

Figure 12. Example program with red error.

Figure 12 shows the result of using our debugger on a toy
program consisting of a single module and a main expression.
The main expression is highlighted and underlined in red because
it is trying to apply the integer i as if it were a function. The
error message (not shown) blames λ, the programmer of the main
expression. This example corresponds to the cell in Table 1 that has
an integer n`n

e1... as source and an application (e`5 e`6)`a as sink.
Thanks to DrScheme’s syntax object system, the error highlighting
is done in terms of the user’s original program, not in terms of the
lifted one, which remains internal to the debugger.

Figure 13. Example program with orange error.

Our second screenshot in Figure 13 shows an orange error. We
define a predicate prime? that accepts integers as input. Actually
implementing a primality test is not our concern here so we sim-
ply defined prime? as a function which we know never violates
prime?’s own contract. Next we define the variable p and use the
prime? predicate just defined to promise that p is a prime num-
ber. We then use that integer in the main expression. The debug-
ger colors the prime? predicate in orange, because, while it can
prove that the number 4 is an integer just as the prime? predi-
cate expects, it cannot prove that 4 is actually a prime number as
promised. The error message blames p. This example corresponds
to the cell in Table 1 that has an integer n`n

e1... as a source and a triple

〈. . . e5 int
`+5 `

−

5

h 〉
`+6 `

−

6

h as a sink. Here e1 . . . is empty so e1 . . . 6v e5
is vacuously true.

Our final example in Figure 14 shows a use of the 6v relation.
As in the previous example we define a predicate prime? and a

Figure 14. Example program with no second prime? error.

prime number p. As before the debugger signals an orange error
because p might not actually be a prime number. We also define a
function f, which acts as a sink for prime numbers, and then give p
as input to f. Notice that, even though the debugger has discovered
that p might not be a prime number, it does not signal any error
when giving p to f. The debugger is able to tell that, if the value
of p passes p’s contract check at runtime, then it also passes f’s
domain contract. Even though the debugger does not understand the
concept of primality, it does use the name-based 6v relation to check
that the contract on p matches the contract on the domain of f and
consequently does not signal an error. This behavior corresponds to

the cell in Table 1 that has a triple 〈. . . e1 int
`+1 `

−

1

f 〉
`+2 `

−

2

f as source

and another triple 〈. . . e5 int
`+5 `

−

5

h 〉
`+6 `

−

6

h as sink. Since e1 and e5
are both prime?, the relation e1 6v e5 is not satisfied, the constraint
{〈h,O〉}⊆ψ(`−5) is thus not triggered, and the debugger does not
highlight the prime? predicate in f’s contract. This also shows that
the orange contract violation for the body of p does not influence
the analysis of the uses of p elsewhere; the analysis is modular.
Finally, notice that after flowing through f’s body a prime number
does not trigger f’s int range contract check. The analysis correctly
recognizes primes as integers, since the domain for the prime?

predicate itself is int, which is what D∆ computes.

9. Related Work
Probst [26], Flanagan and Felleisen [10], and Fähndrich and
Aiken [2] develop set-based analyses for module-like compo-
nents in (higher-order) object-oriented and functional languages.
All three approaches rely on a variation of the same basic tech-
nique. Their analysis generates separate constraint sets for each
module, simplifies them using various heuristics, stores the result-
ing sets for later use, and eventually combines all the necessary
sets together to get the solution for a specific module. While this
form of analysis clearly helps programmers who wish to explore a
large set of modules in an incremental manner, it does not qualify
as a truly modular analysis. Without the entire program around, a
programmer cannot start the analysis.

Tang and Jouvelot [28] present a technique that uses type and
effect information, possibly coming from module signatures, to
extend an abstract interpretation to support separate analysis. They
use 1CFA as an example for their technique, though it can be
applied to any abstract interpretation. While this analysis truly
qualifies as modular, it only considers contracts as value sources,
never as value sinks, and therefore cannot check module definitions
against their own contracts. Worse, because errors are impossible in
their language the analysis comes without any blame assignment,
which we consider a centerpiece of contract monitoring.

Cousot and Cousot [6] formalize a framework for modular ab-
stract interpretation and consider several solutions, including the
idea of programmer-specified interfaces. For this case they provide

general conditions relating the analysis and the interfaces so that
the analysis is sound. We conjecture that our approach is a special
case of this framework, but we have no proof for this conjecture.
We chose to develop our own model and soundness proof so that
we could cope with the blame analysis properly.

Much work has also been done on modules in the context
of Hindley-Milner type systems[19, 20, 22]. The most obvious
difference between such type systems for modules and our analysis
is the restricted set of program properties that can be expressed
within the type language, while contracts can use the full power
of the expression language to describe any possible property. This
comes at the price of 6v being undecidable.

Identifying the source of type errors in ML-like languages is
notoriously difficult [29]. Since we use a flow analysis, our graph-
ical debugger can easily trace values back to their source when a
contract violation occurs [11]. The closest equivalent is Haack and
Wells’s type error slicing system [15]. Extending that system to
handle module signatures is described as future work, however.

There is a general equivalence between polyvariant flow anal-
yses and type systems with intersection and union types [24, 31].
Our system is polyvariant (in the sense that the contract for a given
module variable is duplicated and re-analyzed at each reference of
that variable) but it is doubtful that an equivalent static type sys-
tem exists, due to the presence of predicates in our contract lan-
guage. Systems with intersection and union types also usually do
not consider the problem of modularity. Wells et al. indicate that
their λCIL calculus could possibly serve as the basis for a modular
compilation system [31] but do not elaborate on that point.

Other systems [1, 5, 9, 17] have investigated the combination
of static types and dynamic checks to ensure program correctness.
Flanagan’s hybrid type checker [9] is closest to our system. His type
checker is parameterized over a three-valued subtyping judgement,
which is similar in spirit to the parameterization of our analysis
over the approximation relation. Flagging a red error in our analysis
then parallels rejecting a program in his type system, and flagging
an orange error parallels inserting a dynamic check.

Both our contract language and Flanagan’s type language in-
clude predicates. The type x : B.t denotes in his language the set
of values of base type B that satisfy the predicate t. The user must
therefore specify both B and t. On our system the user only spec-
ifies the predicate t and we use the function D∆ to automatically
approximate B. In both systems two predicates are compared only
once their base types (the third parts of the corresponding contract
triples in our case) have proved to match. Flanagan’s type language
also includes dependent function types, whereas our model does
not yet include Findler and Felleisen’s dependent contracts [8].

While Flanagan does not examine the question of modules, it
should be easy to add them to his language by using his types as
interface specifications. The way he assigns blame is based on the
work by Findler and Felleisen, as is ours.

10. Future Work
As it is, Table 1 is only partially parameterized over the 6v relation.
Five cells in the table have orange blame constraints that do not use
the relation in their antecedent. If 6v is extended to handle relations
of the form c 6v e then those five cells can be modified to depend
on the relation. Symmetrically, if 6v is extended to handle relations
of the form e 6v c (e.g. to prove that prime? mathematically implies
int) then five cells with red blame constraints can be modified to
become orange blame constraints that rely on 6v. Table 1 will then
be fully parameterized over the 6v relation.

Our model of a static debugger also needs to be extended to
cover some of the most commonly used contract combinators
(and/c, or/c, etc.) used in DrScheme’s contract system.

11. Conclusion
The paper shows how a program analysis can exploit module con-
tracts to produce sound approximations of the value flows in a
program in a fully modular manner. Moreover that analysis is pa-
rameterizable. To understand the exact design trade-offs, we plan
to include a full-fledged implementation with a future release of
DrScheme. Then experimentation by practicing programmers will
help us understand how a practical contract system and a modular
analysis should work together.

Acknowledgments
We thank Mitchell Wand as well as the anonymous POPL reviewers
for their valuable comments on several drafts of this paper. The au-
thors also acknowledge the support of the National Science Foun-
dation for this research.

References
[1] Abadi, M., L. Cardelli, B. Pierce and G. Plotkin. Dynamic typing

in a statically typed language. ACM Transactions on Programming
Languages and Systems, 13(2):237–268, 1991.

[2] Aiken, A. S. and M. Fähndrich. Making set-constraint based
program analyses scale. Technical Report CSD-96-917, University of
California, Berkeley, September 1996.

[3] Amadio, R. M. and L. Cardelli. Subtyping recursive types. ACM
Transactions on Programming Languages and Systems, 15(4):575–
631, September 1993.

[4] Bourdoncle, F. Abstract debugging of higher-order imperative
languages. In ACM SIGPLAN Conference on Programming Language
Design and Implementation, pages 46–55, 1993.

[5] Cartwright, R. and M. Fagan. Soft typing. In ACM SIGPLAN
Conference on Programming Language Design and Implementation,
pages 278–292, 1991.

[6] Cousot, P. and R. Cousot. Modular static program analysis,
invited paper. In Horspool, R., editor, Proceedings of the Eleventh
International Conference on Compiler Construction (CC 2002),
pages 159–178, Grenoble, France, April 6—14 2002. LNCS 2304,
Springer, Berlin.

[7] Detlefs, D. L., K. R. M. Leino, G. Nelson and J. B. Saxe. Extended
static checking. Technical Report 159, Compaq SRC Research
Report, 1998.

[8] Findler, R. B. and M. Felleisen. Contracts for higher-order
functions. In ACM SIGPLAN International Conference on Functional
Programming, 2002.

[9] Flanagan, C. Hybrid type checking. In Proceedings of the symposium
on Principles of Programming Languages, 2006. In this volume.

[10] Flanagan, C. and M. Felleisen. Componential set-based analysis.
ACM Trans. on Programming Languages and Systems, 21(2):369–
415, Feb. 1999.

[11] Flanagan, C., M. Flatt, S. Krishnamurthi, S. Weirich and M. Felleisen.
Catching bugs in the web of program invariants. ACM SIGPLAN
Notices, 31(5):23–32, 1996.

[12] Flatt, M. Composable and compilable macros: You want it
when? In ACM SIGPLAN International Conference on Functional
Programming, 2002.

[13] Flatt, M., R. B. Findler, S. Krishnamurthi and M. Felleisen.
Programming languages as operating systems (or revenge of the son
of the Lisp machine). In ACM SIGPLAN International Conference
on Functional Programming, pages 138–147, September 1999.

[14] Foster, J. S., M. Fähndrich and A. Aiken. A theory of type qualifiers.
In PLDI ’99: Proceedings of the ACM SIGPLAN 1999 conference on
Programming language design and implementation, pages 192–203,
New York, NY, USA, 1999. ACM Press.

[15] Haack, C. and J. B. Wells. Type error slicing in implicitly typed
higher-order languages. Sci. Comput. Programming, 50:189–224,
2004.

[16] Heintze, N. Set-based analysis of ml programs. In LFP ’94:
Proceedings of the 1994 ACM conference on LISP and functional
programming, pages 306–317, New York, NY, USA, 1994. ACM
Press.

[17] Henglein, F. Dynamic typing. In Proceedings of the 4th European
Symposium on Programming, pages 233–253, London, UK, 1992.
Springer-Verlag.

[18] Hosoya, H., J. Vouillon and B. C. Pierce. Regular expression types
for xml. In Proceedings of the fifth ACM SIGPLAN international
conference on Functional programming, pages 11–22. ACM Press,
2000.

[19] Leroy, X., D. Doligez, J. Garrigue, D. Rémy and J. Vouillon. The
Objective Caml system – documentation and user’s manual, 2005.

[20] MacQueen, D. B. Modules for Standard ML. In Proceedings of the
1984 ACM Conference on LISP and Functional Programming, pages
198–207, New York, 1984. ACM Press.

[21] Meunier, P., R. B. Findler, P. A. Steckler and M. Wand. Selectors
make set-based analysis too hard. Higher Order and Symbolic
Computation, 2005. To appear.

[22] Milner, R., M. Tofte, R. Harper and D. Macqueen. The Definition of
Standard ML - Revised. MIT Press, Cambridge, MA, USA, 1997.

[23] Palsberg, J. Closure analysis in constraint form. Proc. ACM Trans.
on Programming Languages and Systems, 17(1):47–62, Jan. 1995.

[24] Palsberg, J. and C. Pavlopoulou. From polyvariant flow information
to intersection and union types. In Conference Record of POPL
98: The 25TH ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, San Diego, California, pages 197–208,
New York, NY, 1998.

[25] Palsberg, J. and M. I. Schwartzbach. Object-Oriented Type Systems.
Wiley Professional Computing. Wiley, Chichester, 1994.

[26] Probst, C. W. Modular control flow analysis for libraries. In SAS ’02:
Proceedings of the 9th International Symposium on Static Analysis,
pages 165–179, London, UK, 2002. Springer-Verlag.

[27] Shivers, O. The semantics of Scheme control-flow analysis. In
Proceedings of the Symposium on Partial Evaluation and Semantics-
Based Program Manipulation, volume 26(9), pages 190–198, New
Haven, CN, June 1991.

[28] Tang, Y. M. and P. Jouvelot. Separate abstract interpretation for
control-flow analysis. In Hagiya, M. and J. C. Mitchell, editors,
Theoretical Aspects of Computer Software, pages 224–243. Springer,
Berlin, Heidelberg, 1994.

[29] Wand, M. Finding the source of type errors. In ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, pages
38–43, 1986.

[30] Wand, M. and G. B. Williamson. A modular, extensible proof
method for small-step flow analyses. In Métayer, D. L., editor,
Programming Languages and Systems, 11th European Symposium
on Programming, ESOP 2002, Grenoble, France, April 8-12, 2002,
Proceedings, volume 2305 of Lecture Notes in Computer Science,
pages 213–227, Berlin, 2002. Springer-Verlag.

[31] Wells, J. B., A. Dimock, R. Muller and F. Turbak. A calculus with
polymorphic and polyvariant flow types. J. Funct. Programming,
12(3):183–227, May 2002.

[32] Wright, A. K. and S. Jagannathan. Polymorphic splitting: an
effective polyvariant flow analysis. ACM Trans. Program. Lang.
Syst., 20(1):166–207, 1998.

