
The Design of a Functional Image Library

Ian Barland
Radford University

ibarland@radford.edu

Robert Bruce Findler
Northwestern University

robby@eecs.northwestern.edu

Matthew Flatt
University of Utah

mflatt@cs.utah.edu

Abstract
We report on experience implementing a functional image library
designed for use in an introductory programming course. Designing
the library revealed subtle aspects of image manipulation, and led
to some interesting design decisions. Our new library improves
on the earlier Racket library by adding rotation, mirroring, curves,
new pen shapes, some new polygonal shapes, as well as having a
significantly faster implementation of equal?.

Keywords functional image library, image equality

1. Introduction
This paper reports on Racket’s (Flatt and PLT June 7, 2010) latest
functional image library, 2htdp/image. The library supports 2D
images as values with a number of basic image-building functions
for various shapes like rectangles and ellipses, as well as combina-
tions like images overlaid on each other, rotated images, and scaled
images. The image library is designed to be used with How to De-
sign Programs, starting from the very first exercises, while still be-
ing rich enough to create sophisticated applications.

An earlier, unpublished version of Racket’s image library had a
number of weaknesses that this library overcomes.

• Image equality testing was far too slow.
• Overlaying images off-center was sometimes unintuitive to be-

ginners.
• Rotation and reflection were not supported.

When images are regarded as immutable values (rather than
a side-effect of drawing routines), then unit tests are easier to
create, and the question of equality plays a particularly promi-
nent role. For example, when writing a video game (using the
2htdp/universe library (Felleisen et al. 2009)) one might
write a function draw-world : world → image and create
unit tests similar to:

(check-expect
(draw-world (move-left initial-world))
(overlay/xy player -5 0 initial-image))

For beginners using DrRacket, any poor performance of image
equality in unit tests becomes apparent, since the test cases are in-
cluded in the source code and are evaluated with each update to
their code. One teacher reported that a student’s test-cases for a tic-
tac-toe game took approximately 90 seconds with the previous ver-
sion of the library. Improvements to the library helped considerably,
achieving (in that particular case) approximately a five-hundred-
fold speedup.

2. The 2htdp/image Library API

The 2htdp/image library’s primary functions consist of:

• constructors for basic images:
> (rectangle 60 30 "solid" "blue")

> (triangle 50 "solid" "orange")

> (text "Hello World" 18 "forest green")

dlroW olleH

> (bitmap icons/plt-small-shield.gif)

• operations for adding lines and curves onto images:
> (add-curve

(rectangle 200 50 "solid" "black")
10 40 30 1/2
190 40 -90 1/5
(make-pen "white" 4

"solid" "round" "round"))

(Lines are specified by end points; curves are specified by
end points each augmented with an angle to control the initial
direction of the curve at that point, and, intuitively, a “pull”
to control how long the curve heads in that direction before
turning towards the other point. More precisely, the angle and
pull denote a vector: the difference between the endpoint and
its adjacent control point for a standard Bezier curve.)

• an operation for rotating shapes:
> (rotate 30 (square 30 "solid" "blue"))



• operations for overlaying shapes relative to their bounding
boxes:

> (overlay
(rectangle 40 10 "solid" "red")
(rectangle 10 40 "outline" "red"))

> (overlay/align
"middle" "top"
(rectangle 100 10

"solid" "seagreen")
(circle 20 "solid" "silver"))

• putting images above or beside each other:
> (beside (circle 10 "solid" "red")

(circle 20 "solid" "blue"))

> (above/align "left"
(circle 10 "solid" "red")
(circle 20 "solid" "blue"))

• cropping shapes to a rectangle:
> (crop 0 0 40 40

(circle 40 "solid" "pink"))

• flipping and scaling images:
> (above

(star 30 "solid" "firebrick")
(scale/xy

1 1/2
(flip-vertical

(star 30 "solid" "gray"))))

• and equality testing:
> (equal?

(rectangle 40 20 "outline" "red")
(rotate

90
(rectangle 20 40 "outline" "red")))

#t

The library includes many additional, related functions for deal-
ing with pen styles, colors, framing images, width, height, and (for
drawing text) baseline of images, as well as a number of differ-
ent kinds of polygons (triangles, regular polygons, star polygons,
rhombuses, etc). The full 2htdp/image API is a part of the
Racket documentation (The PLT Team 2010).

3. From htdp/image to 2htdp/image
For those familiar with the earlier library htdp/image of Racket
(formerly PLT Scheme), this section gives a brief overview of the
conceptual changes and a rationale for them. The new version
can largely be seen as simply adding features: a few more prim-
itive shapes, as well as some more combinators such as over-
lay/align, rotate, functions for scaling and flipping. How-
ever, the original library did include two concepts which the new
version has jettisoned: pinholes, and scenes. Also, the new library
changes the semantics of overlay.

3.1 No More Pinholes

An image’s pinhole is a designated point used by the original li-
brary to align images when overlaying them. Imagine sticking a
push-pin through the images, with the pin passing through each pin-
hole. The pinhole can be interpreted as each image’s local origin.
The primitive image constructors (mostly) created images whose
pinhole was at their center, so the original (overlay img1
img2) tended to act as the new version’s (overlay/align
img1 "center" "center" img2).

Sometimes this default method of overlaying was intuitive to
students (e.g. when overlaying concentric circles or concentric rect-
angles), but sometimes it wasn’t (e.g. when trying to place images
next to each other, or aligned at an edge). While this was a teaching
moment for how to calculate offsets, in practice these calculations
were cluttered; many calls to overlay/xy would either include
verbose expressions like (- (/ (image-height img1) 2)
(/ (image-height img2) 2)), repeated again for the width,
or more likely the student would just include a hard-coded approx-
imation of the correct offset. While functions to retrieve and move
an image’s pinhole were provided by the library, most students
found these less intuitive than calling overlay/xy.

Pinholes are not included in our new library, although they
might make a comeback in a future version as an optional attribute,
so that beginners could ignore them entirely.

3.2 No More Scenes

The original library had attempted to patch over the pinhole diffi-
culties by providing the notion of a scene—an image whose pin-
hole is at its northwest corner. The library had one constructor for
scenes, empty-scene; the overlay function place-image re-
quired its second image to be a scene, and itself returned a scene.
This often led to confusing errors for students who weren’t at-
tuned to the subtle distinction between scenes and ordinary images
(and thought that place-image and overlay/xy were inter-
changeable). Part of the confusion stemmed from the fact that an
image’s pinhole was invisible state. The new library dispenses with
notion of scenes, and includes overlay/align to make image
placement natural for many common cases.

3.3 Changes to overlay

In htdp/image, the arguments to overlay were interpreted
as “the first image is overlaid with the second.” Students were
repeatedly confused by this, taking it to mean “the first image
is overlaid onto the second;” we changed overlay to match
the latter interpretation, and provided a new function underlay
for the natural task of placing images onto a background (see
Section 4).



4. Other API Considerations
We discuss the rationale for other decisions made about what to
(not) include in the API, several involving issues in overlaying
images.

• coordinates for overlay/xy There are several ways to com-
bine two images in 2htdp/image, including:

overlay/align lets the caller to specify how the images
are aligned, and is sufficient for several common cases.

The default version overlay uses the center of each im-
age.

When more precise placement is required, overlay/xy
specifies how to align the images using image-relative coor-
dinates.

There was discussion of whether overlay/xy should con-
sider each image’s origin to be the northwest corner with in-
creasing y coordinates moving down, (consistent with most
computer graphics libraries), or the center of each image with
increasing y coordinates moving up (avoiding a privileged cor-
ner, consistent with overlay’s default assumption, and ar-
guably in closer harmony with mathematics).
The final decision was to have indeed have overlay/xy use
the northwest corner. Even in a pedagogic setting where we
strive to strengthen the connection between math and program-
ming, it was felt we also have some duty to teach the conven-
tions ubiquitous in computing, such as this coordinate system.
Note that another related function, place-image, is also pro-
vided; it differs from overlay/xy in two ways: (place-
image img1 dx dy img2) first places the center of img1
offset from the img2’s northwest corner by dx,dy. Second, it
crops the result so that the resulting bounding box is the same
as img2’s. (See Figure 1 below.) The function place-image
is intended for the common case where the second image argu-
ment is regarded as a background or a window for an object of
interest. This asymmetry of purpose is reflected in the asymme-
try of the alignment conventions.

• underlay vs. overlay The new library includes both un-
derlay and overlay functions, which do the same thing
but take their arguments in different order: (overlay img1
img2) is equivalent to (underlay img2 img1).
Providing both overlay and its complement underlay
initially seems a bit redundant; after all the library provides
above and beside yet no complements such as below or
beside/right (which would only differ in swapping the
order of their arguments). The reason underlay is included
is that (overlay/xy img1 dx dy img2) (which over-
lays img1’s coordinate dx,dy on top of img2’s origin), would
require negative coordinates for the common task of “place
img1’s origin on top of img2’s coordinate (dx,dy),” in ad-
dition to swapping the order of its arguments. (See Figure 1.)
This situation was deemed common enough that it was decided
to provide both versions.

• rotate needs no center of rotation It was suggested by
several contributors and helpers that rotate must specify the
point of rotation. However, this doesn’t actually fit the model
of images as values: images are images without any enclosing
frame-of-reference; rotating about the lower-left is the same as
rotating about the center. (Of course, when the implementation
is rotating a composed image, we rotate each sub-part and then
worry about how to re-compose them.)

> (overlay (square 15 "solid" "orange")
(square 20 "solid" "blue"))

> (overlay/xy (square 15 "solid" "orange")
0 7
(square 20 "solid" "blue"))

> (underlay/xy (square 15 "solid" "orange")
0 7
(square 20 "solid" "blue"))

> (place-image (square 15 "solid" "orange")
0 7
(square 20 "solid" "blue"))

Figure 1: overlay/xy, and a motivation for underlay/xy

5. Implementation
We discuss the implementation of the image library, focusing on
unexpected difficulties and issues, as well as the rationale for cer-
tain choices. We present the data representations used, then the al-
gorithm for implementing equality, and finish with assorted issues
involving rotation and cropping.

5.1 Internal Representation
Internally, an image is represented by a pair of a bounding box
and a shape. A shape is a tree where the leaf nodes are the various
basic shapes and the interior nodes are overlaid shapes, translated
shapes, scaled shapes, and cropped shapes. In the notation of Typed
Scheme (Tobin-Hochstadt 2010; Tobin-Hochstadt and Felleisen
2008) (where “U” denotes a union of types, and “Rec” introduces
a name for a recursive type), this is the type for images:
(image

(bounding-box width height baseline)
(Rec Shape

(U Atomic-Shape ; includes ellipses,
; text, bitmaps, etc

Polygon-Shape ; includes rectangles,
; lines, curves, etc

(overlay Shape Shape)
(translate dx dy Shape)
(scale sx sy Shape)
(crop (Listof point) Shape))))

where the various record constructors (image, bounding-box,
overlay, point, etc) are not shown. The crop’s (Listof
point) always form a rectangle.

5.2 Defining Equality
Checking whether two shapes are equal initially seems straight-
forward: just check whether they are the same type of shape, and
have the same arguments. However, upon reflection, there are many
cases where differently-constructed shapes should still be consid-
ered equal. Recognizing and implementing these was a significant
source of effort and revision.

Intuitively, two images should be equal when no operations on
the images can produce images that behave differently. That is, the
two images should be observationally equivalent. In our case, this



means that the images should draw the same way after any amount
of rotation or scaling, or after any amount of overlays with equal
images.

A natural technique for implementing this form of equality is to
represent the shapes as (say) a tree of constructor calls (or perhaps
a sequence of translated, rotated primitive shapes), and implement
equality as a recursive traversal of the shapes. However, there
were quite a few difficulties encountered with this simple-seeming
approach.

For polygons, there are a number of different ways to represent
the same shape. For example, these four images should be equal:

• (rectangle 10 20 "outline" "blue")

• (rotate 90
(rectangle 20 10 "outline" "blue"))

• a polygon connecting (0,0), (10,0), (10,20), (0,20)
• four entirely disjoint line segments rotated and placed above or

beside each other to achieve the same rectangle.

One could take this as an indication that all polygon shapes should
be represented as a collection of line segments where ordering is
only relevant if the line segments overlap (and are different colors).

Worse, our image library supports shapes that can have a zero
width or a zero height. One might imagine that the image equality
can simply ignore such images but, in the general case, they can
contribute to the bounding box of the overall image. For example,
consider a 10 × 10 square with a 20 × 0 rectangle next to it.
The bounding box of this shape is 20 × 10 and thus the overlay
operations behave differently for this shape than they do for just
the 10 × 10 square alone.

Even worse, consider a 10× 10 black square overlayed onto the
left half of a 20 × 10 red rectangle, as opposed to a 10 × 10 red
square overlayed onto the right half of a 20 × 10 black rectangle.
Or, overlaying a small green figure top of a larger green figure in
such a way that the small green figure makes no contribution to the
overall drawn shape.

One might conclude from these examples that the overlay op-
eration should remove the intersections of any overlapping shapes.
We did briefly consider adding a new operation to pull apart a com-
pound shape into its constituent shapes, thereby adding a new sort
of “observation” with which to declare two shapes as different, un-
der the notion of observational equivalence.

Yet even worse, the ability to crop an ellipse and to crop a curve
means that we must be able to compute equality on some fairly
strange shapes. It is not at all obvious whether or not two given
curves are equal to one curve that has been cropped in such a way
as to appear to be two separate curves.

While these obstacles all seem possible to overcome with a suf-
ficient amount of work, we eventually realized that the students will
have a difficult time understanding why two shapes are not equal
when they do draw the same way at some fixed scale. Specifically,
students designing test cases may write down two expressions that
evaluate to images that appear identical when drawn as they are,
but are different due to the reasons above. The right, pedagogically
motivated choice is to define equality based on how the two im-
ages draw as they are, and abandon the idea of fully observationally
equivalent images.1

1 A related point has to do with fonts, specifically ligatures. A sophisticated
user might expect the letters “fi”, when drawn together, to look different
than an image of the letter “f” placed beside an image of the letter “i”,
due to the ligature. Since we expect this would confuse students, should
they stumble across it, we use the simpler conceptual model, and break the
text into its constitutent letters and draw them one at a time, defeating the
underlying GUI platform’s ligatures (and possibly the font’s kerning). If
this ends up surprising the sophisticated, it would not be difficult to add a

There are still two other, subtle points regarding image equal-
ity where images that look very similar are not equal?. The first
has to do with arithmetic. When shapes can be rotated, the com-
putations of the verticies typically requires real numbers which,
of course, are approximated by IEEE floating point numbers in
Racket. This means that rotating a polygon by 30 degrees 3 times
is not always the same as rotating it by 45 degrees twice. To ac-
comodate this problem, the the image library also supports an ap-
proximate comparison where students can specify a tolerance and
images are considered the same if corresponding points in the nor-
malized shapes are all within the tolerance of each other.

The second issue related to equality is the difference between
empty space in the image and space that is occupied but drawn in
white. For example, a 20 × 10 white rectangle looks the same as a
20 × 0 rectangle next to a 10 × 10 white rectangle when drawn on
a white background, but not on any other color. We decided not to
consider those images equal, so the equality comparison first draws
the two images on a red background and then draws the two images
on a green background. If they look different on either background,
they are considered different.

5.3 Implementing Equality
Unfortunately, defining equality via drawing the images means that
equality is an expensive operation, since it has to first render the
images to bitmaps and then compare those bitmaps, which takes
time proportional to the square of the size of the image (and has a
large constant factor when compared to a structural comparison).

Since students used this library for writing video games, unit-
testing their functions could easily involve screen-sized bitmaps;
this slow performance was noticeable enough that it discouraged
students from writing unit tests. Slow performance was especially
painful for students who have a single source file which includes
their unit tests, since the tests are re-interpreted on each change to
their program, even if the change does not affect many of the tested
functions.

Ultimately, we settled on a hybrid solution. Internally, we nor-
malize shapes so that they are represented as Normalized-
Shapes, according to this type definition (“CN” for “cropped,
normalized”):

(Rec Normalized-Shape
(U (overlay Normalized-Shape CN-Shape)

CN-Shape))
(Rec CN-Shape

(U (crop (Listof point)
Normalized-Shape)

(translate num num Atomic-Shape)
Polygon-Shape))

Note that the overlay of two other overlays is “linearized” so that
the second shape is not an (immediate) overlay2. A non-translated
Atomic-Shape is represented with a translation of (0,0). This
normalization happens lazily, before drawing or checking equal-
ity (not at construction, or else we wouldn’t have constant-time
overlay, etc).

Once the shapes are normalized, the equality checker first tries
a “fast path” check to see if the two shapes have the same normal-
ized form. If they do, then they must draw the same way so we do
not have to actually do the drawing. If they do not, then the equality
test creates bitmaps and compares them. While this only guarantees

new text-constructing operation that does not do this, and thus would have
proper ligatures (and kerning).
2 At first blush, it seems that if two overlaid shapes don’t actually overlap, it
shouldn’t matter which order they are stored in, internally. Surprisingly this
is not the case, for our definition of observationally equivalent: If the entire
image is scaled down to a single pixel, then the color of one of the two
shapes might be considered to “win” to determine the color of that pixel.



Library Time Speedup
Original library 9346 msec
2htdp/image library, without fast path 440 msec 21x
2htdp/image library, with fast path 18 msec 509x

Figure 2: Timing a student’s final submission, run on a Mac Pro 3.2
GHz machine running Mac OS X 10.6.5, Racket v5.0.0.1

equality at the particular scale the bitmap is created, using the nor-
malized form means that simple equalities are discovered quickly.
For example, two shapes that are overlaid and then rotated will be
equal to the two shapes that are rotated individually and then over-
laid.

Overall, the image equality comparison in 2htdp/image is
significantly faster than in the previous version of the library, for
two reasons. First, it offloads drawing of the bitmaps to the graphics
card (via the underlying OS) instead of doing computations on the
main cpu via Racket, and second the fast-path case of checking
the normalized forms frequently allows for a quick result in many
situations (specifically, when the majority of a student’s test cases
build the expected-result in the same way that their code builds the
actual result, and the test succeeds). Figure 2 shows the speedup
for a program from a student of Guillaume Marceau’s when he was
at the Indian Institute of Information Technology and Management
in Kerala (where their machines appear to have been significantly
slower than the machine the timing tests were run on so these
optimizations would be even more appreciated). Those timings,
involving image-equality tests for drawing a tic-tac-toe board, are
not representative of a general benchmark (since they don’t involve
any user bitmaps), but do illustrate a real-world case that motivated
part of the library re-design.

5.4 Implementing Scaling and Rotation

When scaling or rotating most types of atomic shapes, the appro-
priate transformations are applied to the shape’s defining vertices,
and a new shape is returned.

However, scaling and rotation of bitmaps and ellipses are han-
dled differently from other atomic shapes: if a bitmap is repeat-
edly re-sampled for repeated rotation or scaling, significant artifacts
easily accrue. Instead, we just store the original bitmap with its
“cumulative” scale factor and rotation (implementing, in essence,
the bookkeeping sometimes done by a client’s program in some
side-effecting graphics libraries). Each time the bitmap is actually
rendered, one rotation and scaling is computed, and cached. This
approach avoids accumulating error associated with re-sampling a
bitmap, at the cost of doubling the memory (storing the original
and rotated bitmap).

5.5 rotate’s Time Complexity is Linear, Not Constant

While developing the library, one goal was to keep operations
running in constant time. This is easy for overlay, scale, and
crop that just build a new internal node in the shape tree. We do
not know, however, how to rotate in constant time3.

In particular, consider constructing a shape involving n alter-
nating rotates and overlays: The overlay functions require
knowing a bounding box of each child shape, but to rotate a com-
pound shape we re-compute the bounding box of each sub-shape,
which recursively walks the entire (tree) data structure, taking lin-
ear time. As an example, see Figure 3, where a sequence of calls to
rotate and above gives a figure whose bounding box is difficult
to determine.

3 Even disregarding the time to rotate a bitmaps, where it is reasonable to
require time proportional to its area.

> (define r (rectangle 20 10 "solid" "red"))
> (define (rot-above p)

(above (rotate 30 p) r))
> (rot-above

(rot-above
(rot-above

(rot-above
(rot-above

r)))))

Figure 3: A difficult bounding box to compute, since each above
wants to know the bounding box of each of its sub-shapes to find
the relative (horizontal) centers. (Note that each new rectangle is
added on the bottom.)

5.6 Don’t Push Cropping to the Leaves

Scaling or rotating a compound shape involves pushing the scale/rotation
to each of the children shapes. As seen in the definition of nor-
malized shapes above (Section 5.3), overlays and crops are left
as interior nodes in the shape (whose coordinates get scaled and
rotated).

For a while during development, cropping was handled like ro-
tating and scaling: When cropping an overlaid-shape, the crop was
pushed down to each primitive shape. Thus, a shape was essentially
a list of overlaid primitive shapes (each of which possibly rotated,
scaled, or cropped). However, since two successive crops can’t be
composed into a single crop operation (unlike rotations and scales),
repeatedly cropping a list of shapes would end up replicating the
crops in each leaf of the tree. For example, normalizing

(crop
r1
(crop

r2
(crop

r3
(overlay s1 s2))))

resulted in
(overlay

(crop r1
(crop r2

(crop r3 s1)))
(crop r1

(crop r2
(crop r3 s2))))

To remove the redundancy, we modified the data definition of a
normalized shape so that it is now a tree where the leaves are still
primitive shapes but the nodes are overlay or crop operations.

5.7 Pixels, Coordinates, and Cropping

Coordinates do not live on pixels, but instead live in the infinitesi-
mally small space between between pixels. For example, consider
the (enlarged) grid of pixels show in Figure 4 and imagine building
a 3 × 3 square. Since the coordinates are between the pixels, and
we want to draw 9 pixels, we should make a polygon that has the
verticies (0,0), (0,3), (3,3), and (3,0). Despite the apparent off-by-
one error in those verticies, these coordinates do enclose precisely
9 pixels. Using these coordinates means that scaling the square is
a simple matter of multiplying the scale factor by the verticies. If



(3,3)

(0,0)

Figure 4: Pixels and coordinates

we had counted pixels instead of the edges between them, then we
might have had the the polygon (0,0), (0,2), (2,2), and (2,0), which
means we have to do add one before we can scale (and then sub-
tract one after scaling) and, even worse, rotation is significantly
more difficult, if not impossible (assuming we use a simple list-of-
verticies representation for polygons).

While this convention for pixel-locations works well for solid
shapes, drawing outlines becomes a bit more problematic. Specif-
ically, if we want to draw a line around a rectangle, we have to
actually pick particular pixels to color, as we cannot color between
the pixels. We opted to round forward by 1/2 and then draw with a
1-pixel wide pen, meaning that the upper row and left-most row of
the filled square are colored, as well as a line of pixels to the right
and below the shape.

5.8 Bitmap Rotations: a Disappearing Pixel

Rotating a bitmap was tricky at the edges. The general approach,
when creating the new bitmap, is to calculate where the new pixel
“came from” (its pre-image – presumably not an exact grid point),
and taking the bilinear interpolation from the original. At the bor-
ders, this includes points which are outside the original’s bounding
box, in which case it was treated as a transparent pixel (α = 0).

However, although large bitmaps seemed to rotate okay, there
was a bug: a 1x1 bitmap would disappear when rotated 90 degrees.
The reason stemmed from treating a pixel as a sample at a grid-
point rather than the center of a square. The grid-point (0,0) of the
new bitmap originates from (0,-1) of the original bitmap, which
is transparent. The solution we used was to treat pixels as not as
a sample at a grid point (x,y) (as advised in (Smith 1995), and as
done in most of the image library), but rather as a sample from the
center of the grid square, (x+0.5, y+0.5).

6. Related Work
There are a large number of image libraries that build up im-
ages functionally, including at least Functional Pictures (Henderson
1982), PIC (Kernighan 1991), MLGraph (Chailloux and Cousineau
1992), CLIM (Son-Bell et al. 1992), Functional PostScript (Sae-
Tan and Shivers 1996), FPIC (Kamin and Hyatt Oct 1997), Pic-
tures (Finne and Peyton Jones July 1995), and Functional Im-
ages (Elliot 2003). These libraries have operators similar to our
2htdp/image library, but to the best of our knowledge they are
not designed for teaching in an introductory programming course,
and they do not support an equality operation.

SICP (Abelson and Sussman 1996)’s picture language (Soe-
gaard 2007) is designed for an introductory computer science
course, but does not support image equality (since test cases and
unit testing do not seem to be a significant emphasis).

Stephen Bloch’s extension of htdp/image (Bloch 2007) in-
spired our exploration into adding rotation to this library. Since his
library is based on htdp/image, the rotation operator is bitmap-
based, meaning it is does not produce images that are as clear.

Acknowledgments
We are deeply indebted to Jean-Paul Roy for discussions and beta
testing of the API, and for helping discover the O(n2) problem
with repeated cropping. We also wish to thank Guillaume Marceau
for providing real-world student test-cases and general discussions
on testing equality. Carl Eastlund suggested keeping pinholes as
optional, advanced state for images (a feature we plan to add to a
future version of this library). Thanks to the anonymous reviewers
for their plentiful, detailed suggestions. Finally, a special thanks to
Matthias Felleisen for frequent, thoughtful input.

Bibliography
Harold Abelson and Gerald Jay Sussman. Structure and Interpretation of

Computer Programs. Second Edition edition. MIT Press, 1996.
Stephen Bloch. Tiles Teachpack. 2007. http://planet.

racket-lang.org/users/sbloch/tiles.plt
Emmanuel Chailloux and Guy Cousineau. The MLgraph Primer. Ecole

Normale Superior, LIENS - 92 - 15, 1992.
Conal Elliot. Functional Images. Palgrave Macmillan Ltd., 2003.
Matthias Felleisen, Robert Bruce Findler, Matthew Flatt, and Shriram Kr-

ishnamurthi. A Functional I/O System, or, Fun For Freshman Kids. In
Proc. Proceedings of the International Conference on Functional Pro-
gramming, 2009.

Sigbjorn Finne and Simon Peyton Jones. Pictures: A simple structured
graphics model. In Proc. Proc. Glasgow Functional Programming
Workshop., July 1995.

Matthew Flatt and PLT. Reference: Racket. June 7, 2010. http://www.
racket-lang.org/tr1/

Peter Henderson. Functional geometry. In Proc. Proc. ACM Conference on
Lisp and Functional Programming, 1982.

Samual N. Kamin and David Hyatt. A special-purpose language for picture-
drawing. In Proc. Proc. USENIX Conference on Domain-Specific Lan-
guages., Oct 1997.

Brian W. Kernighan. PIC a graphics language for typesetting, user manual.
Computer science technical report. AT&T Bell Laboratories., CSTR-
116., 1991.

Wendy Sae-Tan and Olin Shivers. Functional PostScript. 1996. http:
//www.scsh.net/resources/fps.html

Alvy Ray Smith. A Pixel Is not A Little Square, A Pixel Is not A Little
Square, A Pixel Is not A Little Square! (And a Voxel is not A Little
Cube). Microsoft, Alvy Ray Microsoft Tech Memo 6, 1995. http:
//alvyray.com/Memos/6_pixel.pdf

Jens Axel Soegaard. SICP Picture Language. 2007. http://planet.
racket-lang.org/users/soegaard/sicp.plt

Mark Son-Bell, Bob Laddaga, Ken Sinclair, Rick Karash, Mark
Graffam, Jim Vetch, and Hanoch Eiron. Common Lisp Interface
Manager. 1992. http://www.mikemac.com/mikemac/clim/
regions.html#3

The PLT Team. HtDP/2e Teachpacks: image.ss. 2010. http://docs.
racket-lang.org/teachpack/2htdpimage.html

Sam Tobin-Hochstadt. Typed Scheme. 2010. http://docs.
racket-lang.org/ts-guide/

Sam Tobin-Hochstadt and Matthias Felleisen. The Design and Implemen-
tation of Typed Scheme. In Proc. Proceedings of Symposium on Princi-
ples of Programming Languages, 2008.

http://planet.racket-lang.org/users/sbloch/tiles.plt
http://planet.racket-lang.org/users/sbloch/tiles.plt
http://www.racket-lang.org/tr1/
http://www.racket-lang.org/tr1/
http://www.scsh.net/resources/fps.html
http://www.scsh.net/resources/fps.html
http://alvyray.com/Memos/6_pixel.pdf
http://alvyray.com/Memos/6_pixel.pdf
http://planet.racket-lang.org/users/soegaard/sicp.plt
http://planet.racket-lang.org/users/soegaard/sicp.plt
http://www.mikemac.com/mikemac/clim/regions.html#3
http://www.mikemac.com/mikemac/clim/regions.html#3
http://docs.racket-lang.org/teachpack/2htdpimage.html
http://docs.racket-lang.org/teachpack/2htdpimage.html
http://docs.racket-lang.org/ts-guide/
http://docs.racket-lang.org/ts-guide/

	1 Introduction
	2 The blueIdentifierColor2htdp/image Library API
	3 From blueIdentifierColorhtdp/image to blueIdentifierColor2htdp/image
	3.1 No More Pinholes
	3.2 No More Scenes
	3.3 Changes to IdentifierColorblueoverlay 

	4 Other API Considerations
	5 Implementation
	5.1 Internal Representation
	5.2 Defining Equality
	5.3 Implementing Equality
	5.4 Implementing Scaling and Rotation
	5.5 IdentifierColorbluerotate's Time Complexity is Linear, Not Constant
	5.6 Don't Push Cropping to the Leaves
	5.7 Pixels, Coordinates, and Cropping
	5.8 Bitmap Rotations: a Disappearing Pixel

	6 Related Work

