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An MRF-Based DeInterlacing Algorithm
with Exemplar-Based Refinement
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Abstract—In this paper, we propose an MRF-based deinterlac-
ing algorithm that combines the benefits of rule-based algorithms
such as motion-adaptation, edge-directed interpolation, and mo-
tion compensation, with those of an MRF formulation. MRF-
based interpolation and enhancement algorithms are typically
formulated as an optimization over pixel intensities or colors,
which can make them relatively slow. In comparison, our MRF-
based deinterlacing algorithm uses interpolation functions as
labels. We use 7 interpolants (3 spatial, 3 temporal, and 1
for motion compensation). The core dynamic programming
algorithm is therefore sped up greatly over the direct use of
intensity as labels. We also show how an exemplar-based learning
algorithm can be used to refine the output of our MRF-based
algorithm. The training set can be augmented with exemplars
from static regions of the same video, as a form of “self-learning.”

Index Terms—Video DeInterlacing, Markov-Random Fields
(MRF), Exemplar-Based Learning, Self-Learning.

I. INTRODUCTION

INTERLACING was invented in the 1930’s by Randall
Ballard as a way to increase the resolution of Cathode Ray

Tubes (CRTs). Standards authorities subsequently incorporated
interlacing into NTSC and PAL. While CRT resolution is no
longer an issue, and a variety of other display technologies
such as LCD, plasma, and micromirror (DLP) are common-
place, interlaced video still has the benefit of requiring half
the bandwidth. The two main broadcast formats for high-
definition television (HDTV), 1080i (1920×1080 interlaced)
and 720p (1280×720 progressive scan), require roughly the
same bandwidth. Some broadcasters use the non-interlaced
720p, whereas others prefer the higher resolution of 1080i.
In summary, the capture of interlaced video (NTSC, PAL,
DV, 1080i, etc.) will remain commonplace for the foreseeable
future because a lower bandwidth is required for a given
resolution.

While the adverse effects of interlacing are largely im-
perceptible on a CRT because of the low persistence of the
phosphor screen and high frame-rates, when interlaced video
is viewed on LCD, DLP, or plasma displays, “mouse teeth”
artifacts can be visible around the boundary of moving objects.
The effect becomes more visible when interlaced video is
displayed progressively at lower frame-rates or when single
frames are viewed, since two fields captured at different times
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are presented at the same time. To display interlaced video
on modern LCD, DLP, and plasma displays, a deinterlacing
algorithm is required.

Many deinterlacing algorithms operate by first deciding how
to interpolate the video locally at each missing pixel and
then performing the interpolation [1]. For example, motion
adaptation algorithms decide whether to interpolate spatially
or temporally based on the results of a motion detection
algorithm. If the scene is moving, spatial interpolation is
used to avoid mouse-teeth artifacts. If the scene is stationary,
temporal interpolation is used to obtain the highest pos-
sible resolution. Edge-directed algorithms such as [2], [3]
estimate the dominant (spatio-temporal) edge direction and
then avoid interpolating across the edge. Motion-compensation
algorithms [4], [5], [6], [7], [8], [9], [10] first compute (global
or local) motion and then use the motion to interpolate
the missing pixels. Because motion estimation can be very
unreliable (local motion can be very noisy, and global motion
may only be appropriate in parts of the scene), an important
component in motion-compensation algorithms is to estimate
how reliable the motion is. A decision is then made whether
to trust the motion-compensated pixel, or to fall back on
a simpler algorithm. A criticism of all of these algorithms
is that they are essentially a set of rules to determine how
to interpolate the video at each missing pixel. These rules
have associated parameters which must be tuned carefully to
obtain the best performance. More sophisticated algorithms
that combine several techniques can lead to a complex sets of
rules with a sizeable number of parameters to be tuned.

An alternative approach to deinterlacing is to pose the
problem as a Markov Random Field (MRF) [11]. In such
a formulation, a data cost is used to encourage the missing
pixels to be close to their neighbors in the rows above, below,
before and after. In [11], the exact cost function depends
on an estimate of the local edge structure; this is a form
of edge-based interpolation. A regularization term is also
used to encourage the pixels in each row to vary smoothly.
The main limitation of the MRF algorithm in [11] is that
it is computationally demanding as it requires a discrete
optimization using simulated annealing over a large number of
possible intensity values (around 17 in actual implementation
in [11], while ideally 256 per color band for the the full
intensity-based MRF formulation). We also found that our
algorithm gives better results. See Table II in Section II-G4.

In the first part of this paper (Section II), we present an
MRF-based deinterlacing algorithm that combines the advan-
tages of the “rule-based” approaches (high efficiency and
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sharper results) with the principled approach of using an MRF
(which reduces the need for parameter tuning in a complex
set of rules). We assume that the deinterlacing algorithm can
choose between a number of different interpolants that could
be applied at each pixel in the video. We consider 7 different
interpolants in this paper. The first 2 are simple spatial (verti-
cal) and temporal interpolants, analogous to motion adaptation.
The next 2 consist of interpolation at 45◦ and 135◦, examples
of edge-directed interpolants. We also include 2 interpolants to
model occlusion and disocclusion to reduce ghosting caused
around motion discontinuities. Finally, we include 1 inter-
polant for optical flow based motion compensation. Other
interpolants could also be used, for example, a global motion
based motion compensation algorithm. Our contribution is the
general framework, not the specific interpolants.

We choose the interpolant at each pixel using a Markov
Random Field (MRF); however, the labels in our MRF corre-
spond to the interpolants, rather than to the grey-levels for the
intensity-based MRF formulation of [11]. After the labels have
been chosen, the output image is generated by interpolating
with the chosen interpolant. This leads to a huge computational
speed-up.

The key component in our MRF formulation is defining a
data cost for the interpolants. We propose subsampling the
input progressive video by a factor of 2 in both space and
time. The result is 4 progressive videos with small offsets. We
apply the interpolants to these videos and compare with the
actual pixel values. The data cost is RMS error between the
actual and interpolated pixels. The primary benefits of this data
cost is that all interpolants are evaluated in the same manner
and the units of the data cost are the same for all interpolants.
This makes deciding which interpolant is the best one locally
at any given pixel a straightforward comparison with no tuning
parameters. In particular, there is no need to explicitly estimate
the reliability of the optical flow. The reliability is implicitly
contained in the data cost of the optical flow interpolant.

We do regularize the decision of the best interpolant to
use with the MRF regularization term. This introduces the
algorithm’s only parameters, which empirically we found to be
very easy to set. Empirically, we compared 1D regularization,
2D regularization, and 3D regularization and found their
performance to be very similar. This allows us to use 1D
regularization for solving the MRF efficiently via dynamic
programming.

In the second part of this paper (Section III), we present an
exemplar-based learning algorithm in the spirit of [12], [13] to
refine the output of our MRF-based algorithm. We first train
our algorithm on generic images in the traditional manner and
show how it can reduce artifacts such as jagged edges. The
performance of exemplar-based algorithms such as [12], [13]
improves the closer the exemplars match the input images. The
ideal case is to use the input images as training exemplars, but
this is not possible in most applications. Interlaced video has
the interesting property that interlacing artifacts disappear in
static regions. In Section III-A, we present an algorithm to
take advantage of this insight by augmenting the training data
with exemplars from static regions of the same video. While
this “self learning” can only help for videos containing static

or slowly moving regions, we show qualitatively that when
it does apply, the performance can be substantially improved.
Note that in [14], a related technique was used to fill in holes
in a video by copying pixels from other parts of the same
video.

II. MRF-BASED DEINTERLACING ALGORITHM

In this section, we present an MRF-based deinterlacing
algorithm where the state labels represent interpolation func-
tions rather than pixel colors. This substantially reduces the
search space and allows an efficient solution. It also eliminates
the need for data costs and regularity functions between
neighboring pixel intensities which inevitably lead to over
smoothing of the output.

A. Problem Statement and Notation

We assume that the input is an interlaced video stream
I(x, y, t), where x is the horizontal coordinate or column index
and y is the vertical coordinate or scan line index. We use the
terminology that each interlaced video frame is made up of
2 fields and the temporal coordinate t = 1, 2, . . . denotes the
field. We assume that the fields are captured at equally spaced
time intervals. We follow the NTSC convention and assume
the even numbered lines (y = 2, 4, . . .) compose the first of
a pair of fields and the odd lines (y = 1, 3, . . .) compose the
second. With this convention, only the pixels I(x, y, t) where
(y+t) mod 2 = 1 are present in the interlaced signal. The task
of deinterlacing consists of estimating I(x, y, t) at the missing
pixels M = {(x, y, t) : (y + t) mod 2 = 0}.

B. MRF Formulation

Assume we have L interpolation functions F1, . . . , FL. For
example, F1 could be vertical spatial interpolation:

F1(I, x, y, t) =
1
2

(I(x, y − 1, t) + I(x, y + 1, t)) . (1)

Interpolating with F1 is very similar to Bob deinterlacing,
which strictly consists of replicating lines rather than inter-
polating. F2 may be temporal interpolation:

F2(I, x, y, t) =
1
2

(I(x, y, t− 1) + I(x, y, t + 1)) . (2)

Interpolating with F2 is very similar to Weave deinterlacing,
which strictly consists of using only either the field before or
after. Note that if I(x, y, t) is a missing pixel, F1(I, x, y, t) and
F2(I, x, y, t) can both be computed from the pixels actually
present in the interlaced video I .

We then pose deinterlacing as choosing the best interpola-
tion function at each missing pixel in M . This interpolant is
then applied to generate the output video. We choose the best
interpolation function by minimizing the following Markov
Random Field (MRF) optimization criterion:∑

s∈M

[
D(ls, x, y, t) +

∑
s′∈Ns

R(ls, ls′ , s, s′)

]
(3)

over all of the interpolation labels ls ∈ {1, 2, . . . , L} of the
missing pixels in M , where s = {x, y, t} indexes pixels. In
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Equation (3), D(ls, x, y, t) is the data cost of label ls at s.
D(ls, x, y, t) measures how good an interpolant ls is likely
to be (Section II-D). R(ls, ls′ , s, s′) is the regularization term
which encourages consistency between the labels ls and ls′ in
a small neighborhood Ns (Section II-E).

Our algorithm differs in two main ways from rule-based
algorithms such as motion adaptation [1], [15], extensions to
model edge direction [2], [3], or motion compensation [4],
[5], [6], [16], [7], [8], [9], [10], [17]. First, a global decision
is made by integrating information over a neighborhood. This
increases the robustness to noise and aliasing effects. Second,
our data cost (Section II-D) is a direct measure of how good
the various interpolants are, rather than an ad-hoc rule such
as whether the scene is moving or not, or whether motion
estimation is reliable.

Li and Nguyen [11] proposed an MRF-based algorithm
for deinterlacing. They set up the MRF in the usual manner
over pixel intensities rather than interpolation functions. While
setting up the MRF over intensities may at first glance seem
appealing, the state space is significantly larger and the process
much more computationally demanding. In particular, Li and
Nguyen [11] used a pruning procedure to reduce the number of
candidates to 17 and then used simulated annealing to optimize
the MRF. In contrast, the proposed interpolant-based MRF is
inherently faster because the state space is lower dimensional.
We also found regularizing over the interpolants to perform
better in terms of the quality of the deinterlaced video. See
Table II in Section II-G4.

C. Additional Interpolation Functions

In Section II-B we defined two interpolation functions as
illustrative examples. We use up to L = 7 interpolants in
this paper. We now describe the other 5. Vertical spatial
interpolation using F1 can lead to jagged edges when the
dominant edge direction is not horizontal or vertical [2], [3].
To alleviate these effects, we add spatial interpolations at 45◦

and 135◦:

F3(I, x, y, t)=
1
2

(I(x− 1, y − 1, t) + I(x + 1, y + 1, t)) (4)

F4(I, x, y, t)=
1
2

(I(x + 1, y − 1, t) + I(x− 1, y + 1, t)) .(5)

These interpolants allow our MRF algorithm to perform edge-
directed interpolation [2], [3]. Temporal interpolation using
F2 can lead to ghosting around the edges of objects because
I(x, y, t−1) may be a pixel in the background and I(x, y, t+1)
may be a pixel in the foreground (or vice versa). To reduce this
ghosting, we include functions that only interpolate forwards
and backwards in time. They are suitable for regions which
are just about to appear or be occluded respectively:

F5(I, x, y, t) = I(x, y, t + 1) (6)
F6(I, x, y, t) = I(x, y, t− 1). (7)

Finally, we add a motion compensation based interpolation
function [4], [5], [6], [16], [7], [8], [9], [10], [17]. We compute
optical flow using a pyramid-based flow algorithm based on
[18]. Suppose the computed flow is u(x, y, t), v(x, y, t), i.e.,
pixel I(x, y, t) moves to pixel I(x+u(x, y, t), y+v(x, y, t), t+
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Fig. 1. An illustration of the data cost used in our algorithm. We
subsample the input video I(x, y, t) by a factor of 2 with all possible
offsets to generate 4 progressive videos P1, P2, P3, and P4. We
then evaluate the various interpolants on these progressive videos,
upsample the results, and average using Equation (11).

1) in the next field. We then interpolate by following the flow
forwards and backwards:

F7(I, x, y, t) =
1
2

(I(x + u(x, y, t), y + v(x, y, t), t + 1)

+ I(x− u(x, y, t), y − v(x, y, t), t− 1)) . (8)

Since the flow may take non-integral values, and the destina-
tion may be a missing pixel, we compute I(x+u(x, y, t), y +
v(x, y, t), t + 1) and I(x− u(x, y, t), y − v(x, y, t), t− 1) by
interpolating the known pixels at t + 1 and t− 1 respectively.

Note that our MRF-based formulation is independent of the
exact choice of interpolation functions. Other interpolants may
be used in addition to or instead of the functions described
in this paper. For example, a global motion based motion
compensation algorithm could be used. Fewer interpolants
may also be used.

D. Data Cost

We now describe the data cost D(ls, x, y, t) for a label ls ∈
{1, 2, . . . , L} and missing pixel s = (x, y, t) ∈ M . Consider
the following 8 sub-videos extracted from the interlaced video
I(x, y, t) by subsampling by a factor of 2 with all 8 possible
offsets (see Figure 1 for an illustration):

P1(x, y, t) = I(2x, 2y, 2t + 1)
P2(x, y, t) = I(2x, 2y + 1, 2t)
P3(x, y, t) = I(2x + 1, 2y, 2t + 1)
P4(x, y, t) = I(2x + 1, 2y + 1, 2t)
P5(x, y, t) = I(2x, 2y, 2t)
P6(x, y, t) = I(2x, 2y + 1, 2t + 1)
P7(x, y, t) = I(2x + 1, 2y, 2t)
P8(x, y, t) = I(2x + 1, 2y + 1, 2t + 1). (9)

In Equations (9), x, y, and t run over half their usual ranges.
Also, note that in practice we pre-filter each field I(x, y, t)
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with a Gaussian blur with σ = 0.4 before we subsample (to
reduce noise). The first four of these subsequences (P1, P2,
P3, P4) contain all the known pixels; they are now subsampled
progressive videos. The second four videos (P5, P6, P7, P8)
contain all the missing pixels.

The interpolants Fls can be evaluated on the progressive
videos Pi, i = 1, . . . , 4, because all the data is present. For
each pixel (x, y, t), we can compare the actual value Pi(x, y, t)
to the interpolated value Fls(Pi, x, y, t) to yield

Ci(ls, x, y, t) = ‖Pi(x, y, t)− Fls(Pi, x, y, t)‖2, (10)

where the norm ‖ · ‖ is needed for color. (Note that the flow
does not need to be scaled for F7 because the subsampling is
performed for both space and time.)

If we wanted to evaluate the interpolants at a pixel present in
the interlaced video, we could find the unique corresponding
pixel in the subsampled videos and use the appropriate value of
Ci(ls, x, y, t). To evaluate at a missing pixel (x, y, t) ∈ M , we
set the data cost D(ls, x, y, t) to be the mean of Ci(ls, x, y, t)
at the 4 pixels corresponding to the 4 nearest neighbors of
s (two vertical and two temporal) which are present in the
interlaced video:

D(ls, x, y, t) =
1
4

∑
(i,j)∈Q

Ck

(
ls,

⌊x

2

⌋
,

⌊
y + i

2

⌋
,

⌊
t + j

2

⌋)
(11)

where Q = {(−1, 0), (1, 0), (0,−1), (0, 1)}, k = 2 ∗
(x mod 2) + (y + i) mod 2 and b·c is the floor function
which returns the integral part. This expression always finds
the four pixels in the Ci(ls, x, y, t) that correspond to the four
nearest neighbors of (x, y, t) ∈ M because if y + i is even,
t + j is odd, and vice versa.

Note that the data cost in Equations (10) and (11) is a
direct measure of how well the interpolants perform on the
downsampled videos Pi. This measure should be compared
with indirect methods of predicting how well interpolants
may perform, for example the use of motion detection in
motion adaption and motion confidence estimation in motion
compensation. All possible interpolants are compared in the
same units (RMS pixel difference) and no tuning parameters
are needed. There is no need to estimate the reliability of
optical flow. This information is implicitly encoded in the data
cost of the optical flow interpolant F7.

Any deinterlacing algorithm must make assumptions to esti-
mate the missing data. The major assumption in our algorithm
is that if an interpolant performs well in the subsampled videos
Pi, it will also perform well in the interlaced video itself. In
a sense, our empirical results are largely an evaluation of how
well this assumption holds. Intuitively, however, we argue that
our assumption is reasonable. If there is an edge at 45◦ in I ,
there will also be one in Pi. If there is an occlusion in I , there
will also be one in Pi. If the flow is accurate and interpolates
well in Pi, it should also be accurate and interpolate well in
I .

E. Regularization Cost and Optimization

No data cost can be totally reliable at all pixels. Spatial
and temporal aliasing is always possible because of the lack

of the missing pixels that we are trying to estimate. Noise in
the original video I(x, y, t) can also propagate into the data
cost. The purpose of the regularization term R(ls, ls′ , s, s′)
is to reduce this noise by integrating information over a
neighborhood Ns.

One benefit of our algorithm is that the choice of the
regularization neighborhood allows a trade-off between com-
putational cost and the quality of the results. If we wish to
obtain the fastest performance, we can set the neighborhood
to be 1D (i.e., Ns = {(x−1, y, t), (x+1, y, t)}) and optimize
the MRF in Equation (3) by dynamic programming. To obtain
better quality results, we can set the neighborhood to be 2D
(i.e., Ns = {(x−1, y, t), (x+1, y, t), (x, y−2, t), (x, y+2, t)})
or 3D (i.e., Ns = {(x−1, y, t), (x+1, y, t), (x, y−2, t), (x, y+
2, t), (x, y, t− 2), (x, y, t + 2)}). In the 2D and 3D cases, we
optimize Equation (3) using belief propagation. Optimizing
over the entire 3D space-time is not practical, so in the 3D
case we perform the optimization over a sliding window of
the previous K frames. The results in this paper were obtained
with K = 3. We experimented with larger values of K but
found little benefit.

F. Setting the Regularization Parameters

We chose the regularization weight R(ls, ls′ , s, s′) =
µ(ls, ls′ , n(s, s′)) to be homogeneous, depending only on the
relative position between s and s′. Here, n(s, s′) is an indicator
function: n(s, s′) = 1 if s and s′ are horizontal neighbors, 2
for vertical neighbors, and 3 for temporal neighbors. We then
set µ(ls, ls′ , 1) = 1.2µ0(ls, ls′), µ(ls, ls′ , 2) = 0.6µ0(ls, ls′),
and µ(ls, ls′ , 3) = 0.12µ0(ls, ls′), where:

µ0 =



0.0 5.0 0.3 0.3 5.0 5.0 1.0
5.0 0.0 5.0 5.0 4.0 4.0 3.0
0.3 5.0 0.0 0.6 5.0 5.0 1.0
0.3 5.0 0.6 0.0 5.0 5.0 1.0
5.0 4.0 5.0 5.0 0.0 3.0 1.0
5.0 4.0 5.0 5.0 3.0 0.0 1.0
1.0 3.0 1.0 1.0 1.0 1.0 0.0


. (12)

The diagonal elements of µ0 are set to 0.0 to encourage
local label smoothness. The other values were chosen based on
simple reasoning. For example, µ0(1, 2) is large to discourage
transitions from spatial to temporal interpolation. On the other
hand, µ0(1, 3) and µ0(1, 4) between vertical interpolation and
spatial interpolation at 45◦ and 135◦ is much smaller, thus
discouraging transitions between them less.

The results in this paper are all obtained using the regu-
larization parameters provided above and in Equation (12).
The values were set using common sense and a little bit of
trial and error on the “Wave” sequence (Figure 2). Empirically
we found it very easy to set reasonable parameters and the
performance to be largely independent of the exact values.
Note, however, that algorithms have been proposed to learn
MRF regularization parameters. In particular, algorithms such
as the pseudo-likelihood method [19], could be used. For the
1D case, iterative scaling or gradient-based methods could be
applied, since the derivative of likelihood can be efficiently
computed based on estimating the expectation of each feature
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Bird Talk Jump Mind Boy

Foreman TableT Wave Singer Eagle

Speedo Mom Eat Crowd Gump

Fig. 2. The first frame of the 15 videos used to evaluate our algorithm. The videos are of varying size, aspect ratio, and quality. The
sequences range from 77 frames (Eagle) to 452 frames (Gump).

with respect to the model distribution by dynamic program-
ming [20].

G. Experimental Results

We evaluated our algorithm on 15 videos of varying size,
aspect ratio, and quality (SNR). Figure 2 contains the first
image in each sequence. The sequences range from 77 frames
(Eagle) to 452 frames (Gump). To obtain quantitative results,
we withhold every other line from the videos as ground-
truth, pass the remaining interlaced video to the algorithms
for processing, and then compare the predicted scan lines to
the withheld ground-truth.

The remainder of this section is organized as follows. We
first show how our algorithm performed with varying numbers
of labels (Section II-G1). In Section II-G2, we compare the
performance across the dimensionality of the regularization.
In Section II-G3, we present timing results. Finally, in Sec-
tion II-G4, we compare the performance of our algorithm with
a number of other algorithms.

1) Contribution of the Extra Interpolants: In Figure 3, we
present quantitative results obtained by varying the number of
interpolants (labels) used in our algorithm. We include results
for 2-labels (F1 and F2, roughly corresponding to motion-
adaptation), 4-labels (F1–F4, an edge-directed algorithm), 6-
labels (F1–F6, an algorithm with occlusion and disocclusion
modeling), and all 7-labels (F1–F7, an algorithm with optical
flow based motion compensation.) In the figure, we show the
RMS pixel error for each sequence and each number of labels.
1D regularization using dynamic programming is used in all
cases.

The results in Figure 3 show that on almost all sequences
a substantial improvement is obtained by adding the edge-
directed interpolants F3 and F4. A qualitative illustration of
this is shown for one frame of the Mind sequence in Figure 4.
In the left column we show the results without the edge-
directed labels F3 and F4. In the right column we show the
results with the edge-directed labels F3 and F4. On the top
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Fig. 3. The RMS pixel error for 4 different variants of our algorithm:
2-labels (F1 and F2, roughly corresponding to motion-adaptation),
4-labels (F1–F4, a edge-directed algorithm), 6-labels (F1–F6, an
algorithm including occlusion and disocclusion modeling), and all
7-labels (F1–F7, an algorithm with optical flow based motion com-
pensation.)

we show the output image, together with a cropped close up
region. The results show a clear visual improvement using the
extra labels. On the bottom we show the labels chosen by our
algorithm: blue = F1, green = F2, yellow = F3, and red = F4.
The edge directed labels appear as one would expect in the
regions of strong diagonal edges.

The results in Figure 3 show that there is very little
quantitative improvement obtained by adding interpolants F5

and F6 to model occlusions and disocclusions. Very few pixels
in each video are about to be occluded or disoccluded and so
it is not surprising that there is little quantitative difference.
A qualitative illustration of the utility of these interpolants is
shown for one frame of the Wave sequence in Figure 5. In
Figure 5(a) we show the results without labels F5 and F6.
In Figure 5(b) we show the results with labels F5 and F6.
Without the extra interpolants, the eyebrow is not as dark as
it should be due to ghosting. With F5 and F6, the eyebrow
is interpolated using the next frame only, and so is as dark
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Fig. 4. A comparison with (b) and without (a) the edge-directed interpolants F3 and F4. With the extra interpolants, the edges are less
jagged. See cropped close up region in the top row. The labels 45◦ (white) and 135◦ (red) are chosen in the appropriate places.

as it should be. Figure 5(c) shows the difference between
Figure 5(a) and Figure 5(b) (without the closeups). Only a
very small percentage of the pixels are changed by the addition
of the new labels. Figure 5(d) shows the labels chosen. Red
corresponds to label F6. As expected, the new label was only
chosen in pixels about to be occluded. Note that the moving
part (hand) is mostly spatially interpolated (F1) while the static
part (face) is mostly temporally interpolated (F2).

The results in Figure 3 show that for some sequences
there is a substantial quantitative improvement by using the
optical flow based motion compensation interpolant F7. The
Eagle sequence benefits significantly from its consistent global
motion pattern (which ensures relatively high accuracy of the
flow estimation technique) and highly textured appearance
with almost horizontal edge structure (which is hard for other
interpolants). For other sequences there is no improvement.
Note that on none of the sequences is there any significant
degradation caused by the addition of F7. The optical flow al-
gorithm we use [18], while reasonable, is by no means perfect.
It is important to note that we perform no direct assessment of
the quality of the optical flow. This is done implicitly in the
computation of the data cost (see Section II-D). A qualitative
illustration of the utility of F7 is shown for one frame of the
Eagle sequence in Figure 6. The cropped region shows that
the use of F7 can help substantially.

2) Regularization Dimension: In Figure 7, we present a
quantitative comparison of the effect of regularization. We
used the 7-label version of our algorithm and showed results
for no regularization, 1D regularization, 2D regularization, and
3D regularization. We plot the results as percentage reduction
in RMS error over using no regularization. The results show
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Fig. 7. A quantitative comparison between 1D, 2D, and 3D
regularization for the 7-label version of our algorithm. We plot
the percentage reduction in RMS error over no regularization. 1D
regularization improved the results substantially, 2D helped slightly
more for all except two of the videos, but 3D regularization produced
no significant improvement over 2D.

that using regularization helps in almost all cases. However,
2D regularization only helps a little more than 1D, and
3D regularization never makes a significant difference over
using 2D regularization. Among all the sequences we tested,
the Speedo and Eagle sequences benefit the most from the
regularization term. The reason is that these sequences contain
a lot of details, and the data term tends to be less reliable in this
case, while the regularization term is of great help to correct
those errors. On the other hand, the Jump sequence performs a
little worse due to the extreme lack of complex image details
and texture. In this case, the data term itself is already pretty
reliable, and the regularity term sometimes oversmooths the
labels.
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(a) Without F5 and F6 (b) With F5 and F6 (c) Difference (d) Label

Fig. 5. A comparison with (b) and without (a) the occlusion and disocclusion interpolants F5 and F6. Without the extra interpolants, the
eyebrow is not as dark as it should be due to the ghosting, and as dark as it should be with the extra interpolants. (c) Shows that relatively
few pixels are affected by the new interpolants because relatively few pixels are about to be occluded or disoccluded. The quantitative benefit
of F5 and F6 is therefore minimal. (d) Shows that the the new occlusion label F6 (red) is chosen where one would expect it.

(a) Without F7 (b) With F7

Fig. 6. A comparison with (b) and without (a) the optical flow interpolant F7. With F7, the appearance of the wing of the eagle is substantially
improved. It is important to note that we perform no direct assessment of the quality of the optical flow. This quality assessment is done
implicitly in the computation of the data cost in Section II-D. Hence, even though the optical flow can often be erroneous, the quality of
the deinterlaced image is never significantly affected in an adverse manner.

In Figure 8, we present qualitative results for the Speedo
sequence. We include the results for one frame for (a) no
regularization, (b) 1D regularization, (c) 2D regularization,
and (d) 3D regularization. For this particular frame, using
1D regularization yielded a substantial improvement. There
are, however, still some errors in (b). These errors are caused
by the fast irregular motion that results in three consequent
observable fields coincidentally showing similar patterns (and
thus tagged with wrong interpolation functions). 2D regular-
ization helped to correct those errors, while 3D regularization
yielded no further visual improvement. The labels for 2D (g)
and 3D (h) look far smoother than for 1D (f), however this
only seems to result in a fairly small improvement in visual
quality over 1D regularization. The labels with no regulariza-
tion (e) are very noisy. There may be ways to approximate
2D regularization without the computational overhead of full
belief propagation. One possibility is to filter the data cost in
the vertical direction. An evaluation of exactly how well such
approximations perform is left as future work.

3) Timing Results: In Table I, we present timing results ob-
tained on an HP nc8430 2.0GHz Core Duo laptop (2GB RAM,
4MB L2 cache, 667MHz front side bus) for a 320×240 pixel
interlaced video (field size is 320×120) using an unoptimized
7-label version of our algorithm. Without optical flow, 2D or
3D regularization our algorithm runs in around 29 ms per
frame. With a real-time flow algorithm, our algorithm could

also be made to run in real-time. 2D or 3D regularization is
currently only possible for offline operation or single-frame
processing (for example to view or print a high quality still).
Note that with 256 labels, the 1D dynamic programming (DP)
alone would take approximately 9 ms ×(256/7)2 ≈ 12 sec.

We also implemented a more optimized (no parallel in-
structions such as MMX or SSE are used) 4-label version
(F1, . . . , F4) of our algorithm. This implementation operates
at 288Hz for 320 × 240, 72Hz for 720 × 480, and 12Hz for
1920 × 1080 on an HP xw8200 3.60GHz workstation (2GB
RAM, 2MB L2 cache, 800MHz front side bus). Much of
the algorithm involves simple image filtering operations and
can be significantly sped up by converting the code to SSE
(Streaming SIMD Extensions) for Intel chipsets.

4) Comparison with Other Algorithms: Based on the quan-
titative results in Figure 3 and the timing results in Table I,
there are 2 variants of our algorithm that offer different trade-
offs in terms of speed vs. quality. The 4-label version is
real-time, the 7-label version is not quite real-time without
a faster optical flow algorithm. We now empirically compare
these variants with two Virtual Dub [21] plugins, one from
Gunnar Thalin [22] (deinterlace - smooth), the other the
Smart Deinterlacer Filter v2.8 [23]. We also compared with
the Alparysoft Deinterlacing Filter v2.0 [24]. Unfortunately,
this last filter was unable to process seven of the sequences
(Bird, Jump, Speedo, Singer, Crowd, Talk, and Mom) because
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(a) No Regularization (b) 1D Regularization

(c) 2D Regularization (b) 3D Regularization

(e) No Regularization (f) 1D Regularization (g) 2D Regularization (h) 3D Regularization

Fig. 8. A qualitative comparison of varying the dimension of regularization on one frame from the Speedo sequence. 1D regularization
yielded a substantial improvement. 2D regularization helped even more, however 3D regularization yielded no further visual improvement.
The labels for 2D (g) and 3D (h) look far smoother than for 1D (g), however this only seems to result in a fairly small improvement in
visual quality over 1D regularization. The labels with no regularization (e) are very noisy.

TABLE I
TIMING RESULTS IN MILLISECONDS (MS) PER FRAME ON AN HP NC8430 2.0GHZ CORE DUO LAPTOP (2GB RAM, 4MB L2 CACHE, 667MHZ FRONT

SIDE BUS) FOR A 320× 240 PIXEL INTERLACED VIDEO (FIELD SIZE IS 320× 120) USING THE 7-LABEL VERSION OF OUR ALGORITHM. WITHOUT FLOW
OR 2D/3D REGULARIZATION OUR ALGORITHM RUNS RUNS IN REAL-TIME. A MORE OPTIMIZED 4-LABEL VERSION (F1, . . . , F4) OF OUR ALGORITHM
OPERATES AT 288HZ FOR 320× 240, 72HZ FOR 720× 480, AND 12HZ FOR 1920× 1080 ON AN HP XW8200 3.60GHZ WORKSTATION (2GB RAM,

2MB L2 CACHE, 800MHZ FRONT SIDE BUS.)

Filter Flow Compute Fi 1D DP 2D BP 3D BP Apply
Time 1 ms 232 ms 9 ms 17 ms 7801 ms 76624 ms 2 ms
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Fig. 9. A quantitative comparison between the 4-label and 7-label
versions of our algorithm with two Virtual Dub [21] plugins (one
from Gunnar Thalin [22], the other the Smart Deinterlacer Filter v2.8
[23]) and the Alparysoft Deinterlacing Filter v2.0 [24] (which was
unable to process seven of the sequences). We computed the RMS
pixel error averaged over all frames. We found that both versions of
our algorithm outperformed the other 3 algorithms on all sequences
except the Eagle sequence, where the 7-label algorithm outperformed
the others, while the 4-label version is slightly worse.

of the unusual frame dimensions. The trial version of this
filter also adds an icon which we mask out before computing
the quantitative results. Figure 9 shows the RMS pixel error
averaged over all the frames for each video. Both the 4-label
and 7-label versions of our algorithm use 1D regularization
with dynamic programming. Both versions of our algorithm
outperformed the other three filters in all the videos except the
Eagle sequence, sometimes quite dramatically. For the Eagle
sequence, the 7-label version outperformed the 3 other algo-
rithms, while the 4-label version was slightly worse. The Eagle
sequence contains a highly textured object moving with a very
simple motion, the ideal case for motion compensation-based
algorithms, but relatively untypical of real-world videos where
the motion is generally more complex. We also computed the
same RMS error measure over just edge pixels (where the
magnitude of the gradient was above a threshold, subsequently
dilated). The results, which are omitted to avoid unnecessary
redundancy, are very similar.

In Figure 10, we show one frame from the TableT se-
quence. Figure 10(a) shows the result of applying Weave on
the interlaced input, Figure 10(b) the 4-label version of our
algorithm, Figure 10(c) the 7-label version of our algorithm,
Figure 10(d) Smart v2.8 [23], Figure 10(e) Gunnar Thalin [22],
and finally in Figure 10(f) Alparysoft v2.0 [24]. In the bottom
right of each image is a closeup view of the hand region. The
results show that both the 4-label and 7-label versions of our
algorithm produced more natural looking folds on the shirt.
The boundary of the arm is also smoother. Also, the net and
lines on the table look better.

In Figure 11, we include similar results for the Foreman
sequence. We show closeup views of the lip region, which
looks sharper and more natural with our algorithm. The
diagonal lines in the background are also less jagged with
both the 4-label and 7-label versions of our algorithm than
with the other 3 algorithms.

In Table II we present quantitative results obtained by

using ground truth data, comparing the performance of the
4-label and 7-label versions of our algorithm with a number
of recently published algorithms on the Foreman sequence. In
particular, we compared with Wang et al. [8], Chang et al. [9],
Ouyang et al. [10], and Lee et al. [3]. The best performing
of these algorithms obtained a PSNR of about 35.50 dB. In
comparison, our 4-label algorithm has a PSNR of 37.77 dB
and our 7-label algorithm a PSNR of 38.03 dB.

III. REFINEMENT BY EXEMPLAR BASED LEARNING

There are limits on how well interpolation algorithms such
as deinterlacing and super-resolution can perform without
strong priors on the statistics of natural images [13]. In this
section, we present an exemplar-based learning algorithm in
the spirit of [12], [13] to refine the output of our MRF-
based algorithm. Learning a correction rather that starting from
scratch is a form of normalization and allows us to remove any
exemplars that may lead to gross artifacts. In Section III-A, we
describe how the training set can be augmented with exemplars
taken from static regions of the same video in an online fashion
to improve the performance further.

We first describe the offline training phase used to collect
the set of exemplar pairs {(Ti, Oi) |i = 1, . . . , N}, where Ti is
a vector of features of the input and Oi is the output correction.
We begin with a progressive video Ip(x, y, t). We generate an
interlaced input video Ii(x, y, t) by discarding the appropriate
pixels. We then run our MRF-based deinterlacing algorithm.
(To date we have only used training images rather than video.
We ran a reduced version of our MRF-based deinterlacing
algorithm that can only use spatial interpolants; i.e., we remove
F2, F5, F6, and F7 from the list of possible interpolants in
the training phase. The learnt correction is then only applied
when one of the spatial labels is chosen.) Let the output be
Io(x, y, t). We compute the high frequency correction:

Ih(x, y, t) = Ip(x, y, t)− Io(x, y, t) (13)

and learn this correction as a function of the mid frequency:

Im(x, y, t) = Io −Gσ ∗ Io, (14)

where Gσ is a Gaussian blur kernel, with σ = 2.0, and ∗
denotes convolution. We compute a normalization factor:

In(x, y, t) =
√

Gσ ∗ I2
m + ε, (15)

where ε is a small positive regularizing constant. We then nor-
malize Ih(x, y, t) = Ih(x, y, t)/In(x, y, t) and Im(x, y, t) =
Im(x, y, t)/In(x, y, t). For each missing pixel (x, y, t) in the
interlaced video Ii(x, y, t), we then generate an exemplar with
a 20 dimensional feature vector:

T = (Im(x + j, y + k, t)), (16)

where j = −2,−1, 0, 1, 2 and k = −3,−1, 1, 3. We also
generate an output:

O = (Ih(x− 2, y, t), Ih(x− 1, y, t), Ih(x, y, t),
Ih(x + 1, y, t), Ih(x + 2, y, t)). (17)

We add the exemplar (T,O) to the training set if: (1) it is
interesting enough (we discard exemplars where the magnitude
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(a) Input (Weave) (b) 4-Label

(c) 7-Label (d) Smart v2.8

(e) Gunnar Thalin (f) Alparysoft v2.0

Fig. 10. One frame from the TableT sequence comparing the 4-label and 7-label versions of our algorithm with Smart v2.8 [23], Gunnar
Thalin [22], and Alparysoft v2.0 [24]. The cropped hand region shows both versions of our algorithm to yield more naturally looking folds
on the shirt, and a smoother boundary to the arm.

TABLE II
A COMPARISON OF THE 4-LABEL AND 7-LABEL VERSIONS OF OUR ALGORITHM WITH A NUMBER OF RECENTLY PUBLISHED ALGORITHMS ON THE

FOREMAN SEQUENCE. BOTH THE 4-LABEL AND 7-LABEL VERSIONS OF OUR ALGORITHM OUTPERFORM ALL OF THESE RECENTLY PROPOSED
ALGORITHMS.

4-Label 7-Label Wang et al. [8] Chang et al. [9] Ouyang et al. [10] Li et al. [11] Lee et al. [3]
PSNR 37.77dB 38.03dB 31.50dB 34.77dB 34.92dB ≈ 35.50dB 34.00dB
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(a) Input (Weave) (b) 4-Label

(c) 7-Label (d) Smart v2.8

(e) Gunnar Thalin (f) Alparysoft v2.0

Fig. 11. One frame from the Foreman sequence comparing the 4-label and 7-label versions of our algorithm with Smart v2.8 [23], Gunnar
Thalin [22], and Alparysoft v2.0 [24]. Closeups of the lip region show that both versions of our algorithm yielded a sharper mouth region. In
particular, note that the lower lip looks more natural and less blocky with our algorithms. The diagonal lines on the wall behind the foreman
also look less jagged with our algorithm.
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of the gradient is too low), and (2) the output is not extreme
(we discard exemplars where the magnitude of the correction
O is greater than that of both of its neighbors on the same
row).

In the online phase of the algorithm, we compute Io, Im,
In, and Im for the interlaced video input. For each missing
pixel (x, y, t), we compute the mid-frequency feature vector T
using Equation (16). We then perform an approximate nearest
neighbor search in the exemplar set to find the top 20 cor-
rections Oi : i = 1, . . . , 20, and undo the normalization. We
considered 3 different methods to choose the final correction
to apply based on these candidates: (1) Mean: We compute
the mean of the correction vectors Oi and take the third
component as the correction. (2) Median: We compute the
median of the third components of the correction vectors Oi.
(3) MRF-Based: Following the approach of [12], we set up
a 1D MRF along each scan-line using the match cost as the
data term and the distance between overlapping elements of
the correction vectors as the regularity term. We found the
results of taking the mean and the median to be very similar,
with the mean slightly better (less than 1% difference in RMS
error.) The MRF-based approach is a little worse, with RMS
errors typically 3− 4% higher. The reason appears to be that
the MRF tends to introduce additional smoothing along each
scanline. We used the mean to generate results in this paper.

A. Online Learning
As described in the introduction, deinterlacing provides the

opportunity to use exemplars extracted from the video actually
being processed. We now describe an online algorithm to learn
video-specific exemplars as the video is processed. A variety
of extensions of this algorithm are possible (see Section IV),
including batch processing where exemplars are taken from
everywhere in the video.

Our algorithm has 2 exemplar sets, a set of generic exem-
plars learnt before the algorithm is run, and a fixed size set of
video specific exemplars, initialized to be empty. As the video
is processed, any regions for which the temporal interpolant is
chosen are processed in the same way as in the offline training
phase in Section III. Exemplars are added to the video specific
set as above: (1) if they are interesting enough, and (2) if
they are not extreme. When the video specific exemplar set
becomes full, exemplars are discarded using a FIFO (first-in
first-out) queue. Both the generic and video-specific exemplar
sets are then used. Note that errors cannot propagate because
there is no feedback.

B. Experimental Results
We evaluated our learning-based deinterlacing algorithms

on the same 15 videos used in Section II-G. See Figure 2
for the first frame in each sequence. Our generic training data
was extracted from 11 images. The images are included in
Figure 12. We first present quantitative results for the generic
offline learning algorithm (Section III-B1). In Section III-B2,
we present qualitative results for the generic offline learning
algorithm. In Section III-B3, we present qualitative results for
the online learning algorithm. Finally, in Section III-B4, we
present timing results for the learning algorithm.

(a) Without Learning (b) Generic Offline Learning

Fig. 13. One frame from the Wave sequence comparing our algorithm
with and without generic offline exemplar-based learning. With
exemplar-based learning the edges are sharper and almost no jagged
effects remain.

1) Quantitative Results for Generic Offline Learning: We
first performed a quantitative evaluation of how much the
learning-based refinement helps. We performed two compar-
isons. The first was on the 6-label version of our algorithm,
without the optical flow interpolant F7. We found that the
generic offline learning algorithm described in Section III
resulted in a 3.0% reduction in the RMS intensity error, com-
puted on average over all 15 sequences. Of the 15 sequences,
14 sequences showed no change or a moderate improvement.
Only one sequence (Talking) showed worse results, the most
likely reason for which is that the training images are less well
matched to this particular video. A larger and more diverse
collection of training data might remedy this situation. We
also compared with the 7-label version of our algorithm. For
this version of the algorithm, our generic offline algorithm
resulted in a reduction in the RMS intensity error of 2.0%,
again computed on average over all 15 sequences.

2) Qualitative Results for Generic Offline Learning: In
Figure 13, we show one frame from the Wave sequence
comparing our algorithm with and without the generic offline
exemplar-based learning refinement. The results show that
with exemplar-based learning the edges are sharper and less
jagged.

3) Qualitative Results for Online Learning: In Figure 14
we show one frame from the Mom sequence comparing our
exemplar-based learning algorithm with and without exemplars
added in an online fashion from the same video, as described
in Section III-A. With the online addition of exemplars from
the same video, the results are far sharper with fewer gross
artifacts. Note that vertically moving, thin horizontal structures
such as the eyebrows and eyelids are one of the hardest cases
for deinterlacing algorithms.

4) Timing Results: On average across the 15 sequences,
the exemplar-based refinement takes 3.9 secs per frame. The
addition of the additional training samples takes 12.6 secs
per frame in the online learning algorithm. Both of these
timing results were computed on an HP nc8430 2.0GHz Core
Duo laptop (2GB RAM, 4MB L2 cache, 667MHz front side
bus). Neither of these techniques is fast enough for real-time
processing, but could be used either for offline enhancement
or to view or print a single frame.
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Fig. 12. The 11 training images used by our learning-based refinement algorithms.

(a) Generic Offline Learning (b) Online Learning

Fig. 14. One frame from the Mom sequence comparing the use of
offline generic learning with online learning by automatically adding
exemplars from static regions of the same video. With the online
learning, the results are far sharper and there are fewer gross artifacts.

IV. CONCLUSION

In the first part of this paper, we described an efficient
MRF-based deinterlacing algorithm. The main contribution is
to formulate the MRF over interpolation functions rather than
pixel intensities. This yields significant speedup over intensity-
based MRF. The proposed algorithm also compares favorably
with recently reported approaches and several commercial
systems in terms of output quality.

The key component in our algorithm is the data cost.
The data cost is evaluated by downsampling the video in
both space and time and evaluating the interpolants on the
resulting progressive videos. This data cost embeds the key
assumption made by our algorithm that if an interpolant
performs well on the downsampled video, then it can also
be expected to perform well in the original video. In general,
the downsampling could hide texture at the original resolution.
But if there is an edge at one resolution, there is likely to be
one at the lower resolution. Similarly, the motion at both the
high and low resolutions should be the same. So if there is
motion at one resolution, there will be at the other, and optical
flow will be correspondingly accurate.

In the second part of the paper, we described an exemplar-
based learning algorithm to refine the solution. Here, we feel
the most interesting part is the use of exemplars extracted

from stationary or near stationary parts of the same video. Our
algorithm was based on a simple FIFO queue. Two possible
areas for future work are: (1) better algorithms for choosing
which exemplars to discard, and (2) the use of spatio-temporal
locality or tracking to match exemplars better.
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