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Abstract

Effective image prior is necessary for image super res-

olution, due to its severely under-determined nature. Al-

though the edge smoothness prior can be effective, it is gen-

erally difficult to have analytical forms to evaluate the edge

smoothness, especially for soft edges that exhibit gradual

intensity transitions. This paper finds the connection be-

tween the soft edge smoothness and a soft cut metric on an

image grid by generalizing the Geocuts method [5], and

proves that the soft edge smoothness measure approximates

the average length of all level lines in an intensity image.

This new finding not only leads to an analytical character-

ization of the soft edge smoothness prior, but also gives an

intuitive geometric explanation. Regularizing the super res-

olution problem by this new form of prior can simultane-

ously minimize the length of all level lines, and thus result-

ing in visually appealing results. In addition, this paper

presents a novel combination of this soft edge smoothness

prior and the alpha matting technique for color image super

resolution, by normalizing edge segments with their alpha

channel description, to achieve a unified treatment of edges

with different contrast and scale.

1. Introduction

The objective of image super resolution (SR) [18] is to

obtain high quality images from low resolution inputs. It

is widely applicable in video communication, object recog-

nition, HDTV, image compression, et al. There are many

cases that only one low resolution image is available. In

this paper, we mainly focus on super resolution (or image

hallucination) from one single low resolution input image.

Generally speaking, low resolution images are generated

by smoothing and down-sampling target scenes with low-

quality image sensors. The task of recovering the original

high resolution (HR) image from a single low resolution

(LR) input is an inverse problem of this generation proce-

dure. One criterion of solving this inverse problem is to

minimize the reconstruction error. In other words, the re-

sult which can produce the same low resolution image as

the input one is preferred. Back-projection [17] is proposed

to minimize the reconstrution error efficiently by an itera-

tive algorithm. However, since a lot of information is lost

in the generation process, this problem is severely under-

determined. There might be multiple solutions to minimize

this error, even for multiple LR input images [2, 22]. To

overcome this difficulty, image priors need to be incorpo-

rated for regularizing the inverse problem.

One of the most widely used priors is the edge smooth-

ness prior that prefers a HR image with smooth edges. This

is reasonable, because the human perception seems to favor

this choice. Given the severely under-determined nature of

super resolution, such a prior is especially important for get-

ting rid of chessboard effect at region boundaries, which is

a common drawback of simple interpolation-based method,

like bilinear or bicubic. However, in practice, there are two

main difficulties in incorporating this prior:

1. An edge in an intensity image is much more complex

than a single geometric curve. In reality, an image edge

exhibits a gradual intensity transition. We call it a soft edge

in our paper (see Fig. 1(b) for an example). Working on soft

edges is more meaningful for super resolution because they

are more realistic in practice. But it is difficult to quantify

such a prior and evaluate the smoothness of soft edges.

2. Natural color images show a large variety of edges

with different contrast and scale. Besides, the edges are de-

termined simultaneously by information from all three color

channels. How to explore the 3D color information and treat

those edges uniformly is important for color image SR.

This paper mainly addresses the two issues mentioned

above. The main contributions are as follows:

1. For an ideal curve, or a hard edge, Geocuts [5] method

can approximate its Euclidean length with a cut metric on

image grid. We are not only simply introducing this to su-

per resolution, but more importantly, we extend this idea to

intensity images by defining a soft edge cut metric to mea-

sure the smoothness of soft edges. We prove that this metric

can approximate the average length of all level lines in the
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Figure 1. Examples of (a) hard edge, (b) soft edge, and (c) level

lines (boundaries between different intensities) for (b) with quan-

tization step 64 on image intensity.

intensity image, where level line means boundary between

pixels with intensity smaller and larger than a given value

(an example is shown in Fig. 1(c)). This extension is signif-

icant because it leads to a new analytical form for the soft

edge smoothness prior. The new smoothness measure can

be used to regularize the objective function of the SR task,

and results in impressive results.

2. To apply the soft edge smoothness prior on natural

color images, a novel approach is proposed based on alpha

matting technique. We show that the problem of color im-

age super resolution can be transformed to a combination of

alpha matting and alpha channel super resolution. A closed

form alpha matting solution [20] can help to describe each

edge segment in a unified way by alpha channel.

The benefits of our SR algorithm are three-fold: (1) By

integrating the soft edge smoothness measure into an ob-

jective function, the length of all image level lines can be

minimized simultaneously. Thus result with smooth edges

can be obtained. The resulting edges are also sharp due to

the edge-preserving property of the proposed prior term. (2)

Both image likelihood and image prior terms are integrated

together in a single objective function, which can be opti-

mized efficiently. (3) Alpha channel SR utilizes color infor-

mation from all three channels simultaneously, and the edge

description by an alpha channel provides a unified treatment

of edges with different contrast and scale.

The related work is briefly summarized in Sec. 2. The

main theoretical results are presented in Sec. 3, and its ap-

plication on alpha channel color image SR is described in

Sec. 4. Experiments are shown in Sec. 5 and Sec. 6 con-

cludes this paper.

2. Related work

Various image priors have been considered in the lit-

erature of super resolution. Two of the most extensively

studied image modeling priors are image smoothness prior

and edge smoothness prior. Neighboring pixels are likely

to have the same color. Various filtering/interpolation al-

gorithms (e.g., bilinear and bicubic interpolation) tend to

produce smooth HR images. Another way is trying to

minimize the image derivatives [11, 13]. For one dimen-

sional case, a linear closed form solution is derived in [8].

However, the image smoothness prior is not valid at re-

gion boundaries. To preserve edge sharpness, edge directed

interpolation [1, 21] is proposed to fit smooth sub-pixel

edges to the image and use these edges to prevent cross-

edge interpolation. Locating high precision edge position is

also necessary for removing the chessboard effect, which is

another common problem for interpolation-based method.

The edge smoothness prior is usually used to handle this

problem. Smooth curves are preferred, which is consistent

with human perception. Level-set method [24] can recon-

struct smooth approximation of all of the image level-set

contours simultaneously to refine the edges. To avoid over-

smoothness, hard constraints are introduced to model the

image likelihood. The HR curves can also be inferred by

multi-scale tensor voting method [28], and the HR image

is recovered accordingly by a modified back-projection it-

eration. All three color channels are considered together.

Snake-based vectorization is used in [25] to achieve smooth

boundaries for icon image SR. There are also some other

image modeling priors for the SR taks, such as the two color

image prior [3] and the sparse derivative prior [29].

Instead of image prior modeling, many researchers use

image exemplars directly. Candidates for each position

are selected based on the middle frequency information.

Spatial consistency is enforced by pairwise interaction

between neighboring positions under a Markov Random

Fields framework [14, 15, 23]. The final discrete opti-

mization problem is usually solved by belief propagation.

This method is extended to video SR in [4]. The domain-

specific case is discussed in [19]. Two key issues usually

need to be addressed for exemplar-based method: one is

how to find HR candidate patches efficiently, Locality Sen-

sitive Hashing [30] and KD-tree [19] are applied to speed

up the searching; the other is how to solve the optimization

problem efficiently, image primal sketch [27] method can

simplify the problem to a chain structure. Learning algo-

rithms, such as locally linear embedding [10], can also be

used to infer the high frequency information.

3. Soft edge smoothness prior

3.1. Geocuts

Our work is motivated by [5]. To make this paper self-

contained, we briefly summary the basic idea of [5].

Given a weighted grid-graph G = 〈V, E〉, and a curve C
in R

2, assume EC is the set of edges intersecting with this

curve. The cut metric of C is defined as

|C|G =
∑

e∈EC

we, (1)

where we is the edge weight. |C|G is the weight summation

of the edges intersecting with C.

Define the neighborhood system of a regular grid G as

a set of vectors NG = {ek | 1 ≤ k ≤ nG}, where ek are

ordered by their corresponding angle φk w.r.t. the +x axis,

such that 0 ≤ φ1 < φ2 < ... < φnG < π. Besides, ek

is chosen as the k-th nearest neighbor group in G . Some

examples are shown in Fig. 2.



Figure 2. Neighborhood system for nG = 2, 4 (left) and nG = 12

(right, only the neighbors on the upper plane are shown).

Assume |C|E is the Euclidean length of curve C, ∆φk =
φk+1 − φk (set φnG+1 = π), then by setting

wk =
δ2∆φk

2|ek|
, (2)

The follow theorem is derived in [5]:

Theorem 1 [5] If C is a continuously differentiable regu-

lar curve in R
2 intersecting each straight line a finite num-

ber of times then

|C|G → |C|E

as δ, supk |∆φk|, and supk |ek| get to zero.

In other words, the length of a curve can be approxi-

mated by its cut metric. This method can be generalized to

3D, and arbitrary Riemannian metric. The global minimum

can be found in a close linear time by the Graph Cuts [6, 7]

method. As its name suggested, Geocuts reveals the under-

lining relationship between two well-known segmentation

algorithms, i.e., Geodesic active contours and Graph Cuts.

Geocuts also provides a principled solution to choose the

edge weights for using higher order neighborhood.

By integrating the cut metric into an objective func-

tion, the edge smoothness prior can be added. Curves with

smaller Euclidean length are preferred by minimizing the

objective function, thus smooth curves can be obtained.

3.2. Smoothness measure for soft edges

Now, we present our generalization of Geocuts method.

In fact, cut matric can be defined on any set of disjoint

closed curves C, or equivalently, a binary valued character-

istic function FC(p) on R
2 which equals to 1 inside C, and

0 otherwise. Geocuts is only applicable for a binary valued

function FC(p) on image plane. To handle the soft edge,

which is a gradual transition on an intensity image, we first

rewrite the definition of cut metric in Eqn. 1 w.r.t. curve C
(or equivalently, function FC ) as follows

|C|G = |FC |G =
∑

1≤k≤nG

(

wk

∑

epq∈Nk

|FC(p) − FC(q)|
)

,

(3)

where Nk contains all node pairs in the k-th group of neigh-

borhood. Although Eqn. 3 is equivalent to Eqn. 1, it is easier

to be generalized to a real valued function S on R
2. We de-

fine the soft cut metric for S w.r.t. grid-graph G as follows

|S|G =
∑

1≤k≤nG

(

wk

∑

epq∈Nk

|S(p) − S(q)|
)

. (4)

By uniformly quantizing the function values with step
1

n
, S can be approximately by Sd, which takes values from

{0, 1

n
, 2

n
, ..., 1}. The soft cut metric of Sd can be simi-

larly defined by Eqn. 4, by replacing S with Sd. More-

over, Sd can be equivalently described by a set of level lines

l1, l2, ..., ln, where li is the boundary between points with

Sd values < and ≥ i
n
, in R

2. From Theorem. 1, we know

that the length of li can be approximated by its cut metric

|li|G . Based on this, the following theorem can be proved.

Theorem 2 Assume S is a continuous differentiable regu-

lar function on R
2, which ranges in [0, 1], and Sd discretize

S with step 1

n
, then the average length of all level lines of

Sd w.r.t. 1

n
can be approximated by the soft cut metric of

Sd, or
|Sd|G →

1

n

∑

1≤i≤n

|li|E (5)

under the same conditions of Theorem. 1

The proof is presented in Appendix. A. Theorem. 2 gen-

eralizes Theorem. 1 to be applicable to soft edges instead

of hard boundaries. It implies that by minimizing the soft

cut metric in Eqn. 4, the length summation of discrete level

lines can be minimized. So adding this metric as a regularity

term can help to obtain result with smaller length of image

level lines, thus the soft smoothness prior can be integrated.

3.3. Application on super resolution

In theory, the generation process of LR image can be

modeled by a combination of atmosphere blur, motion blur,

camera blur, and down-sampling. By simplify the first 3

factors with a single filter G for the entire image, the gener-

ation process can be formulated as follows

I l = (Ih ∗ G) ↓, (6)

where Ih and I l are the HR and LR images respectively, G
is a spatial filter, ∗ is the convolution operator, and ↓ is the

down-sampling operator. Noise is not considered here.

The soft cut metric is directly applicable to the problem

of SR, by defining the objective function as

Ih = arg min
I

(

d(I l, I) + λ|I|G
)

, (7)

where d(I l, I) = ||I l − (I ∗G) ↓ ||22 is the likelihood term.

It is the square of L2 distance between the given LR image

I l and synthesized LR image by I . |I|G is the smoothness

prior term for soft edge defined by Eqn. 4. λ is a parameter

to balance these two terms.

The reasons that different norms are used for likelihood

and prior terms are as follows: (1) The L2 norm is used for



(a) (b) (c) (d)

Figure 3. (a) LR input image, (b), (c), (d) are the SR results (×3)

with soft edge smoothness prior when nG = 2, 4, 12 respectively

(λ = 0.01).

likelihood term since it punishes more on large reconstruc-

tion error than L1. (2) Minimizing the L1 norm of gradi-

ent is edge-preserving, it does not severely penalize steep

local gradients, while minimizing the L2 norm of gradient

usually leads to a graduate transition across edges, and the

geometrical explanation in Theorem 2 does not hold for it.

The objective function is optimized by steepest descent

algorithm. By putting the same group of neighborhood to-

gether, it can be implemented efficiently as follows:

It+1 = It − β(pre + ps), (8)

where
pre =

(

(It ∗ G) ↓ −I l
)

↑ ∗G, (9)

ps = λ
∑

k

wksgn
(

It − ItDek

)

(1 − Dek
), (10)

β is the descent step, pre is similar to the update function

of back-projection [17], except the back-projection kernel

is chosen the same as the blur filter. ↑ is the up-sampling

operator. Dek
is the displacement operator, which trans-

lates the entire image by ek, and sgn is the sign indication

function. ps is the derivative of the soft edge smoothness

measure defined by Eqn. 4. In fact, each term in Eqn. 4 will

produce a +wk or −wk change for the two corresponding

pixels. In Eqn. 10, the sgn function determines the +/−,

and 1−Dek
can apply the changes to the two corresponding

pixels. This updating strategy is the same as in [13]. I0 is

set to the bicubic interpolation result in our experiments.

For color images, in this section, we simply apply our

method on three color channels separately. Our novel treat-

ment of color images will be presented in Sec. 4.

3.4. Results and discussions

Figure 3 illustrates the necessity of using higher order

neighborhood. Metrication effect can be observed for small

nG . There are some 45o artifacts in Fig. 3(c), since 8-

neighborhood system is used for it.

Figure 4 shows the result comparison of different para-

meter settings with a LR icon image (icon image SR is also

studied in [25]). Larger nG is applied in (b) than in (e),thus

more smooth edges are produced. In (c), smaller λ is used

than in (b), thus less weight is put on the smoothness prior,

this makes the result look over-sharpened on high contrast

edges, while better result is archived at low contrast part

(such as the foot). In (f), larger λ is used than in (b), the

edge smoothness prior is over stressed, all boundaries are

(a) (b) (c)

(d) (e) (f)

Figure 4. Result comparison of SR by soft edge smoothness prior

with different parameters (×3), (a) LR input image (20 × 20),

(b) λ = 0.01, nG = 12, (c) λ = 0.001, nG = 12, (d) bicubic

interpolation, (e) λ = 0.01, nG = 2, (f) λ = 0.1, nG = 12.

Figure 5. More SR results (×3) with soft edge smoothness prior,

1
st column: LR inputs, 2

nd column: SR results (λ = 0.01, nG =

12), 3
rd column: bicubic interpolation.

very smooth, but the result is blurry. Generally speaking,

the effect of the parameters can be summarized as follows:

(1) larger nG will produce smoother boundary, but more

computational demanding. In all of the later experiments,

nG is set to 12, the corresponding neighborhood system is

shown in the right part of Fig. 2. (2) The value of λ is criti-

cal, small λ is suitable for low contrast edges, while large λ
is suitable for high contrast edges. In fact, the filter G in the

generation model (Eqn. 6) also influences the result. How-

ever, estimating G is out of the scope of this paper. We fix it

as a Gaussian filter with σ = 2 throughout this paper. More

results are shown in Fig. 5, good results can be achieved

by the proposed algorithm even when the quality of the LR

input images is very low.

There is some related work in the literature. Level-set

method is used in [24] to incorporate edge smoothness prior.

To avoid over-smoothness, hard constraints are enforced as



image likelihood terms . In [28], the smoothness prior is

integrated by multiple-scale tensor voting, where the edge

tokens can interact with each other to get smooth curves.

Image gradient on a large neighborhood is also used in [13]

as a regularity term. Comparing with these existing works,

the benefit of our algorithm is that we have an explicit ob-

jective function which integrates both the prior and the like-

lihood terms, and there is an exact geometric explanation

for it. When nG = 2, Eqn. 4 becomes an approximation

of the total variation (TV) regularity term [9, 26], which is

very powerful in edge-preserving image reconstruction.

4. Color image super resolution

For natural color image SR, three reasons limit the per-

formance of applying soft edge smoothness prior directly

by simply processing each color channels separately on the

entire image.

1. Exact edge position is determined by the color infor-

mation from all three channels. Decisions made on each

channel separately might be wrong and inconsistent.

2. SR by soft edge smoothness prior is sensitive to the

value of λ, which is related to the local contrast. Take the

3rd image in Fig. 5 as an example, some subtle edges are

smoothed out with this set of parameters, while in fact, they

can be perfectly extracted by smaller λ in our experiments.

Some edge strength normalization mechanism is needed to

make possible a unified treatment for all edges.

3. Enforcing soft edge smoothness prior on regions

near corner points will produce undesired smoothed curves,

which is also observable in Fig. 5.

All these problems motivate our natural color image SR

approach as follows.

4.1. The proposed approach

The entire system is illustrated in Fig. 6. The standard

canny edge detection algorithm is used to extract continues

edges. A robust corner detection algorithm based on cur-

vature scale space [16] is applied. These corner points can

break the edges into segments. Each edge segment ci is a

continuous curve (may be closed), and a nearby patch Pi is

assigned to it by morphological operations.

We process each edge segment at Pi separately. For each

segment, if we consider the two sides of this edge as fore-

ground and background, the problem can be reduced to the

alpha matting problem. Thus the true colors for two sides

of the edge can be recovered by a recently proposed closed

form solution [20]. The LR input is a blending of these two

patches through an alpha channel, which ranges in [0, 1].
All the alpha matting parts are processed on low resolu-

tion. After that, SR based on soft edge smoothness prior

(Sec. 3.3) is used to generate the HR alpha channel given

the LR alpha channel extracted by alpha matting. The HR

alpha channel is combined with the LR patches of two sides

of the edge to generate the HR edge. At the end, Eqn. 8 is

Input LR image I l and scale factor s.

Output HR image Ih

1. Edge segment extraction and region assignment to get

{ci} and {Pi}.

2. For each segment ci, process Pi as follows

(a) Compute I l
L,i, I l

R,i, and αl
i from I l by a closed

form alpha matting solution.

(b) Alpha channel SR to get αh
i from αl

i by single

channel SR with soft edge smoothness prior.

(c) Synthesis the HR patch by I l
L,i, I l

R,i and αh
i .

3. Reinforce the reconstruction constraint for the entire

image by Eqn. 8 with small λ.

Figure 6. The overview of alpha channel color image SR approach.

applied on the entire image to reinforce the reconstruction

constraint for region without salient edge segment. A small

λ (= 0.002 in our experiments) is used with a fixed num-

ber of iterations (15 in our experiments). Back-projection is

also used in [27] as a post-processing step.

The proposed approach has the following benefits: (1)

Alpha matting technique can extract the edge by combin-

ing color information from all three channels, thus more

precise result can be obtained. (2) In the meanwhile, de-

scribing each edge segment by the alpha channel can nor-

malizes it into a unified scale, the problem of parameter se-

lection for soft edge smoothness prior can be avoided. (3)

The corner point detection algorithm can help to avoid over-

smoothness at corner points. So all of the three problems

presented in the beginning of this section can be addressed.

4.2. Edge decomposition by alpha matting

Alpha matting is a technique to decompose an image into

a linear combination of foreground image and background

image through an alpha channel. It is an important prob-

lem in computer graphics to extract the foreground object

for image editing. Ideally, the influence of the neighbor-

ing background color should be removed. Assume the fore-

ground and background images are F and B, then the fol-

lowing equation should hold for each pixel p,

Ip = αpFp + (1 − αp)Bp, (11)

where αp ∈ [0, 1] is the foreground opacity of pixel p.

Given the blended image I , solving for F , B, and α is also

an under-determined inverse problem. In [20], by assuming

that both F and B satisfy a locally linear model approxi-

mately, a closed form solution is derived. Hard constraint

can be easily enforced into the cost function.

Similar to the idea of alpha matting, an HR step edge can

also be considered as a combination of two smooth patches

through a weight channel α as follows

Ih = αhIh
L + (1 − αh)Ih

R, (12)

where Ih
L and Ih

R represent the actual image colors for two

sides of the edge at HR. Then by Eqn. 6, the corresponding



Figure 7. An example of the process of alpha channel super resolution and result comparison(×3), (a) LR input & extracted edge segments,

(b) result after alpha channel SR (Fig. 6, step 2), (c) final result (Fig. 6, step 3), (d) back-projection [17], (e) bicubic, and (f) ground truth.

LR image can be expressed as follows

I l =
(

αhIh
L + (1 − αh)Ih

R

)

∗ G ↓ (13)

≃ (αh ∗ G) ↓ Ih
L ↓ +(1 − (αh ∗ G) ↓)Ih

R ↓ .(14)

The approximate equality can be taken if we assume that

both Ih
L and Ih

R are locally smooth, which is reasonable for

the SR task. By assuming α = (αh ∗ G) ↓, F = Ih
L ↓,

and B = Ih
R ↓, Eqn. 14 is exactly the same as Eqn. 11.

It means that we can do alpha matting for I l, to get (αh ∗
G) ↓, Ih

L ↓, and Ih
R ↓, then αh, Ih

L, and Ih
R can be recovered

accordingly from them. Recovering αh from αl = (αh ∗
G) ↓ is exactly the problem discussed in Sec. 3.3, while Ih

L

and Ih
R can be interpolated with bicubic method given their

down-sampled version due to the smoothness assumption

for them. λ = 0.03 is used for recovering the HR alpha

channel in our experiments.

When applying the close form solution of alpha mat-

ting [20] on an image region Ri, the hard constraints for

both sides are chosen according to the local topology and

image gradient. Low contrast pixels are selected, since they

correspond to pure color of one side. The matting algorithm

in [20] is very robust in our experiments, even for very lim-

ited quantity of hard constraints.

Alpha matting is also used in [28], where the α value is

extracted to get the sub-pixel location of the curve. A two

color image prior is used in [3] for demosaicing, which as-

sumes that each pixel within a local neighborhood is either

one of two representative colors or a linear combination of

them. This assumption is in essential quite similar to the

idea of using alpha matting for SR. In [12], various aspects

of color information is combined by a linear summation.

5. Experiments

Figure 7 shows an example of the entire process. After

doing alpha channel SR, sharp and smooth edges can be ob-

tained for salient edge segments. Fig. 7(c) shows the final

result after global updating procedure. It can recover some

subtle structures, thus enhance the image quality for the en-

tire image. Compare to the results of bicubic interpolation

and back-projection, the chessboard artifact is greatly re-

duced without introducing blur or ringing effect. It is also

more natural compared with the result obtained by simply

applying the proposed soft edge smoothness prior on three

color channel separately (shown in Fig. 5).

Figure 8 illustrates the idea of alpha channel SR by one

edge segment in Fig. 7(a). The LR patch is decomposed

into two image patches and a LR alpha channel. Fig. 8(e) is

the recovered HR alpha channel by the proposed soft edge

smoothness prior in Sec. 3.3. Combining Fig. 8 (b) (c) (e)

together by Eqn. 11 will produce a sharp and smooth edge,

which is shown in Fig. 7 (b).

Figure 9 compares our method with some exemplar-

based algorithms. The existing exemplar-based methods

can produce very sharp edges. Compare to them, more

smooth boundaries can be archived by our method, this

makes the result looks natural. Fig. 10 shows another ex-

ample for comparison with other reconstruction-based al-

gorithms. Visually appealing result is obtained by our al-

gorithm, even for very fine image structure, the chessboard

artifact is largely suppressed. More results are shown in

Fig. 11. Please refer the electronic version for better visual-

ization of our experimental results.

Some quantitative results are shown in Table. 1. The

RMS and edge RMS (ERMS) error per pixel for some ex-

ample images are listed. Compare to bicubic interpola-

tion and back-projection [17], although the visual effect is

greatly improved, the error is just reduced a little bit. We

run our experiments on a PIV3.4G PC with 2G RAM by

Matlab implementation. The computation time for some ex-

ample images are also shown in Table. 1. It greatly depends

on the density of salient edge segments.

Table 1. Error reduction and computation time (for each box with

two numbers, the 1
st is the RMS error, the 2

nd is the ERMS error).

Lena Head Zebra Temple

LR size 80 × 107 70 × 70 100 × 170 161 × 107

Bicubic 8.5 14.5 9.7 13.7 9.6 29.3 11.4 22.6

BP [17] 7.5 11.3 9.4 12.8 8.5 20.4 10.9 20.5

Ours 7.5 10.7 9.3 12.6 8.3 19.3 10.7 20.3

Time (s) 40 25 135 106



(a) (b) (c) (d) (e)

Figure 8. An example of edge decomposition and alpha channel

SR, (a) LR input, (b) (c) true color on two sides of this edge seg-

ment, (d) LR alpha channel, (e) HR alpha channel by soft edge

smoothness prior (please refer Fig. 7 for the edge position, and

result comparison with other reconstruction-based methods).

6. Conclusion
In this paper, a novel single image super resolution al-

gorithm is proposed. A soft edge smoothness measure is

defined on a large neighbored system, which is an approxi-

mation of the average length of all level lines in the image.

To extend this method to natural color image SR, a novel ap-

proach is proposed. A closed form alpha matting algorithm

is applied to decompose each edge segment. It makes pos-

sible a unified treatment of them. Visually appealing results

for a large variety of images are obtained by this algorithm.
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A. Proof of Theorem. 2
From Eqn. 3, we have

|li|G =
∑

k

(

wk

∑

Nk

|Fli(p) − Fli(q)|
)

,

so
∑

i

|li|G =
∑

i

∑

k

(

wk

∑

Nk

|Fli(p) − Fli(q)|
)

=
∑

k

(

wk

∑

Nk

∑

i

|Fli(p) − Fli(q)|
)

,

and
∑

i

|Fli(p) − Fli(q)| = #{i | Fli(p) 6= Fli(q)}

= n · |Sd(p) − Sd(q)|,

so ∑

i

|li|G =
∑

k

(

wk

∑

Nk

n · |Sd(p) − Sd(q)|
)

= n ·
∑

k

(

wk

∑

Nk

|Sd(p) − Sd(q)|
)

= n · |Sd|G (from Eqn. 4).

Thus from Theorem. 1, we have

|Sd|G =
1

n

∑

i

|li|G →
1

n

∑

i

|li|E .



(a) LR input (b) bicubic (c) result in [15] (d) result in [10] (e) our result

Figure 9. Comparison results with exemplar-based methods (×4).

(a) LR input (b) bicubic (c) sharpened bicubic (d) back-projection [17] (e) our result

Figure 10. Comparison results with reconstruction-based methods (×3).

Figure 11. More results. For each pair of images, the upper one is the LR input, and the lower one is our result (×3).


