
Power-Driven Design Partitioning

Rajarshi Mukherjee, Seda Ogrenci Memik

Electrical and Computer Engineering, Northwestern University
{rajarshi, seda}@ece.northwestern.edu

Abstract. In order to enable efficient integration of FPGAs into cost effective
and reliable high-performance systems as well potentially into low power mo-
bile systems, their power efficiency needs to be improved. In this paper, we
propose a power management scheme for FPGAs centered on a power-driven
partitioning technique. Our power-driven partitioner creates clusters within a
design such that within individual clusters, power consumption can be im-
proved via voltage scaling. We tested the effectiveness of our approach on a set
of LUT-level benchmark netlists. Further we did constrained placement of the
clusters into predefined Vdd

high and Vdd
low regions for a single FPGA. Average

savings in power consumption with our approach is 48% whereas penalty in
channel width and wire length due to constrained placement is 23% and 26%
respectively.

1 Introduction
Despite exponential improvements in logic density and performance, energy ef-

ficiency of the FPGA technology did not keep up. As heat dissipation becomes an
increasingly important concern for wired systems, power consumption of FPGAs
needs to match more stringent standards in order to ensure the performance goals and
reliability. Similarly, inefficiency in power consumption poses a major obstacle to
inclusion of FPGAs in many emerging low power mobile systems.

In this paper, we present a high-level power management methodology for
FPGAs. We propose a power-driven partitioning technique that identifies partitions in
a design, which can be implemented using lower supply voltage levels. Through
voltage scaling we allow longer delay for parts of a design while the overall latency
of the design is unchanged. In every design, based on the overall timing constraint,
there is a set of critical nodes/operations/gates, while the remainder of the design is
non-critical. Hence, it is possible to identify the inherent time slack possessed by
individual building blocks in a design. We analyze this design metric and systemati-
cally exploit potential relaxation in timing constraints in order to create opportunities
for voltage scaling. Our techniques can be utilized for various FPGA-based systems.
In multi-FPGA systems applications are partitioned among several devices. Using our
partitioning technique voltage scaling can be applied at chip level, using different
supply voltages for different devices. While mapping a design onto a single FPGA
chip, the design is partitioned such that portions identified by our partitioning tech-
nique can be placed within voltage islands at different Vdd levels on the same chip.
Finally, for dynamically reconfigurable systems, the voltage supply level can be dy-
namically adjusted and our partitioning technique can be used to create configuration
contexts such that lowering of the supply voltage is feasible for some of the parti-
tions.

Our specific contributions in this paper are as follows:
• We propose a partitioning algorithm that effectively exploits relaxable timing

constraints within a design to trade-off delay against lower supply voltage lev-
els,

• We present experimental results using LUT-level netlists to demonstrate the
improvement in power using our proposed technique, and

• We present an experimental evaluation of the impact of creating voltage islands
on the physical design stages.
The rest of the paper is organized as follows. In Section 2 we present an over-

view of related work. Section 3 presents the problem formulation and our algorithm.
Our experimental setup and results will be presented in Section 4. We conclude with
a summary in Section 5.

2 Related Work
In the past, various proposed synthesis techniques addressed the problem of

power optimization by improving metrics such as switching activity of a schedule or
binding, total used logic resources, interconnect, etc. to generate the most efficient
circuit in terms of power consumption [1], [2], [3], [4], [5]. In our approach we are
addressing a different power optimization paradigm, namely voltage scaling. Our
work is complementary to the above-mentioned techniques.

Partitioning has been studied for multi-FPGA systems and for dynamically re-
configurable systems [6], [7], [8], [9]. The main objectives for optimization have been
traditionally cut cost, i.e., the number of connections between partitions, and the num-
ber of partitions. In this work, we propose a partitioning scheme that addresses a new
objective, namely availability of time slack in a partition. We investigate the potential
impact of partitioning on power. Depending on the particular application of our tech-
nique, we take other partitioning objectives into account as well.

Voltage scaling is a well-known tool for improving energy efficiency of electronic
systems. It has found applications for a wide variety of circuit technologies and de-
sign styles including microprocessors, ASICs and real time embedded systems [10],
[11], [12], [13]. In this work, we make use of this general optimization technique and
investigate its application on FPGA-based systems. Investigation of circuit level
issues to implement voltage scaling is beyond the scope of this paper. However, the
feasibility of implementing the necessary hardware for voltage scaling is evident
considering the successful implementations in other technologies. In addition, Chen
et al. reported recent results on the feasibility of dual supply voltage FPGA fabrics
[14], [15].

3 Power Management Using Voltage Scaling
In this section, we will formulate our power management problem and discuss two

applications of our proposed technique. Next, we will describe our power-driven
partitioning algorithm in detail.

3.1 Problem Formulation

We assume that a LUT-level netlist is represented with a Directed Acyclic
Graph (DAG). The longest path from any of the primary inputs to any of the primary
outputs defines the longest combinational path, i.e., the critical path in the design.
Logic blocks that reside on the critical path are called critical nodes. The rest is re-
ferred to as non-critical nodes. Taking the length of the critical path as our timing
constraint and assuming that all input signals arrive at the same time, we can assign
arrival and required times for each node. The difference between the required time
and the arrival time of a node is called time slack. This entity will be equal to zero for
critical nodes, while it takes a positive value for non-critical nodes. Note that we are
estimating the time slack of each LUT at a high level. Naturally, the timing behavior
of a design will highly depend on the net delays, hence, on placement and routing. An
accurate estimation of interconnect delay cannot be made before physical synthesis.
Being aware of this fact, we will evaluate the impact of placement and routing. De-
tails of this study will be presented in Section 4.3. We would like to stress once again
that time slack as defined above is the best estimation we can have at this early stage
of the design flow to identify the non-critical portions of a design.

Our power management technique relies on the observation that the slack pos-
sessed by individual nodes can be used as a guide to create partitions within which all
nodes would maintain a certain level of timing freedom, which in turn can be ex-
ploited through scaling the voltage supply fed into that partition. It is well known that
the dynamic power reduces by the square of the supply voltage (P ~ Cload Vdd

2 fswitch),
and the delay increases linearly (D ~ Cload /Vdd) as the supply voltage is decreased.
Hence, it is possible to perform a tradeoff between power consumption and perform-
ance by changing the supply voltage.

Our aim is to identify partitions in a design, such that the total power consump-
tion is minimized while resource constraints associated with the partitioning problem
are satisfied. For a given partition, the length of the longest path and the amount of
time slack available along that path will be used to compute the voltage scaling within
a partition. The voltage-scaling factor (Sc_Fac) is then defined as

slackpartitioninlengthpathlongest
partitioninlengthpathlongestFacSc

+
=

Our partitioning scheme can find applications at various levels. Next we differenti-
ate between two cases and are shown in Figure 1.

3.1.1 Chip-level Voltage Scaling for Multi-FPGA Systems

Many FPGA-based hardware acceleration systems employ multiple FPGAs.
Partitioning is frequently used to map a large design onto several FPGA devices.
Such systems are generally wired; hence, they do not operate under a tight power
budget. However, heat dissipation is becoming a growing concern. Overhead due to
cooling systems can be reduced through effective power management. More impor-
tantly, reliability issues arising due to excessive heat dissipation require closer atten-
tion as the FPGA manufacturing technology reached submicron levels. For multi-
FPGA systems we apply our partitioning technique to create partitions such that some

of those partitions can be assigned to a device operating at a lower supply voltage
level.

3.1.2 Localized Voltage Scaling for Single FPGA Systems

A design flow targeting a single FPGA device can also benefit from our power-
driven partitioning technique. In this case, by embedding voltage islands on a chip we
can enable different parts of a design to operate at different voltage levels. Generating
these voltage islands on a single FPGA will incur certain hardware costs. Considering
the overhead of creating voltage islands –additional circuitry for voltage scaling, level
conversion, etc. the number and layout of different voltage islands can be con-
strained. We believe that the benefits of voltage scaling will justify the additional
hardware cost in the next generation FPGA architectures. We will elaborate more on
this issue as we present our results in Section 4.

d

d

w

 Vd

 FPGA

 FPGA

d

h
d

X
Bar high

Vdd

low

 Vd

h

 (a)

 FPGA

 FPGA

 Vdd

Figure 1. Application of voltage scali
Single

3.2 Power-Driven Partitionin

Our algorithm takes in a LU
input port (IBUF) is considered
output port (OBUF) is considered
delay of 1 unit when operating at

Our algorithm tries to ident
the time slack available along th
along a path are twofold. First, sin
are likely to be placed in the sam
of single FPGA systems) even w
slack values on the nodes along a
power-driven partitioning algorith

Our algorithm first finds th
clusters assuming the availability
phase the voltage scaling factors o
supply voltage levels in the target

The slack at each node is cal
arrival times of the signals by so
takes as input the feasible scale fa
Vd

hi
a

f
i

e

e

Vd

lo
low

n

T

f
a

p
m

f
h
c
r

gh
ig
 (b)

g in two different scenarios. (a) Multi-FPGA system. (b)
FPGA containing voltage islands.

g Algorithm

 – level netlist. The input buffer connected to the
 primary input and output buffer connected to the
a primary output. We assume that each LUT has a
ull supply voltage level.
y clusters of nodes along a path, which can share
t path. The reasons why we consider only nodes

ce nodes along a path have data dependencies, they
 partition (or be placed close physically in the case
ithout voltage scaling considerations. Second, the
ath are usually close to each other. Clearly, a good
 clusters nodes with similar slack values together.

 slack values on the nodes, forms an initial set of
of arbitrary scaling factors. Then, in a refinement
 the clusters are adjusted according to the available
ardware.
ulated by computing the difference of required and
ting the nodes in topological order. The algorithm
ctor Sc_Fac – the minimum amount by which volt-

age can be scaled. Then, it selects the nodes in topological order thereby selecting
nodes from the input level and going towards the output. If the node has zero slack it
is added to the non-scaled partition. After choosing a non-zero slack node v, which is
not already added to any partition, it is checked whether

slackpartitioninpathlongest
partitioninpathlongestFacSc

+
>

If this condition is satisfied, then a new cluster is created and the algorithm tries to
grow the cluster. (As we add the first node to a partition, the delay of the longest path
in the partition is equal to the delay of the node itself.) Iteratively, minimum slack
fanout nodes are selected (not already in another cluster) and added to the cluster if it
is feasible to add a new node and the slack of the path is updated as the minimum of
the slacks of the nodes in the path. Let us call this entity slackPath. Similarly, the
length of the longest path in the partition is updated.

Once we stop adding any more nodes to a cluster ci, we will have the following
information about this cluster: Mi: number of nodes along the longest path in ci, Li:
length of the longest path in ci, slackPath: available slack along the longest path in ci.
(Without violating any overall timing constraints of the circuit, we can slow down the
longest path in this cluster by slackPath time units.), node_delay: amount of time by
which each individual node in ci can be slowed down. We can formally express
node_delay as follows:

i

Path

M
slackdelaynode =_

Since the same voltage-scaling factor will be applied to all nodes within a parti-
tion, the slowdown of each node will be same. The voltage supply for this cluster can
be scaled down by the factor of

Path
i

icluster

slackL

L
scale i

+
=

Iteratively, clusters are created until all nodes are assigned to a cluster.

3.2.1 Post processing of Clusters

After creating an initial set of clusters our next goal is to assign these clusters
into voltage scaled FPGAs or individual voltage islands on a single chip. The cir-
cuitry employed for scaling will have a pre-defined sensitivity. In other words, the
incremental steps by which we can adjust the voltage level are quantized, e.g. voltage
scaling can be within a range of 0.64 Volts in 8 steps of 0.08 Volts. First, we perform
a pass over all clusters and round up their voltage levels to the nearest feasible level.

If the number of clusters in the initial partition is less than or equal to the num-
ber of FPGA devices in the system then the assignment is straightforward. For the
single FPGA case, we will identify two distinct voltage levels: Vdd

high and Vdd
low.

Hence, each cluster will be merged to either one of these two levels. For the multi-
FPGA case, we can allow more voltage levels since one voltage regulator will serve
one individual chip. We developed two heuristics to achieve the finalized partitioning
of the netlist into N voltage scaled partitions (N=2 for single FPGA scenario). We
refer to these schemes as Delay Based Merging and Connectivity Based Merging.

Delay Based Merging tries to satisfy the resource constraint while searching for the
best possible merging in terms of power gain. Essentially, this method tries to group
nodes with the most similar slack values together in the same merged cluster.
Connectivity Based Merging puts higher emphasis on reducing the cut cost of the
final partitioning result. It achieves this by merging clusters with highest number of
mutual connections together. We omitted the details of these post-processing
heuristics and present only the results of Connectivity Based Merging due to space
considerations. After completing the partitioning phase, the total power consumption
now becomes Pscale. If the total power consumption without any voltage scaling was
P, the ratio is given by

n
knkV

P
P scale

ddscale)()(2 −+×
=

where, n is the total number of nodes in the circuit and k is the number of nodes in the
voltage scaled partition. For an r-way partition into r FPGA devices, we take the
same approach. Assume that the partition sizes are k1, k2, k3,...kr. The ratio of the
scaled power consumption to the non-scaled power consumption is given by

n
kVkVkV

P
P r

scale
dd

scale
dd

scale
ddscale

r ×++×+×
=

2
2

2
1

2)(...)()(21

4 Experiments
We present our experimental results in this section. First, we summarize our experi-
mental setup and the parameters we used. Then, we report achieved reduction in total
power consumption on a collection of benchmarks.

4.1 Experimental Setup and Parameters

The experiments are formed on a set of MCNC combinational benchmarks. Fur-
ther we also tested with synthetic benchmarks of 1000, 5000, 10000 and 15000
nodes. Table 1 summarizes relevant characteristics: number of nodes, edges and criti-
cal nodes - the number of nodes with zero slack in the DAG representation of each
MCNC benchmark. In Table 2 we show the average values of the same for synthetic
benchmarks. It is to be noted that though the results are presented for combinational
circuits, the algorithm is equally applicable to sequential circuits where its combina-
tional block can be partitioned into voltage clusters.

The LUT level netlist for MCNC benchmarks were in .net format. The power-
driven partitioner reads in an .edif or .net file and produces a partition for N FPGAs in
a multi-FPGA system or N=2 voltage islands on a single FPGA. The initial delay of
each LUT is assumed to be 1unit. We further assumed that voltage scaling is done in
increments of 0.06 Volts and scale factor is 0.62. Finally, we assume that for the
multi-FPGA scenario, all FPGA devices in the system are identical, i.e., all have the
same capacity. Our techniques are independent of the actual values of these parame-
ters; hence, they can operate under different assumptions.

4.2 Results: Power Driven Partitioning

After creating clusters we perform an initial refining, where we round off voltage
scaling values according to the smallest scaling step. Next we perform our post proc-
essing heuristics of Delay Based Merging and Connectivity Based Merging. In both
the merging we generate N-voltage clusters each of roughly the same size. We ob-
serve that while we obtain better power improvement using Delay Based Merging the
cut cost is consistently inferior to the Connectivity Based Merging. Symmetrically,
Connectivity Based Merging always yields better-cut cost at the expense of reduced
power improvement. Hence, the possible trade-off between the cut cost objective and
power improvement is evident. Table 1 and Table 2 shows the results of only connec-
tivity based merging. We report the cut cost, i.e., the number of inter partition con-
nections as well as the percentage power improvement obtained. For MCNC bench-
marks, the average power improves 13.4% for 2-way to 14.7% for 8 way whereas the
average cut cost increases from 2389.5 for 2-way to 2530.9 for 8-way. For Synthetic
benchmarks the average power improvement is 27.45% for 2-way and 48.2% for 8-
way.

Table 1. Partitioning Results for MCNC benchmarks

 2-way 4 way 8-way

MCNC Nodes Edges Crit Nodes Cost %Imp Cost %Imp Cost %Imp

Alu4 1522 5401 1180 1467 13 1483 13 1556 17

apex2 1878 6690 1453 2158 13 2190 14 2335 14

apex4 1262 4461 1169 440 6 440 6 440 6

des 1591 5863 1326 1851 18 1888 18 1890 19

ex1010 4598 16069 3557 5660 13 5748 13 5868 13

ex5p 1064 3940 941 663 9 663 9 663 9

misex3 1397 4955 992 1405 19 1501 22 1576 22

pdc 4575 17154 3179 4901 13 5141 14 5315 14

seq 1750 6159 936 1685 21 1804 21 1832 21

spla 3960 13763 2919 3665 9 3803 9 3834 12

 Maximum 5660 21 5748 22 5868 22

Average 2389.5 13.4 2466.1 13.9 2530.9 14.7
Table 2. Partitioning Results for synthetic benchmarks (average)

Synthetic 2-way 4 way 8-way

Nodes Edges Crit Nodes Cost %Imp Cost %Imp Cost %Imp

1000 1751 129 360 27.2 794 39.4 941 47.6

5000 8323 209 588 29.6 1392 41.8 1662 50.2

10000 16270 276 775 27.8 1962 41.6 2357 48.4

15000 24220 359 1023 25.2 2578 37.6 3087 46.6

 Maximum 1023 29.6 2578.2 41.8 3087 50.2

 Average 686.45 27.45 1681.45 40.1 2011.8 48.2

4.3 Results: Using Power Driven Partitioning in Physical Design

We now present the results of the constrained placement of the clusters identified
by our algorithm onto for voltage islands supplied by different Vdds on a single
FPGA. We propose to use four quadrants as four voltage islands, each of which can
be potentially supplied by either Vdd

high (say 1.3V) or Vdd
low (say 0.8V) rather than

having each individual logic block being Vdd programmable. The location voltage
islands is an architectural parameter. Figure 2 shows the 3 possible configurations.
We assume that it is possible to have level converters along the borders of the quad-
rants. FPGA having dimensions DX, DY has total (YX DD ×) logic blocks. Our
placement uses ƒ – the fraction of critical nodes to total logic blocks. Configuration
2(a) is used if is ƒ≤¼, 2(b) is used if ¼≤ ƒ≤½ and 2(c) is used if ½≤ ƒ≤¾. Obviously
for ¾≤ ƒ≤1, all the quadrants must be supplied with Vdd

high and there is no power
improvement possible by Vdd scaling.

 (a) (b) (c)

Vdd
high

Vdd
low

Vdd
high

 Vdd

low

 Vdd
high

Vdd
low

Figure 2. Proposed Voltage Island configurations in a FPGA

Our placement works as follows: The cluster of critical nodes identified by power
driven partitioning algorithm presented in Section 3.2 must be placed in a Vdd

high
region – (determined by ƒ) otherwise it would mean slowing down the critical path.
The power improvement is higher if all non-critical nodes get placed in the Vdd

low
region although they have a freedom to move to Vdd

high quadrant if it improves the
congestion cost.

The placement is based on the simulated annealing implemented in VPR [16]. The
linear congestion cost function used in VPR is given by

∑
= ⎥

⎥
⎦

⎤

⎢
⎢
⎣

⎡
+=

netsN

i yav

y

xav

x
conjlinear iC

ibb
iC
ibbiqC

1 ,,
_)(

)(
)(
)()(ββ

 where for each net bbi(x) and bbi(y) denote the

horizontal and vertical spans of its bounding box, q(i) is the compensating factor and
Cav,x(i) and Cav,y(i) are average channel capacitances in the x and y directions respec-
tively. Our cost function C is similar to that presented in [16] and is given as:

))(1()(_ jmatchedjmatchedCC conjlinear −+∆+∆=∆ γα

where matched(j) returns 1 if the jth logic block is placed in its matching voltage
quadrant and 0 if not. ∆matched is the difference between matched(j) in the previous
placement and matched(j) in the present placement and penalizes a move that brings a
block from matched quadrant to unmatched quadrant; (1-matched(j)) penalizes a
move that moves a block in unmatched quadrant to another location in the unmatched
quadrant; α, γ are appropriate constants and γ> α.

For FPGAs it is common practice to pack the LUTs into logic blocks. We used T-
Vpack [16] to pack LUTs with clusters of size 4 and 10 inputs per cluster option.
After packing, the power driven partitioner partitions the logic blocks for Vdd

high and
Vdd

low regions. For apex2 benchmark the characteristics are: the smallest FPGA size is
 logic array, out of 485 clusters there are 66 critical logic blocks and ƒ is

12%. The placement is of type shown in Figure 2(a) and the placed circuit is shown
in Figure 3.

2323 ×

Vdd
low

Vdd
high

Figure 3. Constrained Placement of LUTs clusters of apex2

Ten MCNC benchmarks were clustered and Table 3 shows their total number of
logic blocks, primary inputs (PI) and outputs (PO), % ƒ and the FPGA size

. Wire length (WL) and channel width (CW) are shown for unconstrained
placement vs. power driven partitioning and region-constrained placement. We also
report the number of non-critical blocks in the V

YX DD ×

dd
low region and the power improve-

ment over unconstrained partitioning. The results show that it is possible to get an
average power improvement of 48% with 23% penalty in channel width and 26%
penalty in wire length.

Table 3. Placement and Routing results for MCNC benchmarks

 Unconstrained Constrained –Power Driven

Circuits
Logic

Blocks
Crit

Block Dx=Dy %ƒ PI PO WL CW WL CW
Blocks
in Vlow %Imp

alu4 389 51 20 13 14 8 20262 33 22151 37 289 46

apex2 485 66 23 12 38 3 31738 40 37348 47 385 49

apex4 334 77 19 21 9 19 20317 40 23383 48 247 46

des 415 47 32 5 256 245 25199 25 44587 41 357 53

ex1010 1201 250 35 20 10 10 72916 43 104744 69 908 47

ex5p 280 22 17 8 8 63 17572 41 19625 47 213 47

misex3 362 57 20 14 14 14 21650 36 24606 39 281 48

pdc 1190 141 35 12 16 40 98312 61 116923 71 911 48

seq 448 94 22 19 41 35 27904 39 35767 48 342 47
spla 955 133 31 14 16 46 71330 57 86536 66 717 47

Average 40720 42 51567 51 465 48

Avg. Penalty for Const-Power Driven Wire length 26.64% Channel width 23.61%

5 Conclusions
In this paper, we presented a power optimization technique for FPGA-based sys-

tems. Our proposed approach aims to create opportunities for voltage scaling by
grouping nodes in a LUT-level netlist into clusters. The partitioning approach targets
to exploit the maximum flexibility in timing constraints and convert it into voltage
scaling. We developed a partitioning algorithm to perform this task. Within the gen-
eral framework of our algorithm resource constraints can be resolved. Our
experimental results reveal that it is indeed effective. Based on the high-level power
improvement estimation, we did a constrained placement of the clusters onto voltage
islands in a single FPGA and showed power improvement vs. penalty in wire length
and channel width increase. Hence possible tradeoffs between cost function and
power improvement is evident. An immediate extension to our work is to evaluate
and actually compare delay after physical design due to constrained placement and
area-power tradeoffs due to the presence of level converters.

6 References
1. Boemo, E.I., et al., eds. Some Notes on Power Management on FPGA-based Systems.

Lecture Notes in Computer Science. Vol. 975. 1995, Springer-Verlag: Berlin. 149--157.
2. Chen, C., T. Hwang, and C.L. Liu. Low Power FPGA design - A Re-engineering Ap-

proach. in Design Automation Conference. 1997.
3. Sutter, G., et al. FSM Decomposition for Low Power in FPGA. in Design Automation

Conference. 1998.
4. Chen, D., J. Cong, and Y. Fan. Low Power High-Level Synthesis for FPGA Architec-

tures. in International Symposium on Low Power Electronic Design. 2003.
5. Lamoureux, J. and S.J.E. Wilton. On the Interaction Between Power-Aware FPGA CAD

Algorithms. in International Conference on Computer Aided Design. 2003.
6. Brasen, D.R. and G. Saucier, Using Cone Structures for Circuit Partitioning into FPGA

Packages. IEEE Transactions on CAD of Integrated Circuits and Systems, 1998. 17(7): p.
592--600.

7. Chan, P.K., M.D.F. Schlag, and J.Y. Zien. Spectral-Based Multi-Way FPGA Partition-
ing. in International Symposium on Field Programmable Gate Arrays. 1995.

8. Chang, D. and M. Marek-Sadowska, Partitioning Sequential Circuits on Dynamically
Reconfigurable FPGAs. IEEE Transactions on Computers, 1999. 48(6): p. 565--578.

9. Liu, H. and D.F. Wong. Circuit Partitioning for Dynamically Reconfigurable FPGAs. in
International Symposium on Field Programmable Gate Arrays. 1999.

10. Govil, K., E. Chan, and H. Wasserman. Comparing Algorithms for Dynamic Speed
Setting of a Low Power CPU. in MOBICON. 1995.

11. Iyer, A. and D. Marculescu. Power Efficiency of Voltage Scaling in Multiple Clock,
Multiple Voltage Cores. in International Conference on Computer Aided Design. 2002.

12. Yeh, C., et al. Gate-Level design Exploiting Dual Supply Voltages for Power-Driven
Applications. in Design Automation Conference. 1999.

13. Simunic, T., et al. Dynamic Voltage Scaling and Power Management for Portable Sys-
tems. in Design Automation Conference. 2001.

14. Chen, D., et al. Low-Power Technology Mapping for FPGA Architectures with Dual
Supply Voltage. in International Symposium on Field-Programmable Gate Arrays. 2004.

15. Li, F., et al. Low-Power FPGA Using Pre-Defined Dual-Vdd/Dual-Vt Fabrics. in Interna-
tional Symposium on Field-Programmable Gate Arrays. 2004.

16. Betz, V., J. Rose, and A. Marquardt, Architecture and CAD for Deep-Submicron FPGAs.
Kluwer Academic Publishers, Feb 1999.

	Introduction
	Related Work
	Power Management Using Voltage Scaling
	Problem Formulation
	Chip-level Voltage Scaling for Multi-FPGA Systems
	Localized Voltage Scaling for Single FPGA Systems

	Power-Driven Partitioning Algorithm
	Post processing of Clusters

	Experiments
	Conclusions
	References

