
Peak Temperature Control and Leakage Reduction During
Binding in High Level Synthesis

Rajarshi Mukherjee, Seda Ogrenci Memik, and Gokhan Memik
Department of Electrical and Computer Engineering, Northwestern University, IL, USA

{rajarshi, seda, memik}@ece.northwestern.edu

ABSTRACT
Temperature is becoming a first rate design criterion in ASICs due
to its negative impact on leakage power, reliability, performance,
and packaging cost. Incorporating awareness of such lower level
physical phenomenon in high level synthesis algorithms will help
to achieve better designs. In this work, we developed a temperature
aware binding algorithm. Switching power of a module correlates
with its operating temperature. The goal of our binding algorithm is
to distribute the activity evenly across functional units. This
approach avoids steep temperature differences between modules on
a chip, hence, the occurrence of hot spots. Starting with a switching
optimal binding solution, our algorithm iteratively minimizes the
maximum temperature reached by the hottest functional unit. Our
algorithm does not change the number of resources used in the
original binding. We have used HotSpot, a temperature modeling
tool, to simulate temperature of a number ASIC designs. Our
binding algorithm reduces temperature reached by the hottest
resource by 12.21°C on average. Reducing the peak temperature
has a positive impact on leakage as well. Our binding technique
improves leakage power by 11.89%, and overall power by 3.32%
on average at 130nm technology node compared to a switching
optimal binding.

Categories and Subject Descriptors: B.6.3 [Hardware]: Logic
Design - Design Aids; J.6 [Computer Applications]: Computer-
aided Engineering (CAD).

General Terms: Algorithms, Design, Experimentation.

Keywords: Leakage, Binding, Temperature, Switching.

1. INTRODUCTION
The continuous technology scaling is allowing the designers to
place more transistors per unit silicon area and pack more and more
transistors in a single chip. For example, Intel Itanium 2 processor
contains more than 200 million transistors [17]. The increase in
number of transistors per unit silicon area is achieved at the
expense of increased power densities. Power density in
microprocessors has surpassed that of a kitchen’s hot plate at
0.6um technology [4].

The trend continues to increase as technology scales following
Moore’s law, which is not expected to slow down for at least
another decade. One of the most important consequences of this
power increase is its effect on temperature. Temperature of a chip
increases in proportion to the power consumption. In addition,
since different parts of a chip have different levels of activity, we
are faced with large operating temperature variations. Regions on a
chip that generate excessive amounts of heat and consequently
reach high temperatures are referred to as “hot spots”.
Temperature has a significant impact on circuit performance.
Increase in temperature decreases carrier mobility, hence, reduces
switching speed of transistors. Interconnect resistance increases
with temperature as well. Hot functional units can exhibit timing
violation and lead to functional incorrectness of the circuit. Circuit
reliability is also heavily impacted by temperature. Hot spots can
jeopardize correct execution by causing transient as well as
permanent faults. Even if excessive heat does not lead to
spontaneous damage, it accelerates electromigration, which can
lead to permanent damage in the long run. Further, leakage has
exponential dependence on temperature. As leakage power
becomes dominant in the present and future technologies, high
temperatures can cause substantial increase in total power
consumption of the chip. Also rising cooling costs will limit
electronics industry’s ability to develop commercial systems.
Present day design flows optimize different design metrics such as
power, area, and delay. Previous work has shown that design
planning and optimization above the physical synthesis stage can
aid reaching design closure efficiently [6]. Similarly managing
temperature at higher stages of the design flow should be beneficial
to achieve the desired temperature optimizations. In this paper, we
will concentrate on a binding scheme that aims to minimize the
occurrence of hot spots. Note that temperature optimization is not
always equivalent to power optimization. Localized heating occurs
at a much faster pace than chip wide heating due to the slow rate of
lateral heat propagation [21]. This creates different temperatures at
different locations in a chip. Therefore, minimizing the total power
consumption does not directly translate to decreasing the hot spots.
In this paper, we present techniques to incorporate temperature
awareness into high level synthesis. If tasks such as scheduling,
resource allocation, and binding, which impact the activity of
functional resources, are performed with such awareness,
temperature increase can be controlled more effectively. Our
specific contributions in this paper are as follows:
- We formulate the temperature aware binding problem.
- We develop a temperature aware binding algorithm, which

minimizes the maximum temperature reached by the hottest
functional unit without increasing the number of resources.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

ISLPED’05, August 8–10, 2005, San Diego, California, USA.

Copyright 2005 ACM 1-59593-137-6/05/0008...$5.00.

- We evaluate the impact of temperature on leakage power. We
compare the power consumption of switching optimal binding
and temperature aware binding algorithms and show the
possible saving in leakage and overall power for 130nm
technology node.

- We present projected savings in leakage and overall power
consumption for 100nm generation using our temperature
aware binding.

In this work, we chose to handle the problem at a high level while
maintaining a modular design flow. Incorporating temperature
awareness into other steps such as scheduling and developing
combined feedback-driven techniques could bring further benefits.
While such a combined effort would further improve effectiveness,
we believe that our experimental results show that our approach is
in itself effective to control the temperature increase.
The remainder of this paper is organized as follows. Section 2
gives an overview of related work. In Section 3.1 we discuss the
switching optimized binding for low power using flow formulation.
In Section 3.2 we present our temperature aware binding algorithm.
Section 4 presents our experimental flow and results. We conclude
with a summary in Section 5.

2. RELATED WORK
Gunther et al. [14] have shown a non-linear relationship between
the cooling capabilities and the cost of the solution as power
increases. This shows the importance of limiting the maximum
temperature and thus power consumption for the electronics
industry to successfully deploy commercial systems. For design
and analysis of high performance microprocessors various
techniques to model thermal effects have been developed [16, 19,
20]. Runtime thermal management via clock gating using real-time
temperature sensing has been included in Intel Pentium 4
processors [14]. Other techniques such as frequency and/or voltage
scaling, sub-banking, etc. have been investigated [5, 15]. Skadron
et al. [21] proposed a thermal model HotSpot for the architectural
level. The authors also proposed several dynamic thermal
management methods such as frequency scaling, localized
toggling, and migrating computation to spare hardware units.
At the other spectrum are the physical design tools to enable even
thermal distribution on chips. Tsai and Kang developed a standard
cell placement tool for even on-chip thermal distribution [23]. Chu
and Wong proposed a matrix synthesis approach to thermal
placement [9]. Cong et al. introduced a thermal-driven
floorplanning algorithm for 3-D ICs [10]. Basu et al. introduced the
electrothermal energy-delay-product optimization scheme to
perform simultaneous optimization of supply and threshold
voltages in CMOS circuits [3]. Thermal models for interconnects
have presented in [1, 8]. Banerjee et al. [2] presented a
methodology for making temperature and reliability aware
power/performance/cooling-cost tradeoffs in leakage dominant ICs
at the circuit level.
As power dissipation is converted to heat, controlling the die
temperature will be essential for performance and leakage control
for microprocessors [4]. Reducing temperature will be equally
important for cost effective cooling solutions in ASICs. In this
work we aim to accomplish this goal by developing a temperature
aware binding algorithm to be integrated within high level
synthesis.

3. BINDING PROBLEM
The binding problem takes as input a scheduled Data Flow Graph
(DFG) and fixed number of functional units. It then assigns
operations to those resources based on different objectives. In the
next section we will describe a low power binding algorithm that
minimizes the total switching capacitances of the resources.

3.1 Low Power Binding
Low power binding assigns operations to functional units such that
the total switching capacitance of the resources is minimized. This
can also include choosing among different architectures of the
resources for minimizing power. Consider a set of m resource types
{R1….Rm}. First, a comparability graph GC is built from a
scheduled DFG for each resource type. The vertices of GC
represent the operations that a particular resource type can execute.
A comparability graph is essentially a compatibility graph with
transitive orientation. There exists a directed edge eij between two
operations vi and vj ∈ GC if start time of (vj) ≥ finish time of (vi). An
edge eij has a weight sij which is the estimated switched capacitance
if operations vi and vj are bound to the same resource
consecutively. Chang and Pedram [7] formulated the resource
constrained low power binding scheme as min-cost network flow
problem. We will refer to this binding scheme as the Flow based
Binding (FB) in the remainder of our discussion. They applied this
formulation to low power register binding where the binding
problem is formulated as a minimum cost clique-covering problem,
and solved it optimally using a transformation from max-cost flow
algorithm to min-cost flow. A low power binding heuristic for
fixed number of functional units has also been proposed by
Davoodi and Srivastava [11].

3.2 Temperature Aware Binding
The flow based binding can bind uneven number of operations to
different functional units in pursuit of its objective of minimizing
the total switched capacitance. This in turn gives minimal overall
switching power. As a result, some functional units can end up
switching more than others, dissipate more power, and become hot
spots. The uneven power densities between different resources of
the same type (and different types) lead to large variation in
operating temperature at different locations in the chip. Our
Temperature Aware Binding (TB) algorithm distributes operations
to functional units aiming to create an even power dissipation
across resources. This helps us control the rate at which the
temperature of individual resources increases and prevents some
resources from reaching disproportionately high temperatures with
respect to others. The main idea behind our approach is to
reassigning operations from high switching resources to low
switching resources. Starting with a switching optimal binding
solution our temperature aware binding iteratively improves the
temperature profile while keeping the resource constraint
unchanged.
We will describe our binding algorithm in Section 3.2.2 in more
detail. Let us first present a motivational example to illustrate the
possible impact of our temperature aware technique.

3.2.1 Motivational Example
Let us consider the binding of multiplication operations in a DFG
onto five multipliers (MUL_1, …, MUL_5). Figure 1 presents the
power consumption of the five multipliers after flow based and
temperature aware binding. After flow based binding the maximum

power dissipated by the hottest module MULT_5 is 260 mW. The
temperature aware binding algorithm reduces the maximum power
dissipation of this module to 230mW although switching power
increases for MULT_1 and MULT_2. We observe that the
difference between the maximum power consumption (MUL_5)
and the minimum (MUL_1) is less for temperature aware binding,
i.e., our technique creates a more even power distribution. In
Figure 2, we show the temperature profile of the multipliers. It is
evident that the temperature profile of the resources follows a
pattern similar to their power dissipation trends. We observe that
for flow based binding MUL_1 (the coolest resource) reaches
73.47°C, but MUL_5 (the hottest resource) reaches the maximum
temperature of 122.14°C. Although our temperature aware binding
algorithm increased the temperature to 83.06°C from 73.47°C
(MUL_1), it reduced the maximum temperature from 122.14°C to
113.36°C (MUL_5).

Figure 1. Power profile across the multipliers. The
temperature aware binding achieves a more even distribution
of power consumption across resources.

Figure 2. Temperature profile across the multipliers. The
highest temperature reached by any resource has been
decreased from 122.14 °C (FB) to 113.36 °C (TB).
The switching power and the temperature of the hottest resource (in
this example module MUL_5 is the hottest resource) are shown in
Table 1 for flow based and temperature aware binding.

Table 1. Power and temperature of the hottest resource
for flow based and temperature aware binding.

 Switching Power (W) Temperature (°C)

Binding FB TB FB TB

MUL_5 0.26 0.23 122.14 113.36

We will present our detailed analysis in Section 4.2, which shows
that our binding algorithm succeeds in limiting the highest
temperature reached by the hottest resource effectively. We will
also present savings in leakage power due to reduction of the
maximum temperature and reduction in total power. Although we
see that our algorithm increases switching and hence the total
dynamic power, due to reduction in leakage power we generally
observe an overall improvement in total power. This shows that

traditional power minimization techniques might result in
suboptimal designs when temperature is not taken into account.

3.2.2 Temperature Aware Binding Algorithm
In this section we discuss our temperature aware binding algorithm.
The input to our algorithm is an initial binding solution obtained
using min cost flow formulation [7]. Our algorithm iteratively
transforms this solution by moving operations across resources
such that activity among functional units is distributed evenly. We
refer to the rebinding of an operation from one functional unit to
another as a move. We represent the start time and finish time of
operation i as St(i) and Ft(i) respectively. We define two types of
moves – insert and swap.
Let us consider operations i, j, and k initially assigned to functional
unit Rh. The total switched capacitance of resource Rh is {sij + sjk}.
Operation j can be moved to another functional unit Rl and placed
in between two operations x and z if Ft(x) ≤ St(j) < Ft(j) ≤ St(z).
Operation j is then compatible with operations x and y and with the
resource Rl. We call this type of move insert and an example of this
move is shown in Figure 3(a). Insert decreases the switched
capacitance of Rh from {sij + sjk} to {sik} and increases that of Rl
from {sxz} to {sxi + sjz}.
However, there can exist an operation y between operations x and z
on Rl such that St(y) ≤ St(j) ≤ Ft(y) or St(y) ≤ Ft(j) ≤ Ft(y). In this
case operation j conflicts with operation y. Operation j can be
moved from Rh to Rl only if y is compatible with operations i and k
and can be simultaneously moved to Rh. We call this move as
swap. Figure 3(b) illustrates an example of a swap move. The total
switched capacitance of Rh changes from {sij + sjk} to {siy + syk} and
that of Rl from {sxy + syz} to {sxj + sjz}.

Figure 3. Moves in Temperature Aware Binding Algorithm.
(a) Insert move: moves one operation onto a new resource. (b)
Swap move: swaps two operations between two resources.
The insert move can reduce the switched capacitance of the source
functional unit Rh and increase the switched capacitance of the
destination functional unit Rl. On the other hand, swap increases
the switched capacitances of both functional units. Note that the
min cost flow formulation is optimal in minimizing the total
switched capacitance in a single iteration of a scheduled DFG. We
refer to this as the intra-iteration switched capacitance. However,
the optimality condition does not hold when the input DFG is a
representation of a computation within a loop body. In other words,
this approach does not optimally minimize data transitions in cyclic

0.05

0.10

0.15

0.20

0.25

0.30

MUL_1 MUL_2 MUL_3 MUL_4 MUL_5

Po
w
er

(W
)

FB TB

60.00

70.00

80.00

90.00

100.00

110.00

120.00

130.00

MUL_1 MUL_2 MUL_3 MUL_4 MUL_5

Te
m

pe
ra

tu
re

(C
)

FB TB

i j k

x z

sij sjk

sxz

Rh

Rl

Initial

i k

jx z

sik

sxj sjz

Rh

Rl

Final(a)

sxy

i j ksij sjk
Rh

Initial

x y zsyz

Rl

Final

i y ksiy syk

Rh

x j zsxj sjz

Rl

(b)

i j k

x z

sij sjk

sxz

Rh

Rl

Initial

i k

jx z

sik

sxj sjz

Rh

Rl

Final(a)

i j k

x z

sij sjk

sxz

Rh

Rl

Initial

i k

jx z

sik

sxj sjz

Rh

Rl

Final(a)

sxy

i j ksij sjk
Rh

Initial

x y zsyz

Rl

Final

i y ksiy syk

Rh

x j zsxj sjz

Rl

(b)

sxy

i j ksij sjk
Rh

Initial

x y zsyz

Rl

Final

i y ksiy syk

Rh

x j zsxj sjz

Rl

(b)

execution, i.e., inter-iteration switched capacitance is not
minimized.
The swap and insert moves can have different consequences
depending on whether we take the intra-iteration switched
capacitance into consideration or not. If we do not consider inter-
iteration switching, then both insert and swap are very likely to
increase the total intra-iteration switched capacitance. Note that
since we started with an optimal intra-iteration switched
capacitance binding, our moves are expected to degrade this
optimal solution. However, we may improve the inter-iteration
switched capacitance (by either insert or swap), which can even
decrease the overall switched capacitance. We will discuss the
impact of our technique onto the total switching activity, hence, the
switching power in Section 4.2 in detail.
Our temperature aware algorithm operates as follows. First, the
resources with the highest and the lowest total switched
capacitances – Rmax and Rmin are selected. Our algorithm identifies
operations that can be moved from Rmax to Rmin using one of the
two moves. The swap move would imply that while one operation
is moved from Rmax to Rmin, another operation is moved from Rmin
to Rmax. This would be an inherently bad move for the intra-
iteration switching of Rmax since this would force the binding
solution to deviate from the optimal. There is one possible
exception to this. For the first and the last operation bound to Rmax,
we allow swap only if it improves the inter–iteration switching
compared to flow based binding. For any other operation bound to
Rmax our algorithm prohibits swap.
Let us consider moving an operation j from Rmax to Rmin. (This
could be the result of either a swap or an insert.) Assume that
moving j to Rmin leads to a decrease of switched capacitance of Rmin
by amount Dj

min (if this move improves the inter-iteration
switching) and that of Rmax by Dj

max. Then, among all operations ∈
Rmax compatible with Rmin the operation which leads to maximum
 Dj

max
 + Dj

min will be selected for the move.
If such a move leads to an increase in the switching activity of Rmin
by Ij

min, then, among all operations ∈ Rmax compatible with Rmin we
move the operation j for which we have minimum Ij

min - Dj
max .

After one move, the total switched capacitance of Rmax will
decrease. The switched capacitance of Rmin could decrease if the
move improves the inter-iteration switching. Otherwise, the
switched capacitance of Rmin would increase. After the move, our
algorithm evaluates the switched capacitances of all resources and
identifies the new pair of Rmax and Rmin . The algorithm terminates
once the difference between the total switched capacitances of the
current Rmax and Rmin is within a pre-defined range. We have
experimentally determined that a threshold value of 20mW yields
the best results.

4. Experimental Results
In the following sections we will first describe our experimental
flow and then we will present our results.

4.1 Experimental Setup
We have used benchmarks from two sources: applications from the
MediaBench suite [18] and DFGs of some common DSP
applications. Using the SUIF and Machine-SUIF compiler
infrastructure [22] we have extracted the DFGs of representative
functions from MediaBench applications. The input DFGs were
then scheduled using a list scheduler. The input DFGs have been

simulated to generate switching probabilities for individual
operations using a trace of 10,000 input values. Functional modules
(our resource sets contained ALUs to execute add, subtract, and
logical operations and multipliers) have been synthesized using
Synopsys Design Compiler onto a 180nm technology library. We
used scaling trends [4] to get switched capacitance and nominal
power values for a switching activity of 0.5 at 130nm technology
node for each resource type. Capacitance values of modules have
thereby been extracted to estimate switching power and this
information was combined with bit toggle probabilities obtained
through simulation to generate switched capacitance values.
Comparability graphs for each resource type for the scheduled
DFGs have then been created where edge weights are equal to the
switched capacitances obtained as explained above. The
comparability graphs are given as input to the binding stage.
We first generated binding solutions using flow formulation as
proposed by Chang and Pedram [7] based on the min-cost network
flow formulation. We have solved the network flow formulation
using a software package developed by Goldberg [13]. The
generated binding using min-cost network flow is then used as an
input to our temperature aware binding algorithm. We calculate the
total switched capacitance SR

FB
 of each resource R due to

operations bound to it by flow based binding (FB) and the total
power PR

FB dissipated by the resource using the nominal power
values for a switching activity of 0.5. Similarly we calculate the
total switched capacitance SR

TB
 of each resource R due to

operations bound to it by temperature aware binding (TB) and the
total power PR

TB dissipated by the resource.
We have used HotSpot [21] to measure the temperatures of
functional units. HotSpot is originally developed to model the
temperature of a microprocessor at the granularity of functional
units by making use of the duality that exists between heat flow
and electricity. It constructs an RC network of thermal resistances
and capacitances of the functional units and uses circuit-solving
techniques to obtain the temperatures at the centers of the
functional units. It takes as input the floorplan and the initial
temperatures of the functional units, the heat spreader, and the heat
sink. The instantaneous power values of each functional unit are
input in the form of a trace file where each line corresponds to a
sampling interval. Finally, HotSpot simulates the activity on the
chip and computes the steady state temperatures of the functional
units.
We have assumed the same chip-packaging configuration as
modeled by HotSpot. The chip is packaged with the die placed
against a spreader plate, often made of aluminum, copper, or some
other highly conductive material, which is in turn placed against a
heat sink of aluminum or copper that is cooled by a fan. A typical
example is shown in Figure 4.

Figure 4. Side view of a typical chip package.

A single thermal resistance Rconvection represents the convective heat
transfer from the package to the air. Air is assumed to be at a fixed

IC package

Package
pin

Heat Spreader

Heat Sink

PCB

IC die

IC package

Package
pin

Heat Spreader

Heat Sink

PCB

IC die

ambient temperature, which is often assumed in thermal design to
be 45°C. Different HotSpot parameters are shown in Figure 5. The
values of some of these parameters (such as chip area, sink and
spreader size, etc.) have been scaled to appropriate values for our
synthesized designs.

Cconvection = 140.4 J/K Rconvection = 0.2 K/W

Heat sink side = 4 mm Heat sink thickness = 6.9 mm

Spreader side = 2 mm Spreader thickness = 1 mm

Chip thickness = 0.5mm Sampling interval = 3.33 us

Figure 5. HotSpot parameters.

We generate the power trace file for HotSpot using the values PR
FB

and PR
TB for each functional unit for the flow based and the

temperature aware binding algorithm, respectively. We set the
initial temperatures of each functional unit at 77°C and the heat
spreader and heat sink at 47°C. Further, we implemented a
simulated annealing based floorplanner to generate floorplans for
our benchmarks. The power trace file and the floorplans are used as
input to HotSpot, which computes the temperature ΓR

FB and ΓR
TB

of resource R for the flow based binding algorithm and our
algorithm respectively. Our overall experimental flow is shown in
Figure 6.

Figure 6. Experimental flow.

4.2 Results
In this section we discuss the experimental results. Table 2 shows
the number of resources – multipliers and ALUs used by our
benchmarks. Note that jctrans_2 does not have any multiplication
operations.

Table 2. Resource requirements across benchmarks.

arf

jc
tra

ns
_1

jc
tra

ns
_2

jd
m

er
ge

_1

jd
m

er
ge

_2

jd
m

er
ge

_4

m
ot

io
n_

2

m
ot

io
n_

3

no
is

e_
es

t2

fdct fft

MUL 4 2 - 3 3 3 3 3 3 5 4
ALU 3 3 4 5 6 4 5 6 4 5 4

4.2.1 Temperature Reduction
In Figure 7 we show the difference between the maximum
temperatures reached by the hottest resource in the flow based
binding and our binding algorithm. In other words, we have plotted
Γdiff = (ΓR

FB)max – (ΓR
TB)max for the hottest resource in each

benchmark. We obtain a maximum Γdiff of 19.86°C for jdmerge_4
benchmark. Overall we have obtained an average Γdiff of 12.21°C
across all benchmarks. Thus by decreasing the steady state
temperatures of the functional units, we can effectively reduce the
possibility of occurrence for “hot spots” in a design.

Figure 7. Reduction in temperature of the hottest resource in
each benchmark.

4.2.2 Effect of Temperature on Leakage
We have evaluated the impact of temperature on leakage power
using the relation between temperature and leakage current as well
as the relation between temperature and leakage power [12] at
130nm and 100nm technology nodes. From this data, we derived
the relationship between temperature and leakage power.
We report reduction in leakage with respect to flow based binding.
Figure 8 presents the leakage power savings using our temperature
aware binding. We present three values for each benchmark. The
first two bars indicate the leakage savings for individual resource
types (multipliers and ALUs) and the last bar is the total leakage
saving. For multipliers and ALUs we get an average saving of
8.83% and 11.91%, respectively. The average of total leakage
saving is 11.89%.
The negative values indicate cases where leakage power is
increased with respect to flow based binding. For example, for the
noise_est_2 benchmark, although we decrease the maximum
temperature by 9.52°C, we increase the average temperature of the
multipliers and ALUs resulting in an increase of 2.18% in total
leakage over flow-based binding. For the fdct benchmark we
decrease the multiplier peak temperature and leakage power by
8.77°C and 9.63% respectively. Although peak temperature of its
ALUs deceases, the average temperature increases which results in
11.30% increase in ALU leakage power. The total leakage saving
is 4.77%. Overall our algorithm reduced the leakage power of

Applications in C

SUIF

Scheduler

DFGs of Popular
DSP Algorithms

DFGs

ModelSim
Simulation for

switching activity

Synopsys DC
Capacitance
Extraction

Min-cost-flow
Binding

Temperature-aware
Binding

Resource
Constraint

HotSpot-2.0

Generate power
trace file Floorplanner

Temperature of
Resources

Applications in C

SUIF

Scheduler

DFGs of Popular
DSP Algorithms

DFGs

ModelSim
Simulation for

switching activity

Synopsys DC
Capacitance
Extraction

ModelSim
Simulation for

switching activity

Synopsys DC
Capacitance
Extraction

Min-cost-flow
Binding

Temperature-aware
Binding

Resource
Constraint
Resource
Constraint

HotSpot-2.0

Generate power
trace file FloorplannerGenerate power
trace file Floorplanner

Temperature of
Resources

0

5

10

15

20

25

ar
f

jc
tra

ns
_1

jc
tra

ns
_2

jd
m

er
ge

_1

jd
m

er
ge

_2

jd
m

er
ge

_4

m
ot

io
n_

2

m
ot

io
n_

3

no
is

e_
es

t_
2

fd
ct fft

av
er

ag
e

Te
m

pe
ra

tu
re

(C
)

multipliers and ALUs by 8.83% and 11.91% resulting in 11.89%
saving in the total leakage power. Note that the total percentage
savings over all the resources is not a simple summation of
individual percentage leakage savings.

Figure 8. Percentage leakage power saving for different
functional units.
Next, in Table 3 we present the total power savings using our
temperature aware binding over flow based binding. We see that
switching power increases on average by 2.16% due to our
temperature aware binding. This is expected since our temperature
aware algorithm starts with switching optimal binding and
iteratively tries to reduce the maximum power dissipation of the
resource set, which can lead to perturbation of the optimal
switching. However, for some benchmarks we improve switching
power by reducing inter-iteration switching as discussed in Section
3.2. For example fft shows 3.58% improvement in switching
power. At 130nm node, the leakage power improvement is 11.89%
and the total power improvement is 3.32%. We also projected the
total power saving at 100nm node assuming that the same
temperature profiles will be achievable. Switching power still
increases by 2.16% but leakage power saving is 16.94% leading to
a total power saving of 10.39% on average.

Table 3. Percentage improvement in leakage and total
power at 130nm and 100nm technology nodes.

 %Change % Imp at 130 nm % Imp at 100 nm

Benchmarks Switching Leakage Total Leakage Total

arf -5.21 14.39 1.67 16.15 7.02

jctrans_1 -2.16 30.44 5.88 28.57 12.62

jctrans_2 -5.28 -0.09 -4.07 -0.34 -3.11

jdmerge_1 -2.84 -6.01 -3.52 -4.37 -3.50

jdmerge_2 0.57 18.80 9.91 41.48 33.83

jdmerge_4 -4.01 19.94 6.36 28.56 17.86

motion_2 -0.30 13.07 6.52 23.56 17.52

motion_3 1.77 18.81 10.17 25.95 19.28

noise_est_2 -7.92 -2.18 -6.23 -0.22 -3.98

fdct -1.93 4.77 0.06 5.11 1.67

fft 3.58 18.88 9.72 21.94 15.11

Average -2.16 11.89 3.32 16.94 10.39

5. Conclusions
In this work, we presented a temperature aware binding algorithm
for high level synthesis. Our algorithm tries to minimize the
variation in power consumption across different functional units on
a chip. This is achieved by performing a sequence of insert and

swap moves on an initial binding, which is switching optimized.
On average our technique reduces temperature reached by the
hottest resource by 12.21°C. This in turn, leads to reduction in
leakage power by 11.89% and a reduction in overall power
consumption by 3.32% at 130nm technology node. On 100 nm
generation designs, our binding algorithm reduces leakage by
16.94% and total power by 10.39%.

6. References
1. Banerjee, K., et al. On thermal effects in deep sub-micron VLSI
interconnects. Design Automation Conference. 1999.
2. Banerjee, K., S.-C. Lin, and V. Wason. Leakage and variation aware
thermal management of nanometer scale ICs. IMAPS-Advanced Technology
Workshop on Thermal Management. 2004.
3. Basu, A., et al. Simultaneous optimization of supply and threshold
voltages for low-power and high-performance circuits in the leakage
dominant era. Design Automation Conference. 2004.
4. Borkar, S., Design challenges of technology scaling. IEEE Micro, July-
August 1999. 19(4): p. 23--29.
5. Brooks, D. and M. Martonosi. Dynamic thermal management for high-
performance microprocessors. International Symposium on High-
Performance Computer Architecture. 2001.
6. Cadence Whitepaper, Global Synthesis for Timing Closure,
http://www.cadence.com/whitepapers/
7. Chang, J.M. and M. Pedram. Register allocation and binding for low
power. Design Automation Conference. 1995.
8. Chiang, T.Y., K. Banerjee, and K.C. Saraswat, Analytical thermal model
for multilevel VLSI interconnects incorporating via effect. IEEE Electron
Device Letters, 2002. 23(1): p. 31-33.
9. Chu, C.C.N. and D.F. Wong. A matrix synthesis approach to thermal
placement. International Symposium on Physical Design. 1997.
10. Cong, J., J. Wei, and Y. Zhang. A thermal-driven floorplanning
algorithm for 3D ICs. International Conference on Computer-Aided Design.
2004.
11. Davoodi, A. and A. Srivastava. Effective graph theoretic techniques for
the generalized low power binding problem. International Symposium on
Low Power Electronics and Design. 2003.
12. Fallah, F. and M. Pedram, Standby and active leakage current control
and minimization in CMOS VLSI circuits. IEICE Transactions on
Electronics, 2005. E88-C(4): p. 509-519.
13. Goldberg, A.V., An efficient implementation of a scaling minimum-cost
flow algorithm. Journal on Algorithms, January 1997. 22(1): p. 1--29.
14. Gunther, S., et al., Managing the impact of increasing microprocessor
power consumption. Intel Technology Journal, February 2001.
15. Huang, W., et al. A framework for dynamic energy efficiency and
temperature management. International Symposium on Microarchitecture.
2000.
16. Huang, W., et al. Compact thermal modeling for temperature-aware
design. Design Automation Conference. 2004.
17. Intel® Itanium® Processor Overview,
www.intel.com/design/itanium/itanium/
18. Lee, C., M. Potkonjak, and W.H. Mangione-Smith. MediaBench: a tool
for evaluating and synthesizing multimedia and communicatons systems.
International Symposium on Microarchitecture. 1997.
19. Liao, W., F. Lei, and L. He. Microarchitecture level power and thermal
simulation considering temperature dependent leakage model. International
Symposium on Low Power Electronics and Design. 2003.
20. Sabry, M.N. Dynamic compact thermal models: An overview of current
and potential advances. International Workshop on Thermal Investigations
of ICs and Systems. 2002.
21. Skadron, K., et al. Temperature-aware microarchitecture. International
Symposium on Computer Architecture. 2003.
22. Stanford University Compiler Group The SUIF 2 Compiler System,
http://suif.stanford.edu/suif/suif2
23. Tsai, C. and S. Kang. Standard cell placement for even on-chip thermal
distribution. International Symposium on Physical Design. 1999.

-15

-10

-5

0

5

10

15

20

25

30

35

ar
f

jc
tra

ns
_1

jc
tra

ns
_2

jd
m

er
ge

_1

jd
m

er
ge

_2

jd
m

er
ge

_4

m
ot

io
n_

2

m
ot

io
n_

3

no
is

e_
es

t_
2

fd
ct fft

av
er

ag
e%
 L

ea
ka

ge
 S

av
in

g

MULT ALU Total

