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Abstract 
With the onset of Gigabit networks, current generation networking components will soon be 
insufficient for numerous reasons: most notably because existing methods cannot support 
high performance demands. Feature extraction (or flow monitoring), an essential component 
in anomaly detection, summarizes network behavior from a packet stream. This information 
is fed into intrusion detection methods such as association rule mining, outlier analysis, and 
classification algorithms in order to characterize network behavior. However, current feature 
extraction methods based on per-flow analysis are expensive, not scalable, and thus 
prohibitive for large-scale networks. In this paper, we propose an accurate and scalable 
Feature Extraction Module (FEM) based on sketches. We present the details of the FEM 
design on an FPGA and show that using FPGAs we can achieve significantly better 
performance compared to existing software and ASIC implementations. Specifically, the 
optimal FEM configuration achieves 20.18 Gbps throughput and 97.61% accuracy. 

1   Introduction 
Traditionally, intrusion detection techniques fall into two categories: signature (or misuse) 

detection or anomaly detection. Signature detection looks to find well-known patterns of 
attacks and intrusions by searching for pre-classified signatures either in network traffic or data 
patterns. Since general-purpose processors (i.e., software implementations) cannot meet the 
required performance limitations, numerous projects have investigated dedicated hardware 
(including reconfigurable hardware) for such tasks [1-4, 8, 17].  

Anomaly detection, which is designed to capture behavior that deviates from the norm, is 
the counterpart to signature detection. These systems “predict” anomalous behavior. Hence, 
they can detect new/unknown intrusions. However, they suffer from false alarms (false 
positives) and also not sounding alarms when attacks do occur (false negatives) [19]. Since the 
number of new attacks is increasing and variations of old attacks are more prevalent, next 
generation IDSs must employ anomaly detection.   

Regardless of the underlying algorithm, the first step in anomaly detection is the real-time 
network feature extraction. Due to the complexity of gathering detailed information in high 
speed links, existing techniques only monitor a small amount of features in a packet stream, 
limiting their effectiveness. Feature extraction mines more information than is readily available 
at the packet level. Besides the packet payload, a single packet does not offer much 
information. Yet by processing a series of packets, one can mine for additional characteristics 
of the network activity between hosts. Our architecture allows for characterization of a sudden 
increase network activity. This information is needed for anomaly detection algorithms such as 
rule mining, classification, and outlier detection. 

In this paper, we propose a Feature Extraction Module (FEM). FEM accurately 
characterizes network behavior and always provides an up-to-date view of the network 



environment. Depending on the application utilizing this information (e.g., rule mining, 
classification), different properties get monitored in the network. As we will describe in the 
following sections, our architecture can be easily configured to gather such different types of 
information. By utilizing the reconfigurable capabilities of FPGAs, these changes can be 
effectively performed. Because of such configuration and high performance requirements, 
FPGAs are an ideal implementation medium for their reconfigurability and inherent 
parallelism. Our simulation results prove the sketch data structure a viable alternative to 
expensive per-flow methods. In addition, our FEM implementation requires a constant amount 
of memory and achieves a guaranteed performance level, important characteristics for 
networking hardware design. 

This paper is organized as follows. Section 2 presents a background of feature extraction 
measures and an introduction the types of attacks plaguing many networks. Section 3 presents 
the FEM architecture and its components. Section 4 demonstrates the applicability of our 
architecture. Simulations and FPGA implementation are diagrammed in Section 5. Then 
related work is shown in Section 6 with conclusions in Section 7. 

2   Background 
Our architecture is a necessary precursor for online anomaly detection. Although FEM can 

be configured to gather information for any anomaly detection scheme, in this paper we focus 
on detecting two of the most popular network attacks: denial-of-service (DoS) attacks and port 
scanning, a mechanism in worm propagation.  

A majority of DoS attacks are SYN floods, which send connection requests faster than a 
machine can process them. The well-known TCP 3-way handshake is below. 

1. Client sends a SYN segment with client’s ISN (Initial Sequence Number). 
2. Server responds with a SYN-ACK segment, which is Server’s SYN segment with its own 
ISN and an acknowledgement to Client’s SYN with Client’s ISN+1. 
3. Client sends ACK with server's ISN+1. 

Initially, the attacker creates a random source IP for each packet with the SYN flag set to 
request a new connection. The victim responds with a packet having the SYN and ACK flags 
set and then waits for a confirmation packet, which will never arrive. Typically connection 
tables wait a period of time before dropping the entry. In this time, the victim is bombarded 
with SYN requests and the table fills up. As a result, the victim refuses any additional 
connection requests even if they are legitimate. Typical SYN flood behavior involves a large 
amount of packets with the SYN flag set directed at a victim. In section 4, we explain how the 
FEM architecture is configured to watch for this behavior.  

Port scanning, on the other hand, is probably the most common and versatile type of 
intrusion mechanism. For example, with worm propagation, in order to distribute copies of 
itself, the worm must find other hosts vulnerable to it. Worms may target a specific host or 
search for any number of hosts. We classify three well-known port scan methods: vertical scan, 
horizontal scan, and block scan [11, 18]. Figure 1 is a visual abstraction of these port scanning 
methodologies. Horizontal scans are the most common, scanning a range of IPs on a particular 
port. The port number is often unique as it reflects the susceptibility the worm is exploiting. 
Vertical scans target a specific host and search for open ports on that host. The third scan type, 
block scan, is a combination of horizontal and vertical scans for different ports and machines. 
Fortunately, port scanning requires a real source IP address instead of a spoofed one. 



Therefore, it is possible to track port scan behavior from the source IP address. Taking this into 
account, section 4 details how FEM will trace this type of activity.  

 
 Figure 1: Port Scanning Methods 

3   FEM architecture 
In this section, we introduce the feature extraction module (FEM), which characterizes 

network behavior within an interval of time or specified interval of connections. Network 
behavior represented by the FEM sufficiently reflects the current state of the network. Thus, 
real-time profile of the network is always available for processing with intrusion detection 
schemes such as data mining, outlier analysis, statistical methods, etc [10].  

The architecture’s data storage component models the idea of sketches [13], which are 
used in data stream modeling for summarizing large amounts of information requiring a small 
constant amount of memory. Sketches are a probabilistic summary technique for analyzing 
large network streams without keeping per-flow state that make vector projections onto other 
sketches to infer additional information [13]. Our case study will show how the relationships 
between sketches aid in inferring additional network characteristics that are not explicitly 
monitored. To achieve fast execution and to achieve effective adaptation, we implement our 
architecture on an FPGA. The regular structure of sketches maps well onto an FPGA. We 
exploit the inherent parallelism in the sketch to increase throughput and obtain significant link 
speeds. Following is an explanation of the core component of FEM. 

It is possible to model anomalous behavior associated with two general types of 
intrusions: time-based and connection-based. Time-based attacks cause an increase in network 
activity in a period of time, referred to as “bursty attacks.” SYN floods are an example, where 
connection tables are flooded in a period of time disabling the victim machine to service new 
connection requests. Connection-based attacks do not have a recognizable temporal aspect. 
They are sometimes referred to as “pulsing zombie attacks.” Port scans may release connection 
requests in the span of seconds or days. Therefore, intrusion detection methods focusing on 
large volumes of network activity are ineffective. Our architecture can capture both connection 
and time-based statistics. 

3.1   Feature Extraction Functions 

There are two main functions supported by the FEM:  
• UPDATE (k, v) to change the value in the sketch 
• ESTIMATE (k) to correctly retrieve a value from the sketch  
Both functions take in a key k, which is input to H hash functions in the feature sketch. 

The key k, in this case, is any combination of the 5-tuple fields present in TCP/IP packet 
headers: {source IP, destination IP, source port, destination port, protocol}. The 6-bit flag 
field, also in a packet header, assists the control logic for intelligent hashing of the 5-tuple 
fields depending on what network characteristics are analyzed. 



3.2   Architecture 

Figure 2 highlights our architecture, consisting of a comprehensive feature controller (FC), 
hash functions (HF), feature sketch (FS), and a data aggregate (DA). The FEM architecture 
provides a fast, scalable, and accurate platform from which important network characteristics 
can be monitored and tracked in real-time. FEM can be configured to monitor a plethora of 
network characteristics by using the semantics of the TCP/IP protocol. Also, FEM requires a 
small memory footprint while maintaining a high level of accuracy, making it an attractive 
alternative to expensive per-flow methods. 

The feature controller (FC) coordinates the inputs to the hash functions using the flags of a 
packet header. The reconfigurable aspects of FPGAs make reprogramming possible to monitor 
a variety of network statistics. Our case study in Section 4 focuses on open connection requests 
originating from or incoming to hosts by utilizing the SYN and ACK flags. Other possible 
statistics include the number of live connections, the flow size of active connections, amount 
of service-related traffic, or connection based statistics such the number of connections for 
specific services on a host. These measures would utilize the PSH (push), RST (reset), FIN 
(finish), and URG (urgent) flags. 

For instance, a feature sketch monitoring web traffic at a particular host would use the 
source IP and destination port fields. Port 80 is designated as the port for http. Other 
destination ports such as 20 or 21 are designated for FTP traffic and 23 for telnet services. 
However, each FS monitors only one network characteristic. By using multiple FSs along with 
the relationships between FSs, we can infer additional network behavior information. 

 
Figure 2.  Feature Extraction Module with one FS 

The feature sketch (FS) is an application of sketches used for data stream modeling. It uses 
a constant amount of memory and has constant per-record update and reconstruction cost. Each 
row in the FS is accessed in parallel with different hash functions. This favors FPGAs versus 
expensive per-flow methods. An FS contains H rows each of length K. When H>1, the 
accuracy of ESTIMATE queries improves. Section 5 presents the accuracy results. 

This increased accuracy is achieved by addressing each row in the FS with a different hash 
function (HF). This way, the distribution of information varies for each row. We chose the 
Jenkins Hash for its speed and provable scatter properties. It is implemented in various Linux 
kernels as a component to the IPtables connection tracking module [9, 15]. With an FPGA, all 
hash functions are computed in parallel. Also, by pipelining the Jenkins Hash, FEM can accept 
a packet on every clock cycle, thus increasing throughput. 

Lastly, the data aggregate (DA) component takes H values and estimates the actual value 
for a query. Using statistical estimation techniques, we show that ESTIMATE queries to the 



FS are accurate. The heuristic we implement to estimate the value of a query takes the 
minimum of the H values in the FS. The minimum value suffers the least from collisions. 
Other estimation techniques are plausible [10, 13] but we found the minimum estimate usually 
gives the best results and the least hardware complexity. Minimum comparisons are performed 
in parallel such that this module is not on the critical path of FEM. 

4   Case Study: Edge Router Level Application 
In this section, we present an application of FEM at the router level for characterizing 

network behavior. Figure 3 is a simple diagram of network traffic occurring at any two nodes 
A and B. Node A represents outgoing traffic. The figure depicts different types of incoming 
traffic to node B through different ports. Port scans and SYN floods access any range of ports. 

 
Figure 3. Incoming and Outgoing Packets 

If the FEM is placed at the host level, for example at A, the architecture is simple. Each 
node is aware of its location when processing network packets so the feature controller FC 
easily preserves connection ordering. However, when placing FEM at a router, additional logic 
is needed to preserve connection ordering. For example, when A and B communicate with 
each other, the source IP/port and destination IP/port fields in a packet are not consistent with 
the particular node which started the connection.  

This case study illustrates how to apply FEM to monitor network activity usually associated 
with SYN flood and port scans from a router’s perspective. Each FEM consists of a number of 
FSs. For each FS, the key is denoted K and the feature value is denoted V. The source IP is 
designated SIP, destination IP DIP, source port SPORT, destination port DPORT, and 
protocol, PROTO. The flags applicable for this case study are the SYN and ACK flags.  

We want to track the behavior associated with these two attacks.   
First, it is known that SYN flood traffic is directed at a (DIP, DPORT) combination. Port 

scans are more flexible and use any combination of (DIP, DPORT). With an array of FSs, 
network behavior can be characterized for any given window of packets in a network stream. 
To monitor the behaviors of port scans and SYN floods, we propose the setup in Figure 4. 

Four FSs are accessed and updated in parallel with a stream of packets. Each FS monitors a 
different network characteristic. Our architecture favors FPGA implementation since the 
feature controller can be reprogrammed and easily placed back into the network without any 
modification to the core architecture. Section 5.2 details the FPGA implementation and 
performance of a FEM module with one FS. Because multiple FSs are accessed in parallel, the 
width of the FEM has a minor impact on performance.  



 
Figure 4. Case Study Example 

FS1 aids in SYN flood detection by monitoring the number of un-serviced SYN requests for 
specific services. When a machine services SYN requests, it responds with a packet having the 
SYN and ACK flags set. For a SYN packet, a count value is incremented. For a SYN/ACK 
response the count is decremented. By placing FS1 at an edge router, connection ordering 
relative to the DIP is easily preserved by checking the flags in the packet. All connections in 
FS1 are candidates for SYN floods and we denote this set SYNFLOODset. 

FS2 is monitors hosts with a large number of partially completed SYN requests. This 
activity indicates vertical scans or SYN floods. Notice FS2 is a superset of FS1. FS2 contains all 
types of traffic at a particular IP. By querying both FSs with ESTIMATE, we can approximate 
the percentage of types of traffic at any DIP. Removing SYNFLOODset from FS2 leaves 
candidates for vertical scans, VSCANset. 

FS3 observes the traffic from any SIP that causes incomplete SYN requests. This measure 
includes vertical, horizontal, and block scans. To differentiate this activity, FSN is implemented 
to oversee the amount of traffic between any two hosts.  

For a SIPx ∈ FSN, if there is a DIPx ∈ VSCANset and FS3 returns a value greater than a 
threshold (pre-determined by other intrusion detection algorithms), we claim SIPx is vertically 
scanning DIPx. If not, SIPx may be horizontally or block scanning on the network. Using both 
FS3 and FSN, we are able characterize additional network behavior. 

The main difference between each FS is how the FC coordinates addressing each FS. As 
described, the flags SYN and ACK are used to intelligent configure each FEM. Nonetheless 
our architecture is general enough to measure other network characteristics. Using SYN/FIN 
relationships for opening and closing network connections, it is possible keep an FS updated 
with traffic flow sizes.  

FEM can be employed at both the edge routers or on specific hosts. Our example contains 
extra logic for router implementation (connection ordering). Host implementation would 
actually be simpler because the perspective of network traffic is narrower. 

5   Results 
5.1   Simulations 

In this section, we investigate the accuracy of using feature sketches by testing different FS 
sizes. There are no known benchmarks specifically compiled for feature extraction, so we 
arbitrarily chose six days of traces from the 1999 DARPA Intrusion Detection Evaluation [14]. 
Half of the traces contain labeled attacks and the other half do not. Nonetheless, FS should 
accurately represent the network environment.  

We simulate a FS (K= (SIP, DIP, DPORT, SPORT), K= (SYN – SYN/ACK)). Our test FS 
is more intensive because more connections are simultaneously being tracked. By virtue of 
design, FS is constantly updating; so we stream in 24 hours of network activity and query the 
FS afterwards to compare the FS estimate with exact per-flow results.  
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Figure 5. K(FS row size) vs. Accuracy 

Figure 5 presents the accuracy of using a FS. H represents the number of rows in the FS and 
K represents the size of each row. The accuracy is measured as the percentage of precisely 
estimated flows (i.e., where the estimated value is equal to the actual value) out of all flows in 
the DARPA traces. The results of all six days are averaged together. For multiple hash 
function results (H > 1), we use the Jenkins Hash with different seed values. 

When keeping K constant and increasing H, the accuracy also improves. For example, with 
H=1, K=2048, the accuracy is 84.3%. With H=2, K=1024, the accuracy increases to 87.8%. 
The 3.4% difference equates to 5586 more precisely estimated flows of the total 164,276 
flows. However, in most cases increasing K boosts accuracy more than increasing H. This is 
attributed to hash function limitations, such as poor scattering or lack of variability between 
different hash functions, or unavoidable collisions in small row size K (ex. H=8, K=1024)).  

Table 1 represents an example of this behavior. The accuracy improves when increasing the 
number of rows until H=8, at which point the small K value limits the accuracy. Overall, 
however, the FS data structure ably satisfies accuracy demands. In Section 5.2, we investigate 
how increasing H changes throughput and FPGA performance. 

H K Accuracy 
1 16384 97.4238% 
2 8192 97.9699% 
4 4096 97.6010% 
8 2048 95.6835% 

Table 1. Constant Total K = 16384 entries 

Figure 6 reports another measure of the effectiveness of feature sketches, the average 
deviation of estimations from exact per-flow results. Clearly, increasing H improves estimation 
of, in this case, SYN–SYN/ACK values. This trend persists for other network behavior 
measures. As in Figure 5, the gap between H=1 and H=2 is the largest. It shows that our 
datasets result in mostly 2 collisions. This fact favors more balanced FS configurations versus 
a one row FS where collisions adversely affect the accuracy. 
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Figure 6. K (FS row size) vs. Average Deviation 

5.2   Implementation Details 

 FEM was implemented on a Xilinx VirtexII xc2v1000 chip. This member of the Virtex II 
family contains 5120 slices and 40 16Kb Block RAM modules. We used Synplify Pro 7.2.1 for 
logic synthesis and the Xilinx ISE 5.2i suite for placement and routing. For our hash function, 
the Jenkins Hash was extensively pipelined to operate at 270.6 MHz. 
 

FEM total K = 8192 entries  
H K slices Frequency (MHz) Throughput (Gbps) 
1 8192 628 167.5 18.42 
2 4096 1263 202.6 22.29 
4 2048 2543 216.6 23.82 

FEM total K = 16384 entries  
1 16384 634 169.3 18.62 
2 8192 1265 190.1 20.99 
4 4096 2543 183.4 20.18 

FEM total K = 32768 entries  
1 32768 643 113.6 12.50 
2 16384 1274 135.4 14.89 
4 8192 2543 152.3 16.76 

Table 2.  Router-based FEM Place and Route Results 

 
 Table 2 contains the performance and area metrics for FEM implemented for edge routers. 
The performance results are similar for host-level implementation since the added logic in the 
feature controller (FC) is not on the critical path of the FEM. We test configurations for H=1, 
2, and 4. Throughput, clock frequency, and slices are reported for three overall row sizes 
K=8192, 16384, and 32768. The throughput value is calculated from the 5-tuple data {source 
IP, destination IP, source port, destination port, protocol} and the 6-bit flag field used to 
configure the FC. 
 It is clear that for a given total memory size, increasing H increases throughput because it 
reduces the memory size and hence reduces the access times. Similarly, for a constant H, 
reducing the total memory amount (K) also increases the throughput. Among the simulated 
configurations, the best throughput of 23.81 Gbps is achieved for H=4 and K=2048. However, 



note that this configuration has a relatively low accuracy of 94.1%. Hence, when one considers 
the “accuracy * throughput” product, the best configuration is H=4 and K=4096, which can 
extract information at 20.18 Gbps.  
 Note that the increase in number of slices is mostly a result of using multiple hash functions 
in parallel. Replicating the hash functions allows higher throughput and frequency at the 
expense of area. If there are area constraints, however, one could use one hash function 
implementation for multiple FS rows, providing the values to each of them at consecutive 
cycles. This would result in decreased throughput but also reduced area requirement. Since the 
Jenkins Hash is pipelined, mapping a hash function to multiple rows would not introduce long 
extra delays.  
 In conclusion, the simulations show that feature sketches are effective data structures for 
network behavior characterization. The simulation results demonstrate the gains in accuracy 
and estimation ability of feature sketches. FPGAs take advantage of multiple FS rows to 
satisfy Gigabit throughput demands. Consequently feature sketches, the main components of 
FEM, are attractive data structures for FPGAs to exploit parallelism. 

6   Related Work 
Many networking applications have found their way into hardware implementations [7]. 

With link speeds increasing and the multitude of network applications, future solutions place a 
premium on both performance and flexibility. FPGAs qualify for both these requirements. 
Current generation of FPGAs can operate at speeds ranging from 50 MHz to 250 MHz and 
have capacity on par with large ASIC designs. For example, FPGAs have been used in 
developing platforms for experimentation of active networks [4] for services such as detection 
of Denial-of-Service (DoS) attacks, real-time load balancing for e-commerce servers, real-time 
network based speed recognition servers for v-commerce, etc. Also, high speed front-end 
filters and security management applications for ATM firewalls have found their way onto 
FPGAs to reduce performance penalties at the IP level [12]. 

As for flow monitors, TCP/IP Splitter [17] has been implemented as part of the FPX (Field-
Programmable Port Extender) project to perform flow classification, checksums, and packet 
routing. However, this implementation is limited to 3 Gbps monitoring. In our previous work, 
we implemented a flow size monitor similar to FEM [16]. However, the design was not 
updateable when connections were completed. This limitation prevented achieving an accurate 
representation of the network. In this paper, we modify the architecture for update information, 
which increases the accuracy by almost an order of magnitude for comparable configurations. 
Other studies [6] agree that per-flow methods will not suffice and propose both intelligent 
algorithms and multistage filters using multistage hash tables to increase accuracy over Cisco’s 
NetFlow (which uses sampling to characterize network traffic).  

Jupiter T-Series routers also implement a propriety flow monitoring mechanism. Although 
the router runs at 10 Gbps link speeds, the monitoring is limited to 250K packets per second 
for each physical interface card. It is also limited in the maximum number of flows (400K) and 
flow creation rate (12K new sessions per second). Before these dedicated hardware solutions, 
flow monitoring tools had been implemented in software, such as HTTPDUMP.  

7   Conclusions 
Real-time feature extraction is a core component for any intrusion detection system that 

claims to be truly real-time. Signature detection can be done live, but live anomaly detection 



requires a comprehensive picture of the network environment. Our feature extraction module 
provides this functionality using feature sketches, which map well onto reconfigurable 
hardware. We took advantage of pipelining and inherent parallelism in FPGAs to increase 
throughput. Many network behavior parameters can be monitored using our architecture by 
making small modifications to the design. These characteristics include flow size, number of 
open connections, number of un-serviced connection requests, etc. The novelty of our design 
lies in modifying a single FS row into multiple FS rows to increase the accuracy up to 97.61%, 
reduce the estimation error to an average of 0.0365 packets, and achieve throughputs up to 
20.18 Gbps for a 16K entry FEM. 
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