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Abstract— Many of today’s data-intensive applications manip-
ulate disk-resident data sets. As a result, their overall behavior
is tightly coupled with their disk performance. Unfortunately,
most of these applications quickly become disk bound since disk
I/O times, the communication latencies, and energy consumption
required to transfer disk data to the host machine can be very
large. A promising solution to this problem is to embed compu-
tational power into the disk storage system. This paper concen-
trates on such a smart disk based architecture and proposes an
automated approach that partitions a given application code be-
tween the host machine and the smart disk. The main goal is to
perform data filterings, identified at compile time, on the smart
disk, thereby reducing the energy spent in communicating disk
data to the host unit for processing. To achieve this, the proposed
approach uses integer linear programming to identify the code
fragments that perform significant data filtering and assigns such
fragments to the smart disk for execution. In addition to the com-
munication energy benefits of the proposed approach, we show in
this paper that this approach can also help us better exploit the
low-power management capabilities provided by the system. Our
experiments with four data-intensive applications indicate signif-
icant energy savings.

I. INTRODUCTION

Applications from different domains that make use of disk-
resident data are increasing in both size of the data they ma-
nipulate and code complexity. Therefore, disk system perfor-
mance is critical in shaping both performance and power con-
sumption of such applications. Our analysis of several array-
intensive applications shows that a significant fraction of com-
putations that depend on disk data are of filtering type, that
is, the amount of the input data is larger than that of the out-
put data. Consequently, it is possible to reduce the amount of
data to be communicated between the disk system and the host
system by executing this filtering type of computations on the
disk system. This means performing some form of embedded
processing on the disk system, and requires the employment
of a processing element on the disk along with its memory.
In this paper, we use the term “’smart disk” to refer to such a
disk storage system equipped with processing capabilities (an
embedded CPU) and a memory unit.

Consider, for example, an image processing application
such as edge detection. The input to this application is an im-
age (or a series of images) and the output is typically a list of
the edges detected. For example, [20] studies real images from
IBM Almaden’s CattleCam and attempts to detect cows in the
landscape above San Jose. The application processes a set of
256 KB images and returns only the edges found in the data

*This work is supported in part by NSF Grants 0444158, 0406340 and
0093082 and a grant from GSRC.

using a fixed 37 pixel mask. The intent is to model a class of
image processing applications where only a particular set of
features such as edges in an image are important, rather than
the entire image. This potentially huge data reduction in trans-
forming input to output presents an important opportunity for
reducing the amount of data communication between the disk
system and the host system.

The prior efforts from the domain of high-performance com-
puting and databases studied this problem of embedded pro-
cessing on the disk system from the performance angle. We
refer the reader to [1, 3, 4, 11, 15, 19, 20, 24] and the refer-
ences therein. Code partitioning has also been considered in
the context of memories that employ embedded processing ca-
pabilities [6, 13]. However, to the best of our knowledge, no
past study investigated how this embedded processing on disk
system can affect power consumption. Also, none of the prior
studies discusses a fully automated mechanism for identifying
the computations to be performed on the embedded processor
in the smart disk. This is the problem attacked in this paper.
Specifically, concentrating on a set of array-intensive appli-
cations that make frequent use of the disk system, this paper
makes the following two contributions:

e We present an approach which, given a data-intensive ap-
plication code, determines automatically the parts of the ap-
plication code that can be executed on the smart disk system.
In other words, this approach, which is based on integer linear
programming (ILP), partitions the application code between
the host system and the smart disk system.

e We study the power consumption behavior of this ap-
proach under two different scenarios using a simulation-based
platform. In the first scenario, the components of the system do
not employ any power-saving mechanisms. In contrast, in the
second scenario, we assume that both the host processor and
the embedded processor on the disk system have low-power
operating modes, which can be activated depending on the cur-
rent loads of the processors. In addition, the disk itself and the
interconnect between the disk and the host processor can be
shut-down when they are not in use.

To test our approach, we made experiments with four bench-
mark codes extracted from the SPEC2000 floating-point and
Perfect Club suites, which were modified to operate on disk-
resident data sets. These experiments reveal that the proposed
approach is very successful, under the scenarios mentioned
above, in reducing power consumption without noticeably im-
pacting performance. In the first scenario above, our approach
reduces the communication traffic between the smart disk and
the host, and this leads to savings in power. In the second sce-
nario, our approach helps to increase the idleness of the host
processor, thereby enabling a more effective power manage-
ment via low-power operating modes.

The remainder of this paper is organized as follows. In
the following section we briefly describe the disk architecture
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Fig. 1. The smart disk (SD) based system configuration.

equipped with an embedded processor and compare it with a
traditional host-based system. In Section III, we present our
ILP-based approach and give an example that illustrates how it
works. In Section IV, we describe our experimental platform,
define the methodology used in the experiments, and present
the simulation results. In Section V, we conclude the paper.

II. SMART DISK BASED ARCHITECTURE AND EXECUTION
MODEL

Figure 1 shows a smart disk based computing platform. This
platform has two major components: a host and a smart disk.
The host is the platform where application execution normally
takes place in a system without smart disks (i.e., the one with a
conventional disk system). In a smart disk based architecture,
on the other hand, the host executes only some parts of the
application code (not the entire code), depending on the code
partitioning strategy adopted. In general, some parts of the ap-
plication code are mapped to the smart disk and executed there.
This smart disk based storage architecture, which contains a
disk system (which can actually be a RAID based disk array),
an embedded processor and a memory component, communi-
cates with the host through a communication link, whose exact
details are dependent on implementation.

In our execution model, the operation of the smart disk is
controlled by the host. Suppose for now that we ran a code par-
titioner and determined the code fragments that are mapped to
the host and those mapped to the smart disk (the rest of the pa-
per will discuss our ILP-based code partitioning strategy in de-
tail). When the execution begins, the host first sends the smart
disk the code fragments that are mapped to the smart disk.
These fragments are typically generated via a cross-compiler
at the host system. Following this, the host also sends an acti-
vation signal to the smart disk, allowing it to start its execution.
From this point on, the smart disk and the host can potentially
execute in parallel. When the smart disk prepares an output
(intermediate or final), it sends the output over the communi-
cation link to the host. This requires a synchronization between
the host and the smart disk. Similarly, the host can send data
to the smart disk during the course of execution.

The main advantage of this type of storage system is to al-
low the smart disk to execute some parts of the applications
that perform data filtering. In this context, a code fragment is
said to perform data filtering if its output data is much smaller
than its input data. For instance, a code fragment that takes
a three-dimensional array of size N x N x N as input and
generates a two-dimensional array of size N x NN as output
can be viewed as performing data filtering. If a computation
that performs data filtering is executed on the smart disk, one
can expect significant reductions in communication energy, as
compared to the conventional scenario where the entire com-
putation is executed on the host. Continuing with the example
mentioned above, for instance, if we do not employ a smart
disk, the three-dimensional input array (a total of N° array el-
ements) needs to be transferred from the disk to the host for
processing. On the other hand, if we perform filtering on the
smart disk, the volume of communicated data is only N 2 ele-
ments (i.e., the output array for the code fragment), which rep-
resents significant savings in communication energy consump-
tion. There is also a side benefit of employing a smart disk as

far as energy saving is concerned. Many hardware components
today support several low-power operating modes. Executing
some code fragments on the smart disk allows the host CPU to
switch itself to a low-power mode if it needs to wait for the re-
sults from the smart disk. This can also help increase the over-
all energy savings. In our experimental evaluation, we consider
both these scenarios: one without any low-power management
and one with low-power management.

IITI. OUR APPROACH

We focus on data-intensive applications that manipulate ar-
ray data. In this section, we explain how we can reduce power
consumption by dividing a given code fragment that accesses
array data into two parts, host-resident codes and disklets', i.e.,
the code portions assigned to smart disks. We want to em-
phasize that our approach tries to minimize the overall energy
consumption of the given application, i.e., it does not only try
to reduce the amount of communication. After all, if our ob-
jective was just minimizing communication, we could execute
everything on the smart disk. However, this would increase
program execution time and leakage energy consumption dra-
matically.

We assume that each array contains a set of subarrays. Each
subarray A; used by a program P can be represented using tu-
ple (Q, «;, L;, (71), where () is the parent array of subarray A;
(i.e., the array from which A; is extracted), and function «;
maps the each subscript vector of subarray A4; to a subscript

vector of parent array (). Vectors L:; and (71 are the lower and
the upper bounds for the subscript vectors for subarray A;, re-
spectively. The set of elements captured by subarray A; can be
expressed as:

Ai ={Q[ou(I)] | L= T = U}. (1)

We use an ILP formulation to find the optimal execution
strategy for the given program P. We assume that the program
‘P accesses m subarrays and consists of n loop nests. Before
discussing our ILP formulation, let us first define some vari-
ables. The values of the following variables can be determined
using a compiler by statically analyzing the source code of a
given program and/or through profiling:

o J; ;i Jij € {0,1}. If J; ; = 1, this indicates that subar-
rays A; and A; share some elements, i.e., 4; N A; # ¢. On
the other hand, we have J; ; = 0 if subarrays A; and A; do
not share any data elements.

e N;: the number of iterations for loop nest £;.

e X, E;: per iteration execution time and dynamic energy
consumption for executing loop nest £; on the host processor.

o X/ E!: per iteration execution time and dynamic energy
consumption for executing loop nest £; on the embedded pro-
cessor (in the smart disk).

o W; ;: this is set to 1 if loop nest £; updates the values of
some elements of subarray A;.

e R, ;: this is set to 1 if loop nest £; reads the values of
some elements of subarray A;.

The values of the following variables, on the other hand, are
determined by the ILP solver:

e H;: H, € {0,1}. If H; = 1, this indicates that loop nest
L; is assigned to be executed on the host processor. H; = 0
indicates that loop nest £; is to be executed on the embedded
processor.

IThe term is due to Acharya et al [1].



o M; i: M, j € {0,1}. M; ; = 1 indicates that subarray A;
is in the main memory of the host system at the entry of loop
nest £;. M; ; takes the value of 0 if this is not the case.

eD,;;: D;; € {0,1}. D, ; = 1 indicates that subarray .A;
is dirty at the entry of loop nest £;. That is, the host processor
has updated the values of some of the elements of subarray
A;, and A; has not been written back to the disk. Otherwise,
we have D; ; = 0.

In our formulation, we do not capture the disk energy con-
sumption explicitly, as our approach does not change the orig-
inal disk I/O activity. However, in our experiments, we also
considered the disk power consumption. Let us assume that the
total main memory of the host available to the program P is B.
The following expression captures this memory constraint:

M, Al < B, Vi )

Since all the subarrays are initially on the disk (i.e., at the

beginning of execution), we have:

M;1=D;1 =0, Vi 3)

Since a dirty subarray 4; must be in the main memory, we
have the following constraint:
D;; < M, Vi,j. “)
If we execute loop nest £; on the embedded processor, all
the dirty data that may be accessed by £; must have been writ-
ten back to the disk. Therefore, we have the following con-
straint:

(1—H)+ 30, DijJin(Ryj + Wi ;) <1, Yi,j. (5)

If we execute loop nest £; on the embedded processor, any
data that may be updated by £; cannot be in the main memory
of the host. Therefore, we have the following constraint:

(1= Hj) 43200 Mi jJi ;Wi j <1, Vi, j. (6)

If we execute loop nest £; on the host processor, the size of
the data that needs to be loaded into the main memory is:

doimy (1= M; )R j|Aql. (7

After executing loop nest £; on the host processor, the size
of the data that needs to be written back to the disk is:

Yoy Wi i (1= Dy jy1)] Al ®)

Assuming the data transfer rate for the communication link
is r, the total time required for executing loop nest £; on the
host processor (including the time to transfer the data over the
communication link) can be calculated as:

Ti=r(Y " (=M j)Ri ;| Ail+) 7 Wi (1=Di 1) Ai)+N; X,
&)
Assuming that the per byte energy consumption of the link
is p, the link energy spent for transferring data for executing
loop nest £; on the host processor would be:

Bi"=p(} ;" (1=Mij)Ri | Ail+) 7" Wi;j(1=Dijy1)|Ail). (10)

On the other hand, the total time required for executing loop
nest £; on the embedded processor would be:
Tj{ =N; X j’ 11

Therefore, the execution time for the entire program can be

Input:
Hj;, M; ;,and D; ; — the values of binary variables determined by the ILP solver;
P ={L1,Ls,..., Ly} - input program;

Output:
Transformed program P’

forj=1ton{
if(H; = 1) {
// insert code before loop nest L ;
fori =1tom {
if(Mj,yj =0 A M7‘,“7_1 = 1){
if (dirty; = 1) {
dirty; = 0; output “write A; back to disk”;

output “release memory occupied by A;”;
} else if(Mj,yj =1A J\Ii,j—l =0)
output “load .A; into memory”;

< the code for executing loop nest L on the host processor >
// insert code after loop nest L ;
fori =1tom {
if(Wi,j=1{
dirty, = 1;
if (Di,j+1 = 0) {
dirty; = 0; output “write A; back to disk™;

}
}
}
} else {

< the code for executing loop nest L; on the embedded processor >

}

Fig. 2. Rewrite the code of program P according to the values of H;, M; ;,
and Di’ g

expressed as follows:

T =35 (H;T; + (1 — Hy)Tj). (12)

J
Also, the leakage energy for the entire system can be written
as:

Eleakage = szzl(HjTj + (1 - HJ)T()a (13)

J

where P is the leakage power for the entire system.
The dynamic energy for executing the entire program (ex-

cluding the energy spent on the communication link) is:
Edynamic = Z;l:l(H]N]EJ + (]. —H])N]Eé) (14)
The link energy for the entire program, i.e., the energy spent
on the link in communicating data between the host and the

smart disk, is:

Eink = Z?:l H;E;".

Therefore, the total energy consumed by the system for ex-
ecuting program P can be expressed as:

5)

E= Elink + Eleak’age + Edynamic- (16)

We use the Xpress-MP solver [17] to determine the val-
ues for binary variables H;, M; ;, and D;; (: = 1..m and
j = 1..n) such that all the constraints above are satisfied and
the overall energy (F) is minimized?. It should be empha-
sized that our solution considers three energy components: the
energy for transmitting data through the I/O link between the
host and the smart disk, the dynamic energy consumed by both
the host system and the smart disk for executing the code frag-
ments mapped to them, and the leakage energy consumed by
the entire system during the execution of the application pro-
gram.

2Please note that the right hand side of Equation (16) is not a linear function
of variables H;, M; ;, and D; ;. However, Xpress-MP [17] allows the target
function to contain products of up to two variables.



Lq: fori = 01to 999 0,
forj=01t0499 = 4,[500][1000]
Aq[i][5] = g(Asld], j):
Lo: fori = 01to 999
for 7 = 0 to 499
Asli] = As[d] + A2[i][s];
L3: forz = 0to 999
Asli] = h(As[d]);

A4,[500][1000]

(b) Subarrays A;, A2 and Az belong
to parent arrays Q1 and Q2.

(a) Code fragment.

i J

JiJ 123 W1 2 3 RiJ 12 3 i N, X | x’
1f1|1|o Ljrjojo Lj1rjojo 1 500,000 | 100 | 800
jl2l1]1]o i12]0]0]0 1270110 2 |500,000] 10 | 80
310(0]1 3[0]1]1 3Pt 3 1000|200 |1600

(c) Parameters obtained by statically analyzing the source code.

J

_J .

i|H, t}ilT} DiJ123
1] 1 1jojof|o 1{0]0]0
210 i‘ZOOO i‘ZOOO
3] 1 3/0]1]1 3/10(0/0

(d) The values of the variables determined by our ILP solver.

Ly: fori = 0to0 999
for j = 0to 499
Afill5] = g(Aslil, 5):
write A1 back to disk;
signal embedded processor
to start Lo
wait for signal;
load A3 into memory;
L3: forz = 0to 999
Asli] = h(Asli]);

(e) The partitioned code generated by our approach. Left: loop nests £1 and L3
executed on the host processor. Right: loop nest L2 executed on the embedded
processor in the smart disk.

Fig. 3. An example application of our approach.

wait for signal;
Lo: fori = 0to 999
for j = 0to 499
Asfi] = Asli] + Azli][j:
signal end of Lo}

Once the values for binary variables H;, M; ;, and D; ; have
been determined, our approach rewrites the original code of
program P using the algorithm shown in Figure 2. Specifically,
before each loop nest £; that is determined to be executed on
the host processor, our approach inserts code to release the
memory occupied by each subarray 4; with M; ; = 0. If the
subarray to be released is dirty, our approach also generates
code to write the dirty value back into the disk. If subarray
Aj; is written by loop nest £;, “D; ;11 = 0” means that this
subarray might be used by a loop nest that is executed on the
embedded processor. In this case, our approach inserts code to
write subarray A; back to the disk immediately after the exe-
cution of loop nest £;. In addition, we also invoke cross com-
pilation for each loop nest that is determined to be executed on
the embedded processor.

Figure 3 gives an example application of our approach de-
scribed above. The original code fragment shown in Fig-
ure 3(a) contains three separate loop nests (L1, Lo, and L3),
and manipulates three different subarrays (A;, Az, and Aj3)
belonging to two parent arrays ((1 and ()3), as shown in Fig-
ure 3(b). By analyzing this code fragment, the compiler ex-
tracts the required parameters, given in Figure 3(c), which are
subsequently fed to the ILP solver. The ILP solver then deter-
mines the H; values (see Figure 3(d)), which indicate that, in
this particular example, loop nests £; and L3 are to be exe-
cuted on the host machine and loop nest £, is to be executed
on the smart disk; i.e., loop nest L5 is a disklet. Since only
Ly performs data filtering in this example, our approach as-
signs this loop nest to the smart disk. And, according to the
M ; values obtained through the ILP solver, we know that the
result of loop nest Lo, A3z, should be transferred to the host
machine. Figure 3(e) gives the partitioned code generated by
our approach.

IV. EXPERIMENTAL PLATFORM AND EMPIRICAL RESULTS

A. Setup and Benchmarks

To evaluate the effectiveness of our approach, we wrote
a trace-driven simulator using CSIM [21]°. In this setup,
all the disk I/O and data communication are assumed to be
done at a page granularity (default page size of Solaris is
8KB). The cycle time for each instruction type (e.g., load/store,
arithmetic, etc.) is obtained from the processors’ manual
[9, 10]. The simulator generates energy consumption and
performance statistics. The energy statistics are calculated
based on the figures extracted from the datasheet of each
system component or from the previously-published studies
[5,7, 8,9, 10, 12, 14, 16, 18, 25], and are given in Table I.
More specifically, our power model is as follows. While pro-
cessing the given input traces, the simulator keeps track of time
values (stamps) for all activities involved in processing each
trace. These recorded time values indicate the states of each
component (i.e., when a particular component is used and how
long it is used) throughout the entire simulation time, and then
we calculate power values from these determined states of each
system component. The required hardware components for
this calculation are different for each scheme we considered,
which will be explained later in this section. In this study,
we assume that each component in our target system has its
own power transition state diagram. That is, each component
has at least one low-power operating mode (state) as well as
active and idle modes, and it takes a certain amount of time
and energy to transition from one state to another. Based on
these energy and time values, one can determine the break-
even threshold, i.e., the minimum amount of idle time required
to compensate the cost of transitioning a given component into
a low-power mode, and this threshold is used in this work in
deciding whether it makes sense to put the component into a
low-power mode when it becomes idle.

The different components have different low-power modes
and usually different names for these modes. For exam-
ple, a modern server disk has typically only one low-power
mode, called shut-down, whereas a DRAM has three low-
power modes, named standby, napping, and power-down. So,
when there is no confusion, in the rest of the paper, we use the
term “low-power mode” to denote only one of the low-power
modes that each hardware component provides, specifically,
the one which consumes the lowest energy.

Table II gives the set of data-intensive applications, used in
this study. We chose these benchmarks from the CFP2000 [22]
and Perfect Club benchmarks [2], and made the array data ma-
nipulated by the benchmarks disk resident. As a result, each
array reference causes a disk access unless the requested block
is captured in the buffer cache. Also, to complete the simula-
tion within a reasonable amount of time, we concentrated on
the most dominant loop nests in terms of the cumulative I/O
times and the amount of data manipulated. The second col-
umn of Table II gives the total dataset size manipulated by each
benchmark, and the next two columns give the total energy
consumption and execution time, respectively, for each appli-
cation, when all computations are executed in the host (this is
the HOST version, as will be described shortly). The energy
and performance numbers presented in the rest of the paper
are normalized with respect to the values listed in these two
columns of Table II. The fifth column gives the contribution of
the energy consumed in the communication link between the
host and the smart disk, which takes a significant fraction of
the total energy consumption, as can be seen from the table

3This should not be confused with the gate-level simulator of the same
name [23].



TABLE I
DEFAULT SIMULATION PARAMETERS.
[ Parameter [ Value
Host Processor
Model Intel P4 2.0 GHz
Power (active/idle/standby) 100.4/75.3/0.0525 W
Power (standby — active) 0.1J
Time (standby — active) 1 ms
Power (active — standby) 53ul
Time (active — standby) 70.38 ns

Embedded Processor

Model StrongArm 200 MHz
Power (active/idle/standby) 400/50/0.16 mW
Power (standby — active) 0.064 ]
Time (standby — active) 160 ms
Power (active — standby) 0.036 mJ
Time (active — standby) 90 us
Memory
Model Rambus DRAM
Capacity 32MB for smart disk and 1GB for host
Power (active/standby) 300/3 mW
Power (standby — active) 15 mW
Time (standby — active) 6000 ns
Power (active — standby) 15 mW
Time (active — standby) 8 memory cycle
Disk
Model IBM Ultrastar 36215
Storage Capacity 18 GB
RPM 15,000
Average seek time 3.4 msec
Average rotation time 2 msec
Internal transfer rate 55 MB/sec
Power (active/idle/standby) 13.5/10.212.5 W
Energy (idle — standby) 13J
Time (idle — standy) 1.5 sec
Energy (standby — active) 1357
Time (standby — active) 10.9 sec

Interconnects (Link)

Model Infiniband 1X
Bandwidth 2.5G (1X)
Energy 10.21 (pJ/bit)
Power (standby) 5
Time (standby < active) 800 ns
Energy (standby < active) 0.002 mJ
Switch
Model IBM Infiniband 1X
Power (active/standby) 11/2W
Energy (active — standby) 0.18 mJ
Time (active — standby) 0.09 ms
Energy (standby — active) 0.327]
Time (standby — active) 0.16 sec

(over 20% for all four benchmarks). This suggests that reduc-
ing the link power consumption can have a significant impact
in practice on overall system power consumption. The last col-
umn gives the percentage of the application code mapped to the
smart disk (i.e., the disklets) after applying our ILP-based code
partitioner.

To quantify the benefits obtained from our approach, we im-
plemented and conducted experiments with different schemes:

e HOST: This is the version where all the computations are
performed on the host machine. This scheme requires all sys-
tem components shown in Table I except the embedded pro-
cessor and memory in the smart disk, which remain in the idle
states. Since the data is stored in the smart disk, this scheme
incurs a significant data communication from the smart disk to
the host. The energy and performance results with this version
are given in Table II.

e SD: This version represents the other extreme, and per-
forms all the computations on the smart disk, that is, the re-
maining components remain in idle state. Unlike the HOST
scheme, it does not incur any communication energy cost due
to the disk accesses since the disk is a local resource from the
viewpoint of the smart disk. However, this version can increase
leakage consumption dramatically over the HOST version, due
to the increase in execution time. After finishing execution, the
results required by the host are transferred to the host machine,
and the communication between the smart disk and the host

TABLE I
BENCHMARKS AND THEIR CHARACTERISTICS.

Total Base |Execution | Link | % of Code on
Name|Data (MB) |Energy (J)| Time (sec) | Energy |on Smart Disk
swim 22.1 736.6 44 239 % 59.0 %

apsi 2.9 101.6 0.6 23.8 % 74.0 %
mgrid 80.7 2707.1 16.2 23.6 % 54.0 %
bmem 10.3 457.5 2.6 223 % 28.3 %

machine occurs only at this point.

e OPT: This is an optimized version in which code
fragments to be executed on the host and the smart disk
are determined by our ILP-based partitioner described in
Section III. The computation occurs in both the host and the
smart disk, which requires all system components to execute
this scheme. When one side is in use during computation,
the other side will remain in idle state. In the general case,
some code fragments are executed on the host machine and
the others on the smart disk. The communication energy is
spent whenever there is a communication between the two
code fragments mapped onto the different places.

These three schemes (HOST, SD, and OPT) do not make
use of any low-power modes of any component in the sys-
tem. Apart from these three schemes, we also implemented
an energy-optimized version, called EOPT, which can be used
in conjunction with the above three schemes. In the EOPT
scheme, each system component, e.g., CPU, memory, inter-
connect, etc., can be in a low-power mode when it is not in use.
The decision to place a component in the low-power mode is
based on the break-even time of each component, as explained
earlier. That is, if the idle period of a given component is
longer than its break-even time, the component is placed into
the low-power mode. Otherwise, it remains in the idle/active
state, i.e., without any power management. Therefore, the
schemes in conjunction with EOPT do not change their orig-
inal execution times. The purpose of our experiments with
EOPT is to see how our approach interacts with low-power
modes. Combining EOPT with the three schemes described
above, we conducted experiments with a total of six differ-
ent schemes: HOST, SD, OPT, HOST+EOPT, SD+EOPT, and
OPT+EOPT. Among the different schemes used in this work,
the largest ILP solution time was taken by the OPT+EOPT
scheme and was around 172 seconds for the mgrid benchmark.

B. Results

The graphs in Figure 4 give the total energy consumption
of our benchmarks under the different schemes described ear-
lier. As mentioned earlier, all the results are normalized with
respect to the HOST version. One can make several observa-
tions from these results. First, for mgrid and bmcm, execut-
ing all the loop nests in the smart disk significantly increases
overall energy consumption. This is because the computation
power in the embedded processor in the smart disk is much less
than that in the host processor. Second, for swim, there is not a
significant difference whether all code fragments are executed
in the host or in the embedded processor. This is because the
communication reduction and the increase in computation time
when all computations are assigned to the embedded processor
balance each other. Lastly, even if we do not employ any shut-
down policies in any component, the OPT version results in
significant amount of energy savings (23% on average). This
shows that our ILP-based approach successfully partitions the
computations across the host and the smart disk in an energy-
efficient fashion.

It is to be noted, however, that the reduction in the amount
of data to be communicated, provided by our approach, might
affect the potential energy savings when the system compo-
nents employ low-power operating modes. The potential en-
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Fig. 4. Normalized total energy consumption of each benchmark.
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Fig. 5. Normalized link energy consumption of each benchmark.

ergy savings in this case are captured by the right three bars,
HOST+EOPT, SD+EOPT, and OPT+EOPT, in each bar-chart
shown in Figure 4. One can see from these results that, if we
can exploit the low-power mode that each component provides
whenever possible, the resulting energy savings are really sig-
nificant. Overall, the results presented in Figure 4 indicate
that our approach reduces energy in both the scenarios studied.
These benefits are achieved not only due to the reduced vol-
ume of communication between the smart disk and the host,
but also due to the increased chances for the host to shut down.
To see the details of the energy savings in the communication
link, we also collected statistics on link energy consumption
with these six different schemes we experimented. The results
are given in Figure 5. One can see from these results that most
of the energy consumption in the communication links can be
eliminated if we shut down the links when they are not in use.
Overall, our results indicate that the compiler algorithm pre-
sented in this paper can be very useful in practice, and the best
energy savings are achieved when our approach is used in con-
junction with the power saving mechanisms provided by each
component. We also measured the impact of our approach on
original execution cycles, however, we do not present the de-
tailed results due to lack of space. We found that the OPT and
OPT+EOPT schemes improve the original execution cycles by
23% on average.

V. CONCLUSIONS

Many large-scale applications are data-intensive in nature
and require manipulation of huge data sets such as multi-
dimensional scientific data, image files, satellite data, database
tables, and digital libraries. Apart from the high computational
requirements, these applications typically involve the transfer
of large amounts of disk-resident data back and forth between

the secondary storage devices and the processing units. Ob-
serving that a large fraction of these computations are of fil-
tering type, this paper proposes and evaluates an ILP-based
approach that partitions an application code between the host
system and the disk system (equipped with an embedded pro-
cessor). We test the behavior of our approach using a set of
array-intensive benchmarks that frequently exercise the disk
system. Our results show that the proposed partitioning ap-
proach reduces power consumption significantly.
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