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Abstract—In order to meet the increasing demands of present
and upcoming data-intensive computer applications, there has
been a major shift in the disk subsystem, which now consists of
more disks with higher storage capacities and higher rotational
speeds. These have made the disk subsystem a major consumer
of power, making disk power management an important issue.
People have considered the option of spinning down the disk
during periods of idleness or serving the requests at lower
rotational speeds when performance is not an issue. Accurately
predicting future disk idle periods is crucial to such schemes.
This paper presents a novel disk-idleness prediction mechanism
based on Markov models and explains how this mechanism can be
used in conjunction with a three-speed disk. Our experimental
evaluation using a diverse set of workloads indicates that (i)
prediction accuracies achieved by the proposed scheme are very
good (87.5% on average); (ii) it generates significant energy
savings over the traditional power-saving method of spinning
down the disk when idle (35.5% on average); (iii) it performs
better than a previously proposed multi-speed disk management
scheme (19% on average); and (iv) the performance penalty is
negligible (less than 1% on average). Overall, our implementation
and experimental evaluation using both synthetic disk traces and
traces extracted from real applications demonstrate the feasibility
of a Markov-model-based approach to saving disk power.

I. INTRODUCTION

It is well understood that reducing the energy requirements
of portable devices is important to prolong battery life. But
when it comes to large storage systems, making them bigger
and increasingly powerful has been the priority, in order to
attain the demanded availability and performance. Processors
have become extremely powerful, making them more data
hungry, and so have the data storage needs, leading to a
tremendous growth in the energy consumption of present data
centers [3]. In a typical data center, storage system contributes
to more than 25% of total power consumption [31]. Apart
from the energy consumed for disk operations, cooling costs
are also a major concern for this high-density equipment [10].
In fact, the costs have already become the second largest
contributor to data center total cost of ownership (TCO) [11].
High density racks and blade servers help reduce total power
consumption, but their power density levels exceed the limits
of many facilities.

Increasing the number of disks, apart from increasing the
total storage space, also helps improve the performance, as
data distributed across the disks can now be accessed simulta-
neously [4]. The reason for the rise in energy consumption is
the way disks operate. Disks are made to service the requests
at their maximum speeds. Normally, they continue spinning at
their maximum rotational speed even if they are not servicing
any request and hence contribute to the wastage of energy.

A direct approach to reducing this energy wastage is to shut
down all those components that are not doing any useful work
at the moment. Much research has been done to obtain gains
from this approach. Two important issues arise in this context:

• How accurately can we predict the occurrence of idle
times?

• What would be the energy/performance tradeoffs if we
decide to shut down (spin down in the context of disks)?

Recently, techniques that employ multi-speed disks [20]
have also proposed and evaluated. With such techniques, when
there is a slack (allowable increase in latency), the disk is
rotated at a lower speed (compared to the maximum speed
available), instead of being completely spun down. The choice
of speed is based on the length of the available slack. This
approach has been shown to be more applicable to high-
performance scientific and data-intensive workloads where
disk idle periods are typically small but numerous [8], [29].
While the main problem with spinning-down techniques is that
they may not be applicable to short idle times; the problem
with multi-speed disks is the large performance penalty in-
curred if disk idle and active periods are not predicted accu-
rately. Focusing on a three-speed disk, in this paper we propose
and experimentally evaluate a novel Markov chain [27] based
disk power reduction scheme. Our main contributions can be
summarized as follows:

• A Markov model to help disk power management. The
rationale behind using a Markov model is that disk access
patterns exhibit a repetitive behavior and can therefore be
captured by using such a model. First, building a Markov
model for a given disk system is presented, followed by
the mechanism for making use of this model.

• A three-speed disk model. The need to have such a disk
is discussed in detail and its benefits are assessed.

• A prediction scheme. We introduce a scheme that uses the
information from the Markov model of the disk system
to predict future states of the system (in terms of active
and idle periods of disks).

• A runtime approach. This approach uses the Markov
model, the three-speed disk model, and the prediction
scheme for achieving disk energy savings. The approach
decides what needs to be done and when.

Our experiments with various workloads, which include
both synthetic traces and traces extracted from real appli-
cations, indicate that the Markov model effectively captures
the behavior of the disk system. The success of our proposed
scheme can be attributed to being able to predict the future



states of the system. Since, our approach is proactive, meaning
the idle periods are predicted in advance, the opportunities to
save power are rarely missed (on mispredictions) and also are
fully utilized, spinning down to the lowest power mode with
little impact on performance. The use of the three-speed disk
helps make the most of long idle times by entering the standby
mode, additionally giving the flexibility to save energy even
when idle times (spin-down to a lower speed) are short.

The rest of this paper is organized as follows. Section II
discusses the related work. In Section III, we give a brief
introduction to Markov modeling and discuss how it is used
by our scheme. Section IV discusses the schemes that can
be employed for predicting the next state of the disk system.
Section V introduces the concept of a three-speed disk. In
Section VI, the algorithm for our disk power management
scheme is described in detail. Section VII provides the experi-
mental setup and results, followed by our concluding remarks
in Section VIII.

II. RELATED WORK

There has been an extensive body of work on power
minimization in the context of both low-end embedded or
portable devices and high-performance machines. Because of
space concerns, however, in this section we restrict ourselves
to the work performed on disk power minimization. Much
of this work so far has made use of the usual two-speed
(full-speed and standby) disks with prediction strategies to
initiate disk spin-up and spin-down during idle times [17], [6].
Some of these schemes predict the next occurrence of the idle
time and trigger a spin-down in advance (proactive), whereas
others wait a certain length of time before entering the low
power mode. Most of the prediction schemes use information
gathered from the system resources to understand the workload
behavior. For example, the number of the requests in the
request queue [8] or the ghost buffer [1] (which records
replaced memory pages as if they are stored in additional
physical memory) can be used to guide the spin-up and
spin-down policies. However, they provide a limited view of
the workload evolution, and hence, are not very effective in
predicting future idle times. There also exist schemes that try
to increase the disk idle periods, thereby making spin-downs
and spin-ups more profitable [35], [24], [2], [25], either by
making use of I/O prefetching and caching or resizing the
storage cache. These strategies could in fact work along with
our scheme to improve the current savings. More recently, the
concept of DRPM [8] was introduced, which tries to provide
more flexibility of operation, making it possible to exploit even
small idle periods without significantly hurting performance.

Once the major consumers of power were identified [19],
researchers started working to conserve energy in network
servers [3], [25] and in systems employing disk arrays [14],
[34], [5], [31]. Colarelli and Grunwald [5] introduce MAID,
where additional always-on cache disks are employed for a
storage archiving scenario that will be useful only if the
workload has enough data reuse [32]. While Carrera et al.
[3] evaluate some of the disk power management schemes
and point out the importance of using multi-speed disks for
saving power in I/O intensive workloads, Zhu et al. [34]
propose a technique that brings together all power-saving
strategies under a combined scheme called Hibernator, by
making use of data migration and multi-speed disks. Data

migration helps in creating idle periods across some disks,
but overhead is involved in determining the new data location.
Also, the prediction scheme that determines the optimal speed
of operation for a disk in [34] is coarse grained, thus missing
some potential opportunities for saving power.

Markov modeling [27] has been used in the past for pre-
dicting the I/O access patterns [22], [18] to guide caching [15]
and prefetching [12] policies in order to improve performance.
There have been attempts [28], [26], [23] to use Markov model
for disk power management. However, these efforts considered
entirely different schemes and execution environments from
our model. Specifically, most of them have focused on opti-
mizing for portable devices or single-disk systems, and they
consider it a policy optimization problem. Also, they work at
the granularity of requests, whereas we use a sampling time
window for power management. To the best of our knowledge,
this paper is the first study that employs Markov modeling in
the proposed format for reducing power consumption of high-
performance disks used in data-intensive computing.

III. MARKOV MODEL FOR DISK IDLENESS PREDICTION

We model the disk state transitions using Markov modeling.
A Markov model for a system can be completely specified
by the total number of states n and the transition probability
matrix P [13]. The number of potential states for a N -disk
system is given by 2N (here n=2N ). This is because a disk is
either busy (ON, represented by 1) servicing a request, or idle
(OFF, represented by 0). Given the present state and all past
states, if the future state of the system depends only on the
present state, the system is said to have the Markov property.
The transition probability matrix is a square matrix of size
n × n, where n is the number of states in the system. Values
contained in the matrix are probabilities, where Pij (located

in ith row and jth column) is the probability of transitioning
from state i to state j.

In the context of disk power minimization, one can build
a transition probability matrix by sampling the state of the
disk system at regular intervals (states representing disk being
accessed or not accessed). We sample all the disks at runtime,
noting whether the disk was accessed during the last sampling
period. If it was, then the bit is set for the corresponding
disk; otherwise it is reset. Even if a disk access starts toward
the end of the sampling period (thus leaving the system in a
state of transition at the sampling point), we conservatively
assume that the disk was ON during the whole sampling
period. However, this assumption will not be made while
calculating the energy for the base case. We represent the state
of the system as a bit vector. For an eight-disk system, it will
be an eight-bit vector represented as D1D2D3D4D5D6D7D8

(Di stands for the ith disk in the disk subsystem) and an
example state would be 11001111, which indicates that except
disks D3 and D4, all others were accessed. The transition
probability matrix is built and updated during runtime with the
help of these samples. There is a warm-up period (explained
in Section VI), during which the workload characteristics are
monitored to help mature the matrix, making it suitable for
making predictions on future states (ON/OFF) of disks in the
system. The probability matrix is updated at regular intervals
by including the most recent set of samples. Because of this
regular update on the probability matrix, our scheme is able



to keep the up-to-date state of changing or mixed workloads.
Note that both sampling frequency for the disk subsystem and
the update frequency for the probability matrix have to be
chosen carefully. We later study in Section VI how crucial is
the value of the sampling period.

IV. PREDICTION SCHEMES

Transition probability matrix by itself is of no use as far as
power reduction is concerned. There is need for a prediction
algorithm that predicts the next state for the system by using
the information maintained by the probability matrix. We
can evaluate the accuracy of a given prediction algorithm by
comparing the percentage of matches between the actual and
predicted states. Below, we describe four prediction schemes
evaluated in this work. These schemes are 1-step lookahead
schemes, meaning that only the state that directly follows the
present state is predicted and none that may happen after this
predicted state. We note that predicting the next state from
the current state requires indexing into an appropriate row of
the probability matrix. This row is determined by the current
actual state of the system. Remember that the row and column
number of the matrix represent the states and the matrix itself
consists of transition probabilities.

• ORing (conservative): After indexing into the correct row,
OR all the states (recall that state is represented as a
bit vector) with transition probabilities greater than a
certain probability (0.05 for our case) to get the next
state prediction. The rationale behind this scheme is to
never predict an idleness if the probability of the disk
being ON in the next state is greater than some minimum.
This scheme tends to produce an ON prediction most of
the time, not usually giving a performance penalty but
providing little power saving opportunities.

• Most-probable (aggressive): After indexing into the cor-
rect row, predict the next state based on the highest
transition probability from the current state. Since we are
just selecting the maximum value in the row, it does not
necessarily have to be a large value. For example, it may
be 0.05 and still be the maximum if other values in the
row are all individually less than 0.05 (but they all add up
to 0.95). As a result, this scheme might predict an OFF
even on a value of 0.05. This scheme does produce good
energy savings, but it may also lead to a performance
penalty, resulting in spin-downs even when not desirable.

• Last-state (does not use the probability matrix): The next
predicted state will be the last known state of the system.
This is the value we used in all other schemes for index-
ing into the appropriate row (the current actual state). The
success of this scheme is based on the assumption that the
system possesses some inertia and hence will continue to
remain in its present state for some time. The duration of
this period is the crucial factor in the success or failure of
the scheme. When the sampling period is kept small, the
scheme is bound to give good results. We included this
scheme in our evaluations to provide us with a baseline.
We note that this scheme also inherently makes use of
the Markov property by considering only the last state
for future predictions.

• Summing (the scheme defended in this paper): In this
scheme, after indexing into the correct row, we sum all

probabilities leading to a 0 (OFF state). This is done for
each disk separately to obtain its next state. If probability
of transitioning to 0 (denoted by P0) is greater than
certain threshold, then we decide to turn the disk OFF
else it is kept ON. Note that this scheme is slightly
modified when used for disks with more than three levels,
such that the threshold value changes to a range defined
for each speed level.

An arbitrary row chosen from the transition probability
matrix of our system is shown in Figure 1. This row contains
eight entries (for a three-disk system, the number of possible
states is 23), each entry being a probability for a three-disk
system (D1D2D3). States are represented as a bit vector with
the leftmost bit for the first disk (D1). Figures 1(a) and 1(b)
show the results obtained using the ORing scheme and the
Most-probable scheme, respectively. Figure 1(c), on the other
hand shows how the Last-state scheme predicts the next state
for D1. Figure 1(d) depicts the computation of P0 (probability
of transitioning to 0), which if greater than, for example, 0.7,
will give an OFF prediction. How we decide this threshold
value is discussed later in Section VI. This scheme (Summing)
is expected to give good energy savings without hurting the
performance. Results of prediction accuracies obtained with
these schemes are discussed in Section VII-B.

V. THREE-SPEED DISK

In this section, we describe three-speed disk that will be
used for evaluating our power management scheme. The
conventional two-speed disk either runs at the maximum speed
or stays in the standby (spin-down) mode where it does not
spin at all. The constraint of operating in one of these two
modes does not give the flexibility of transitioning to a lower-
power mode when the duration of the idle time is less than the
break-even time.1 Since we sample the disk system without
looking at the actual start times of idle periods, we might
miss some of these idle time opportunities. We also use a
prediction scheme to guess the idle times that were captured
during our sampling. Therefore, using a conventional (two-
speed) disk would not give us much opportunity to save disk
energy most of the time. Thus, the motivation for using a
three-speed disk is to have the ability to capitalize on all the
idle time opportunities that we are able to predict and to have
enough flexibility to save energy even when the disk idle times
are not long enough for the two-speed disk. We note that, when
we refer to saving energy, minimizing the performance penalty
automatically goes along with it. The flexibility with the three-
speed disk comes from the intermediate level of operation,
where we spin the disk at half of its maximum speed. A request
when serviced at the intermediate speed almost doubles the
service time but reduces the energy consumption by a factor
of four [8]. The specifications of the three-speed disk along
with the disk model we employ are provided in Figure 2.
State transition times and energies are based on the linear
power model given in [8], and the disk specifications have been
extended for an IBM hard-disk [9]. We also note that disks
with such multi-speed capabilities, such as Western Digital
Caviar GP [20] and Sony multi-mode disk [21], are now

1Break-even time is the minimum amount of idle time for which spinning
down a disk brings some energy benefits without increasing original execution
latency [16].
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Fig. 1. Example showing the outcome of predictions with different schemes specific to D1: (a) ORing, (b) Most-probable, (c) Last-state, and (d) Summing.
Note that our defended scheme (Summing) is different from the ORing and Most-probable schemes, and might as well transition the system to a state which
has zero probability in the probability matrix.

TABLE I
P0 CORRESPONDING TO DISK SPEED LEVELS IN A FIVE-SPEED DISK.

Speed (RPM) P0 Range

15000 0.00 < P0 ≤ 0.30

11000 0.30 < P0 ≤ 0.50

7000 0.50 < P0 ≤ 0.70

3000 0.70 < P0 ≤ 0.85

0 0.85 < P0 ≤ 1.0

commercially available in the market, though they are not
server-class disks.

VI. ALGORITHM

With the Markov model representing the disk state tran-
sitions and accompanied by a prediction scheme that helps
predict the next state of the disk, there is a need to have
an overall control strategy that can make high-level decisions
for power management of an I/O subsystem consisting of
the proposed three-speed disks. This requires making two
important decisions:

• When can a disk be spun down (should try to maximize
the energy savings but it does not matter if we miss some
opportunities)?

• When should a disk be spun up (should not miss to spin-
up when required)?

Depending on how aggressively one makes these decisions,
it can result in different energy savings and performance
degradations. To make a decision for the next state, we look at
the probability P0 (probability of transitioning to a 0 state) for
each disk. In order for this algorithm to work for an n-speed
disk, one can set a threshold for each speed level. Essentially,
as the value of P0 decreases, the disk’s operating speed should
increase. We choose a threshold value of 0.7 for P0 in our
three-speed disk. In a multi-speed disk scenario, on the other
hand, this threshold will be a range and not a value. But,
the way we use our three-speed disk makes this modification
feasible. As an example, Table 1 lists sample threshold values
(as a range) for P0 corresponding to each speed level in a
five-speed disk.

We emphasize that increasing the number of operating
speeds (e.g., moving from a three-speed disk to a five-speed
disk) does not necessarily mean that we can save more energy.
This can be seen in a manner similar to when TPM (traditional
power management, which spins down the disk after a certain
period of idleness) saves more energy than DRPM in the
case of very long idle periods, since it can turn off the disk
completely, whereas the DRPM scheme will spin down only
to a nominal speed. Similarly, the three-speed disk provides
enough flexibility to exploit small idle periods and also the
ability to save maximum energy when possible. We note that
as the idle periods grow smaller, opportunities to save power

become meagre and risky. For a three-speed disk, one should
not decide to spin up if spin-up time plus the request service
time is more than the service time at the current disk speed.
Also, One should spin down only if the idle energy consumed
in the current state is more than the sum of the energy spent
in spinning down and the idle energy in the lower speed state.

All the disks start off from a normal state where the three-
speed disk is in its intermediate speed level. Once the transition
probability matrix matures, we start making predictions about
the future disk states. A prediction ON will spin up the disk
by one level from its current state. A prediction OFF will
necessarily spin down the disk to its lowest speed. The disk
does not wait for a prediction to transition to the normal
state if no disk requests were waiting. All these decisions
help bring down the power consumption while minimizing
the performance degradation. In the following paragraphs, we
discuss how the values of various parameters employed in our
approach affect the behavior of our proposed scheme.

• Warm-up Period: This is the period of time spent before
building the initial transition probability matrix. This is
an important step in getting started with making good
predictions about disk accesses. The transition probability
matrix built during the warm-up period will represent
more of the transient behavior of disk accesses, but it
eventually adapts itself to the changing workload during
execution because of the regular updating of the matrix.
Note that while updating the matrix, we give lower weight
to the older values of the probability matrix. Deciding the
right value for the warm-up period is a tradeoff between
the accuracy of prediction (large value) vs the time of
wait (small value) before the predictions begin. Instead
of operating in either of these extremes, we can keep the
warm-up period moderately short to obtain the best of
energy savings and prediction accuracy. In our baseline
implementation, we set it to the time taken to gather 50
samples, a value determined based on some preliminary
experiments.

• Threshold Probability: This threshold value is used to
decide which state our disk can transition to by comparing
P0 with this value. If we want to be aggressive and save
more energy without caring much about the performance,
then we can set it to a low value (e.g., 0.4). On the
other hand, if we want to be conservative, then, say, 0.9
will be a good choice. It affects directly the prediction
accuracy, which in turn can hurt both energy savings and
performance. For our three-speed disk implementation,
we chose this threshold to be 0.7, again based on some
preliminary experiments.

• Sampling Period: The value of this parameter is crucial
to the success of our prediction based scheme. It affects



IBM Ultrastar 36Z15

Individual Disk Capacity 18.4 GB

Maximum Disk Rotation Speed (S3) 15000 RPM

Intermediate Speed Level (S2) 7000 RPM

Minimum Disk Speed (S1) 0 RPM

(a) (b)

Fig. 2. Three-speed disk. (a) State model. SUT: Spin-up Time; SDT: Spin-down Time; SUP: Spin-up Power; SDP: Spin-down Power; AP: Active Power;
and IP: Idle Power. Time is in seconds, and power is in watts. (b) Specification for the three-speed disk model.

the overhead involved in the scheme, the closeness with
which the transition matrix represents the workload, and
the energy savings achieved. If it is chosen to be very
small, the frequency of state predictions and matrix
updates increases. Depending on the disk state transition
times and the energy consumed during transitions, a small
sampling period may or may not be beneficial. On other
hand, making this period too large can lead to missing
some energy saving opportunities, specifically, when the
idle time is greater than the break-even time but smaller
than the sampling period (there was a short duration
of disk access). The length of sampling-period used in
our default implementation is 12.5 seconds for a simple
(two-speed) disk, 7 seconds for a three-speed disk, and 4
seconds for a five-speed disk.

Two overheads are associated with our scheme: updat-
ing probability matrix and prediction. Since each prediction
scheme uses a simple operation (e.g., bitwise-OR or sum-
mation), the prediction overhead is negligible. Updating the
probability matrix might have some overheads depending on
the size of matrix size. In an eight-disk system, the matrix
size will be 256 (28) by 256. Since this operation can also be
done by using simple loop and the update frequency is at least
tens of seconds, we believe that the overhead associated with
updating matrix is also negligible.

In our experiments, we also vary the default warm-up
period, threshold, and sampling period values and conduct a
sensitivity analysis.

VII. EXPERIMENTAL EVALUATION

In this section, we first introduce our experimental setup
(Section VII-A) and then present the results from our experi-
ments (Section VII-B).

A. Setup

DiskSim [7] was used to simulate the behavior of our
disk subsystem and to measure the benefits brought by our
scheme. DiskSim is an accurate, highly configurable disk
system simulator to support research into various aspects of
storage systems. DiskSim is a trace-driven simulator, and
we performed one simulation per each workload. Our sim-
ulated system has 8 disks; the specifications for the disk
were provided earlier in Figure 2. We augmented DiskSim
to help us carry out the experiments for various prediction
algorithms discussed above to analyze how good they work in
saving energy. As the simulation runs, this augmented version
of DiskSim checks the state of the disk system at regular
intervals. This is referred to as sampling the system.

DiskSim provides a synthetic workload generator used to
generate the workloads with desired characteristics. Some
characteristics common to all workloads are given in Table II.
We concentrated mainly on workloads with small inter-arrival
times where TPM and other older techniques have failed to
save energy efficiently (that is, the high-performance work-
loads that exhibit short disk idle periods) and results for DRPM
[8] could be compared. For the synthetic disk traces, we used
two types of workloads:

• Type 1: Inter-arrival times were exponentially distributed,
and

• Type 2: Inter-arrival times followed the Pareto distribu-
tion.

Type 1 workload is represented as < exp, t >, where t is the
mean inter-arrival time in milliseconds. This type of workload
models a purely Poisson process, with arrival traffic showing
some kind of regularity. Type 2 workload is represented in
a similar fashion as < par, t >, with t having the same
meaning as before. This workload offers more burstiness in the
traffic behavior, meaning that there exists a group of requests
clustered close to each other at some places. We used synthetic
workloads to show that our scheme is well adapted to different
type of inter-arrival times. As far as disk power management
is concerned, inter-arrival times matter most because they will
eventually affect the length of disk idle periods. Thus, these
two types of workloads do offer a good experimental testspace.
The original version of DiskSim does not support generation
of Pareto workloads. Thus, as a part of our work, it was also
augmented to generate such a workload. With these two types
of workloads, we vary the mean arrival times of requests,
which affects the length of the idle periods (the higher the
value of t, the greater the idleness). Table 2 summarizes
some default characteristics of the synthetic workloads for the
request distribution across the disks.

In addition to our experiments with these synthetic traces,
we performed experiments with traces extracted from real
applications. These applications are parallel in that the number
of clients issuing the requests for our 8-disk system are more
than one. More specifically, the number of clients range from
one to sixteen. One of the workloads is a trace from an online
transaction processing application (OLTP); the other trace is
gathered from a popular Web search engine. OLTP traces
[30] are characterized by frequent insert/updates. The web
search trace we use [30] captures the I/O traces of a system
that processes web search queries. Both of these traces are
obtained from a publicly available repository [30]. The I/O
accesses exhibited by these applications are small, numerous,
and concurrent. The results with the OLTP trace are indicated
with < oltp >, whereas those with the search engine trace
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Fig. 3. (a) Prediction accuracies with different schemes. (b) Contribution of mispredictions leading to performance loss (MPER). (c) Contribution of
mispredictions leading to power loss (MPOW).
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Fig. 4. Effect of changing the important parameters: (a) warm-up period, (b) threshold, and (c) sample period.

TABLE II
DEFAULT SYSTEM PARAMETERS.

Parameters Values

Request Number 100000

Number of Disks 8

Disk Size 18 GB

Sequential Access Probability 0.1

Local Access Probability 0.2

Read Access Probability 0.6

Maximum Local Distance 100 blocks

are represented by using < wsearch >. We also tested
our scheme with a trace from a scientific application called
BTIO, which is a disk-based version of a flow-solver program
from the NAS Parallel Benchmarks [33]. The main operation
in the code is periodic writes performed by all processors
to a multidimensional array stored in a file. This trace is
represented as < btio >. The number of clients for this type
of workload was kept as sixteen. Note that the energy-saving
opportunities in all these traces depend on the length of idle
periods between various accesses. Specifically, the workload
from the search engine was found to contain less than 2 percent
overall I/O system idle time. Our experiments were carried out
with these diverse (synthetic plus real) workloads to obtain
statistics for the following.

• Total energy consumed by disk system when no optimiza-
tion is performed (Etot)

• Percentage of energy savings with different power man-
agement schemes (Sav)

• Performance penalty
• Accuracy of various prediction schemes
• Effect of changing the important parameters employed in

our scheme

We also conducted experiments with a five-speed disk based
execution scenario in order to evaluate the effect of increasing
the number of speed levels in a disk. The energy savings

produced with the five-speed disk are compared against those
achieved with the three-speed disk and TPM. Note that all
the energy saving results presented here consider the savings
across all disks in our 8-disk system. The energy spent in
transitioning the disk to a different state was considered in all
our calculations. In the context of this work, the performance
penalty of a disk system is defined as the percentage increase
in the execution time for the given workload. More specifically,
if the last request of the workload was serviced at time T
when no energy optimization was applied and now with the
optimizations it gets serviced at time (T + x), the percentage
performance penalty is calculated as (x/T ) ∗ 100. The results
presented below include all the overheads incurred by our
scheme.

B. Results

We conducted experiments to test and validate the three-
speed disk model along with the prediction schemes and
verify the usefulness of Markov modeling. First, the prediction
algorithms described earlier were evaluated for their prediction
accuracies. Specifically, we tested each prediction scheme
on all the workload types we have. Figure 3(a) shows the
prediction accuracies of the four schemes discussed earlier.
The average prediction accuracies (when all workloads are
considered) are 86.0%, 84.2%, 87.6%, and 92.0% for the
Last-state, ORing, Most-probable, and Summing schemes, re-
spectively. Since inaccurate prediction of disk idleness can be
determined from a performance perspective, we consider 90%
or higher as a good accuracy, and our prediction accuracies are
in this range. The total mispredictions (TMPs) can be broken
down into two types:

• Mispredictions leading to performance loss (MPER), and
• Mispredictions leading to energy loss (MPOW).

MPER happens when one predicts a spin-down for the disk
but the disk was actually accessed and hence we incur spin-
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Fig. 5. Comparison of energy savings achieved by five- and three-speed disk
based systems relative to the base case, namely, TPM.

up delays. In comparison, MPOW happens when the disk is
predicted ON but it was never accessed during that period,
and consequently, an opportunity to spin-down was missed.
We see from Figures 3(b) and 3(c) that the ORing technique
gives more mispredictions leading to energy loss, whereas
the Last-state technique gives more mispredictions leading to
performance loss. Overall, our defended prediction scheme
(Summing) performs better in all respects. Although all these
schemes do provide a good percentage of correct predictions,
the Summing scheme has significantly lower MPER value. It
is also clear from these results that all the prediction schemes
tend to become less accurate as the sampling period increases,
specifically the Last-state scheme. In cases where even a
slight performance degradation is intolerable, one should try
to minimize the percentage of the MPER even if, in doing
so, we increase the contribution of MPOW. Note that a higher
MPOW value only means that we missed some energy saving
opportunities, but a higher MPER value may be intolerable
in a high-performance computing environment.

There should be enough samples to build the transition
probability matrix initially so it really does reflect the work-
load characteristics with a reasonable accuracy. Hence we
decided to take at least 50 samples to capture the workload
behavior. Obviously, the more samples we take, the better
our knowledge of the workload. However, this also means
we start the energy optimizations late. Figure 4(a) shows
that the energy savings decrease when the warm-up period is
increased. Figure 4(b) shows the effect of varying the threshold
value on the percentage of mispredictions leading to perfor-
mance loss (MPER). Decreasing the threshold value means
that we aggressively turn disks OFF and therefore increase the
chances of mispredictions, which is reflected in Figure 4(b).
In Figure 4(c), on the other hand, the effect of increasing the
length of the sampling period is shown. The energy savings
decrease because we miss some idle time opportunities. We
also tested the effectiveness of these prediction schemes using
a five-speed disk. The results given in Figure 5 indicate that
three-speed disk provides better energy savings in most cases.
The response of a five-speed disk to a disk state prediction is
more gradual than that of the three-speed disk. The reason is
that the five-speed disk slows down the disk speed one step at
a time unless a disk experiences big slowdown in the response
time. Consequently, it takes more time to transition to a lowest
power mode, in turn producing less savings. This one step
approach is a bit less aggressive in lowering the disk speed,
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Fig. 6. Comparison of energy savings with different schemes including
results with DRPM. Results for DRPM were obtained from [12], where no
tests were performed with real traces.

TABLE III
PERCENTAGE OF PERFORMANCE PENALTY.

Workload Penalty (TPM) Penalty (Three-Speed Disk)

< exp, 100 > 0.0 0.0

< exp, 500 > 0.03 0.0

< exp, 1000 > 0.015 0.0

< par, 50 > 0.0 0.0

< par, 100 > 0.0 0.0

< oltp > 1.42 1.76

< btio > 0.0 0.0

but it enables us to identify the system state at all times and
ensures easy recovery on misprediction (there are forced spin-
ups and spin-downs when the actual state is not equal to the
current state of the system). Note that one has more flexibility
with a five-speed disk when it comes to selecting a speed level,
which can be helpful, as is the case for the savings on OLTP
and BTIO workloads in Figure 5. Although we achieve better
energy savings with a five-speed disk, it also leads to more
performance penalty (not shown in results because of lack of
space). This can be attributed to the increased overhead of
transitioning across different speed levels.

In Figure 6, the energy savings obtained with the three-
speed disk supported by our scheme are compared with TPM
and DRPM savings. All energy savings are normalized with
respect to the base case, where no power saving scheme is
employed. The energy consumption evaluated and the power
saving results consider the entire disk system. We regenerate
the energy savings with DRPM (denoted as DRPMperf in
[8]) where it can predict the idle times with full accuracy;
consequently, there is no performance loss. Since we are using
the same simulation tool for generating the same workload
types, it makes sense to compare the results. We see from
these results that our scheme provides more energy savings
compared to TPM. It also does better than DRPM. The reason
can be attributed to the ability of the disk to totally spin
down (standby mode) whenever possible, and save energy
even when the duration of idle periods is not sufficiently long
(spin at an intermediate speed level). Although the opportunity
to save energy with these workloads may look meagre, it
is the result of using the predictive scheme along with the
concept of a multi-speed disk that helps save energy. There
is not much performance penalty from TPM as this scheme
triggers a shutdown only when the disk has been idle for a long
period of time. However, when we use prediction algorithms
and perform spin-ups and spin-downs proactively, there is a
chance of significant performance penalty. This can be a result



of a mispredicted spin-down (MPER) when the disk is being
actually accessed. Table 3 shows that, with our scheme, there
is very small or no performance penalty with the used traces.
Gurumurthi et al. [8] give performance degradation in terms
of response times, but does not show the net effect on the total
execution time.

VIII. CONCLUDING REMARKS

The main contribution of this paper is a novel Markov model
based disk idleness prediction scheme that can be used for
reducing disk power consumption when used with a three-
speed disk. The paper explains in detail why the defended
prediction mechanism is better than others and why it saves
disk power. To evaluate the effectiveness of our approach,
we implemented it using DiskSim and performed experiments
with both synthetic traces and real application traces.

Our experimental results show that (i) the prediction ac-
curacies of the proposed scheme are very good (87.5% on
average); (ii) it generates significant energy savings over the
traditional power saving method of spinning down the disk
when idle (35.5% on average); (iii) it performs better than
a previously proposed multi-speed disk management scheme
(19% on average); and (iv) the performance penalty it brings is
negligible (less than 1% on average). Overall, our implemen-
tation and experimental evaluation demonstrate the feasibility
of a Markov model based approach to saving disk power.
Our ongoing work involves integrating this scheme with
existing disk power saving strategies and testing them under
different workloads. We are also investigating whether high-
level (application level) information supplied by programmers
can be used for improving our power savings.
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