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Abstract

Power consumption of large servers and clusters has re-

cently been a popular research topic, since this issue is im-

portant from both technical and environmental viewpoints.

The prior research proposed disk power management as one

of the important ways of reducing overall power of a large

system and considered both hardware-based and software-

guided disk power reduction schemes. One of the common

characteristics of the previously proposed approaches to

disk power reduction is that they work with a given disk ac-

cess pattern. In comparison, the goal of the approach pro-

posed in this paper is to restructure application code using

an optimizing compiler so that disk idle periods are length-

ened. This in turn allows the underlying disk power man-

agement scheme to be more effective since such schemes

usually prefer the long idle periods over the short ones. Our

approach targets at large scientific applications that oper-

ate on disk-resident arrays using nested loops and exhibit

regular data access patterns. To test the effectiveness of the

proposed approach, we implemented it within an optimizing

compiler and performed experiments with six data-intensive

applications that manipulate disk-resident data. Our ex-

perimental analysis shows that the proposed approach is

very successful in practice and reduces the total disk en-

ergy consumption on average by 18.17%, as compared to

an execution without any disk power management, and by

11.55%, as compared to an execution that employs disks

with low-power capabilities without our code restructuring

approach.

1. Introduction

Power consumption of high-performance systems is be-
coming an increasing concern for system designers and
software writers. There are several reasons for this. First,
high power consumption requires sophisticated cooling
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techniques which can be very expensive for large comput-
ing systems [4]. Second, high power consumption brings
a number of reliability related problems along with it (e.g.,
due to wearing out some components earlier than normal
wear-out period [10]). Third, it is well known that high
power consumption is harmful for the environment. Storage
subsystems in particular have received significant attention
lately due to their substantial contribution to overall system
power. In fact, prior research [17] states that disk storage
can be responsible from up to 27% of total system power
consumed by data centers. Disk power consumption can
be very high in systems that execute large data-intensive
scientific applications, e.g., those from the domain of as-
trophysics, genome research, computational chemistry, and
nuclear simulation.

Motivated by these observations, recent research has fo-
cused on reducing power consumption of disk storage in the
context of high-performance systems. We can roughly di-
vide the proposed approaches into two categories: hardware
and software. On the hardware side, two frequently dis-
cussed techniques are traditional disk power management
(spinning down an idle disk [12]) and dynamic speed setting
(changing the rotation speed of disks based on the dynamic
workload behavior [13]). In comparison, the prior soft-
ware work [25] studied explicit management of disk power
modes and automatic disk layout detection. Irrespective of
whether hardware or software based, most prior techniques
to disk power management become more effective with long
disk idle periods (instead of short ones). For example, a
longer idle period can enable us exercise a lower disk speed
than a shorter idle period can do. Similarly, a sufficiently
long idle period may allow us spin down the disk.

Focusing on large disk-intensive scientific applications
with regular data access patterns, this paper proposes and
experimentally evaluates a compiler-based approach to disk
power management. The idea is to restructure an applica-
tion code such that disk reuse is maximized, i.e., the appli-
cation accesses as many data elements as possible from a
set of disks before moving to the next set. While the appli-
cation is exercising a particular set of disks controlled by an



Figure 1. Two-level striping of array data
across disks.

I/O node, the disks controlled by the remaining I/O nodes
can be spun down for saving power or be operated under low
(rotation) speeds. To enable this optimization, we propose
the disk layout of array data to be exposed to the compiler.
Using this disk layout information and the data access pat-
tern extracted from source code, our compiler restructures
data access pattern such that disk reuse is significantly im-
proved. In this paper, we address this problem in the context
of both single-CPU based execution and multi-CPU based
execution, since they require different types of code trans-
formations and generations.

To test the effectiveness of the proposed approach, we
implemented it within an optimizing compiler (built upon
SUIF [28]) and performed experiments with six large data-
intensive applications that manipulate disk-resident data.
Our experimental analysis shows that the proposed ap-
proach is very successful in practice and reduces total disk
energy on average by 18.17%, as compared to an execution
without any power management, and by 11.55%, as com-
pared to an execution that employs disk with low-power
capabilities without our approach. In other words, pro-
viding compiler support can bring additional savings over
what could be achieved using hardware-based power man-
agement alone.

The remainder of this paper is organized as follows. The
next section describes the storage subsystem we consider in
this work and defines what we mean by disk layout. Sec-
tion 3 discusses the related work on disk power manage-
ment. Section 4 reviews two prior approaches to disk power
management in detail. Sections 5 and 6 present our ap-
proaches for the single-CPU and multi-CPU cases, respec-
tively. Section 7 discusses our experimental results, and
Section 8 concludes the paper by summarizing our major
findings and outlining the future research directions on this
topic.

2. Storage Architecture, Disk Layouts, and As-
sumptions

The storage system considered in this work is shown in
Figure 1 at a high level. The disk requests in this archi-
tecture are directed to I/O nodes over which the array data
are striped. Each I/O node includes a CPU along with the
memory components and a disk subsystem (which is typi-
cally a RAID architecture [9]). The stripes assigned to an

I/O node are further striped at the RAID level (depending
on the specific RAID implementation adopted). Therefore,
as depicted in Figure 1, each data array in our storage archi-
tecture is striped at two different levels (I/O node level and
RAID level). Of these, the I/O node level striping is visible
to the software (to the compiler in our case) and can be con-
trolled using calls from the underlying I/O library and/or the
parallel file system used. For example, in PVFS [22], one
can obtain the I/O node level striping information of files by
inspecting the pvfs filestat structure, which includes
the stripe unit and the number of disks used for striping. The
RAID level striping, however, is hidden from the software.

In this paper, the compiler manages disk power at an I/O
node granularity. That is, when we talk about “spinning
down a disk” or “placing a disk into the low-power mode”,
what we really mean “spinning down the disks controlled
by an I/O node” and “placing the disks controlled by an I/O
node in the low-power mode”. However, for the ease of dis-
cussion, we use the term “disk” instead of “I/O node” when
we discuss our approach. The “disk layout” concept used
in the rest of this paper refers to the I/O node level striping;
i.e., when we mention “striping”, we mean the striping at
the I/O node level.

In our experimental evaluation, we assume a one-to-one
mapping between data arrays and files. In other words, we
assume that each data array is stored in a single file and a
file contains only a single array. Under this assumption, one
can talk about “striping an array over the I/O nodes.” While
we can relax this assumption by allowing one-to-many and
many-to-one mappings between the files and the data ar-
rays, we do not evaluate these options in this paper.

We make two assumptions in this work. First, we as-
sume that the I/O node level striping can be exposed to the
compiler. This is possible because current parallel file sys-
tems and run-time libraries provide interfaces for this. Note
that in this work the compiler does not modify disk lay-
outs; it just restructures application codes based on disk
layout information exposed to it and data access patterns
extracted by it. Our second assumption is that the disk sys-
tem is exercised by a single application at a time (of course,
the different applications can use the same system at dif-
ferent times). Therefore, the compiler can manage/control
the disk power consumption by placing unused disks (I/O
nodes) in the low-power modes. Since by spinning down a
disk (putting it in a low-power mode) we do not destroy the
data itself, our approach will not create a correctness issue
if the second assumption fails. However, in this case, our
energy savings can be reduced and we can incur I/O per-
formance degradations for some applications. We believe
that the disk usage information estimated by the compiler
can be passed to the operating system (OS) at specific pro-
gram points, and the OS in turn can use this information
to implement more global power management algorithms.
However, such extensions are not the focus of this paper.
Our goal instead is to evaluate the potential power savings
from a single application’s viewpoint.



3. Discussion of Related Work

Most of the prior studies trying to conserve disk
power/energy consumption are based on exploiting disk idle
periods during the course of execution. Since the power
consumption of a disk in the idle state is nearly the same as
that of active state when the disk services I/O requests, ini-
tial efforts concentrated on providing low-power operating
modes within the disk hardware itself and studied power-
saving techniques such as placing idle disks into low-power
modes [12]. Note that, placing a disk into a low-power
mode and switching it back to the active state can consume
both extra disk I/O time and additional disk power; there-
fore, it is always beneficial to work with long idle periods.
That is, extending idle periods can increase the effectiveness
of the underlying power management mechanism.

Zhu et al and Papathanasiou et al consider power-
aware caching and prefetching strategies in the storage
cache memory and OS layer to increase disk idle periods
[19, 29, 30]. The idea behind the energy efficient prefetch-
ing is to create burst access patterns, rather than spreading
disk accesses over the entire execution time. This burst disk
accesses in turn increase the idle periods of a given disk
so that it can be placed into a low-power operating mode.
In [29], Zhu et al study a power-aware cache replacement
algorithm, called PA-LRU, in the context of large storage
systems, which are typically equipped with several GBs
of cache memory if aggregated across all I/O nodes. The
main idea is to selectively keep cache blocks from certain
disks, which exhibit longer idle periods with high proba-
bility based on dynamically traced workload data, so that
the disks can be placed in low-power mode for a longer
period of time. In another paper, Zhu et al [30] propose
an approach, called PB-LRU (Partition-Based LRU), for
the same problem. PB-LRU implements cache replacement
techniques for disk arrays equipped with multi-speed disks.

The next group of studies focus on compiler-based tech-
niques to increase idle periods of disks. Heath et al
[14] study an application code transformation technique for
energy/performance-aware device management by generat-
ing I/O burstiness. Son et al [25] propose a compiler-based
proactive disk power management scheme for scientific ap-
plications. Since the compiler can predict disk access pat-
terns, one can then insert explicit power management calls
in the code, thereby eliminating performance penalty due to
reactive disk spin-up. Son et al also describe a compiler-
driven approach to reduce disk power consumption in the
presence of parallel disk systems [24]. In another paper,
Son et al [23] propose a compiler technique that deter-
mines energy-efficient disk layout parameters, i.e., stripe
size, number of disks used for striping, and the first disk
where file striping starts.

The last group of studies we discuss focus on file level
granularity to conserve server disk power consumption. The
previous disk power management techniques discussed so
far manipulate disk data at a fine granularity (e.g., a disk
block). Since large data centers host large amounts of

data maintained for several application domains, they also
demonstrate a locality of disk partition size, which means
that not all disks need to be in active mode to service an
application’s I/O requests. Based on this observation, in
[11], MAID (Massive Arrays of Idle Disks) is proposed for
saving energy by reducing spin-ups of data drives using a
small number of disks as cache drives. The cache drives act
as caches for the requests to the disk array, and they allow
the unused disk arrays remain in the low-power modes for
longer periods of time. Pinheiro and Bianchini [20] describe
a data migration technique, called PDC (Popular Data Con-
centration), which dynamically moves the most frequently-
used disk data to a subset of the disks in the system, so that
the idle disks can be placed into low-power modes.

The work described in this paper is different from
all these prior studies. Instead of controlling the disk
power modes by exploiting disk idle periods, we propose
compiler-directed code restructuring and generation for in-
creasing idle periods of disks. The advantage of doing so
is that any disk power management scheme (whether hard-
ware or software based) that exploits disk idle periods can
be more effective when it is used along with our approach.
Therefore, in a sense, our work is complementary to the
prior research such as [12], [25], and [30]. There also ex-
ist several studies on compiler optimizations for out-of-core
applications [5, 6, 7, 16, 18, 26]. The work described in this
paper is different from all these, since our goal is to reduce
power consumption.

4. TPM and DRPM

In this work, we evaluate the impact of our approach on
saving disk energy under two power management mecha-
nisms proposed in earlier research. Therefore, below, we
describe these two mechanisms in more detail.

As mentioned earlier, the basic approach to reduce disk
power consumption is to exploit disk idle times. That is, if
a disk is idle for a certain period of time, then it can be spun
down, and the disk remains in this spin-down mode until it
receives a new request, at which time it starts transitioning
to the full operational (active) mode. Note that, upon receiv-
ing a new I/O request, the disk must be spun up to service
it. This technique, denoted as TPM (traditional power man-

agement [12]) in this paper, has been extensively studied in
the context of mobile disks since such systems are operat-
ing under tight battery constraints. It should be noted that
it takes a certain amount of time for a disk to spin up and
down (tens of seconds in a modern server disk), and this in
turn incurs certain performance penalties. Although TPM
is an effective way of conserving disk power in the lap-
top/desktop based environments, several recent studies also
show that it is not a viable option in the context of server
class disks because of the following two reasons. First, the
server workloads are generally small and non-contiguous,
and consequently, disk idle times are not long enough to ac-
commodate TPM. Second, server class disks are operated
at a very high rotational speed to meet I/O performance re-



quired by server clusters, and the disk spin-up/down times
are really long, which in turn makes it difficult to exploit
the observed idle periods. Based on this argument, a dy-
namic speed-setting approach (referred to as DRPM in this
paper) was proposed in the literature [13], in which the disk
drive provides multiple rotation speeds (RPM levels). The
disk drive can service while running at the lower RPM level,
which typically consumes less energy compared to servic-
ing I/O requests at maximum speed. An application that ex-
ecutes on a platform with DRPM-capable disks can choose
one of the RPM levels provided, dynamically at runtime, to
achieve disk energy savings without hurting execution time
much. In a sense, DRPM shares similar idea with CPU
voltage scaling techniques [27] proposed in the literature
because the selection of the disk speed level is made based
on the change in the average disk response time recorded
for n-request windows. DRPM also incurs some perfor-
mance penalty because servicing at a lower RPM can po-
tentially affect the I/O response time. It has been shown that
DRPM can save significant amount of disk power consump-
tion by exploiting even small idle times, and it incurs rela-
tively small performance penalty compared to TPM. A sim-
ilar technique based on a two-speed disk architecture has
been proposed and evaluated in [8]. One of the important
characteristics of our scheme is that it can be used in con-
junction with both TPM and DRPM and can significantly
increase their effectiveness, as will be discussed later in de-
tail. In the rest of this paper, we say that a disk is “placed
into the low-power mode”, when it is either spun down (in
case of TPM disks) or switched to a lower speed than the
maximum one (in case of DRPM disks).

5. Code Structuring for Single Processor Based
Execution

To illustrate how compiler-directed code restructuring
can be beneficial in reducing the disk energy consump-
tion, we first consider the simple code fragment (written in
a pseudo-language format) shown in Figure 2(a) in which
three different loop nests manipulate two disk-resident ar-
rays (U1 and U2) using entirely different access patterns.
For illustrative purposes, let us assume that we have a total
of 4 disks, and arrays U1 and U2 are striped over all these
4 disks, as depicted in Figure 2(b). Each disk in the system
is assumed to be equipped with either TPM or DRPM. Our
approach starts with the layout of the arrays on the disk,
and operates as follows. Let Qi denote the set of itera-
tions of loop nest i, where 1 ≤ i ≤ 3. Assume further
that Q = Q1 ∪Q2 ∪Q3, i.e., Q represents the set of all the
iterations to be executed by this program fragment. We first
determine the set of iterations fromQ that access disk0, and
schedule them (i.e., they become the first set of iterations to
be executed by the transformed code). Note that, these iter-
ations can come from any subset of Q1, Q2, and Q3. Let
us refer to this set of iterations as Qd0. Subsequently, we
update Q = Q − Qd0, and determine all the loop itera-
tions from this set that access disk1 (call this set Qd1), and

for i = 1 .. N -1

for j = 1 .. N -1

. . . U1[i− 1][j + 2] . . .

for i = 1 .. N -1

for j = 1 .. N -1

. . . U2[i + 1][2j − 1] . . .

for i = 1 .. N -1

for j = 1 .. N -1

. . . U1[2i][j + 1] . . .

(a) Original code fragment (b) Disk layout for the arrays.

in a pseudo-code representation.

for ii = 1 .. N /K

for i = max(2*K*ii-(2*K-1),1) .. min(2*K*ii, N -1)

for j = 1 .. N -1

. . . U1[i− 1][j + 2] . . .

for i = max(2*K*ii-(2*K-1), 1) .. min(2*K*ii-2, N -1)

for j = 1 .. N -1

. . . U2[i + 1][2j − 1] . . .

for i = max(K*ii-K, 1) .. min(K*ii-1, N -1)

for j = 1 .. N -1

. . . U1[2i][j + 1] . . .

(c) Transformed code fragment.

Figure 2. Code restructuring example. N/K
is the total number of stripes and arrays U1

and U2 are of the same size, 2N × 2N .

schedule them. Next, we update Q = Q−Qd1, and extract
from this new set all the loop iterations that access disk2.
If we use Qd2 to represent this set of iterations, we next
update Q = Q − Qd2. The remaining iterations, if any,
are the ones that exclusively access disk3, which constitute
the last set of iterations to be scheduled. To sum up, what
this approach does is to isolate, for a given period of time,
accesses to a single disk as much as possible. For the code
fragment shown in Figure 2(a) and the disk layouts depicted
in Figure 2(b), Figure 2(c) gives the transformed code frag-
ment. The interesting point about this code fragment is that
it completes all accesses to a disk before moving to the next
disk, and each disk is visited only once, i.e., it maximizes
disk reuse by clustering accesses to a single disk in a given
time frame.

It needs to be noted that this ideal disk access pattern
(i.e., perfect disk reuse) may not be possible in general.
This can be so because of two potential reasons. First, in
many loop nests, we may have multiple array references.
Consequently, a given loop iteration can access different
array elements that reside in different disks. Second, the
data dependences between the loop iterations can prevent
the iteration reordering required by this approach. How-
ever, our transformation strategy that targets disk reuse can
still be expected to be beneficial even in such cases since it
can achieve a certain level of clustering, as will be demon-
strated by our experimental analysis presented later. In
other words, even if it may not be possible to achieve per-
fect disk reuse (where each disk is visited only once), our
approach can still improve disk access locality, which in
turn can translate to energy savings.

Figure 3 gives the pseudo code of our disk reuse oriented
code restructuring algorithm for the single processor based
execution case. We use the Omega library [21], a polyhe-



INPUT:

N Loop nests and disk layout information.

OUTPUT:

An energy-optimized restructured code.

Begin

stripe factor ← the number of disks.

Qi ← the sets of iterations of loop nest i.

Q ← Q1 ∪ Q2 ∪ · · · ∪ QN .

whileQ 6= ∅ do

for i = 0 to stripe factor − 1 do

Qdi ← all schedulable loop iterations accessing disk(i) fromQ.

call Omega lib (Qdi).

Q ← Q−Qdi.

end for

end while

Form a merged loop nest using an outermost loop iterator with iteration

count of stripe factor.

End

Figure 3. Sketch of our code restructuring al-
gorithm. If the code does not have any data

dependence, the while-loop in the algorithm

iterates only once. Omega lib generates the
loop nests that iterate over the data elements

in Qdi using the codegen utility.

dral tool, to produce the restructured loop nests. Omega
library allows user define Presburger formulas that involve
arithmetic and logic connectives and existential (∃) and uni-
versal (∀) quantifiers. In our context, this library is used to
build loop nests that enumerate iterations in sets Qdi. The
algorithm given in Figure 3 considers the cases where the
code has data dependences. If, on the other hand, there is
no dependence in the code, all loop iterations that access
a given disk can be scheduled successively. In contrast, if
there exists dependences in the code, the algorithm can only
schedule (when considering a disk) the some portion of it-
erations that can be executed just before the dependence oc-
curs (i.e., in this case, we may need to visit a disk more than
once). Since not all of loop iterations are scheduled at first
run over stripe factor, Q is not empty. Therefore, the re-
maining loop iterations will be scheduled until all iterations
are scheduled, i.e., until Q is empty (which is captured by
the while-loop).

We now want to discuss how our approach works us-
ing the example given in Figure 4. In this example, for
illustrative purposes, we assume that there are 13 loop it-
erations and they access 4 disks during execution. Fig-
ure 4(a) shows how these iterations access the disks (i.e.,
the default access sequence). In this default execution (i.e.,
without any restructuring), the execution sequence is 1→
2→3→ . . . →13. If we apply the algorithm in Figure 3,
on the other hand, we start by scheduling loop iterations ac-
cessing disk0, which gives us the sequence of 1→3. Since
there are data dependences from iterations 2, 6, and 10 to it-
erations 9, 7, and 12, we move to iterations accessing disk1,
instead of scheduling iterations 9, 7, and 12 at this point. In
processing disk1, we schedule iterations 2, 6, and 10. After
that, we focus on disk2 and disk3, and schedule iterations
4, 5, 8, and 9. This completes the first iteration of the while-
loop in our algorithm in Figure 3. In the next iteration of the
while-loop, we first focus on disk0 again, and schedule it-

(a) Default execution sequence. (b) After applying our approach.

Figure 4. An example that illustrates how our

code restructuring algorithm works with loop

iterations having data dependences (cap-
tured by arrows). The symbol × in a cell

represents the accessed disk while execut-

ing the corresponding iteration.

erations 7 and 12, and so on. As a result, the new execution
sequence is generated as shown in Figure 4(b). This new
execution sequence clearly increases the length of the idle
periods for each disk, thereby increasing opportunities for
saving energy.

6. Code Structuring for Multiprocessor Based
Execution

While the code restructuring approach presented in the
previous section increases disk reuse through clustering, it
may not work very well when multiple processors are used
for executing a given parallel application. This is because in
this case the disk requests coming from different processors
may interleave in time, and this in turn, reduces the disk
idle periods, thereby, cutting down the potential energy sav-
ings. In this section, we discuss our code restructuring for
the multi-processor execution case. First, in Section 6.1, we
revisit the conventional loop based parallelization theory,
and then, in Section 6.2, we present the details of our pro-
posed parallelization scheme, oriented toward maximizing
disk idle periods during multi-processor execution.

6.1 Background: Loop Based Code Paral-
lelization

The loop based code parallelization focuses on a single
loop nest at a time, and parallelizes it using the data depen-
dence information extracted by the compiler. While sev-
eral proposals exist in the compiler literature (e.g., [2]), the
main goal behind all these techniques is to rewrite a given
loop nest in a form that allows parallel execution of inde-
pendent loop iterations. To minimize synchronization costs,
it is also important that we obtain coarse grain parallelism,
as opposed to fine grain parallelism. In terms of parallel ex-



ecution, this means parallelizing the outermost (paralleliz-
able) loop as much as possible for each nest.

Each execution of a loop nest body can be represented
by an iteration vector, each entry of which corresponds to a
loop, starting from the top. When there is no confusion, we
use the terms “loop iteration” and “iteration vector” inter-
changeably. An iteration vector represents the executions
of all the statements in the loop body (under the specified
values of the iterators in the vector).

If a loop iteration ~q2 depends on an iteration ~q1 (where
~q2 > ~q1, the difference between them, ~q2 − ~q1 is called
the data dependence vector [3]. Note that, in this work,
we are mainly interested in data dependences. This is be-
cause the application codes we consider are loop nest in-
tensive (i.e., operate on disk-resident arrays using nested
loops) and they do not contain conditional flow of execu-
tions. We are mostly interested in cases where all the en-
tries of a dependence vector are constants, in which case it
is also referred to as the distance vector [3]. The distance
vectors extracted from a loop nest collectively define a dis-

tance matrix, whose rows are made of distance vectors. Let
us focus on an arbitrary distance vector ~d extracted from a
nest with n loops:

~d = (d1 d2 d3 · · · dn−1 dn)T .

Considering (only) this distance vector, the kth loop can
be parallelized if at least one of the two conditions below
are satisfied [3]:

• dk = 0, or
• (d1 d2 · · · dk−1)

T is lexicographically positive.

We say that vector ~d = (d1d2 · · · dn) is lexicographically

less than (shown as <) vector ~d′ = (d′1d
′
2 · · · d

′
n) if there is a

c such that 1 ≤ c ≤ n and di = d′i for all i < c and dc < d′c.
A vector is said to be lexicographically positive (negative)
if it is greater than (less than) the zero vector. In obtaining
the coarsest grain parallelism, the compiler normally par-
allelizes only the kth loop such that this loop parallelizable
and none of the loops from top down to the (k−1)th loop is
parallelizable. If there are multiple distance vectors in the
nest, a loop is parallelizable if and only if it is paralleliz-
able according to all these distance vectors. The different
approaches to coarse grain loop based parallelization differ
mostly in their capability of extracting the highest level of
parallelism in a given loop nest.

One of the serious drawbacks of loop based paralleliza-
tion is that it does not capture the data sharings between
the different loop nests, which can be a significant prob-
lem as far as disk reuse is concerned. This is illustrated in
Figure 5, which depicts how an example application with
three separate loop nests accesses a two-dimensional array.
The left part of the figure shows the iteration spaces of the
nests. Each iteration space is assumed to be divided into 4
parts as a result of parallelization over 4 processors. That
is, each processor is set to execute one fourth of the original

Figure 5. An example data access pattern

scenario that involves four processors. In
this scenario, three different loop nests ac-

cess the same array.

(a) Loop-based parallelization. (b) Reuse-aware parallelization.

Figure 6. Two different parallelizations from

the perspective of a given processor.

iteration space of each nest. The array (data space) ma-
nipulated by these loop nests (note that all three processors
manipulate the same array) is also shown as divided into
four regions (on the right of the figure). The arrows from
the iteration spaces to the array space indicate which array
region each part of the iteration space accesses. Since the
loop based parallelization does not capture the data sharings
between the different loop nests, it can assign to a processor
from each nest the (iteration space) part in the same po-
sition. As a result, a given processor can have the access
pattern shown in Figure 6(a). Let us focus on the portions
of the iteration spaces marked “*”, which are assigned to
the same processor under the loop based scheme. The prob-
lem with this access pattern is that, at each nest, the proces-
sor in question accesses a different data region of the array.
Therefore, one would not expect a good disk reuse from this
data access pattern. The objective of the disk layout-aware
(reuse-aware) code parallelization scheme discussed in the
next subsection is to address this problem.

6.2. Disk Layout-Aware Code Paralleliza-
tion

6.2.1 High-Level View of Our Approach

Figure 6(b) illustrates, through an example, our approach to
disk reuse-aware code parallelization. The figure shows the



assigned parts from each loop nest to a particular processor.
The portions marked “*” indicate the iterations assigned to
the same processor. This reuse-aware assignment differs
from the one shown in Figure 6(a) in two ways. First, the
same processor is assigned to different parts in the differ-
ent iteration spaces (i.e., not the corresponding parts). Sec-
ond, and more importantly, the same processor accesses the
same array region in each nest, which means that one can
expect a good disk reuse. The main goal of the disk layout
aware strategy is to achieve the highest disk reuse possible.
Clearly, this ideal scenario (as depicted in Figure 6(b)) may
not be achieved in all cases, due to the data dependences be-
tween the different loop iterations. However, our approach
tries to exploit the maximum possible disk reuse allowed by
data dependences. The next subsection explains the math-
ematical engine behind this code parallelization scheme. It
needs to be emphasized that this parallelization scheme in
a sense partitions the disks in the storage system across the
processors by localizing accesses to each disk to a single
processor as much as possible. After this parallelization,
the disk reuse based restructuring (explained in Section 5)
can be applied to the code of each processor separately to
further increase disk idleness (and energy savings).

6.2.2 Mathematical Details

We now discuss the details of the mathematical engine be-
hind our approach to disk reuse in the multiprocessor case.
Our approach is data space oriented, meaning that it decides
the set of loop iterations to be assigned to each processor
considering the arrays accessed by the application. We use
Qk (where 1 ≤ k ≤ n) to denote the set of iterations that
will be executed by loop nest k. Let us focus on an array
Uj (where 1 ≤ j ≤ m) manipulated by the application. We
use Zj to represent the set of data items in Uj . Note that Zj

defines a rectilinear polyhedron. We assume that there are
p processors in the system over which the application code
is to be parallelized.

In the first step of our approach, we logically divide the
array into p regions and each region is assigned to a pro-
cessor (note that the data in each region can span multiple
disks). We now focus on processor s (where 1 ≤ s ≤ p)
and loop nest k (where 1 ≤ k ≤ n). Let Zs,j be the
data elements from array Uj that are assigned to proces-
sor s (we will discuss shortly how this data assignment is
actually made). We use Qs,j,k to represent the set of loop
iterations from loop nest k that touch the elements in Zs,j .
Our parallelization strategy assigns the iterations in Qs,j,k

to processor s. In other words, each processor executes the
loop iterations that access the array region it is assigned to.
This iteration assignment can be repeated for each loop nest.
In other words, processor s is assigned iterations Qs,j,1,
Qs,j,2, ..., Qs,j,n. The common characteristic of these sets
is that all the iterations in them access Zs,j . Consequently,
when all the iteration assignments (for all loop nests) are
complete, we have the scenario shown in Figure 6(b) for
the example in Figure 5.

Figure 7. The process of determining the set

of iterations (from all the nests) that will be

executed by processor s (assuming that we
have n nests).

At this point, there are three important issues that need
to be addressed. The first issue is the problem of (logically)
dividing the array elements across the processors. The sec-
ond one is regarding the fact that not all the loop nests ac-
cess all the elements of a given disk-resident array. Con-
sequently, we need a strategy to handle the case when one
or more loop nests access only a portion of the array. The
third issue is that normally an application processes multi-
ple disk-resident arrays and our iteration mapping must be
carried out considering all the arrays. Otherwise (i.e., if
we consider only one array), the resulting parallelized code
may not be able to exploit disk reuse for the arrays not con-
sidered during the workload assignment. In the following
paragraphs, we elaborate on these three issues.

Dividing array elements across processors is very im-
portant as it determines the data (disk) access pattern and
thus influences parallelism and disk reuse. Our approach to
this problem can be explained as follows. For each loop
nest, we extract the maximum parallelism using a previ-
ously published approach in the literature [1]. This ap-
proach implements a method for deriving an optimal hyper-
parallelepiped tiling of iteration space for minimal commu-
nication in multiprocessors. It uses the notion of uniformly

intersecting references to capture data reuse among array
references and estimates interprocessor data communica-
tion traffic based on a data footprint concept. After par-
allelizing the code using the approach in [1], for each loop
nest, our approach determines the set of data elements ac-
cessed by each processor s. In determining this set of ele-
ments, we build the following set, assuming that Is is the
set of iterations assigned to processor s (by the loop paral-
lelization used) and Ds is the set of array elements we want
to determine:

Ds = {~d | ∃~I ∈ Is, ∃R ∈ Rs such that R(~I) = ~d}.

In this formulation, Rs is the set of references to the
disk-resident array and R represents a reference in the loop
nest (i.e., a mapping from the iteration space to the data
space). Since the access pattern imposed by each loop nest
(on the array) can be different from the other loop nests,
we next employ a unification step that comes up with a
globally acceptable array partitioning (data mapping). This
data mapping is then used for distributing the loop iterations
across the processors. While it is possible to implement dif-
ferent unification schemes, the scheme used in this study is



a simple one that selects the most frequently requested data
mapping (when all the loop nests in the application are con-
sidered). As an example of our array partitioning approach,
let us assume that an array is accessed by three different
loop nests. The first and the third loop nests require the
array elements to be assigned to the processors in a row-
block fashion (i.e., each processor is given a consecutive set
of rows), whereas the second loop nest demands a column-
block distribution across the processors. Let us use Ds1

,
Ds2

and Ds3
to denote the distributions demanded by the

loop nests, i.e., row-block, column-block, and row-block in
that order, from the perspective of processor s. Consider-
ing these, our approach selects the row-block distribution
(Ds1

), as it is requested by a larger number of processors;
i.e., we set Zs,j to Ds1

. Figure 7 summarizes the process
of determining the loop iterations that will be executed by
processor s. Basically, using the approach in [1], we first
determine the sets Ds1

, Ds2
, ..., Dsn

. We next obtain Zs,j

using the strategy explained in the previous paragraph, and
then determine Qs,j,1, Qs,j,2, ..., Qs,j,n, i.e., the iterations
from the different nests that are assigned to processor s.

For the second issue, let us consider two loop nests, k
and l, that access the same array (Uj). We use M′

j,k and
M′

j,l to denote the set of elements (of the disk-resident ar-
ray Uj) accessed by nests k and l, respectively (note that
M′

j,k ⊆ Zj and M′
j,l ⊆ Zj). We can express the prob-

lem as follows: Divide the iterations in Qk and Ql across
the p processors such that the parts assigned to processor
s from these two nests, namely, Qs,j,k and Qs,j,l, access
the same set of elements as much as possible. In mathe-
matical terms, our approach proceeds as follows. We first
determine the set of common elements between M′

j,k and
M′

j,l, i.e., M ′
j,common = M′

j,k ∩ M′
j,l. Then, we as-

sign the first |M′
j,k|/p of these (|M ′

j,common|) elements to

the first processor, the next |M′
j,k|/p to the second pro-

cessor, and so on. At the point where we have assigned
all (|M ′

j,common|) elements, the remaining elements (i.e.,

|M′
j,k| − |M ′

j,common|) are assigned to the remaining pro-
cessors. A similar process is repeated for the second loop
nest (l) as well. However, in processing this loop nest, we
are careful in assigning the same set of (common) elements
to the same processor as in the previous loop nest. Then,
based on these data assignments, we perform the iteration
assignment as explained earlier in this subsection.

Our approach to the third issue – multiple disk-resident
arrays accessed by the nests – can be explained as follows.
We first identify affinity among the elements of the differ-
ent arrays. Two array elements are said to have affinity if
they are accessed by the same loop iteration. As an exam-
ple, consider the following loop nest written in a pseudo
language, and the three references (to disk-resident arrays)
that appear in it:

for i = 1 .. M − 2
for j = 4 .. N
. . . U1[i][j] . . . U2[j][i] . . . U3[i + 2][j − 3] . . .

We note that, for a given loop iteration (a, b) in this nest,

Figure 8. The process of determining the set

of iterations (from all the nests) that will be

executed by processor s (assuming that we
have n nests).

i.e., when i = a and j = b, the loop accesses array elements
U1[a][b], U2[b][a], and U3[a+2][b−3], and thus, these three
array elements have affinity. Then, instead of dividing an ar-
ray into regions (as in the single array case), we divide data
elements into affinity classes. Each affinity class contains
data elements that exhibit affinity among them. Then, the it-
eration mapping (assignment) is carried out based on these
affinity classes. In mathematical terms, let As,1,k, As,2,k,
As,3,k, ..., As,m,k be the array regions accessed by proces-
sor s from the disk-resident arrays U1, U2, U3, ..., Um, re-
spectively, in loop nest k (i.e., they form an affinity class for
processor s). In computing Zs,j , our approach uses these
regions. After computing Zs,j , the sets Qs,j,1, Qs,j,2, ...,
Qs,j,n, i.e., the iterations from the different nests that are
assigned to processor s, can be computed as has been dis-
cussed earlier. Figure 8 gives an illustration of this process.
Note that, this calculation is just for processor s and needs to
be carried out for each processor separately. We also want
to emphasize that the proposed approach is different from
loop fusion and similar techniques that operate neighboring
loop nests in the code. In contrast to these techniques, the
approach proposed in this paper considers all the loop nests
at the same time, and in general, the output (restructured)
code generated by our approach cannot be obtained by sim-
ple loop fusioning.

7. Experimental Evaluation

7.1. Setup

To generate disk access patterns for our application pro-
grams, we implemented a trace generator. The cycle es-
timates for the loop nests were obtained from the actual
execution of the programs on a SUN Blade1000 machine
(UltraSPARC-III architecture operating at 750 MHz with
Solaris 2.9) and these estimates were used in all our simula-
tions. Access to disk-resident data is made at a page block
granularity. In addition to the I/O trace file, our simulator
needs the disk striping information such as stripe unit size,
striping factor (the number of disks), and starting iodevice
(disk). Using these disk parameters, the simulator deter-



mines which I/O nodes it should access when it reads an
I/O request. In all the experiments reported, each I/O node
has one disk and no further striping is applied at the I/O
node level, i.e., the data is only striped across the I/O nodes
(though the experiments with low-level striping generated
similar results). In our simulator, the striping information
is provided in an external file along with other simulation
parameters. The default simulation parameters used in our
experiments are given in Table 1.

The simulator we wrote is driven by externally-provided
disk I/O request traces, which are generated, as explained
earlier, from the compiler-transformed codes. Each I/O re-
quest is composed of the following four parameters:

• Request arrival time: Time in milliseconds specifying
the time the request arrives.

• Start block number: An integer specifying a logical
disk block striped over several I/O nodes.

• Request size: An integer in bytes specifying the size
of a request.

• Request type: A character specifying whether the re-
quest is a read (R) or a write (W).

• Processor id: The id of the processor that generates the
request.

Given an I/O trace file, the simulator generates statistical
data for performance (the disk I/O time) and disk energy
consumption. Both performance and energy statistics were
calculated based on the figures extracted from the data-sheet
of the IBM Ultrastar 36Z15 [15], and are given in Table 1.
The values for power mode transitions are also included in
Table 1. As to the power model of DRPM disks, we ob-
tained these values using quadratic estimation described in
[13].

Table 2 gives the important characteristics of the set of
array-based application codes used in this study. These ap-
plications are large disk-intensive scientific codes collected
from different sources. The first column in Table 2 gives
the application name and the second column gives a brief
description of it. The third column shows the amount of
disk data manipulated by each application. The next col-
umn gives the number of disk requests made from each ap-
plication. Finally, the last two columns give the disk energy
consumption and disk I/O time, respectively, for each appli-
cation when no disk power management is employed. The
energy and performance numbers presented in the rest of
this paper are normalized with respect to the values listed in
these last two columns of Table 2. We also want to mention
that, according to our experiments, these applications spend
75%–82% of their execution time in disk I/O.

For each application in our experimental suite, we per-
formed experiments with seven different versions of it,
which can be summarized as follows:

• Base: This is the base version that does not employ
any power management method. All the reported disk
energy and performance numbers presented later are

(a) Single processor execution. (b) 4 Processor execution.

Figure 9. Normalized energy consumption re-
sults.

given as values normalized with respect to this version,
which are given in the last two columns of Table 2.

• TPM: This is the traditional disk power management
strategy used in studies such as [12]. In this approach,
a disk is spun down after some idleness to save power,
and it is spun up when a new request arrives. Since
the performance cost of spinning up is typically large,
TPM can incur significant performance degradations.
Also, in order for this scheme to save power, the idle-
ness should be large enough to compensate for the
spin-up and spin-down costs.

• DRPM: This is the dynamic speed-setting based strat-
egy proposed in [13]. Considering the predicted length
of the idleness, it sets the rotation speed of the disk
to an appropriate level to save power. Therefore, it
can save power even if the idle periods are short. The
RPM level used is selected based on the degree of the
response time variation, and we may incur a perfor-
mance penalty.

• T-TPM-s: This corresponds to our disk reuse-based
single-processor approach when it is used with TPM.
As has been discussed earlier in Section 5, the com-
piler restructures code considering disk layout infor-
mation.

• T-DRPM-s: This corresponds to our reuse-based
single-processor approach when it is used with DRPM.
As in the case of T-TPM-s, this version exploits disk
layout information to restructure the given application
code (see Section 5).

• T-TPM-m: This is similar to T-TPM-s, except that it
restructures the code for multiple processors simulta-
neously, using the approach explained in Section 6.

• T-DRPM-m: This is similar to T-DRPM-s, except that
it restructures the code for multiple processors simul-
taneously, using the approach explained in Section 6.

7.2. Results

The graph in Figure 9(a) gives the energy consumption
of our applications under the different schemes discussed
earlier when we execute them on a single processor. One
can make several observations from these results. First,
the TPM version does not generate any significant savings
for our applications. This is not surprising given the fact
that disk idle times in these applications are not very large.
In comparison, the DRPM version generates better results,
achieving an average disk energy saving of 9.95%. These



Table 1. Default simulation parameters. All the arrays use the same striping (i.e., the same layout).
Disk Parameters Disk Energy Model DRPM-specific Parameters

for TPM and DRPM disks and Striping Information

Parameter Value Parameter Value Parameter Value

Disk Model IBM Ultrastar 36Z15 Power (active) 13.5 W Maximum RPM Level 15,000 RPM

Interface SCSI Power (idle) 10.2 Minimum RPM Level 3,000 RPM

Storage Capacity 36.7 GB Power (standby) 2.5 W RPM Step-Size 3,000 RPM

Disk Cache Size 4 MB Energy (spin down: idle→ standby) 13 J Window Size 100

RPM 15,000 Time (spin down: idle→ standby) 1.5 sec

Average Seek Time 3.4 ms Energy (spin up: standby→ active) 135 J Stripe unit (stripe size) 32 KB

Average Rotation Time 2 ms Time (spin up: standby→ active) 10.9 sec Stripe factor (number of disks) 8

Internal Transfer Rate 55 MB/sec TPM Break-even Threshold 15.2 sec Starting iodevice (starting disk) 1 (the first disk)

Table 2. Applications and their characteristics.
Name Description Data Size (GB) Number of Disk Reqs Base Energy (J) I/O Time (ms)

AST Astrophysics 153.3 148,526 44,581.1 476,278.6

FFT Fast Fourier Transform 96.6 81,027 24,570.3 371,483.1

Cholesky Cholesky Factorization 87.4 74,441 20,996.3 337,028.0

Visuo 3D Visualization 95.5 86,309 26,711.4 369,649.5

SCF 3.0 Quantum Chemistry 106.1 119,862 36,924.7 424,118.7

RSense 2.0 Remote Sensing Database 104.0 126,990 37,508.2 419,973.5

results are consistent with those found by the prior research
[13], where they injected synthetic disk access patterns that
mimic the behavior of scientific applications. Since DRPM
can operate with reduced rotation speeds, it is more success-
ful in taking advantage of short idle periods. Our next ob-
servation is that the T-TPM-s version generates much better
results than TPM, and in fact, it comes close to DRPM for
all the application codes tested (with an average disk energy
saving of 8.30%). This result indicates that restructuring
code can be very effective in increasing the benefits of the
underlying power management scheme and our approach
makes traditional power management a serious alternative
for scientific applications. Finally, we see that the highest
energy savings are obtained with the T-DRPM-s version.
Specifically, this version saves 18.30% disk energy over the
base scheme.

Figure 9(b) presents the energy results with the 4 proces-
sor case. As mentioned earlier, to obtain our versions run-
ning under multiple processors, we parallelized each loop
nest to obtain outermost loop parallelism as much as pos-
sible. Our observations about the TPM and DRPM made
above for the single processor case hold here for the 4 pro-
cessor case as well. However, we see a reduction in the
effectiveness of the DRPM version as interleaving disk ac-
cesses coming from multiple processors makes predicting
idleness more difficult. Due to the same reason, we wit-
ness similar reduction in energy savings of T-TPM-s and
T-DRPM-s as well. Specifically, the two schemes achieve
3.84% and 10.66% energy savings on average. When we
look at the results of the last two versions (T-TPM-m and
T-DRPM-m), on the other hand, we see that these versions
bring significant benefits over T-TPM-s and T-DRPM-s. In
fact, their savings are 11.04% and 18.04%, when averaged
over the six applications in our experimental suite. There-
fore, the most important conclusion from these results is
that, in a multi-processor execution, it is not sufficient to ex-
ploit disk reuse from each processor’s perspective indepen-
dently. Instead, one needs to take a global approach which
considers disk access patterns of all processors simultane-

ously. This is what our disk reuse aware parallelization ap-
proach does.

Having presented our energy results, we now turn our at-
tention to performance results of the different versions. The
performance results for the single processor execution are
presented in Figure 10(a). Each bar in this figure represents
the performance overhead introduced by the corresponding
scheme over the base version (with respect to the last two
columns of Table 2). We first observe that the TPM version
does not incur significant performance penalties, mainly be-
cause it is not applicable to most of idle periods since they
are very short. The DRPM scheme on the other hand incurs
significant performance degradations (11.9% on the aver-
age). This is due to its inability to predict the most ap-
propriate rotation speed for each idle period. The perfor-
mance overheads caused by our two schemes, T-TPM-s and
T-DRPM-s, on the other hand, are lower than DRPM since
they are able to increase the length of idle periods, which in
turn helps reduce the number of switches between the spin-
downs and spin-ups (if TPM is used) and those between the
different rotation speeds (if DRPM is employed). Specifi-
cally, the average performance degradations (i.e., increase
in disk I/O time) caused by T-TPM-s and T-DRPM-s are
2.1% and 4.7%, respectively.

Let us now look at the performance degradation results
when the applications are executed using four processors
(see Figure 10(b)). As in the single processor based exe-
cution case, we see that the TPM version does not result
in too much performance overhead (due to lack of appli-
cability). In comparison, we see certain increase in perfor-
mance degradations caused by the schemes DRPM, T-TPM-
s, and T-DRPM-s (16.8%, 4.7%, and 8.7%). This is mainly
due to the interleaving disk accesses coming from multi-
ple processors. The performance overheads introduced by
the T-TPM-m and T-DRPM-m however are about 2.8% and
5.0%, respectively, indicating that, in the multiprocessor
case, T-TPM-m (resp. T-DRPM-m) is preferable over T-
TPM-s (resp. T-DRPM-s) from the performance angle as
well. Overall, when we put the results presented in bar-



(a) Single processor execution. (b) 4 processor execution.

Figure 10. Performance degradation results.

charts in Figures 9(a), 9(b), 10(a), and 10(b) together, we
see that, while T-TPM-s and T-DRPM-s are clearly supe-
rior to TPM and DRPM respectively; when we move to
multiprocessor-based execution, T-TPM-m and T-DRPM-
m are the best choices from both the energy consumption
and performance perspectives.

8. Concluding Remarks and Future Work

Disk power management has been identified as one of
the major ways of saving energy in cluster systems that pro-
cess data-intensive applications. While the prior research
investigated techniques such as spinning-down a disk or ro-
tating disks at a lower speed to save disk energy, most of
these efforts do not make any use of the high-level data ac-
cess pattern information that could be extracted from the
application code by an optimizing compiler. This paper
proposes and experimentally evaluates a compiler-guided
approach to disk power management in parallel I/O node
based systems that execute array-intensive scientific appli-
cations. The idea is to let an optimizing compiler ana-
lyze the source code and extract data access pattern, use
this information along with disk layout of data to deter-
mine disk access pattern, and restructure the application
code such that the disk accesses are clustered in a small
set of disks at any given time; the remaining disks can then
be placed into a low-power mode using any existing disk
power management technique such as TPM or DRPM. We
implemented this approach for both single-processor and
multi-processor cases, and performed experiments with six
array-intensive scientific applications that manipulate disk-
resident data sets. The experimental results clearly show
that the proposed approach increases the effectiveness of the
two previously-proposed disk power management schemes
significantly. We plan to extend this work by investigating
a framework that combines application code restructuring
with disk layout reorganization under a unified optimizer.
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