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Abstract— Disk subsystem is known to be a major contributor
to the overall power budget of large-scale parallel systems. Most
scientific applications today rely heavily on disk I/O for out-
of-core computations, checkpointing, and visualization of data.
To reduce excess energy consumption on disk system, prior
studies proposed several hardware or OS-based disk power
management schemes. While such schemes have been known
to be effective in certain cases, they might miss opportunities
for better energy savings due to their reactive nature. While
compiler based schemes can make more accurate decisions on
a given application by extracting disk access patterns statically,
the lack of runtime information on the status of shared disks
may lead to wrong decisions when multiple applications exercise
the same set of disks concurrently. In this paper, we propose a
runtime system based approach that provides more effective disk
power management. In our scheme, the compiler provides crucial
information on the future disk access patterns and preferred
disk speeds from the perspective of individual applications, and
a runtime system uses this information along with current state
of the shared disks to make decisions that are agreeable to all
applications. We implemented our runtime system support within
PVFS2, a parallel file system. Our experimental results with
four I/O-intensive scientific applications indicate large energy
savings: 19.4% and 39.9% over the previously-proposed pure
software and pure hardware based schemes, respectively. We
further show in this paper that our scheme can achieve consistent
energy savings with a varying number and mix of applications
and different disk layouts of data.

I. INTRODUCTION

Reducing power consumption of disk systems can be very

important for high-performance architectures where disks are

responsible for a large fraction of overall power budget [1],

[2], [3], [4]. As system sizes and capabilities approach the

petascale range, one can expect scientific applications to be

even more data hungry in the future, which means more

frequent use of the disk storage systems. Prior research studied

disk power reduction techniques from both the hardware and

software perspectives. Hardware related work in this area

includes spinning down idle disks [5], [6] and employing

multi-speed disks [1], [7]. Software work on the other hand

focuses on file system based approaches such as [8] and

compiler related studies [9], [10], [11].

Compiler based approaches to disk power management

generally operate under two important assumptions: i) disk

layouts of data sets are available to the compiler so that it

can make power management decisions at the source code

level using the data-to-disk mapping, and ii) the application

being optimized for disk power reduction is the sole customer

of the disk system when it is scheduled to execute. While

several file systems and runtime libraries today already provide

interfaces to query/control disk layout of data (addressing the

first assumption above), the second assumption can only be

satisfied in environments which do not execute two or more

applications that concurrently exercise the same disk system.

When multiple applications use the same set of disks

concurrently, a runtime system based approach may be more

suitable for reducing disk power consumption. Motivated by

this observation, in this work, we investigate a runtime system

centric disk power reduction scheme and quantify its impact

on a set of scientific applications that process disk-resident

data. Our approach is a cooperative one that uses help from

both architecture and compiler. The role of the architecture in

our work is to provide multi-speed rotation capability for disks

and the role of the compiler is to analyze the application source

code and extract the disk access patterns using the data-to-disk

mapping exposed to it. The proposed runtime system receives,

as hints, the preferred disk speeds from individual applications

and, considering all hints, decides the best rotational speed for

each disk in the system such that overall power consumption

is reduced without affecting performance.

In a sense, this approach combines the best characteristics of

the pure hardware based and the pure compiler based schemes.

Like the hardware based power management schemes, it can

operate under multiple application executions (which is some-

thing that cannot be done using the compiler based schemes

alone). In addition, like the pure compiler based schemes, it

is proactive; that is, it can select the best disk speeds without

requiring an (disk usage) observation period, which is typically

required by the hardware based approaches to disk power

reduction.

We implemented our runtime system support within PVFS2,

a parallel file system [12] and performed experiments with four

scientific applications that process disk-resident data sets. Our

experimental results are very promising: We achieve, under the

default values of our simulation parameters, 39.9% and 19.4%

savings in disk power consumption, over the pure hardware

based and the pure compiler based schemes, respectively.

We further show in this paper that our scheme can achieve

consistent energy savings with a varying number and mix of

applications and different disk layouts of data.

The remainder of this paper is structured as follows. A

discussion of the related work on disk power reduction is

given in Section II. Sections III and IV describe, respectively,

the architectural support and compiler support required by



our approach. Section V presents the details of our runtime

system for software-based disk power management. Section VI

gives our evaluation methodology and experimental results

collected using several I/O-intensive scientific applications.

Finally, Section VII concludes the paper with the summary

of our major findings and briefly discusses the planned future

work.

II. DISCUSSION OF RELATED WORK

A simple mechanism for reducing disk power consumption

is to spin down a disk when it is idle for a certain period of

time. While a disk in such a spin-down mode consumes much

less energy than disks in active mode, it must be spun up

in order to service any upcoming requests, which may incur

significant energy and performance penalties. Many studies

considered techniques such as spinning down idle disks by us-

ing a fixed threshold [6], i.e., the amount of time to wait before

spinning down a disk, or by estimating the threshold value

adaptively [5]. A recent study considered program counter

based techniques for predicting upcoming disk accesses [13].

While these approaches are certainly effective when targeting

the laptop/desktop workloads where the applications typically

exhibit long idle periods, this is rarely the case with I/O-

intensive scientific workloads. To address this problem, multi-

speed disk models are proposed [7], [1], in which a disk can

service I/O requests even when it is spinning at lower speeds.

Such multi-speed disks (e.g., those from [14]) can exploit short

idle periods very well by changing disk speed dynamically, and

this can reduce power consumption (since power consumption

is a function of disk speed [7]). In this paper, we assume that

this type of multi-speed disk system is available to our runtime

system based scheme.

Many researches proposed schemes to utilize low-power

modes provided by disks, either spinning down or rotating

disks at lower speeds. Observing that conventional OS caching

and prefetching techniques can hardly produce any long idle

periods, Zhu et al [15] and Papathanasiou et al [16] in-

vestigated energy-efficient caching and prefetching strategies.

Their idea is to generate burst disk access patterns, which

can be preferable to extending disk idle times, by delaying

or prefetching/caching disk blocks selectively based on disk

speeds. Zhu et al [15] also studied power-aware cache replace-

ment schemes, called PA-LRU and PB-LRU, in the context of

large storage systems, in which several gigabytes of aggregated

caches can be redesigned to maintain file cache blocks from

the disks which are frequently accessed, so that the remaining

disks can remain in the low-power modes for longer periods

of time.

As disk arrays are popular building-blocks for constructing

large-scale storage systems, several studies focused on energy-

efficient disk arrays in an attempt to trade off availability

against disk energy by spinning down over-provisioned disk

drives depending on the workload variation. These techniques

include EERAID [17] and PARAID [18]. In a recent study,

Zhu et al [19] proposed a holistic technique, called Hiberna-

tor, that combines disk block reorganization with two other

techniques, namely, dynamic disk speed setting and multi-

tier data layout. In order not to decrease disk reliability due

to frequent disk speed modulations, Hibernator adjusts disk

speeds at a coarse granularity. It also keeps track of the average

response time at runtime, and restores the speeds of all disks

to the highest one when the specified response time guarantee

is at risk. More recently, Cai et al [20] discussed a power

management scheme that considers reducing memory and disk

energy simultaneously under certain performance constraints.

Another category of related studies investigated approaches

that involve transforming application code to increase idle

periods and informing the OS of the future disk idle periods.

For example, Heath et al [9] studied such a technique in

the context of laptop disks that can generate I/O burstiness

in laptop applications. In comparison, Son et al [11], [10]

proposed compiler-based code transformation techniques to

conserve disk energy. Focusing on scientific applications with

regular data access patterns, they first studied a compiler

technique that inserts explicit disk power management calls

based on the extracted information about the future disk access

patterns [11], [10]. Explicit power management calls inserted

by the compiler can potentially eliminate the performance

penalty that would normally be incurred in reactive disk power

management schemes. These studies assume that the disk

system is exercised by a single application at a time. Such pure

compiler-based techniques do not easily extend to scenarios

where multiple applications exercise the same set of disks at

the same time.

The last category of studies we discuss here investigate data

reorganization schemes that cluster disk accesses onto a subset

of disks, thereby increasing the chances for the remaining

disks to remain in the low-power modes longer. MAID (Mas-

sive Arrays of Idle Disks) [21] uses a small number of cache

disks to keep recently accessed blocks. As a consequence,

it can potentially reduce the number of spin-ups for the

remaining disks. PDC (Popular Data Concentration) [8], on

the other hand, dynamically migrates the most frequently used

files to a subset of the disks in the array. This scheme exploits

the fact that the workloads in network servers are heavily

skewed towards a small set of files. Since MAID and PDC

migrate files depending on workload changes, they can incur

performance degradation due to skewed disk I/O load.

Our approach in this paper is different from the pure

hardware or OS based disk power management schemes as it

utilizes compiler-guided decision on disk power management.

It is also different from the prior compiler-based studies as

it employs a runtime system that uses compiler-extracted

information and the current status of the shared disks to

select a speed for each disk that would be agreeable to all

applications, instead of solely relying on the compiler-guided

decision. In contrast to the previous compiler-based studies

that target single-application-only scenarios such as [9], [10],

and [11], our approach can handle multiple applications run-

ning in parallel and accessing the same shared storage system.

Finally, as opposed to most of the prior studies that focus on

array-based applications with disk-resident data, we consider

MPI-IO based parallel scientific applications where file I/O is

performed through explicit MPI-IO calls.



Fig. 1. Striping a file across multiple disks.

III. ARCHITECTURAL SUPPORT

The storage and file system architecture considered in this

paper is depicted in Figure 1. Most parallel file systems

available today either commercially or for research purposes

provide high-performance I/O by striping (i.e., dividing a file

into blocks called stripes and distributing these blocks in a

round-robin fashion across multiple disks), as illustrated in

Figure 1, to support parallel disk accesses for I/O-intensive

applications that manipulate disk-resident, multidimensional

arrays. In such a system, the disk access pattern of an

application is strongly influenced by the striping parameters.

In Figure 1, the data file, foo, is striped across three I/O nodes,

starting from node 1. At each I/O node, a stripe assigned to that

I/O node can be further striped at the RAID level (depending

on the RAID level [22] adopted) for performance and reliabil-

ity purposes. Therefore, in many parallel file systems, a given

file is typically striped at two different layers, i.e., hardware

layer through RAID and software layer through file striping.

While the hardware level striping is hidden from the compiler

and the operating system, the file system level striping can be

exposed to the software. Furthermore, the file level striping

can even be controlled through the APIs provided by modern

file systems. For example, PVFS2 [12] provides an MPI hint

mechanism that allows application programmers to change the

default stripe distribution across the available I/O nodes. Other

parallel file systems such as PFS [23] and GPFS [24] also

provide similar facilities.

Since our goal in this work is to utilize the access pattern

information extracted by the compiler analysis to perform disk

power management, we focus on the I/O node layer. That

is, our disk speed-setting decisions are made at an I/O node

granularity. Therefore, the effect of changing the rotational

speed on a specific I/O node simply means changing the

rotational speeds of all the disks controlled by that I/O node.

For the ease of discussion, however, we use the term “disk”

instead of “I/O node” in the rest of the paper.

IV. COMPILER SUPPORT

Our focus is on MPI-IO based parallel scientific appli-

cations. MPI-IO, which is the I/O part of the MPI-2 stan-

dard, is an interface that supports parallel I/O operations and

optimizations [25], [26]. Our target applications access file-

based data frequently for different purposes, e.g., reading and

writing large data sets for out-of-core computations, storing

the results of intermediate computations for long-running

applications, and reading back data stored for checkpointing

or visualization. One key characteristic of these applications is

that, through automated code analysis, an optimizing compiler

can identify logical file addresses along with the request size

/* Loop on horizontal slices */

for ih=0, R, 1 {
/* Read next block of matrix A */

MPI File read at all (fh A, · · · );

/* Loop on vertical slices */

for iv=1, R, 1 {
/* Read next block of matrix B */

MPI File read at all (fh B, · · · );

/* Compute block product */

for i=0, Nb, 1

for j=0, Nb, 1

for k=0, Nb, 1

C[i][j] += A[i][k] * B[k][j];

/* Write block of C */

MPI File write at all (fh C, · · · );

}
}

(a) Original code fragment.

/* Loop on horizontal slices */

for ih=0, R, 1 {
/* Read next block of matrix A */

MPI File read at all (fh A, · · · );

/* Loop on vertical slices */

for iv=1, R, 1 {
/* Read next block of matrix B */

MPI File read at all (fh B, · · · );

/* set the disk speed to 6K RPM */

set speed (011100, 6000, 0);

/* Compute block product */

for i=0, 3Nb/4, 1

for (j=0, Nb, 1

for k=0, Nb, 1

C[i][j] += A[i][k] * B[k][j];

/* set the disk speed to 15K RPM */

set speed (011110, 15000, 1);

for i=3Nb/4+1, Nb, 1

for j=0, Nb, Nb/4

for k=0, Nb, 1

C[i][j] += A[i][k] * B[k][j];

/* Write block of C */

MPI File write at all (fh C, · · · );

}
}

(b) Disk layout for each array. (c) Transformed code fragment.

Fig. 2. Out-of-core matrix-matrix multiplication nest written using the MPI-
IO calls. Each data slice (tile) is of size Nb × Nb array elements, and all
three matrices, A, B, and C, have R × R number of slices, which corresponds
to the number of processors.

of file blocks. To explain this better, let us consider the out-of-

core blocked matrix multiplication nest shown in Figure 2(a).

In this example, each processor accesses all three disk-resident

arrays, A, B, and C, and opens sub-files that correspond to one

row-block from A, and one column-block from B, and their

intersection from C. It then reads data from A and B, carries

out the corresponding partial multiplication in memory, and

stores the results in C. Note that, the code given in Figure 2(a)

will be executed using multiple processors and each processor

performs both the I/O and computation assigned to it. As

we can see from this code, it involves a substantial amount

of disk I/O followed by some computation associated with

it. Consequently, one can conceivably implement proactive

disk power management by inserting explicit disk power

management calls before and after the I/O phases. Since many

scientific applications exhibit this type of behavior, we use this

code fragment, as our example, to describe how a compiler

can predict disk access patterns and modify the source code

to insert explicit power management calls.

One of the important requirements in order to use a compiler

in determining the most suitable disk speeds for upcoming I/O

phases is to predict how disks are going to be accessed at a

high level (source code level). We use the term disk access

pattern in this paper to refer to the high-level information on

the order in which the disks are accessed by a given application

code. This pattern is crucial as it determines the durations

of both active and idle periods for each individual disk in a

disk system. In this work, we determine disk access patterns

exhibited by each MPI-IO call in the code. To obtain this

information, the compiler needs the file handle, file offset, and

request size for each MPI-IO call (i.e., the parameters to the

call), and the disk layout for each file. Since the file offset and

request block size depend typically on the processor rank and

loop bounds of the program, the compiler can obtain these



values by analyzing the application source code statically.

Combining this information with the disk layout information

exposed to it, the compiler can then understand how the disks

will be exercised by a given MPI-IO call.

We next discuss how the disk layout abstraction discussed in

Section III can be used to determine the disk being accessed

by each I/O phase. As mentioned earlier, file striping is a

technique that divides a large chunk of data into small data

blocks (stripe) and stores these blocks on separate disks in a

round-robin fashion (as depicted in Figure 1). This permits

multiple processes to access different portions of the data

concurrently without much disk contention. In addition to

providing file striping, many parallel file systems today also

provide a hint mechanism through which one can specify user-

defined or manual file striping, as will be explained below. In

this work, we represent the disk layout of a file using the

following triplet:

(Base, Striping Factor, Striping Unit),

where Base is the first disk from which the file gets striped,

Striping Factor is the number of disks used for striping, and

Striping Unit (or stripe size) is the length of each stripe.

In the PVFS2 file system [12], one can change the default

striping parameters using the following MPI-IO hints that

are supported: CREATE SET DATAFILE NODES (enumera-

tion of disk ID being used for striping), Striping Factor,

and Stripe Size. Then, the striping information defined

by the MPI Info structure is passed to to MPI File open()

calls. When creating a file within the application, this MPI

hint information can be made available to the compiler as

well. As explained above, the compiler uses this information in

conjunction with file offset and request block size to determine

the disk access pattern. If the file has already been created on

the disk system, we can also obtain its layout by querying

MPI Info associated with the file in question. The obtained

MPI Info, which indicates the disk layout of the file, can then

be passed to the compiler.

To demonstrate how to extract the disk access pattern using

the code fragment shown in Figure 2(a), let us assume the

disk layout in Figure 2(b). Assuming the same stripe size of

64Kbytes for all file stripes, the disk layouts for arrays A, B,

C in this example are (1, 3, 64), (1, 3, 64), and (2, 3, 64),

respectively. Let us further assume, for illustrative purposes,

that the request size of each MPI Read/MPI Write call is of

three stripe units, i.e., 64×3 Kbytes. Using the data access

patterns and the file layout associated with them, the compiler

can infer that, four disks (d1, d2, d3, and d4) must be run at

the highest disk speed available in order not to degrade the

I/O response time. On the other hand, since d0 and d5 are

determined not to be used while executing the code fragment

given in Figure 2(a), we can use for them the lowest disk

speed available. Since the determined disk access patterns

capture both the idle and active periods for each disk and

their durations, we can insert (in the code) explicit power

management calls. We also want to mention at this point that,

in our approach, a power management call inserted by the

compiler is actually a hint to the runtime system. That is, the

runtime system does not need to obey all the speed-setting

calls passed to it. Rather, it uses them to make a globally

acceptable decisions regarding disk speeds. The details of how

our runtime system makes that decision based on the compiler-

inserted calls will be explained in Section V.

As mentioned above, the last part of our compiler support

is to insert power management calls (set speed() calls in our

case) in the code. As an example, let us consider the code

fragment in Figure 2(a) once again. Let us assume, for the

sake of illustration, that a disk can spin at four different speeds,

namely 6000, 9000, 12000, and 15000 RPM. In the previous

step, we determine that, after reading the block of arrays A and

B, the speeds of the disks just accessed (d1, d2, and d3 in this

example) can be set to the lowest speed available (6000 RPM).

After the computation phase, array C must be written back to

the disks. Consequently, the timing for restoring the disk speed

to its maximum, 15000 RPM, is very important in order not

to incur energy or performance overheads. More specifically,

if the speed-setting calls are issued too early, the disk will

be placed into the highest speed earlier than necessary. On

the other hand, if they are issued too late, this can degrade

performance. Since most scientific applications are built using

nested loops, we use the number of loop iterations as our unit

for deciding the point to insert the explicit disk speed-setting

call, which is calculated as:

⌈
Ts

Tb
⌉, (1)

where Ts is the cycles required to set the disk speed given as

a parameter to set speed() call, and Tb is the shortest possible

execution latency (in cycles) through the loop body. Once the

insertion point for the disk speed-setting call is determined,

we use loop splitting [27] to make explicit the point where

the call is to be inserted. The format of our disk speed-setting

call is as follows:

set speed (T , Si, F ),

where T is a tag that consists of D bits, where D is the

number of disks in disk system. The bit in the jth position of

T (0 ≤ j ≤ D − 1) is set to 1 if the MPI-IO call accesses

the jth disk. Si (1 ≤ i ≤ m) is the ith speed level, and the

last argument to the set speed() call, F , is a flag which is set

to 1 when the requested speed setting is for the upcoming

I/O phase. Otherwise, F is set to 0 and this means that the

disk will not be used for a certain period of time. Going back

to our example code fragment in Figure 2(a), let us assume

that the number of loop iterations required to change the disk

speed from 6000 RPM to 15000 RPM is one fourth of the total

number of iterations of the outermost loop, i. Therefore, the

compiler splits the original loop nest into two parts: one with

the first 3/4rd of iterations and one with the remaining 1/4th

of iterations, and inserts the set speed (011110, 15000, 1) call

between these two newly-generated loop nests, as shown in

Figure 2(c).

Our compiler algorithm for determining disk access patterns

and identifying the desirable disk speed for each I/O call is

given in Figure 3. This algorithm takes an input program

along with available disk speeds and inserts explicit set speed

calls (hints) into the program. The first step of our compiler



INPUT:

Input program, P ;

Available disk speeds, DS = (S1, S2, . . . , Sm);

OUTPUT:

Transformed program, P′;

DL := disk layout (base, striping factor, striping unit);

BV := bitvector indicating the disks being accessed;

T := tag consisting of D bits, where D is the number of disks;

Ts := the time required to change the speed of disks from x to y;

/* Step 1: Determine disk access patterns */

for each I/O call ∈ P {
determine the I/O call parameters, i.e., file id, file offset, and size;

query DL of file id;

if ( size ≤ striping unit ) { /* small request size */

i = (base + (file offset % striping unit) % D ;

set ith bit to 1 in T ;

}
else { /* large request size */

for ( j = base; j < base+striping factor; j=j+1)

set jth bit to 1 in T ;

}
}

/* Step 2: Determine the disk speed and splitting point */

for each loop nest, L ∈ P {
Tb = number of cycles required for executing the body of loop nest L;

for each available disk speed, Sx ∈ DL{
calculate Ts when disk speed is Sx;

/* determine the loop iterations for hiding Ts */

dx = ⌈Ts

T
b
⌉;

if (2 × dx > total number of iterations ∈ L) {
select Sx as the preferable disk speed;

select loop index lx, where iterations of lx > dx;

}
}

}

/* Step 3: Insert set speed() call hint to the code */

for L ∈ P to be splitted {
split L using dx;

emit set speed (T , Sm, 1) at the split point;

emit set speed (T , Sx, 0) after the I/O call;

}

Fig. 3. Our compiler algorithm, in pseudo code, that determines the disk
access patterns and finds the most desirable disk speeds for the disks accessed
by each MPI-IO call.

algorithm is to determine the disk access patterns for each

I/O call in the input program. As a result of the first step,

the compiler determines the T parameters, which capture

disk access patterns for each I/O call. The second step of

our algorithm involves analyzing the loop nest that contains

I/O calls and finding the desirable disk speed for each disk

accessed by each I/O call. Based on the determined disk speed,

the compiler then identifies the splitting point in the original

loop nest. The last step of the algorithm is to transform the

loop and insert the set speed() calls in the determined points

in the code.

Before moving to the next section, we would like to mention

that the decisions made by the compiler explained so far

are only valid from the perspective of a single application.

Consequently, they may not be suitable when other (con-

currently executing) applications that use the same set of

disks are considered. Our proposed runtime support, which

is explained next, is designed to address this problem. We

also need to mention however that the compiler-determined

preferable speeds are still very important. This is because if

the optimized application happens to be the sole client of a

Fig. 4. Sketches of two example applications with the compiler-inserted disk
power management calls (hints).

Fig. 5. Disk power state diagram for the applications in Figure 4. (a) A1
and (b) A2. The disk is assumed to have four discrete speeds; 6K, 9K, 12K,
and 15K.

particular disk, the runtime system will just use that preferable

speed (indicated by the compiler) for the disk. Even if this

application is not the only client of a disk, the runtime system

still uses this hint in deciding the disk speed.

V. RUNTIME SYSTEM SUPPORT

A. Functionality

We first address the problem of executing multiple appli-

cations concurrently, each of which is transformed to insert

explicit disk speed-setting calls, as explained in the previous

section. Figure 4 shows the sketches of two applications, A1

and A2, that are modified by the compiler (as explained in

Section IV). In this execution scenario, it is assumed that A1

is assumed to have more idle periods than A2. Hence, the

speed of the disks accessed by A1 is set to 6000 RPM by

the compiler, whereas that of the disks accessed by A2 is

set to 9000 RPM. Before the I/O phase of each application

starts, the disks are set to the maximum speed, 15000. As

explained in the previous section, the second set speed() call

of each application is issued early enough to hide the time

required to restore the speed of disks to the maximum value.

Figures 5(a) and (b) depict the disk power state diagram for A1

and A2, respectively, when A1 is started to execute followed

by A2. Both A1 and A2 issue three set speed() calls (hints)

during their execution periods. While two of these calls do not

have any impact on A2’s performance and energy behavior, the

second call issued by A1 has a substantial impact on the first

I/O phase of A2, denoted using IO2 in Figure 5(b). This is

because the decision on disk speed made at the time when A1

issues set speed (1110, 6000, 0) is lower than the one required

for A2, which is 15000 RPM. In order not to incur a negative

impact on the performance of A2, we need to set the speed of

the shared disk to 15000 RPM, the higher of the conflicting

speeds.

Figure 6 illustrates how our runtime system support handles

the software-directed disk power management calls inserted

by the compiler. To make a decision that would be agreeable

to all concurrently-running applications, our runtime system

needs to intercept each disk power management call inserted



Fig. 6. Our proposed runtime system that handles compiler-inserted disk
power management calls.

by the compiler, and it should maintain the current speed

and the requested one for every disk in the system. For this

purpose, our runtime system maintains an array of disk speeds,

each of which corresponds to the current speed of each disk.

For example, assuming we have four disks in the system,

{15K,15K,12K,9K} means that the current speed of d0 and d1

is 15K, and the current speeds of d2 and d3 are 12K and 9K,

respectively. The decision for selecting the most appropriate

speed for each disk depends primarily on the current disk

speed and the requested disk speed, denoted as SC and SR

respectively in Figure 6. If the current speed of a disk used

by an application is SC and another application issues a

set speed() call requiring speed SR for the same disk, this

request will be granted if and only if SC < SR. In other

words, an application is allowed to speed up a disk but it is

not allowed to slow down a disk if that disk is also being

used at the same time by another application. To keep track

whether a disk is shared or not, we attach a counter to each

element of the disk speed array. The counter attached to a

disk is increased if and only if a set speed() call issued by

an application and the F parameter to it is set to 1. Recall

that, the F parameter in the set speed() call is set to 1 when

the compiler predicts that the disk should be spinning at the

specified speed in order not to incur performance degradation.

The counter is decreased when an application releases its use

of disks by issuing the set speed() call with the F parameter

set to 0, or when the application terminates. If the disk is used

by only one application (i.e., the counter attached to it is 1),

a request to slow down the disk is granted by our runtime

system. On the other hand, if the requested speed is equal to

the current one, such a request is discarded.

Figure 7 shows an example of how our runtime system

selects preferable disk speeds based on the hints issued by two

applications, A1 and A2, running in parallel. The disk layouts

of the files accessed by A1 and A2 are assumed to be (0, 3,

64) and (1, 3, 64), respectively, and it is assumed that we have

four disks in the system. Initially, all the entries in the array of

current disk speeds are set to zero, as depicted in Figure 7. The

counter associated with each entry is also initialized to zero. In

this example, each application sends three speed-setting calls

(denoted as Si in the figure) to the runtime system during

execution. When our runtime system receives S1, it updates

the array of current disk speeds accordingly. Since the disk

layout of the file accessed by A1 is (0, 3, 64), it sets the

speed of the first three disks (i.e., d0, d1, and d2) to 15K.

Fig. 7. An example that illustrates the selection of preferable disk speeds for a
scenario that involves two concurrently-running applications. The disk layouts
of the file accessed by A1 and A2 are (0, 3, 64) and (1, 3, 64), respectively.
Each entry in the current disk speed array corresponds to the speed of each
disk. The number next to each disk speed is the counter value associated with
each disk, which indicates how many applications are currently using that
disk.

When the runtime system receives S2 from A2, it tries to set

the speed of the disks accessed by A2, which are d1, d2, and

d3. The runtime system sets the speed of d3 only, and the

requests for the disks d1 and d2 are discarded because the

requested speed of S2 is the same as the current speed, which

is 15K. The third and fourth requests need to be processed

carefully because they demand slower speeds than the current

one. In processing S3, the runtime system first checks whether

the disks accessed by A1 are shared or not. Since at this point

only d1 and d2 are shared with A2 (i.e., the counters associated

with d1 and d2 are not 1), the runtime system sets the speed

of d0 to the requested one, which is 6K (since this disk is

not currently shared). After processing S3, the corresponding

counter is decreased accordingly. Similarly, when processing

S4, the runtime system allows slowing down the disks accessed

by A2 to 9K because both A1 and A2 inform that the disks

accessed by them are not used for a certain period of time.

The remaining two requests, S5 and S6, on the other hand, are

granted immediately because they require a higher disk speed

than the current one.

B. Implementation

We implemented a prototype of our runtime system within

PVFS2 [12], an open source parallel file system designed to

run on Linux clusters. We modified three major parts of PVFS2

and MPICH2 [28] to support our runtime system approach.

First, since the application code transformed by the compiler

contains an explicit power management call, set speed(), and

this call is later used by our runtime system layer, we added

this interface to ROMIO, which is the part of MPICH2

that contains the implementation of MPI-IO call interfaces

to PVFS2. Since any number of executables compiled using

the modified MPICH2 can make a set speed() request to

the runtime system simultaneously, we have to ensure that

processing such requests is performed in an atomic fashion.

To achieve this, we used a mutex-lock mechanism through the

internal lock functions supported by PVFS2.

Second, the array of the current disk speeds is implemented

as an internal data structure of the PVFS2 server. Since every

PVFS2 server running on each node should know the current

status of the disk speeds to make their own decisions, we added

this data structure to the metadata server so that all PVFS2 I/O

nodes can lookup the shared data structure when they make



the decision. Specifically, when a set speed() call is received,

the PVFS2 server checks to see if the specified disk speed

can be set based on the decision made by the runtime module

described in Figure 6. If the requested speed is granted by the

runtime module, it is queued to the job threads of the PVFS2

server.

The last part of our modifications to PVFS2 is to emulate

multi-speed disks. Since we do not have access to a multi-

speed disk system, we need to emulate its behavior to evaluate

our approach. There are two unique disk activities of multi-

speed disks we have to emulate to obtain correct timing

regarding disk accesses. The first activity is changing the speed

of the disks, as triggered by our runtime system. The second

one is handling disk I/O when the speed is set to a lower

one than the maximum speed. To mimic the behavior of these

activities, we used nanosleep(), a high resolution sleep

function available under Linux/Unix. Specifically, whenever

the runtime system makes a decision to change the speed of

a particular PVFS2 I/O node (disk), we made that node sleep

until the time specified by the argument to the nanosleep call.

As explained in [7], the amount of time required for changing

the speed of a disk depends on the difference between the

current speed and the requested speed, and in our implemen-

tation we applied the technique in [7] to calculate this cost,

and included it in all our results presented below. Similarly,

the slowed I/O time due to the lower disk speed, which is set

by the runtime system, is also imitated by intercepting every

I/O thread1 and invoking the required sleep calls before the

thread terminates.

VI. EXPERIMENTAL EVALUATION

A. Setup

We used the trace library component of Pablo [29], an I/O

performance analysis toolkit, to collect the disk I/O traces for

each application. We ran our applications on a Linux cluster

of 16 dual processor nodes, AMD Athlon MP2000+ systems,

connected through Ethernet and Myrinet. Each node of this

system is configured as a PVFS2 I/O node and we installed

MPICH2 in our execution environment. All applications that

will be explained later in this section are MPI-IO based and use

PVFS2 as the file system. We compiled them using the same

compilers, Intel C and Fortran compiler 9.0, which MPICH2

was built with and ran them under the MPICH2 and PVFS2

environment.

To evaluate our approach and the prior ones to disk power

management, we built a custom energy simulator. The disk

energy model we used in our simulator is based on the data

from the data sheets of the IBM Ultrastar 36Z15 disk [30].

Table I gives important simulation parameters. The I/O traces

collected from Pablo [29] capture the duration of each I/O

activity as well as the impact of slowing down or speeding

up a disk. The cost of changing the speed of disk, ∆t, to the

different amount of RPM change, ∆n, is also given in Table I.

We calculated the energy consumption of each application

based on this timing information fed to our energy simulator.

1In PVFS2, each I/O request is processed by the Trove thread spawned by
the server process.

TABLE I DEFAULT SYSTEM PARAMETERS.

Parameter Default Value

Number of disks 8

Number of processors 4

Disk drive model IBM36Z15

Storage capacity (GB) 36.7

Maximum disk speed (RPM) 15000

Striping unit (Kbytes) 64

Disk layout (0, 8, 64)

Available disk speeds (RPM) (15000, 12000, 9000, 6000)

Active power consumption (Watt) (13.5, 10.73, 8.57, 7.03)

Idle power consumption (Watt) (10.2, 7.43, 5.27, 3.73)

∆t (sec) when ∆n (RPM) is (9K, 6K, 3K) (6.54, 4.36, 2.18 )

Energy consumption during each of different RPM transitions

is based on the quadratic curve fitting in [7]. By default, all

arrays are striped over all 8 disks.

Table II gives a brief explanation of the applications used

in this study. As can be seen from this table, the applications

are taken from various sources and solve different types of

problems from the scientific computing domain. The last two

columns give the total amount of data manipulated by each

application and its base execution time, using the default

values of the system parameters listed in Table I (executing

each application using four processors assuming the highest

speed for all disks).

To evaluate the effectiveness of our approach, we made

experiments with the following four schemes:

• Base: This version does not employ any disk power

management strategy. All the disk energy and execution

time numbers reported later in this section are given as

values normalized with respect to this version.

• COM: This is the pure compiler-based approach pro-

posed in [11]. In this scheme, the compiler estimates the

disk idle and active periods by analyzing the application

code and using the disk layouts exposed to it, and then in-

serts explicit disk speed-setting calls into the application.

Note that the calls issued by this scheme go directly to

the disk system, as opposed to our hints which go through

the runtime system.

• HW: This is the pure hardware-based dynamic disk

speed management scheme proposed in studies [1] and

[7]. Depending on the observed variation on I/O response

time, this scheme sets the speed of each disk to an

appropriate level to save power. Note that a hardware

scheme that employs spin-down disks [5], [6], [35] could

also be used. However, we do not consider that option in

this work, because the disk idle periods exhibited by these

(and many other) scientific applications are very short,

and consequently there are little chances of spinning the

disks down and up (see Figure 8).

• RT: This is our runtime based approach proposed in

this paper. The compiler extracts the disk access patterns

of individual application considering disk layouts and

generates speed-setting hints, and then the runtime system

uses these hints and current status of the shared disks to

make decisions regarding appropriate disk speeds for all

applications.



TABLE II I/O APPLICATIONS USED IN OUR EXPERIMENT.

Name Source Language/Lib Description Data Size (MB) Cycles (sec)

MxM IBM [31] C/MPI-IO Originally MPI-IO/GPFS test program for out-of-core block 191.8 244.8

matrix multiplication. It was modified to use PVFS2 through

MPI-IO, and all matrices are assumed to be square.

S3aSim Northwestern C/MPI-IO This is a parallel sequence search algorithm for evaluating 798.3 396.2

University [32] various I/O strategies using MPI-IO. We compiled it to use

collective I/O operations.

NIAL MSE PSU [33] F90/FFTW This application quantitatively simulates phase transformation 720 308.9

and coarsening in Ni-Al binary alloy in 3D using the KKS

model using parallel programming.

BTIO NPB2.4 [34] F77/MPI-IO This program implements the Block-Tridiagonal (BT) NPB 419.43 483.9

problem, and employs MPI-IO. We compiled it with

collective buffering.
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Fig. 9. I/O request patterns of each application throughout the whole execution time. Note that, in case of BTIO, we show only the first 65 seconds of total
execution time to highlight the I/O access pattern; the remaining part until the completion of BTIO shows similar I/O behavior.
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Fig. 8. CDF (Cumulative Distribution Function) for disk idle periods in our
applications. An (x, y) point on a curve indicates that y% of the idle periods
have a duration of x milliseconds (ms) or lower. The minimum amount of
idle time required to compensate the cost of spinning down the disk and up is
called the break-even time. Based on the numbers from the IBM36Z15 [30]
disk data, the break-even time is 15.19 seconds. As most of idle periods are
less then 1 second, this confirms that the spin-down disk is not a viable option
for these applications. Instead, multi-speed disks are more promising.

B. Results

Before discussing the behavior of the different schemes for

reducing disk energy consumption, let us first present the I/O

patterns exhibited by the applications used in this study. The

graphs in Figure 9 present the I/O patterns (obtained using

Pablo [29]) of each application in isolation. In each plot, the

x-axis shows timestamps and the y-axis indicates the size of

I/O requests. As we can see from these plots, each application

has explicit I/O phases which can take different amount of

time and use various request sizes.

We start by presenting the results for the single applica-

tion execution case. Figure 10 gives the normalized energy

consumption and execution time results (with respect to the

Base scheme) when each application is executed alone. One
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Fig. 10. Single application execution scenario.

can make several observations from the results. First, the HW

scheme brings an average energy saving of 14.5% across all

applications with only 4.6% performance penalty. The second

observation one can make is that the COM scheme achieves

a significant energy savings, 44.2% on average over the Base

scheme. This significant energy saving can be attributed to

the proactive (speed-setting) decisions made by the compiler.

Our next observation is that the energy savings brought by

the RT scheme are very similar to those obtained using the

COM scheme. More specifically, the RT scheme consumes

only 1–2% more energy than the COM scheme. This is

mainly due to the latency overhead incurred by our runtime

system in processing set speed() calls during execution. This

result indicates that our runtime system performs very well in

the single application execution scenario, with only minimal

performance overhead.

In the next set of experiments we increased the number of

applications running simultaneously to see how our approach

behaves under multiple application scenario. Figure 11 shows

the normalized energy consumption and execution time results

when we increase the instances of MxM up to three. The

results are normalized with respect to the Base case (i.e.,
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Fig. 11. Multiple application execution scenario by increasing the instances
of MxM up to three. The completion times for running two and three instances
of MxM are 279.9 and 290.3 seconds, respectively. Due to caching effects,
there is little increase in execution time when we increase the instances of
MxM from two to three.

TABLE III MULTIPLE APPLICATION EXECUTION SCENARIO.

Scenario Running Applications Completion Time (sec)

S1 MxM 244.8

S2 MxM + S3aSim 464.0

S3 MxM + S3aSim + NIAL 371.9

S4 MxM + S3aSim + NIAL + BTIO 651.4

no power management); but, in this case, the execution time

represents the completion time of the last (slowest) instance

(of MxM), and the energy consumption includes all the disk

energy consumed by all instances (i.e., the total energy con-

sumption in the disk system). As we can see from Figure 11,

when we increase the instances of MxM running concurrently,

the energy savings brought by the HW scheme also increases

slightly whereas the savings obtained through the COM and

RT schemes decrease. The reason why the HW scheme saves

more energy with more instances is that the periodic speed

modulation by the disk drive itself comes to play with the

mixed (interleaved) patterns of I/O requests. We can also

observe that the HW scheme does not incur much performance

slowdown, only 4.2% on average. However, the COM scheme

performs poorly as we increase the number of instances of

MxM, in terms of both energy and performance. Based on

Figure 11(a), when three instances of MxM are executed at

the same time, the COM scheme is slightly worse than the HW

scheme in energy consumption. This is because the compiler-

directed disk speed setting calls issued by one instance of

MxM can be an untimely decision (e.g., slowing down a

disk when it needs to be run at a higher speed) for the

other instances of MxM that exercise the same set of disks

(recall, from Table I that, by default, all arrays are striped

over all 8 disks). The last observation we make is that the RT

scheme always achieves the highest energy savings, 30.9%

on average, considering all execution scenarios. These results

clearly show that our approach is very successful with the

multiple application execution scenario.

We next present results for four execution scenarios de-

scribed in Table III. The second column of this table gives

the applications executed simultaneously in the corresponding

scenario and the third column gives the completion time, the

time it takes for all the applications in the scenario finish

their execution (under the Base scheme). As we can see from

this table, the completion times for these different scenarios

increase significantly when we execute more applications in
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Fig. 12. Multiple application execution scenario with different set of
applications.
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Fig. 13. Multiple application execution scenario with different disk layouts
(DLs). We used all four applications, each of which is configured to get striped
across eight disks among fifteen available disks.

parallel. Figure 12 shows the effect of three schemes we

experimented with the scenario in Table III on the energy and

execution times. In this figure, the bars for a given scenario is

normalized with respect to the energy and execution times of

the Base scheme. We can observe similar trends from these

results as in the cases where we execute the multiple instances

of the same application (see Figure 11). Specifically, while

the HW scheme achieves increased energy savings when the

number of applications is increased, the COM scheme does not

perform well in saving disk energy. These results are expected

because, from the compiler perspective, increasing the number

of applications running in parallel has an impact on the

performance and, ultimately, on the disk energy consumption,

regardless of whether the instances running in parallel belong

to the same application or not. In this execution scenario, the

RT scheme achieves 19.4% and 39.9% energy savings over

the HW and the COM schemes, respectively. As far as the

performance is concerned, the RT scheme degrades the base

execution time by less than 7.6%. The HW and COM schemes,

on the other hand, incur 16.7% and 23.1% performance

slowdowns, respectively. Note that the performance of the

HW scheme under this execution scenario is much worse

than the execution under the multiple instances of MxM (see

Figure 11(b)). This is because the heuristic employed in the

HW scheme modulates the disk speed based on the number of

request (rather than time), and this modulation heuristic incurs

more performance penalty when the number of I/O requests

are increased.

In the last set of experiments, we varied the default striping

of each file to assess the impact of different disk layouts on

performance and energy consumption. In these experiments,

we used the S4 scenario (see Table III) only. Recall that, all

the results presented so far are obtained using 8 disks and



all files are striped across all available disks. In this new set

of experiments, we increased the total number of disks that

can be used for file striping to 15, and varied the Base disk

for each array to effect its disk layout (see the disk layout

triplet discussed in Section IV). The other two parameters,

Striping Factor and Striping Unit, are fixed at 8 and 64Kbytes,

respectively, as in the initial setup. We generated a random

number between 1 and 15 to select the Base disk from which

the file striping starts. Figure 13 gives the normalized energy

consumption and execution time results for the S4 scenario

with three different disk layouts. We see that the overall energy

savings brought by our runtime system based approach are

similar across the different layouts. This indicates that our

approach can adapt very well to the different disk layouts.

This is mainly because the compiler can extract the disk access

patterns accurately with different disk layouts and provide

the most preferable decision considering the underlying disk

layouts. Our runtime system takes these preferable speeds and

makes a globally acceptable decision for each and every disk.

To summarize, these results show that our approach works very

well when disks are shared and when they are not shared.

VII. CONCLUSION AND FUTURE WORK

The main contribution of this paper is a runtime system

support for software-based disk power management in the

context of MPI-IO based scientific applications. In the pro-

posed approach, the compiler provides important information

on future disk access patterns and preferable disk speeds for

each MPI-IO call. Our proposed runtime system uses this

information to make decisions (regarding disk speeds) that

would be agreeable to all applications running concurrently.

Our main goal is to save as much energy as possible without

slowing down any application significantly. To quantify the

benefits of our approach, we implemented it using the PVFS2

file system. The results obtained so far from our experiments

with four I/O-based scientific applications indicate significant

energy savings over the pure hardware and software based

schemes when multiple applications use the same set of

disks concurrently. Our future work includes investigating

a framework that integrates our approach with disk layout

optimization in a unified manner.
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