
Disk Layout Optimization for Reducing Energy
Consumption∗

S. W. Son G. Chen M. Kandemir
Department of Computer Science and Engineering

Pennsylvania State University
University Park, PA 16802, USA

{sson,gchen,kandemir}@cse.psu.edu

ABSTRACT
Excessive power consumption is becoming a major barrier to ex-
tracting the maximum performance from high-performance parallel
systems. Therefore, techniques oriented towards reducingpower
consumption of such systems are expected to become increasingly
important in the future. Since disk systems of high-performance
architectures are known to constitute a large fraction of the overall
power budget, they form an important optimization target. Previ-
ous work on disk power management focuses primarily on hard-
ware based schemes. However, since disk access pattern, i.e., the
order in which disks on a system are accessed, is mainly shaped
by the program code access pattern and disk layout of data, soft-
ware techniques can also play a critical role in disk power man-
agement. Motivated by this observation, this paper proposes and
evaluates a profile-driven disk layout optimization schemefor re-
ducing energy consumption. The proposed scheme analyzes the
array access traces obtained through profiling and determines, for
each disk-resident data structure, the start disk from which the data
is striped, the number of disks over which the data is striped, and
the stripe unit. This paper discusses implementation details of our
approach and presents an experimental evaluation of it. Ourexper-
iments with the entire suite of Spec95 floating-point benchmarks
that are modified to operate on disk-resident data show that the
proposed approach is very effective in reducing disk energycon-
sumption. The results also show that the performance degradation
caused by our approach is very small. This paper also compares
our approach to a code restructuring based optimization mecha-
nism and discusses how the two techniques can be combined for
achieving the best results.

Categories and Subject Descriptors
B.4 [Input/Output and Data Communications]: Input/Output
Devices; D.3.4 [Programming Languages]: Processors—Compil-
ers, Optimization

General Terms
Algorithms, Design, Performance, Experimentation

Keywords
Optimizing Compiler, Disk Layout, Low Power

∗This work was supported in part by NSF grants #0444158,
#0406340, and #0093082.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICS’05,June 20–22, Boston, MA, USA.
Copyright c© 2005 ACM 1-59593-167-8/06/2005 ...$5.00.

1. INTRODUCTION
Reducing power consumption is becoming increasingly impor-

tant for high-end cluster/server based systems. These systems are
radically different from embedded systems where most of theprior
power-related studies appeared. While in embedded systemspower
research is generally driven by desire of increasing battery lifetime,
in high-end computing both economic and environmental factors
play an important role. In particular, recent research [5, 13] indi-
cates that a large portion of the system maintenance budget in high-
end systems is invested in cooling due to excessive power consump-
tion of such systems. In addition, high power consumption, which
requires sophisticated power generation and transmissiontechnolo-
gies, is known to be harmful to the environment. As a result, recent
years have witnessed several efforts on reducing power consump-
tion of high-end systems [8, 13, 7].

Disk systems of large, high-performance machines are knownto
contribute to a significant fraction of overall power budget. Mo-
tivated by this observation, recent studies such as [23] and[26]
specifically focused on disk system and proposed energy saving
strategies. These efforts are either hardware based (e.g.,reducing
disk speed if the associated latency can be tolerated by the appli-
cation) or software based (e.g., restructuring code for taking best
advantage of available low-power capabilities provided bythe disk
system). From the software angle, there are two major parameters
that can be tuned for low power: the code structure of the appli-
cation program and the disk layout of data. This paper focuses on
the second parameter and proposes a disk layout detection scheme
for reducing power consumption on the disk system. The impor-
tance of disk layout from the power angle stems from the fact that
it determines the order in which the different disks in the system
are accessed and their access durations.

Our approach saves disk power by increasing the number and
length of disk idle periods. It is known from the prior research [16,
26] that the array-based scientific codes are not able to takemuch
advantage of conventional, hardware-based disk low-powerman-
agement, mainly due to short disk idle periods. Through fine-tuning
of layouts of individual arrays, our approach is able to increase
disk idle times substantially; and, this in turn enables effective disk
power management. Specifically, focusing on array/loop-intensive
scientific applications with regular data access patterns,this paper
makes the following contributions:

• We present an algorithm for determining the disk layouts of
array data. The goal of this profile-driven algorithm is to in-
crease disk idleness and improve the effectiveness of the un-
derlying disk power management mechanism supported by
the hardware.

• We discuss details of our algorithm and present an exper-
imental evaluation of it. Our experiments with the entire
suite of Spec95 floating-point benchmarks that are modified
to operate with disk-resident data show that the proposed ap-
proach is very effective in reducing disk energy consump-
tion. Our results also show that the performance degradation
caused by the proposed approach is very small.

• We discuss how our approach can be combined with code re-
structuring. The results with the benchmark codes in our ex-
perimental suite indicate that this combined approach, which
applies layout optimization followed by code restructuring,
generates better results than pure layout optimization and
pure code structuring.

A unique characteristic of the work presented in this paper is that
it automatically determines disk layouts for energy efficiency. To
the best of our knowledge, this is the first study along this direction.
Note that many file systems allow explicit tuning of disk layouts on
an individual file basis and this property can be used to convey the
layout information extracted by our approach to the file system.

The remainder of this paper is structured as follows. The next
section discusses related work. Section 3 discusses the disk layout
abstraction and the power management abstraction our approach
employs. The details of our approach are presented in Section 4.
Section 5 discusses how the proposed disk layout detection scheme
can be combined with loop restructuring. Section 6 presentsexperi-
mental evidence that demonstrates the effectiveness of theproposed
approach and we conclude the paper in Section 7.

2. RELATED WORK
There have been numerous proposals targeting at energy/ power

reduction in low-cost embedded systems [28, 15, 3, 4, 14, 30,27,
22]. Since our work focuses on high-end systems, in this section,
we mainly discuss the power related hardware and software efforts
on these systems.

We can divide the related work on disk power management into
two groups. In the first group are the hardware-based efforts. The
studies presented in [10, 19, 11], which are designed for laptop
disks, save disk power by spinning down a disk when it becomes
idle during execution. Such a disk is reactivated (spun up) when an
access is made to it. Since spinning up and spinning down a disk
both take extra cycles and consume extra energy, one needs tobe
conservative in exercising this option. Specifically, if the idleness
is not large, it may not be a good idea to spin down a disk. There-
fore, accurate prediction of idleness may be an important issue for
this mechanism to be successful. Observing that spinning down an
idle disk may not be very effective in server workloads, [16]pro-
posed a different approach which is based on running the diskwith
a reduced speed. Since such a disk can still serve requests, this
approach can potentially utilize even small idle periods. In fact,
[16] shows both performance and energy benefits of this approach
over the spinning-down based approach. [6] presents an approach
that demonstrates how a disk system constructed using diskswith
different speeds can be utilized effectively for reducing energy con-
sumption.

On the software front, [26] shows how an application code can
be restructured for reducing disk power. They also show thatcode
restructuring can be used in conjunction with both spinningdown
disks and in an architecture that supports disks with different speeds.
As compared to the hardware-based work, our approach takes ato-
tally different stand. While we focus on a particular application
domain (namely array/loop-intensive scientific codes thatperform
I/O), we allow the software to control disk layout, and in this way,
we can optimize codes that are not amenable to hardware-onlyap-
proaches (due to short disk idle times). In a sense, the work pre-
sented here and [26] are complementary. In fact, our experimental
evaluation indicates that the best energy behavior is obtained by
employing both code restructuring and data layout optimization.
Apart from disk power, there exist several studies that target cluster
systems as a whole [8, 7, 12, 13] or interconnection networksin
particular [9, 20]. Since we focus exclusively on disk system, our
approach can be used with many of these power-saving techniques
proposed in the past.

3. ABSTRACTIONS USED BY OUR
APPROACH

There are two important types of information that needs to befed
to our approach, for it to optimize disk layouts for saving energy.
The first one is the disk layout abstraction, which captures the pa-
rameters whose values can be tuned by our approach. The second
one is the energy management technique/strategy supportedby the
underlying hardware. In the following two subsections, we discuss
these in more detail.

3.1 Disk Layout Abstraction
In this section, we describe the disk layout abstraction used by

our approach. File striping is a technique that divides a large data
into small portions and stores these portions on separate disks in
a round-robin fashion [21]. This permits multiple processes to ac-
cess different portions of the data concurrently without much disk

Figure 1: Two different example disk layouts. Left: (d0, 6, S)
and Right: (d4, 3, 2S).

contention. While striping can be performed manually, manyfile
systems today provide automatic support for it, as will be pointed
out below. In this work, we represent disk layout of an array using
a triplet of the form:

(start disk, stripe factor, stripe size).

The first component, startdisk, in this triplet indicates the disk
from which the array is started to get striped. The second com-
ponent, stripefactor, gives the number of disks used to stripe the
data, and the third component, stripesize, gives the stripe (unit)
size used. Several current file systems and I/O libraries forhigh-
performance computing provide APIs to convey them the disk lay-
out information when the file is created. For example, in PVFS
[25], one can change the default striping parameters by setting
base (the first I/O node to be used),pcount (stripe factor), and
ssize (stripe size) fields of thepvfs filestat structure. Then,
the striping information defined by the user via thispvfs filestat
structure is passed to thepvfs open() call’s parameter. Two
example disk layouts for two-dimensional disk-resident arrays are
depicted in Figure 1. The first layout (i.e., the one for arrayU) is
(d0, 6, S), whereas the second layout (i.e., the one for arrayV) is
(d4, 3, 2S).

Since a triplet is used for representing disk layout in our work,
our job is to determine the three layout parameters for each disk-
resident array that needs to be created by a given application pro-
gram. It needs to be noted however that this has to be done in a
coordinated fashion by considering all the disk-resident arrays in
the application. This is because the different disk-resident arrays
can potentially share the same set of disks and determining their
layouts in an independent fashion can lead to unpredictableresults
(e.g., due to irregular disk access patterns) at runtime as far as sav-
ing disk power is concerned. In this paper, we present an algorithm
embedded within a trace analyzer for determining disk layouts of
array data to minimize energy consumption, under the assumption
that each array is stored in a separate file.1

3.2 Power Management Abstraction
Figure 2 depicts the transitions between the different states sup-

ported by the disks assumed in this study. The labels attached to
the arcs in this figure indicate how the transitions are triggered.
Basically, we assume that each disk is equipped with a timer-based
power management capability. In this mechanism, when the current
access to a disk is completed, the disk transitions to the idle state.
If it remains in the idle state for a certain amount of time, itis spun
down. We say in this case that the disk is placed into thelow-power
operation mode.The disk transitions back to the active mode by
spinning up when a new request to it is made. Note that this model
represents one of the simplest mechanisms that can be supported by

1We can relax this constraint by allowing one-to-many or many-to-
one mappings between the arrays and the files, as will be discussed
later.

Figure 2: Different disk states and transitions among them.
When computing energy consumption, we take into account the
energies consumed at each state.

a server disk that allows power management. The details of the pa-
rameters used in this model will be given later when we present our
experimental platform. For now, the important point to emphasize
here is that, since spinning-down and spinning-up take bothextra
time and energy, they need to be minimized. Therefore, one would
prefer, from both performance and power consumption angles, a
few long idle periods over numerous short idle periods. The goal
of the profile-driven approach proposed in this paper is to increase
the duration of idle periods, thereby increasing the chances for this
power management scheme to be applicable and successful. The
proposed approach achieves this by setting the layout parameters
for each disk-resident array manipulated by the application code.
We also need to mention that there exist more effective powerman-
agement mechanisms recently proposed in the literature. Though
we experimented our approach under different mechanisms, called
DRPM [16], we do not present the results in this paper due to lack
of space.

4. DISK LAYOUT DETECTION
ALGORITHM

4.1 High-Level View
As stated earlier, the main goal behind our approach is to deter-

mine a suitable disk layout for each disk-resident array manipulated
by the application so that the energy spent on the disk systemduring
execution is minimized. Our approach reduces energy consumption
by increasing disk idle periods. However, considering onlyenergy
consumption alone may not be a wise choice since performanceof
the application is also important and affected significantly by the
disk layouts chosen for its arrays. After all, if there was noper-
formance concern, one could potentially work with a single disk,
thereby placing all the remaining disks in the system into the low-
power operation mode. However, such an approach would hardly
be acceptable from the performance perspective. Therefore, our ob-
jective is to strike a balance between energy consumption and per-
formance; that is, we would like to save as much energy as possible
without significantly impacting original execution cycles(i.e., exe-
cution cycles that would be taken by a pure performance-oriented
approach that does not employ any power-saving strategy).

An important property of our algorithm is that it is profile driven
(as shown in Figure 3). The application code is first instrumented
and then profiled using a typical input set. The inserted instrumen-
tation code records information on each disk access issued by the
application program. At the end of this profiling, we obtain an ar-
ray access sequence,which is of the form(A1, A2, ..., An). Each
array accessAi in this sequence has the form(X, a, t), whereX
is the id of the disk-resident array,a is the offset of the accessed
array element within the array, andt is the time stamp. The time
stamp of an array access is the time since the start of the program
after deducting the I/O time spent in the disk accesses. As a simple
example, let us assume a disk access is issued 300ms after thepro-
gram starts its execution, and during the first 300ms of the program
execution, disk I/O takes 100ms in total. Then the time stampfor
this array access is calculated as 300ms− 100ms = 200ms. We
say that two array accessesAi = (X, a1, t1) andAj = (Y, a2, t2)
conflictwith each other if they access the same disk and the differ-
ence between their time stamps is less than the disk responsetime
(denoted byR). Further, we call the conflicts due to accessing the
same array (i.e.,X = Y) the intra-array conflicts,and the con-
flicts due to accessing different arrays (i.e.,X 6= Y) are referred

Figure 3: The connection between profiling and layout opti-
mization.

to as theinter-array conflicts.Note that, if two array accesses con-
flict with each other, one of them has to be delayed, which causes
the program execution to slow down. Based on this discussion,
we can re-state the goal of our approach as one of reducing energy
consumption on the disk system while minimizing the number of
intra-array and inter-array conflicts as much as possible.

Our approach determines the three components of the disk lay-
out of each array in the application: stripe factor, stripe size, and
start disk. It needs to be noted that these three parameters are ac-
tually inter-related. What this means is that they affect one another
and selecting a value for one of them restricts the potentialsearch
space for the other two parameters. Ideally, one would want an
algorithm that would try all potential values for all these three pa-
rameters of the layout and select the one that generates the best
trade-off between energy consumption and performance. However,
such an approach is not feasible in general. This is mainly because
the search space of potential solutions can be very large. First, in
a system with large number of disks, we have a lot of candidates
for the start disk and stripe factor for a given array. Second, one
can have many choices for the stripe size, depending on the ca-
pabilities of the underlying file system. Third, in order to reach
optimal results, one needs to try all potential layout combinations
for all disk-resident arrays. All these factors make an exhaustive
search infeasible in practice except for cases with a few disks and a
few arrays. Consequently, our approach is essentially a fast heuris-
tic that generates not optimal but close-to-optimal results for most
cases.

The proposed approach determines a single component of a disk
layout at a time. More specifically, it first determines the stripe fac-
tor for all arrays and then the stripe size for all arrays. Then, based
on these, it determines the start disk for all arrays. The reason
that we first determine the stripe factor and the stripe size is that,
these two parameters affect the magnitude of the intra-array con-
flicts. Once we determine the stripe factor and the stripe size for
each array independently, the part of the algorithm that determines
the start disk for arrays is executed. This part positions the arrays
on the disk system in such a fashion that the number of inter-array
conflicts is minimized as much as possible. In the next section, we
present the technical details of our layout optimization approach.

4.2 Details of the Algorithm
4.2.1 Determining Stripe Factor

Figure 4 gives our algorithm for determining the stripe factor for
each disk-resident array. Generally speaking, storing an array in
more disks can reduce the number of intra-array conflicts, which
in turn can improve overall performance. However, storing an ar-
ray in more disks also means that more disks need to be activated
(i.e., they cannot be placed into the low-power mode). This clearly
increases energy consumption on the disk system. Therefore, the
goal of our algorithm given in Figure 4 is to minimize the stripe fac-
tor for each array while keeping the number of intra-array conflicts
within a tolerable range. Our algorithm maintains a queue (de-
noted byQ[X]) for each arrayX, which contains the most recent
accesses to arrayX that may create intra-array conflicts. For each
arrayX, the algorithm uses an array of counters (K[X][1..D]) to
capture the distribution of the length ofQ[X]. Specifically, array
K records the fact that, throughout the execution of the program,
we observedK[X][i] timesQ[X] contains exactlyi accesses to ar-
ray X, that is,i accesses to arrayX conflict with each other. The
value of

Pd

i=1 K[X][i] indicates the number of accesses to array
X that cannot be served without intra-array conflicts ifX is stored
in less thand disks (i.e., if its stripe factor is less thand). StoringX
in d disks can eliminate these conflicts. The stripe factor (FX) for
arrayX is the minimum integer value that satisfies the following
constraint:

PF [X]
i=1 K[X][i]

PD

i=1 K[X][i]
≥ T,

Input: trace file
Output: stripe factor for each array

D — the number of disks;
R — the disk response time;
T — the threshold,0 < T ≤ 1;
Q[X] — the access queue for arrayX;
K[X][1..D] — the counters for arrayX;
F [X] — the stripe factor for arrayX;

while(there are array accesses to be processed){
assume the current array access is(X, a, t);
U = {(X, a′, t′) | (X, a′, t′ ∈ Q andt − t′ > R};
Q[X] = (Q[X] − U) ∪ {(X, a, t)};
i = |Q[X]|;
if(i > D) i = D;
K[X][i] = K[X][i] + 1;

}
for each arrayX {

// determine the stripe factor for arrayX.
sum =

P

D

i=1
K[X][i];

p = 0; F [X] = 0;
while(p < T) {

F [X] = F [X] + 1;
p = p + K[X][F [X]]/sum;

}
}

Figure 4: The algorithm for determining the stripe factor fo r
each array.

where thresholdT (0 < T ≤ 1) determines the percentage of
intra-array conflicts we want to eliminate. It is to be noted thatT
is a parameter whose value can be tuned by the programmer. This
allows us perform a trade-off analysis between energy and perfor-
mance. In our experimental evaluation, we conduct a sensitivity
analysis regarding parameterT .

4.2.2 Determining Stripe Size
Figure 5 gives our algorithm for determining the stripe sizefor

each disk-resident array. When the stripe factor has been deter-
mined, whether two array elements of an arrayX are located in
the same disk or not is determined by the stripe size ofX. Con-
sequently, the stripe size determines the number of intra-array con-
flicts. Our algorithm computes the number of conflicts for each
array with each available stripe size (which is given as an input to
the algorithm), and selects the stripe size with the minimumnum-
ber of intra-array conflicts.

4.2.3 Determining Start Disk
Figure 6 gives the algorithm used to determine the start diskfor

each array. The goal of this algorithm is to minimize the total num-
ber of inter-array conflicts. In this algorithm, each array is divided
into a set of sub-arrays such that the elements that are stored on
the same disk belong to the same sub-array. Obviously, arrayX
with stripe factor ofF [X] is divided intoF [X] sub-arrays. Fur-
ther, given the element sizes, the stripe factorF [X], and the stripe
sizeS[X] of arrayX, theith sub-array ofX can be calculated as:

{X[a] | ⌊a × s/S[X]⌋ modF [X] = i}.

Our algorithm operates in two steps. In the first step, based on
the profile data collected, we compute the number of potential inter-
array conflicts between each pair of sub-arrays, that is, thenumber
of inter-array conflicts due to accessing each pair of sub-arrays if
these two sub-arrays are stored on the same disk. In the second step
of the algorithm, we determine the start disk for each array.Instead
of exhaustively searching the entire solution space for theoptimal
result, we determine the start disk for each array using a greedy
search based strategy. In Figure 6, we can see that the main body
of this step is a loop. At each iteration of this loop, we determine
the start disk for a single array. Specifically, assuming thesetV
contains the arrays whose start disks have already been determined,
we selectdX (0 ≤ dX < D) as the start disk node for the next
arrayX 6∈ V such that the value of the following expression is
minimized:

X

Y ∈V

conflict(X, dX , Y, dY), (1)

Input: trace file and stripe factor for each array
Output: stripe size for each array

R — the disk response time;
N — the number of available stripe sizes;
Q[X] — the access queue for arrayX;
Z[1..N] — the available stripe sizes;
C[X][1..N] — the conflict counters for arrayX;
F [X] — the stripe factor for arrayX;
S[X] — the stripe size for arrayX;

while(there are array accesses to be processed){
assume the current array access is(X, a, t);
U = {(X, a′, t′) | (X, a′, t′ ∈ Q andt − t′ > R};
Q[X] = Q[X] − U ;
for i = 1 to N {

d = ⌊a/Z[i]⌋ modF [X];
for each(X, a′, t′) ∈ Q[X] {

if(⌊a′/Z[i]⌋ modF [X] = d)
C[X][i] = C[X][i] + 1;

}
Q[X] = Q[X] ∪ {(X, a, t)};

}
for each arrayX {

// determine the stripe size for arrayX.
min = ∞;
for i = 1 to N

if(C[X][i] < min) {
S[X] = Z[i]; min = C[X][i];

}
}

Figure 5: The algorithm for determining the stripe size for each
array.

where the function conflict(X, dX , Y, dY) computes the number of
inter-array conflicts between arrayX andY whose start disks are
dX anddY , respectively. Note that, for any givenY ∈ V , dY

has been determined in the previous iterations of the loop. The
implementation of function conflict(X, dX , Y, dY) is also given in
Figure 6. If multipledX values yield the same value of Expres-
sion (1), we prefer the minimum value ofdX . This is to reduce the
number of disks used by the program, and thus reduce the overall
energy consumption of the system.

In our implementation, these three algorithms, namely, thealgo-
rithms given in Figures 4, 5, and 6, form the trace analyzer (see
Figure 3).

4.3 Discussion of Array-to-File Mapping
So far we have assumed that each disk-resident array is stored in

a single file, and each file stores a single disk-resident array (i.e.,
1-to-1 mapping between files and arrays). However, it is possible
in some environment that, a large array may be split into multiple
parts (sub-arrays) and stored in multiple files. For example, array
X[0..m][0..n] in the following code fragment can be stored inm
files (F1, F2, ...,Fm) in such a fashion that fileFi storesX[i][0..n]:

for i = 0 to m {
for j = 0 to n {

...X[i][j]...
}

}

Since the files storing the elements of arrayX are accessed using
the same piece of array access code, these files need to have the
same disk layout in most cases. Our scheme can be extended to
address this situation. Specifically, we can allow the programmer
to specify array-to-file mapping for each disk-resident array and
the constraints on which files should have the same disk layout. In
practice, array file mapping can be specified using a functionf :

f(X, ~I) = Fi,

whereX is the name of the array,~I is the subscript vector, and
Fi is the name of the file. We refer to the set of files that must
have an identical disk layout as afile group. The constraints on file
grouping can be expressed using a functiong:

g(Fi) = Gj ,

Input: trace file, stripe factor, and stripe size for each array
Output: start disk for each array

D — the number of disks;
R — the disk response time;
Q — the access queue;
F [X] — the stripe factor for arrayX;
S[X] — the stripe size for arrayX;
C[X][i][X′][j] — the number of inter-array conflicts between the

ith sub-array ofX and thejth sub-array ofX′

if these two sub-arrays are stored on the same disk.
W [X] — the start disk for arrayX;

//step 1: computingC[X][d][X′][d′]
while(there are array accesses to be processed){

assume the current array access is(X, a, t);
d = ⌊a/S[X]⌋ modF [X];
U = {(X′, a′, t′) | (X′, a′, t′ ∈ Q andt − t′ > R};
Q = Q − U ;
for each(X′, a′, t′) ∈ Q {

if(X′ 6= X) {
d′ = ⌊a′/S[X′]⌋ modF [X′];
C[X][d][X′][d′] = C[X][d][X′][d′] + 1;
C[X′][d′][X][d] = C[X′][d′][X][d] + 1;

}
}

}
// step 2: determining the start disk for each array
V = φ;
for each arrayX {

min = ∞;
for i = 0 to D − 1 {

c = 0;
for eachY ∈ V

c = c + conflict(X, i, Y, W [Y]);
if(c < min) {

W [X] = i; min = c;
}

}
V = V ∪ {X};

}

// auxiliary function: computes the number inter-array conflicts between
// arraysX andY whose start disks arePX andPY , respectively.
int conflict(X, PX , Y , PY) {

for i = 0 to D − 1 { B[i] = −1; }
for i = 0 to F [X] − 1

B[(i + PX) modD] = i;
c = 0;
for i = 0 to F [Y] − 1 {

j = B[(i + PY) modD];
if(j 6= −1)

c = c + C[X][j][Y][i];
}
returnc;

}

Figure 6: The algorithm for determining the start disk for each
array.

whereFi is a file and it belongs to the file groupGj . For ease of
discussion, we define agroup element, Gj [k], as follows:

Gj [k] = {X[~I] | f(X, ~I) ∈ Gj ∧ h(X, ~I) = k},

wherek is an integer, andh(X, ~I) is the offset ofX[~I] within file
f(X, ~I).

Our scheme can be extended to determine the disk layouts that
satisfy the constraints on the grouping by modifying the instrumen-
tation tool such that, for each array access in the trace file,each
array element is replaced by the group element that containsthis
array element. Consequently, the files that belong to the same file
group are considered as a singleabstract file. Our scheme then de-
termines the disk layout for the abstract file of each file group. This
layout is then applied to all the files that belong to this file group.

4.4 Example
In this subsection, we illustrate how our approach works in prac-

tice by applying it to an example code fragment. Figure 7(a) presents
an example code fragment. In this example, we set the value ofthe

T parameter to 1, and we use a single file per disk-resident array
(1-to-1 mapping). For illustration purposes, let us assumethat the
underlying I/O system has 6 disks, the response time for a disk is
5ms, and each loop iteration (of loops L1, L2, and L3 shown in
the figure) takes 10ms. By analyzing the disk access trace of this
program, our approach determines that arrayX must be stored in
at least two disks and that arrayZ must be stored in at least three
disks. If we storedX in a single disk, the two accesses toX in
each iteration of loop L1 would conflict with each other. Specifi-
cally, the access toX[i + 1024] had to wait for the access toX[i]
to complete. Similarly, if arrayZ were stored in fewer than three
disks, the three accesses toZ in each iteration of loop L2 would
conflict with one another. Our approach determines the stripe fac-
tors for arraysX, Y , andZ as2, 1, and3, respectively, since we
want to minimize the number of disks used for storing each array
without increasing the number of intra-array conflicts (so that we
can save energy without impacting performance too much).

We determine stripe size for each array once the stripe factor for
that array is determined. Our trace analyzer analyzes the trace and
calculates the number of intra-array conflicts for each array with
each possible stripe size. Let us assume, again for illustration pur-
poses, that the underlying disk architecture and file systemsupport
four stripe sizes: 256B, 512B, 1024B, and 2048B. For arrayX in
loop L1, the number of intra-array conflicts with the stripe sizes
256B, 512B, 1024B, and 2048B, are 2048, 2048, 0, and 1024, re-
spectively. Our algorithm selects the stripe size with the minimum
number of intra-array conflicts (1024B). We do not need to further
consider the stripe size for arrayY since its stripe factor is one, i.e.,
Y is stored in only a single disk. The number of intra-array con-
flicts for arrayZ with stripe sizes 256B, 512B, 1024B, and 2048B,
are 0, 1024, 2048, and 3072, respectively. Therefore, we select
256B as the stripe size for arrayZ.

To determine the start disk for each array, our algorithm counts
the number of inter-array conflicts between each pair of diskstripes.
It then determines the start disk for each array, one array after an-
other. In our example code fragment, we have three arrays:X, Y ,
andZ. We first determine the start disk for arrayX. This step is
trivial since we can pick any disk, say disk 0, as the start disk for
arrayX. And then, we determine the start disk for arrayY . At
this step, we try all possible start disks forY , and select one that
minimizes the inter-array conflicts betweenX andY . Finally, we
determine the start disk for arrayZ. At this step, we need to select
the start disk for arrayZ such that the total number of inter-array
conflicts betweenX andZ and that betweenY andZ are mini-
mized. Figure 7(b) gives the final disk layouts determined byour
approach for this example, while Figure 7(c) gives another pos-
sible disk layout. It is to be emphasized that both these layouts
have the same disk conflicts. However, by comparing disk power
states2 presented in Figure 7(d) and 7(e), we observe that the disk
layouts determined by our approach exhibit much better idlepe-
riods. Specifically, we see that our algorithm uses three disks to
store all the arrays used in the program so that the other three disks
in the system can remain in the low-power mode throughout the
entire execution, and this can lead to significant energy savings at
runtime. Further, in Figure 7(d), we observe a total of six reactiva-
tions (i.e., switching a disk from the low-power mode to the active
mode), whereas in Figure 7(e), we have a total of thirteen reacti-
vations. Note that reactivating a disk incurs both performance and
energy penalties. This small example clearly demonstratesthat our
approach increases opportunities for saving disk energy.

5. COMBINING LAYOUT OPTIMIZATION
WITH LOOP RESTRUCTURING

Our approach determines the disk layouts of the arrays in a given
program such that the number of disk conflicts and the number of
disks used to store arrays are minimized. However, this doesnot
mean that all components of a given application will work well un-
der the disk layouts determined by our profile-driven approach. In
particular, while it is expected that the layouts found by our ap-
proach will operate well for most of the loop nests of the applica-
tion, it is still possible that these layouts perform poorlyfor a couple
of nests. This can certainly be the case for large applications with

2A power state diagram shows the states of the disks over time.

L1: for i = 0 to 2047 {
... ...
...X[i]...;
...X[i + 1024]...;
...Y [i]...;
... ...

}
L2: for i = 0 to 1023 {

... ...

...Z[i]...;

...Z[i + 256]...;

...Z[i + 512]...;

... ...
}
L3: for i = 0 to 4095 {

... ...

...X[i]...

... ...
}

(a) Code fragment.

Start Stripe Stripe
Array Disk Factor Size

X 0 2 1024
Y 2 1 2048
Z 0 3 256

(b) Disk layout determined by our approach.

Start Stripe Stripe
Array Disk Factor Size

X 0 4 1024
Y 4 2 1024
Z 0 6 256

(c) Another possible disk layout.

(d) Disk power states for (b). (e) Disk power states for (c).
Figure 7: An example that illustrates how our trace analyzerworks in practice.

Input: a loop nest and disk layouts for all arrays
Output: transformed (restructured) loop nest

A[i] — the set of array elements stored in diski;
S[L] — the set of array elements accessed withinL;
IT [L] — the set of iterations ofL;

for each loop nestL of programP {
D = φ;
for each diski of the system{

T = Ai ∩ S[L];
Ni = {~I | ~I ∈ IT [L] ∧ ∃x ∈ T : x is accessed at~I};
if(Ni 6= φ)

D = D ∪ {i};
}
for eachK ⊆ D {

d = IT [L];
for eachi ∈ K

d = d ∩ Ni;
for eachi ∈ D − K

d = d ∩ (I[L] − Ni);
output “turn off disks not inK”;
output “for ~I ∈ d {body ofL}”

}
}

Figure 8: Our loop restructuring algorithm.

many loop nests. There are two potential solutions to this prob-
lem: (1) allowing such nests to operate with different disk layouts,
or (2) using code restructuring to change the disk access patterns
of these nests. Unfortunately, the first option does not sound very
realistic. It is important to note that, once the disk layouts are as-
signed and arrays are created, it is difficult to change the layouts.
This is because such a change would normally require costly data
remappings on the disk system, whose overheads may not be toler-
able in practice. In the rest of this section, we explore the second
approach, namely, changing the data access patterns through code

restructuring (loop transformation). The proposed approach is ap-
plied to each loop nest whose behavior is not good under the disk
layouts determined by our trace analyzer.

We assume that a loop nestL (whose access pattern we want to
modify through loop restructuring) can be represented as follows:

for ~I = ~L to ~U {body}

where~I is the iteration vector (containing the loop iterators from
top to bottom); and~L and~U are the vectors that hold the lower and
upper bounds for the loops, respectively. We denote the set of the
disks used in loop iteration~I asd(~I). The goal behind our loop
restructuring approach is tocluster,at a given time, disk accesses
to as fewer disks as possible. Note that, this code restructuring ap-
proach works with the layout information determined by our trace
analyzer.

We start by making the following definitions:

D(L) = {d(~I) | ~L � ~I � ~U} = {d1, d2, ..., dn};

S(L, di) = {~I | d(~I) = di}.

Here, eachdi indicates a subset of disks that are accessed by at
least one iteration. Consequently, we can restructure loopnestL
as:

for ~I ∈ S(L, d1) {body}
for ~I ∈ S(L, d2) {body}

......
for ~I ∈ S(L, dn) {body}

For the iterations inS(L, di), the disks that do not belong todi can
be placed into the low-power mode to conserve energy. It should
be noted however that, when restructuring a loop nest, all data de-
pendences must be preserved. Specifically, a loop nest cannot be
restructured using a particular transformation if this transformation

L3-1: for ii = 0 to 1 {
for i = ii ∗ 2048 to ii ∗ 2048 + 1023 {

... ...

...X[i]...

... ...
}

}
L3-1: for ii = 0 to 1 {

for i = ii ∗ 2048 + 1024 to ii ∗ 2048 + 2047 {
... ...
...X[i]...
... ...

}
}

(a) Restructured loop L3 in the code fragment in Figure 7(a).

(b) Disk power state for the program given by Figure 7(a) with
loop nest restructuring, based on disk layout given in Figure 7(b).

Figure 9: An example that illustrates the working of our loop
restructuring algorithm.

might violate a data dependency within this loop nest. Further,
since disk layouts have already been determined, given adi, we
can computeS(L, di) at compilation time. In this paper, we con-
sider only the loop nests whereS(L, di) can be represented using
Presburger formulations [24].3 Therefore, a loop nest of the form

for ~I ∈ S(L, di) {body}

can be built using a tool such as the Omega Library [1] at com-
pile time. That is, using the Omega library (or a similar polyhedral
tool), we can identify the set of loop iterations that accessa par-
ticular set of disks. In addition, we can increase the duration of
the periods spent in the low-power mode by minimizing the num-
ber of disks whose states need to be changed when we transition
from the current loop nest to the next one (considering the multiple
loop nests created from the original loop nest to be restructured).
This can be achieved by sorting the elements ofD(L) such that the
value of the following expression is minimized:

|D(L)|−1
X

i=1

|di ∪ di+1 − di ∩ di+1|.

Note that,di ∩ di+1 gives the set of disks that are used by the two
consecutive loop nests, and|di∪di+1−di∩di+1| gives the number
of disks whose states must be changed when we transition fromthe
ith loop nest to the(i + i)th. Our code restructuring algorithm is
given in Figure 8.

As an example, based on the disk layouts given in Figure 7(b),
the loop L3 given in Figure 7(a) can be restructured as shown in
Figure 9(a). Figure 9(b) gives the disk power states for thisre-
structured program. At this point, by comparing Figure 9(b)with
Figure 7(d), one can see that loop nest restructuring reduces the
number of reactivations from six to four. In addition, the two short
power-down periods for the second disk are now combined intoa
single, longer period. Notice that, a longer idle period canallow
us use the low-power mode which would not be possible with a
shorter idle period.

3Presburger formulation is a class of logical formulas whichcan be
built from affine constraints over integer variables, the logical con-
nectives (∨, ∧, and¬), and the existential and universal quantifiers
(∃ and ∀). In this work, we employ the Omega Library to ma-
nipulate integer tuple relations and sets, which are described using
Presburger formulas.

Figure 10: Implementation and experimental platform.

6. EXPERIMENTAL EVALUATION
In this section, we first present our experimental platform and

methodology (Section 6.1), and then we give our experimental re-
sults (Section 6.2).

6.1 Implementation and Simulation Platform
Figure 10 shows our implementation and simulation platform.

Let us first focus on the implementation. If we use only layout
optimization (i.e., without code restructuring), we follow the fol-
lowing path. The (instrumented) input code is fed to a trace gen-
erator which generates a trace file that contains array accesses, as
explained earlier in the paper. This file is then given to our trace
analyzer, which determines the disk layouts for all disk-resident
arrays manipulated by the application. The three specific compo-
nents of our trace analyzer are described in Section 4. This layout
information is then passed to the compiler along with the original
code. The compiler (built upon SUIF [17]) modifies the applica-
tion code to specify the layout of each array (this is typically done
by inserting appropriate parameters in the file creation calls). If,
on the other hand, we use disk layout optimization in conjunction
with loop restructuring (explained in Section 5), the compiler also
modifies the loop nests whose behaviors under the determineddisk
layouts are not satisfactory.

Let us now discuss the simulation environment, which is shown
on the lower-left portion of Figure 10. We wrote a disk energysim-
ulator to perform our experiments and gather power/performance
statistics. In addition to the trace file, this disk simulator needs
a model for the target disk system. Using these parameters, the
simulator determines, for each request, the disks that needto be ac-
cessed and the duration of access for each disk. The default simula-
tion parameters used in our experiments are given in Table 1.Both
performance and energy statistics were calculated based onthe fig-
ures extracted from the data sheet of the IBM Ultrastar 36Z15[18],
and are given in Table 1. The values for power mode transitions
(see Figure 2) are also included in Table 1. In the rest of the pa-
per, when we say “energy” we mean the energy consumed in the
disk system. When we say “execution time/cycles”, we mean the
time/cycles it takes to complete the application execution. The disk
energy consumption includes the energy consumptions during both
active and idle periods, taking into account all the states that the
disks go through during the entire execution (see Figure 2).

We performed experiments with five different schemes, which
can be summarized as follows:

• BASE:This is the base version that doesnot use any energy
saving strategy. This also represents the best execution time
across all the schemes tested since it does not incur any per-
formance penalty due to power management. It uses a fixed
stripe size of 64KB for all arrays, and stripes all arrays over
all available disks in the system, starting with the first disk.
All the energy and performance (execution cycles) results
presented for the remaining schemes are given with respect
to this base version.

• HW: This is a pure hardware based conventional disk power
management scheme used in studies such as [10] and [11]. It
uses the same layouts as theBASEscheme. In this approach,
however, a disk is spun down after some idleness to save
power, and is spun up when a new request arrives. Since the
performance cost of spinning up is typically large, this ap-

Table 1: Default simulation parameters.
Parameter Value

Disk Model IBM Ultrastar 36Z15
Interface SCSI

Storage Capacity 18 GB
Rotation Speed 15,000 RPM

Maximum Stripe Factor 8
Stripe Size Granularity 4 (16KB, 32KB, 64KB, 128KB)

Average seek time 3.4 msec
Average rotation time 2 msec
Internal transfer rate 55 MB/sec

Power (active) 13.5 W
Power (idle) 10.2 W

Power (standby) 2.5 W
Energy (spin down: idle→ standby) 13 J
Time (spin down: idle→ standby) 1.5 sec
Energy (spin up: standby→ active) 135 J
Time (spin up: standby→ active) 10.9 sec
T (in the stripe factor algorithm) 0.7

proach can incur significant performance degradations. Also,
in order for this scheme to save power, the disk idleness
should be large enough to compensate for the spin-up and
spin-down latencies.

• OPT:This is the profile-driven disk layout detection scheme
proposed in this paper. This scheme determines, for each
disk-resident array manipulated by the application, the start
disk, stripe size, and stripe factor. We also implemented three
(more restricted) variants of this optimized scheme. InOPT-
1, we force each array to get striped from the first disk (d0)
on the disk system, and determine the stripe size and stripe
factor under this constraint. InOPT-2, we fix the stripe size
at 64KB for all arrays, and determine the start disk and stripe
factor. Finally, inOPT-3, we fix stripe factor at 8 (the total
number of disks in the system) for all arrays, and determine
the start disk and the stripe unit. Our main goal in making
experiments with these three variants (OPT-1, OPT-2, and
OPT-3) is to quantify the influence/importance of each of the
three components of a disk layout individually.

• LOOP: This scheme uses the same fixed layout for each ar-
ray as in the case of theBASEandHW schemes. However, it
restructures code to increase disk idle periods. The specific
transformation used is loop distribution, also known as loop
fission [29]. This transformation places the statements in a
given loop into separate loops, each with its own iteration
space. One can expect this transformation to be useful from
a disk energy viewpoint, in particular, in cases where it sep-
arates the references to different arrays, thereby minimizing
the number of disks that need to be activated for a given loop.

• LOOP+OPT:This is the combined scheme discussed in Sec-
tion 5. It first determines the disk layouts usingOPT. Af-
ter that, it identifies the loop nests that need to restructured
so that they can be transformed to work well with the de-
termined layouts. The purpose behind making experiments
with this version is to check whether the combined approach
brings any additional benefits over theOPTscheme.

Note that, except for the BASE scheme, all the versions work
under the assumption that the disk hardware provides conventional
disk power management capabilities (see Figure 2). The power
consumption at each state and power/latency values in statetransi-
tions are given in Table 1 along with the other simulation param-
eters. The necessary code modifications required by the different
schemes tested in this paper are automated within the SUIF infras-
tructure [17]. SUIF consists of a small kernel and a toolkit of com-
piler passes built on top of the kernel. The kernel defines an in-
termediate representation, provides functions to access and manip-
ulate the intermediate representation, and structures theinterface
between compiler passes. In our experiments, the largest increase
in compilation time occurred with theLOOP+OPTscheme, and
was less than 40% (of the original compilation times) for allthe
benchmark codes tested.

Table 2 lists the benchmark codes used in our experimental eval-
uation. We used all 10 applications from the Spec95 floating-point
benchmark suite [2]. In a pre-processing step, we made thesebench-
marks I/O intensive by making the arrays they manipulate disk res-
ident. Each array is stored in a separate file on the disk system,
and each file stores only a single array (i.e., 1-to-1 mapping). The

Table 2: Our benchmarks and their characteristics.
Benchmark Brief Description Data Energy Time

Size (GB) (J) (sec)

101.tomcatv Vectorized mesh gen 39.9 4817.1 96.2
102.swim Shallow water eqn 55.6 6021.7 139.3

103.su2cor Monte-Carlo method 78.4 22794.2 592.7
104.hydro2d Navier Stokes eqn 96.7 27863.0 619.7

107.mgrid 3D potential field 51.8 18122.4 524.8
110.applu Partial diff eqn 85.0 10634.1 266.0

125.turb3d Turbulence modeling 71.3 20249.2 565.4
141.apsi Weather prediction 98.1 26888.6 592.9

145.fpppp Quantum chemistry 107.3 31296.7 598.4
146.wave5 Maxwell’s eqn 121.1 28792.8 511.4

Figure 11: Normalized energy consumptions.

second column of this table gives a brief description of eachbench-
mark. The third column shows the amount of disk-resident data
manipulated by each benchmark. The last two columns give the
energy consumption and execution cycles for theBASEscheme.
All the energy and performance results presented in the nextsec-
tion are normalized with respect to the values shown in the last two
columns of Table 2.

6.2 Results
We start by presenting an evaluation ofOPT and its variants.

Figure 11 presents energy consumption values for schemesOPT-
1, OPT-2, OPT-3, andOPT. As mentioned earlier, all the results
are normalized with respect to those of theBASEscheme. We see
from this bar-chart that the average energy improvements achieved
by OPT-1, OPT-2, OPT-3, andOPTare 8.67%, 7.30%, 8.48%, and
17.95%, respectively. That is, theOPT scheme generates signifi-
cantly better results than the three variants. These results clearly
emphasize the importance of tuning all the three componentsof a
disk layout. Starting to stripe every array from the first disk on the
disk system prevents the alignment we want to achieve (see the dis-
cussion in Section 4). For example, in the102.swimbenchmark,
this causes the energy savings drop from 17.80% to 6.70%. Simi-
larly, fixing stripe size prevents a fine granular clustering, which in
turn affects the energy savings in all benchmarks. As an example,
looking at the results for the102.swimbenchmark again, we see
that fixing the stripe size causes the energy saving go down from
17.80% to 0.20%. Similar observations can be made for bench-
marks103.su2corand107.mgridas well. Finally, when we fix the
number of disks over which arrays are striped, we have difficulty
in achieving the alignment we want. Consequently, the energy sav-
ings drop significantly, as compared to theOPTscheme.

The results given in Figure 12 help us compareOPT, HW, LOOP,
andLOOP+OPT. The first observation one can make from these re-
sults is that theHW version performs very poorly, mainly because
of the short idle periods in disk access traces. The average energy
savings brought by this scheme is only 1.67% across the bench-
marks in our experimental suite. This can be best explained with
the help of the CDF curves given in Figure 13. An (x,y) point ona
CDF curve in this graph means that y% of the idle times has a du-
ration of x (ms) or lower, when the layouts inBASE/HW are used.
The minimum amount of idle time required to compensate the cost
of spinning down/up the disk is called theprofit threshold.Based
on the numbers from IBM Ultrastar 36Z15, this threshold is 15.19
seconds. The results in this graph show that the idle disk times ex-
hibited by these array/loop-intensive applications are much shorter

Figure 12: Normalized energy consumptions.

Figure 13: CDF curves for disk idle times, when the layouts in
BASE/HW are used.

than this threshold value, which explains why theHWscheme does
not achieve much savings. The second observation one can make
from Figure 12 is that theLOOPscheme is successful in reducing
energy consumption. In fact, it achieves an average of 16.07% en-
ergy savings, which is very close to the 17.95% savings achieved
by OPT. Our last observation is that combining loop and data op-
timizations, that is theLOOP+OPTscheme, generates the highest
energy savings so far: 27.36% on the average. That is, our disk lay-
out detection approach is very effective when it is combinedwith
code restructuring (transformation). In addition, it needs to be said
that the combined scheme evaluated here is actually not a very com-
plex one. One can envision more sophisticated schemes (which is
in future agenda) that integrate data and code optimization, which
could potentially result in even better energy savings.

Another important metric to consider is the increase in original
execution cycles caused by our disk layout based approach. Fig-
ure 14 presents the percentage execution time increases brought by
OPTandLOOP+OPTover theBASEscheme. We see that the av-
erage increase with theOPT scheme is only 1.86%, which is not
too much at all, considering its large energy benefits. The corre-
sponding increase with theLOOP+OPTscheme is 2.61%, when
averaged over all the benchmark codes in our experimental suite.
The reason that these values are not very high is the fact thatour
approach tries to strike a balance between performance and energy
consumption. As has been discussed earlier in detail, we tryto
minimize the number of intra-array and inter-array conflicts, and
this in turn has a positive impact on performance, and offsets some
of the performance overheads incurred by power management.It
needs also to be mentioned at this point that an increase in execu-
tion cycles can also cause an increase in (leakage) energy consump-
tion of other system components such as caches, main memories,
and CPU data-path. However, recall that our application domain is
large-scale scientific array codes that manipulate disk-resident data
sets. In such applications, energy consumption on the disk system
usually dominates the energy consumptions on caches, main mem-
ories, and CPU data-path. Therefore, the leakage energy increase
due to increased execution cycle count is unlikely to offsetthe large
energy savings coming from the disk system.

In our next set of experiments, we measure energy savings when
we change some of the default values used in our experiments so
far. We first focus on two parameters: the maximum number of

Figure 14: Percentage increase in execution cycles with theOPT
and LOOP+OPT.

Figure 15: Normalized energy consumption with different val-
ues of maximum stripe factor and stripe size granularity.

disks that can be used for striping and the stripe size granularity.
An “x” on the x-axis of the graph in Figure 15 corresponds to the
default number of stripe sizes that can be selected by our approach
(which is 4 as given in Table 1). Also, a “y” on the y-axis denotes
the default maximum number of disks that can be used for striping
(which is 8 as given in Table 1). The results (the z-axis) represent
the average (normalized energy) values over all benchmark codes.
We see from these results that our energy savings increase when we
increase the number of disks or the stripe size granularity.This can
be explained as follows. When the number of disks is increased,
it gives more flexibility to our approach for determining thelayout
and this increases the opportunities for power savings. Similarly,
when we have a larger set of stripe sizes to choose from, we can
select the most suitable one considering the impact on energy con-
sumption.

We now investigate the influence of theT (threshold) parame-
ter on energy and performance behavior of our profile-drivenap-
proach. Recall that this parameter can be used for specifying the
percentage of conflicts to eliminate. Therefore, it can be used to
study the trade-offs between performance and energy. A higher
value (ofT) means eliminating more conflicts, which usually re-
sults in more disks to store array data, which in turn means less
power savings. The default value ofT used in our experiments
so far was 0.7, as given in Table 1. Figure 16 gives the normal-
ized energy consumption and percentage increase in execution cy-
cles under the different values of theT parameter. All the curves
in this figure represent the average values across all ten applica-
tions tested. We see from these results that, for both theOPTand
LOOP+OPTschemes, as we reduce the value ofT beyond a certain
value, the execution cycle overhead curves increase rapidly. There-
fore, one may not want to work with very smallT values. On the
other hand, very largeT values may not be very good either, since
they increase energy consumption. We see that the values in the
middle range such as 0.5, 0.6, and 0.7 tend to strike a good balance
between energy savings and performance overheads.

Figure 16: Influence of theT parameter.

Figure 17: Influence of the input set.

In our last set of experiments, we study the influence of the input
set on our results. Since our approach is profile-driven, it is im-
portant to study how sensitive our results are to the input set used
in profiling. To test this, we performed another set of experiments,
where we executed our benchmarks with inputs other than the one
used for profiling. We present the results only for the107.mgrid
benchmark; but, the trends exhibited by the other benchmarks are
very similar. Figure 17 presents the normalized energy consump-
tions for this benchmark with five different inputs (Input-1through
Input-5). However, for all these cases, the disk layouts used are the
same and are determined by using the first input set (Input-1). One
can see from these results that, while the actual savings canslightly
change from one input set to another, the trends are very consistent
across the different input sets. This is mainly due to the applica-
tion domain we target. Recall that we are dealing with array/loop-
intensive codes that perform I/O. In these applications, loops are
the main control structures, and there are very few conditionally-
taken paths. As a result, the input set used does not affect much the
flow of execution taken at runtime. Consequently, the disk layouts
determined using one set of inputs can be used for executing the
application with another set of inputs.

7. CONCLUDING REMARKS AND
FUTURE WORK

Disk system is known to be a major contributor to overall power
consumption of high-end parallel systems. Past research proposed
several architectural level techniques to reduce disk power by tak-
ing advantage of idle periods experienced by disks. The maincon-
tribution of this paper is a profile-driven approach for determin-
ing disk layouts of array data to minimize the energy consumption
without increasing overall execution cycles excessively.Specifi-
cally, our algorithm determines, for each disk resident array, the
stripe factor, stripe size, and start disk for striping. Ourexperiments
with this algorithm reveal that (1) it reduces energy consumption of
original applications significantly; (2) the energy savings it gener-
ates are competitive with those obtained through loop structuring
based strategy; and (3) the best energy savings are achievedby
a combined scheme that employs both code and disk layout op-
timization. Our future work includes designing and implementing
algorithms that integrate code and data optimizations for reducing
disk power consumption. We are also planning to investigatethe

impact of such algorithms in other parts of the system such ascache
locality and data-path energy. Also in our agenda is extending this
work to other application domains.

8. REFERENCES
[1] Omega library. http://www.cs.umd.edu/projects/omega.
[2] SPEC CPU95 Benchmarks. http://www.spec.org/osg/cpu95/, 1995.
[3] L. Benini, A. Macii, and M. Poncino. Energy-aware designof embedded

memories: A survey of technologies, architectures, and optimization
techniques.ACM Transactions on Embedded Computing Systems, 2(1):5–32,
2003.

[4] L. Benini and G. D. Micheli. System-level power optimization: techniques and
tools.ACM Transactions on Design Automation of Electronic Systems,
5(2):115–192, 2000.

[5] P. Bohrer, E. Elnozahy, T. Keller, M. Kistler, C. Lefurgy, C. McDowell, and
R. Rajamony.Power-Aware Computing, chapter The Case for Power
Management in Web Servers. Kluwer Academic Publisher, Jan.2002.

[6] E. V. Carrera, E. Pinheiro, and R. Bianchini. ConservingDisk Energy in
Network Servers. InProceedings of the 17th International Conference on
Supercomputing, pages 86–97. ACM, June 2003.

[7] J. Chase, D. Anderson, P. Thackar, A. Vahdat, and R. Boyle. Managing Energy
and Server Resources in Hosting Centers. InProceedings of the 18th
Symposium on Operating Systems Principles, pages 103–116, October 2001.

[8] J. Chase and R. Doyle. Balance of Power: Energy Management for Server
Clusters. InProceedings of the 8th Workshop on Hot Topics in Operating
Systems, page 165, May 2001.

[9] X. Chen and L. Peh. Leakage power modeling and optimization in
interconnection networks. InProceedings of the International Symposium on
Low Power and Electronics Design, pages 90–95, August 2003.

[10] F. Douglis, P. Krishnan, and B. Bershad. Adaptive Disk Spin-down Policies for
Mobile Computers. InProceedings of the 2nd Symposium on Mobile and
Location-Independent Computing, pages 121–137, 1995.

[11] F. Douglis, P. Krishnan, and B. Marsh. Thwarting the Power-Hungry Disk. In
Proceedings of the USENIX Winter Conference, pages 292–306, 1994.

[12] M. Elnozahy, M. Kistler, and R. Rajamony. Energy-efficient Server Clusters. In
Proceedings of the Second Workshop on Power Aware ComputingSystems,
February 2002.

[13] M. Elnozahy, M. Kistler, and R. Rajamony. Energy Conservation Policies for
Web Servers. InProceedings of the 4th USENIX Symposium on Internet
Technologies and Systems, March 2003.

[14] Y. Fei, L. Zhong, and N. K. Jha. An energy-aware framework for coordinated
dynamic software management in mobile computers. InProceedings of the
IEEE/ACM Symposium on Modeling, Analysis and Simulation ofComputer and
Telecommunication Systems, Oct. 2004.

[15] T. D. Givargis, J. Henkel, and F. Vahid. Interface and cache power exploration
for core-based embedded system design. InICCAD ’99: Proceedings of the
1999 IEEE/ACM International Conference on Computer-aideddesign, pages
270–273. IEEE Press, 1999.

[16] S. Gurumurthi, A. Sivasubramaniam, M. Kandemir, and H.Franke. DRPM:
Dynamic Speed Control for Power Management in Server Class Disks. In
Proceedings of the International Symposium on Computer Architecture, pages
169–179, June 2003.

[17] M. W. Hall, J. M. Anderson, S. P. Amarasinghe, B. R. Murphy, S.-W. Liao,
E. Bugnion, and M. S. Lam. Maximizing Multiprocessor Performance with the
SUIF Compiler.Computer Magazine, 29(12):84–89, December 1996.

[18] IBM. Ultrastar 36ZX & 18LZX, 1999.
[19] R. K. K. Li, P. Horton, and T. Anderson. A Quantitative Analysis of Disk Drive

Power Management in Portable Computers. InProceedings of the USENIX
Winter Conference, pages 279–292, 1994.

[20] E. J. Kim, K. H. Yum, G. Link, C. R. Das, N. Vijaykrishnan,M. Kandemir, and
M. J. Irwin. Energy Optimization Techniques in Cluster Interconnects. In
Proceedings of the International Symposium on Low Power Electronics and
Design, pages 459–464. ACM, August 2003.

[21] J. M. May.Parallel I/O for High Performance Computing. Morgan-Kaufmann
Publishers, 2001.

[22] P. R. Panda, F. Catthoor, N. D. Dutt, K. Danckaert, E. Brockmeyer, C. Kulkarni,
A. Vandercappelle, and P. G. Kjeldsberg. Data and memory optimization
techniques for embedded systems.ACM Transactions on Design Automation of
Electronic Systems, 6(2):149–206, 2001.

[23] E. Pinheiro and R. Bianchini. Energy Conservation Techniques for Disk
Array-Based Servers. InProceedings of the 17th International Conference on
Supercomputing, pages 66–78, June 2004.

[24] W. Pugh and D. Wonnacott. An exact method for analysis ofvalue-based array
data dependences. InLecture Notes in Computer Science 768: Sixth Annual
Workshop on Programming Languages and Compilers for Parallel Computing,
Aug. 1993.

[25] R. B. Ross, P. H. Carns, W. B. L. III, and R. Latham. Using the Parallel Virtual
File System, July 2002.

[26] S. W. Son, M. Kandemir, and A. Choudhary. Software-Directed Disk Power
Management for Scientific Applications. InProceedings of the 19th
International Parallel and Distributed Processing Symposium, April 2005.

[27] T. K. Tan, A. Raghunathan, and N. K. Jha. Software architectural
transformations: A new approach to low energy embedded software. In
Proceedings of the Design Automation and Test in Europe Conference, Mar.
2003.

[28] S. U. Wen-Tsong Shiue and C. Chakrabarti. Data memory design and
exploration for low-power embedded systems.ACM Transactions on Design
Automation of Electronic Systems, 6(4):553–568, 2001.

[29] M. Wolfe. High Performance Compilers for Parallel Computing.
Addison-Wesley Publishing Company, 1996.

[30] L. Yan, J. Luo, and N. K. Jha. Combined dynamic voltage scaling and adaptive
body biasing for heterogeneous distributed real-time embedded systems. In
Proceedings of the International Conference on Computer-Aided Design, Nov.
2003.

