Disk Layout Optimization for Reducing Energy
Consumption’

S. W. Son

G. Chen

M. Kandemir

Department of Computer Science and Engineering
Pennsylvania State University
University Park, PA 16802, USA

{sson,gchen,kandemir}@cse.psu.edu

ABSTRACT

Excessive power consumption is becoming a major barriexto e
tracting the maximum performance from high-performancalfel
systems. Therefore, techniques oriented towards redymngr
consumption of such systems are expected to become inuogéasi
important in the future. Since disk systems of high-perfamge
architectures are known to constitute a large fraction efaverall
power budget, they form an important optimization targeevik

ous work on disk power management focuses primarily on hard-
ware based schemes. However, since disk access patterthé.e
order in which disks on a system are accessed, is mainly dhape
by the program code access pattern and disk layout of ddta, so
ware techniques can also plag a critical role in disk powen-ma
agement. Motivated by this observation, this paper prapesel
evaluates a profile-driven disk layout optimization schedorere-
ducing energy consumption. The proposed scheme analyees th
array access traces obtained through profiling and detesnfor
each disk-resident data structure, the start disk fromkvthie data

is striped, the number of disks over which the data is striped

the stripe unit. This paper discusses implementation Idegfiour
approach and presents an experimental evaluation of iteper-
iments with the entire suite of Spec95 floating-point benatk®s
that are modified to operate on disk-resident data show ket t
proposed approach is very effective in reducing disk enemyy
sumption. The results also show that the performance detioad
caused by our approach is very small. This paper also compare
our approach to a code restructuring based optimizatiorhazec
nism and discusses how the two techniques can be combined fo
achieving the best results.

Categories and Subject Descriptors

B.4 [Input/Output and Data Communications]: Input/Output
Devices; D.3.4Programming Language$: Processors-€ompil-
ers, Optimization
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Algorithms, Design, Performance, Experimentation
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INTRODUCTION

1.

Reducing power consumption is becoming increasingly impor
tant for high-end cluster/server based systems. Thesersysire
radically different from embedded systems where most optie
power-related studies appeared. While in embedded sy pesvesr
research is generally driven by desire of increasing balifetime,
in high-end computing both economic and environmentalofact
play an important role. Infparticular, recent research B,iddi-
cates that a large portion of the system maintenance buapegh-
end systems is invested in cooling due to excessive powsLon-
tion of such systems. In addition, high power consumptidnicty
requires sophisticated power generation and transmigsitmolo-
gies, is known to be harmful to the environment. As a resettent
years have witnessed several efforts on reducing poweuogns
tion of high-end systems [8, 13, 7].

Disk systems of large, hifgh-performance machines are kritown
contribute to a significant fraction of overall power budgéto-
tivated by this observation, recent studies such as [23][26H
specifically focused on disk system and proposed energyngavi
strategies. These efforts are either hardware based f¢ ing
disk speed if the associated latency can be tolerated bypihle a
cation) or software based (e.g., restructuring code fangpkest
advantage of available low-power capabilities providedhzydisk
system). From the software angle, there are two major pdeame
that can be tuned for low power: the code structure of theiappl
cation program and the disk layout of data. This paper fczose
the second parameter and proposes a disk layout detectiemsc

for reducing power consumption on the disk system. The impor

tance of disk layout from the power angle stems from the faat t
it determines the order in which the different disks in thetegn
are accessed and their access durations.

Our approach saves disk power by increasing the number and
length of disk idle periods. It is known from the prior resgaf16,
26] that the array-based scientific codes are not able tortalah
advantage of conventional, hardware-based disk low-pongn-
a?ement, mainly due to short disk idle periods. Through fiim#ag
of layouts of individual arrays, our approach is able to éase
disk idle times substantially; and, this in turn enablesdffie disk
power management. Specifically, focusing on array/lodgrisive
scientific applications with regular data access pattehis paper
makes the following contributions:

e We present an algorithm for determining the disk layouts of
array data. The goal of this profile-driven algorithm Is te in
crease disk idleness and improve the effectiveness of the un
derlying disk power management mechanism supported by
the hardware.

We discuss details of our algorithm and present an exper-
imental evaluation of it. Our experiments with the entire
suite of Spec95 floating-point benchmarks that are modified
to operate with disk-resident data show that the proposed ap
proach is very effective in reducing disk energy consump-
tion. Our results also show that the performance degradatio
caused by the proposed approach is very small.

We discuss how our approach can be combined with code re-
structuring. The results with the benchmark codes in our ex-
perimental suite indicate that this combined approachckwhi
applies layout optimization followed by code restructgtin
generates better results than pure layout optimization and
pure code structuring.



A unique characteristic of the work presented in this pap#rat
it automatically determines disk layouts for energy efficie To
the best of our knowledge, this is the first study along thisalion.
Note that many file systems allow explicit tuning of disk lay@on
an individual file basis and this property can be used to gotive
layout information extracted by our approach to the fileeyst

The remainder of this paper is structured as follows. The nex
section discusses related work. Section 3 discusses théagizut
abstraction and the power management abstraction our agpro
employs. The details of our approach are presented in Seétio
Section 5 discusses how the proposed disk layout deteatimnse
can be combined with loop restructuring. Section 6 presexgsri-
mental evidence that demonstrates the effectiveness pfopesed
approach and we conclude the paper in Section 7.

2. RELATED WORK

There have been numerous proposals targeting at energef pow
reduction in low-cost embedded systems [28, 15, 3, 4, 14230,
22]. Since our work focuses on high-end systems, in this@gct
we mainly discuss the power related hardware and softwéoeef
on these systems.

We can divide the related work on disk power management into
two groups. In the first group are the hardware-based effgite
studies presented in [10, 19, 11], which are designed fdofap
disks, save disk power by spinning down a disk when it becomes
idle during execution. Such a disk Is reactivated (spun umgman
access is made to it. Since spinning up and spinning downka dis
both take extra cycles and consume extra ener?ly, one nedds to
conservative in exercising this odption. Specifically, i¢ tidleness
is not large, it may not be a good idea to spin down a disk. Fhere
fore, accurate prediction of idleness may be an importaunieigor
this mechanism to be successful. Observing that spinning) @m
idle disk may not be very effective in server workloads,m?‘pﬁ}-
posed a different approach which is based on running thevdisk
a reduced speed. Since such a disk can still serve requieists, t
approach can potentially utilize even small idle periods.fdct,
[16] shows both performance and energy benefits of this aghro
over the spinning-down based approach. [6] presents amagipr
that demonstrates how a disk system constructed using digks
different speeds can be utilized effectively for reducingrgy con-
sumption.

On the software front, [26] shows how an application code can
be restructured for reducing disk power. They also showdbdée
restructuring can be used in conjunction with both spinmiogn
disks and in an architecture that supports disks with dffespeeds.
As compared to the hardware-based work, our approach takes a
tally different stand. While we focus on a particular apation
domain (namely array/loop-intensive scientific codes peaform
1/0), we allow the software to control disk layout, and instinay,
we can optimize codes that are not amenable to hardwareapnly
proaches (due to short disk idle times). In a sense, the wak p
sented here and [26] are complementary. In fact, our eﬁm
evaluation indicates that the best energy behavior is by
employing both code restructuring and data layout optitiona
Apart from disk power, there exist several studies thaetactuster
systems as a whole [8, 7, 12, 13] or interconnection netwisrks
particular [9, 20]. Since we focus exclusively on disk systeur
approach can be used with many of these power-saving tagsniq
proposed in the past.

3. ABSTRACTIONS USED BY OUR
APPROACH

There are two important types of information that needs tietle
to our approach, for it to optimize disk layouts for savingryy.
The first one is the disk layout abstraction, which captunespa-
rameters whose values can be tuned by our approach. Thedsecon
one is the energy management technique/strategy suppuytie
underlying hardware. In the following two subsections, Wsedss
these in more detail.

3.1 Disk Layout Abstraction

In this section, we describe the disk layout abstractior use
our approach. File striping is a technique that divides gdafata
into small Bortions and stores these portions on separaks d
a round-robin fashion [21]. This permits multiple procest®ac-
cess different portions of the data concurrently withoutmdisk
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Figure 1: Two different example disk layouts. Left: (do, 6, .S)
and Right: (d4, 3, 25).

contention. While striping can be performed manually, méiley
systems today provide automatic support for it, as will birieal
out below. In this work, we represent disk layout of an arrayg
a triplet of the form:

(start_disk, stripe_factor, stripe_size).

The first component, stadisk, in this triplet indicates the disk
from which the array is started to get str(ifed. The second-com
ponent, stripefactor, gives the number of disks used to stripe the
data, and the third component, stripee, gives the stripe (unit)
size used. Several current file systems and 1/O Iibrarieﬂgn-
performance computing provide APIs to convey them the digk |
out information when the file is created. For example, in PVFS
L25], one can change the default striping parameters byngett

ase (the first I/0O node to be used)count (stripe factor), and
ssi ze (stripe size) fields of thpvf s_f i | est at structure. Then,
the striping information defined by the user via thigf s _f i | est at
structure Is Eassed to thevf s_open() call's parameter. Two
example disk layouts for two-dimensional disk-residenays are
depicted in Figure 1. The first layout (i.e., the one for argyis
(do, 6,5), whereas the second layout (i.e., the one for aifys
da, 3,25).
( Since a)1 triplet is used for representing disk layout in ourkyo
our job is to determine the three layout Earameters for ed&dts d
resident array that needs to be created by a given apglix:pfm}
gram. It needs to be noted however that this has to be done in a
coordinated fashion by considering all the disk-resideraye in
the application. This is because the different disk-rediderays
can potentially share the same set of disks and determihigig t
layouts in an independent fashion can lead to unpredictaisigts
(e.g., due to irregular disk access patterns) at runtimaraasfsav-
ing disk power is concerned. In this paper, we present anitiigo
embedded within a trace analyzer for determining disk &y ofi
array data to minimize energy consumption, under the assomp

that each array is stored in a separate’file.

3.2 Power Management Abstraction

Figure 2 depicts the transitions between the differenestatip-
ported by the disks assumed in this study. The labels atfaithe
the arcs in this figure indicate how the transitions are &igd.
Basically, we assume that each disk is equipped with a tirased
power management capability. In this mechanism, when threicu
access to a disk is completed, the disk transitions to teesidite.
If it remains in the idle state for a certain amount of timésispun
down. We say in this case that the disk is Elaced intdahepower
operation mode.The disk transitions back to the active mode by
spinning up when a new request to it is made. Note that thiseinod
represents one of the simplest mechanisms that can be segppyr

We can relax this constraint by allowing one-to-many or mamy
one mappings between the arrays and the files, as will bestiedu
later.
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Figure 2: Different disk states and transitions among them.
When computing energy consumption, we take into account the
energies consumed at each state.

a server disk that allows power management. The detailseqidh
rameters used in this model will be given later when we priesan
experimental platform. For now, the important point to eabe
here is that, since spinning-down and spinning-up take brtra
time and energy, they need to be minimized. Therefore, ongdvo
prefer, from both performance and power consumption angles
few long idle periods over numerous short idle periods. Toa g
of the profile-driven approach proposed in this paper is todase
the duration of idle periods, thereby increasing the chafmethis
power management scheme to be applicable and successfel. Th
Proposed approach achieves this by setting the layout pdeasn
or each disk-resident array manipulated by the applicatiode.
We also need to mention that there exist more effective povear-
agement mechanisms recentIK proposed in the literatureudth
we experimented our approach under different mechanisaiiedc
DfRPM [16], we do not present the results in this paper duedo la
of space.

4. DISK LAYOUT DETECTION
ALGORITHM

4.1 High-Level View

As stated earlier, the main goal behind our approach is trdet
mine a suitable disk layout for each disk-resident arrayimaated
by the application so that the energy spent on the disk sydteing
execution is minimized. Our approach reduces energy copisom
by increasing disk idle periods. However, considering argrgy
consumption alone may not be a wise choice since performance
the application is also important and affected signifigabil the
disk layouts chosen for its arrays. After all, if there waspes-
formance concern, one could potentially work with a sin%jkek;d
thereby placing all the remaining disks in the system intolthv-
Bower operation mode. However, such an approach wouldyhardl

e acceptable from the performance perspective. Thereforeb-
jective is to strike a balance between energy consumptidrpan
formance; that is, we would like to save as much energy astpess
without significantly impacting original execution cycles., exe-
cution cycles that would be taken by a pure performancestate
approach that does not employ any power-saving strate?y).

An important property of our algorithm is that it is profilexdmn
(as shown in Figure 3). The aplplication code is first instnotae
and then profiled using a typical input set. The insertedunsen-
tation code records information on each disk access issydeb
application program. At the end of this profiling, we obtamaa-
ray access sequencghich is of the form( A+, As, ..., A,). Each
array accessl; in this sequence has the forfX, a, t), where X
is the id of the disk-resident array,is the offset of the accessed
array element within the arraﬁ, arnds the time stamp. The time
stamp of an array access is the time since the start of thegmog
after deducting the 1/0O time Sﬁent in the disk accesses. Anple
example, let us assume a disk access is issued 300ms affgpthe
gram starts its execution, and during the first 300ms of tbgnam
execution, disk 1/0 takes 100ms in total. Then the time stéonp
this array access is calculated as 300m400ms = 200ms. We
say that two array accessds = (X, a1,t1) andA; = (Y, az, t2)
conflictwith each other if they access the same disk and the differ-
ence between their time stamps is less than the disk respiorse
(denoted byR). Further, we call the conflicts due to accessing the
same array (i.e.X = Y) theintra-array conflicts,and the con-
flicts due to accessing different arrays (i.&.,# Y') are referred

Disk
Layouts

Instrumented
Program

Trace
Analyzer
(Layout

Array Access \ Optimizer)

Sequence

Figure 3: The connection between profiling and layout opti-
mization.

to as thenter-array conflicts.Note that, if two array accesses con-
flict with each other, one of them has to be delayed, whichesaus
the program execution to slow down. Based on this discussion
we can re-state the goal of our approach as one of reducingyene
consumption on the disk system while minimizing the numbter o
intra-array and inter-array conflicts as much as possible.

Our approach determines the three components of the disk lay
out of each array in the application: stripe factor, strize sand
start disk. It needs to be noted that these three parameeeca
tually inter-related. What this means is that they affea another
and selecting a value for one of them restricts the potesgiatch
space for the other two parameters. IdeaII%/, one would want a
algorithm that would try all potential values for all thebeee pa-
rameters of the layout and select the one that generatesetite b
trade-off between energy consumption and performance.eiexy
such an approach is not feasible in general. This is mairdgime
the search space of potential solutions can be very largst, i
a system with large number of disks, we have a lot of candidate
for the start disk and stripe factor for a given array. Secamd
can have many choices for the stripe size, depending on the ca
pabilities of the underlying file system. Third, in order ®ach
optimal results, one needs to try all potential layout corabions
for all disk-resident arrays. All these factors make an aghiae
search infeasible in practice except for cases with a felssdiad a
few arrays. Consequently, our approach is essentiallytdéasis-
tic that generates not optimal but close-to-optimal resfialt most
cases.

The proposed approach determines a single component df a dis
layout at a time. More specifically, it first determines thigpst fac-
tor for all arrays and then the stripe size for all arrays. i tmased
on these, it determines the start disk for all arrays. Theaea
that we first determine the stripe factor and the stripe sizbat,
these two parameters affect the magnitude of the intraraoa-
flicts. Once we determine the stripe factor and the stripe fir
each array independently, the part of the algorithm thardahes
the start disk for arrays is executed. This part positioesattiays
on the disk system in such a fashion that the number of intaya
conflicts is minimized as much as possible. In the next sectie@
present the technical details of our layout optimizatioprapch.

4.2 Details of the Algorithm

4.2.1 Determining Stripe Factor

Figure 4 gives our algorithm for determining the stripe dador
each disk-resident array. Generally srpeaking, storingreay an
more disks can reduce the number of intra-array conflicts¢hwh
in turn can improve overall performance. However, storingag
ray in more disks also means that more disks need to be attivat
(i.e., they cannot be placed into the low-power mode). Tlaiarty
increases energy consumption on the disk system. Therdfae
goal of our algorithm given in Figure 4 is to minimize the g&fac-
tor for each array while keeping the number of intra-arrayflects
within a tolerable range. Our algorithm maintains a quewe (d
noted byQ[X]) for each arrayX, which contains the most recent
accesses to array that may create intra-array conflicts. For each
array X, the algorithm uses an array of countef§[{][1..D]) to
capture the distribution of the length §f[X]. Specifically, array
K records the fact that, throughout the execution of the @nogr
we observed<[X][] times@[X] contains exactly accesses to ar-
ray X, that is,» accesses to array conflict with each other. The
value onfZl K[X][i] indicates the number of accesses to array
X that cannot be served without intra-array conflict¥ifs stored
in less thani disks (i.e., if its stripe factor is less thah StoringX
in d disks can eliminate these conflicts. The stripe fackog ) for
array X is the minimum integer value that satisfies the following
constraint:

Trace
Generator
(Profiler)

SKXE
S KX~

)



Input: trace file
Output: stripe factor for each array

D — the number of disks;

R — the disk response time;

T — the threshold) < T < 1;

Q[X] — the access queue for array;
K[X][1..D] — the counters for array’;
F[X] — the stripe factor for array;

while(there are array accesses to be processed)
assume the current array acces§Xs a, t);
U={(X,d,t)|(X,a,t € Qandt —t' > R};
QIX] = (QX] - U) U{(X,a,1)};
i = |QIX];
if(¢ > D) i = D;
K[X][i] = K[X][5] + 1;

for each arrayX {
/I determine the stripe factor for array.
sum = 320 | K[X][i];
p=0;F[X]=0;
while(p < T') {
F[X]=F[X]+ 1;
p =p+ K[X][F[X]]/sum;

}

Figure 4: The algorithm for determining the stripe factor for
each array.

where threshold” (0 < 7' < 1) determines the percentage of
intra-array conflicts we want to eliminate. It is to be nothdt’

Input: trace file and stripe factor for each array
Output: stripe size for each array

R — the disk response time;

N — the number of available stripe sizes;
Q[X] — the access queue for array;

Z[1..N] — the available stripe sizes;
C[X][1..N]— the conflict counters for arra¥(;
F[X] — the stripe factor for array;

S[X] — the stripe size for array’;

while(there are array accesses to be procesgsed)

assume the current array acces§Xs a, t);
U={(X,a,t')| (X,d,t' € Qandt —t' > R};
QIX] = Q[X] ~ U
fori =1to N {

d = |a/Z[i]] mod F[X];

for each(X, a’,t') € Q[X]{

if(la’/Z[i]] mod F[X] = d)
C[X][] = C[X][i] + 1;

}
QRIX] = QXJu{(X,a,0)};

for each arrayX {
/I determine the stripe size for array.
min = oo,
fori =1to N
if(C[X][z] < min) {
S[X] = Z[i]; min = C[X][3];

}
Figure 5: The algorithm for determining the stripe size for each

is a parameter whose value can be tuned by the programmaer. Thi array.

allows us perform a trade-off analysis between energy aridpe
mance. In our experimental evaluation, we conduct a seitgiti
analysis regarding parametgr

4.2.2 Determining Stripe Size

Figure 5 gives our algorithm for determining the stripe dize
each disk-resident array. When the stripe factor has betn-de
mined, whether two array elements of an arfayare located in
the same disk or not is determined by the stripe siz& ofCon-
sequently, the stripe size determines the number of intear@on-
flicts. Our algorithm computes the number of conflicts forteac
array with each available stripe size (which is given as patino
the algorithm), and selects the stripe size with the mininmum-
ber of intra-array conflicts.

4.2.3 Determining Start Disk

Figure 6 gives the algorithm used to determine the startfdisk
each array. The goal of this algorithm is to minimize theltotan-
ber of inter-array conflicts. In this alﬂorithm, each arraylivided
into a set of sub-arrays such that the elements that aredstore
the same disk belong to the same sub-array. Obviously, afray
with stripe factor of F'[X] is divided into F'[X] sub-arrays. Fur-
ther, given the element sizethe stripe facto#'[ X ], and the stripe

size S[X] of array X, thei" sub-array ofX can be calculated as:
{X[a] | |a x s/S[X]] modF[X] = i}.

Our algorithm operates in two steps. In the first step, based o
the profile data collected, we compute the number of potienter-
array conflicts between each pair of sub-arrays, that isptingber
of inter-array conflicts due to accessing each pair of sudyarif
these two sub-arrays are stored on the same disk. In thedsetem
of the algorithm, we determine the start disk for each arregtead
of exhaustively searching the entire solution space foofttemal
result, we determine the start disk for each arra?; using adyre
search based strategy. In Figure 6, we can see that the mdyn bo
of this step is a loop. At each iteration of this loop, we detiee
the start disk for a single array. Specifically, assumingsisig”
contains the arrays whose start disks have already beemnietel,
we selectdx (0 < dx < D) as the start disk node for the next
array X g V such that the value of the following expression is
minimized:

> conflict X, dx, Y, dy),
YeVv

@)

where the function confli¢fX, dx, Y, dy ) computes the number of
inter-array conflicts between arrdy andY whose start disks are
dx anddy, respectively. Note that, for any giveéri € V, dy
has been determined in the previous iterations of the loope T
implementation of function confli¢k, dx,Y, dy) is also given in
Figure 6. If multipledx values yield the same value of Expres-
sion (1), we prefer the minimum value @k . This is to reduce the
number of disks used by the program, and thus reduce thellovera
energy consumption of the system.

In our implementation, these three algorithms, namelyathe-
rithms given in Figures 4, 5, and 6, form the trace analyzee (s
Figure 3).

4.3 Discussion of Array-to-File Mapping
So far we have assumed that each disk-resident array islstore

a single file, and each file stores a single disk-resident/ g,
1-to-1 mapping between files and arrays). However, it isiptess
in some environment that, a large array may be split into iplalt
parts (sub-arrays) and stored in multiple files. For exarglay
X [0..m][0..n] in the following code fragment can be storedrin
files (F1, F, ..., Fi) in such a fashion that fil€); storesX[:][0..n]:

fori =0tom {
forj =0ton {
X[ [5].-

}

Since the files storing the elements of arfdyare accessed using

the same piece of array access code, these files need to leave th
same disk layout in most cases. Our scheme can be extended to
address this situation. Specifically, we can allow the pogner

to specify array-to-file malppin for each disk-residentigrand

the constraints on which files should have the same disk tayou
practice, array file mapping can be specified using a fungtion

—

f(X7I):Fz7

where X is the name of the array, is the subscript vector, and
F; is the name of the file. We refer to the set of files that must
have an identical disk layout adike group The constraints on file
grouping can be expressed using a funcgon

g(FZ) = ij



Input: trace file, stripe factor, and stripe size for each array
Output: start disk for each array

D — the number of disks;

R — the disk response time;

Q — the access queue;

F[X] — the stripe factor for array;

S[X] — the stripe size for array;

C[X][4][X][] — the number of inter-array conflicts between the
i" sub-array ofX and thej" sub-array ofx”
if these two sub-arrays are stored on the same glisk.

W [X] — the start disk for arrays’;

Iistep 1: computing” [ X][d][X'][d’]
while(there are array accesses to be processed)
assume the current array acces§g, a, t);
d = |a/S[X]] mod F[X];
U={(X",a',t')| (X',a,t' € Qandt —t' > R};
Q=Q—-U;
foreach(X’,a’,t') € Q {
(X # X) {
d = |a’/S[X']] mod F[X'];
CX][d[X"][d"] = C[X][d][X"][d'] + 1
Clx'[d[X][d] = CIX'][d'][X][d] + 1

}

/I step 2: determining the start disk for each array
V=¢;
for each arrayX {
min = oo,
fori =0toD —1{
c=0;
foreachY ¢ V
¢ = c+ conflict(X,:,Y, W[Y]);
if(c < min) {
W[X] =i, min = ¢;

V=VuU{X}

[l auxiliary function: computes the number inter-array ftiots betweer|
/I arraysX andY whose start disks arBx and Py, respectively.
int conflict(X', Px, Y, Py) {
fori =0toD —1{ B[i] = —1;}
fori =0to F[X] — 1
B[(i + Px ) mod D] = ;
c=0;
fori =0to F[Y] — 1 {
j = B[(i + Py ) mod D];
if(j # —1)
e =c+ CIXIEIY;

returnc;

Figure 6: The algorithm for determining the start disk for each
array.

whereF; is a file and it belongs to the file grou@;. For ease of
discussion, we definegroup elementG; k], as follows:

G,k = {X[I]| f(X,I) € G A h(X,I) =k},

wherek is an integer, and (X, I) is the offset ofX [I] within file
FX.I).

Our scheme can be extended to determine the disk layouts that

satisfy the constraints on the grouping by modifying thérimaen-
tation tool such that, for each array access in the tracedéeh
array element is replaced by the group element that conthigs
array element. Consequently, the files that belong to the aen
group are considered as a singlastract file Our scheme then de-
termines the disk layout for the abstract file of each file grothis
layout is then applied to all the files that belong to this fileup.

4.4 Example

In this subsection, we illustrate how our approach worksatp
tice by applying it to an example code fragment. Figure 7{@3ents
an example code fragment. In this example, we set the valtreof

T parameter to 1, and we use a single file per disk-resideny arra
(1-to-1 mapping). For illustration purposes, let us asstiméthe
underlying I/O system has 6 disks, the response time forlaislis
5ms, and each loop iteration (of loops L1, L2, and L3 shown in
the figure) takes 10ms. By analyzing the disk access tradeif t
program, our aEproach determines that atkaynust be stored in
at least two disks and that arraymust be stored in at least three
disks. If we storedX in a single disk, the two accessesXoin
each iteration of loop L1 would conflict with each other. Sfiec
cally, the access t& [¢ + 1024] had to wait for the access IIG[é

to complete. Similarly, if arrayZ were stored in fewer than three
disks, the three accessesAoin each iteration of loop L2 would
conflict with one another. Our approach determines theestep-
tors for arraysX, Y, andZ as2, 1, and3, respectively, since we
want to minimize the number of disks used for storing eachyarr
without increasing the number of intra-array conflicts (sattwe
can save energy without impacting performance too much).

We determine stripe size for each array once the striperfémto
that array is determined. Our trace analyzer analyzes &ce aind
calculates the number of intra-array conflicts for eachyawih
each possible stripe size. Let us assume, again for illicstrpur-
poses, that the underlying disk architecture and file systgoport
four stripe sizes: 256B, 512B, 1024B, and 2048B. For aXain
loop L1, the number of intra-array conflicts with the stripees
256B, 512B, 1024B, and 2048B, are 2048, 2048, 0, and 1024, re-
spectively. Our algorithm selects the stripe size with thieimum
number of intra-array conflicts (1024B). We do not need tthier
consider the stripe size for arr&ysince its stripe factor is one, i.e.,
Y is stored in only a single disk. The number of intra-array-con
flicts for arrayZ with stripe sizes 256B, 512B, 1024B, and 2048B,
are 0, 1024, 2048, and 3072, respectively. Therefore, wectsel
256B as the stripe size for arra

To determine the start disk for each array, our algorithmmtsu
the number of inter-array conflicts between each pair of slisges.

It then determines the start disk for each array, one arrtay ah-
other. In our example code fragment, we have three artdys’,
and Z. We first determine the start disk for array. This step is
trivial since we can pick any disk, say disk 0, as the stait tts
array X. And then, we determine the start disk for arfgy At
this step, we try all possible start disks for, and select one that
minimizes the inter-array conflicts betwe&handY". Finally, we
determine the start disk for arr&g. At this step, we need to select
the start disk for arrayZ such that the total number of inter-array
conflicts betweenX and Z and that betwee” and Z are mini-
mized. Figure 7(b) gives the final disk layouts determinedby
approach for this example, while Figure 7(c) gives anothes-p
sible disk layout. It is to be emphasized that both theseutsyo
have the same disk conflicts. However, by comparing disk powe

state$ presented in Figure 7(d) and 7(e), we observe that the disk
layouts determined by our approach exhibit much better péte
riods. Specifically, we see that our algorithm uses threksdis
store all the arrays used in the program so that the othes thsis

in the system can remain in the low-power mode throughout the
entire execution, and this can lead to significant energingavat
runtime. Further, in Figure 7(d), we observe a total of secta-
tions (i.e., switching a disk from the low-power mode to tloé\ee
mode), whereas in Figure 7(e), we have a total of thirteeatirea
vations. Note that reactivating a disk incurs both perforogaand
energy penalties. This small example clearly demonsttasgour
approach increases opportunities for saving disk energy.

5. COMBINING LAYOUT OPTIMIZATION
WITH LOOP RESTRUCTURING

Our approach determines the disk layouts of the arrays inemgi
program such that the number of disk conflicts and the humber o
disks used to store arrays are minimized. However, this does
mean that all components of a given application will work lwel
der the disk layouts determined by our profile-driven apgihodn
particular, while it is expected that the layouts found by ap-
proach will operate well for most of the loop nests of the agpl
tion, itis still possible that these layouts perform poddya couple
of nests. This can certainly be the case for large applicatiaith

2A power state diagram shows the states of the disks over time.



\ X[0..1023] || X[2048.3071] || Z0.255] HZ[768..1023]H

Disk-0

Disk-1 \ X[1024.2047) || X[3072.4095] || z[256.511] \\2[1024..1279]\3
Disk-2 \ Y[0..2047] || zis12.767) HZ[IZSO..ISSS]H
Disk-3 ‘
Disk-4

Disk-5

(b) Disk layout determined by our approach.

\ X[0.1023] | | z[0.255 |

Disk-0
Disk-1 \ X[1024.2047) | | z[256.511] |
Disk-2 \ X[2048.3071) | [ z[512.767] ]
Disk-3 \ X[3072.4095] | [Z[768.1023] ]
Disk-4 \ Y[0.1023] | [Z[1024..1279]]

Disk-5 \ Y[1024.2047] | [Z(1280..1535]]

(c) Another possible disk layout.

Start | Stripe | Stripe
Array | Disk | Factor | Size
L1: for i = 0102047 { X 0 2 | 1024
______ Y 2 1 2048
WX z 0 3 256
X i+ 1024]...;
Y]
L2: fori = 0101023 {
WA
Z[i + 256]...;
i+ 512]..;
------ Start | Stripe | Stripe
) Array | Disk | Factor | Size
L3: fori = 0104095 { X 0 2 1022
""" ) Y 4 2 1024
X Z 0 6 | 256
}
(a) Code fragment.
[ Active  [_] Power-Down

Disk
Ot_:i

10240ms

SR

=

ms 20480ms 30720ms 40960ms 51200ms 61440ms 71680ms

(d) Disk power states for (b).

[ Active  [_] Power-Down

61440ms

10240ms 20480ms 30720ms 40960ms 51200ms 71680ms

(e) Disk power states for (c).

Figure 7: An example that illustrates how our trace analyzerworks in practice.

Input: a loop nest and disk layouts for all arrays
Output: transformed (restructured) loop nest

Al[i] —the set of array elements stored in disk
S[L] — the set of array elements accessed witin
I1T[L] — the set of iterations of;

for each loop nest of programP {
D = ¢;
for each disk of the system{
T =A;NS[L];
N; = {I'|T € IT[L] A 3z € T : zis accessed at};
if(N; # ¢)
D = DU {i};

}
foreachK C D {
d = IT[L);
for eachi € K
d=dnN N;;
foreachi € D — K
d=dn(I[L] - Ni);
output “turn off disks not inK”;
output “for I € d {body of £}"
}
}

Figure 8: Our loop restructuring algorithm.

many loop nests. There are two potential solutions to thid{pr
lem: (1) allowing such nests to operate with different deskduts,

or (2) using code restructuring to change the disk acceserpat
of these nests. Unfortunately, the first option does not daeamny
realistic. It is important to note that, once the disk lagoate as-
signed and arrays are created, it is difficult to change theuls.
This is because such a change would normally require coatty d
remappings on the disk system, whose overheads may notgve tol
able in practice. In the rest of this section, we explore #moad
approach, namely, changing the data access patterns khcodg

restructurin ﬁloop transformation). The proposed apghda ap-
plied to each loop nest whose behavior is not good under tie di
layouts determined bY our trace analyzer.

We assume that a loop nest(whose access pattern we want to
modify through loop restructuring) can be represented ka/fe:

for I = Lto U {body}

where[ is the iteration vector (containing the loop iterators from

top to bottom); and andU are the vectors that hold the lower and
upper bounds for the loops, respectively. We denote thefsbeo

disks used in loop iteratioh asd(I). The goal behind our loop
restructuring approach is wuster,at a given time, disk accesses
to as fewer disks as possible. Note that, this code restingtap-
proach works with the layout information determined by aace
analyzer.

We start by making the following definitions:

D(L)={d(I)|L < T = U} ={d1,da, ..., dn};
S(L,di) = {I'd(I) = d;}.

Here, eachd; indicates a subset of disks that are accessed by at
least one iteration. Consequently, we can restructure hagpL
as:

for I’ € S(£,dx) {body}
for I € S(L,dz) {body}

for I € S(L,d,) {body}

For the iterations irb (L, d;), the disks that do not belong #h can
be placed into the low-power mode to conserve energy. Itldhou
be noted however that, when restructuring a loop nest, &dl diex
pendences must be preserved. Specifically, a loop nesttchano
restructured using a particular transformation if thisigfarmation



L3-1: forit = 0to 1 {
for i = 4¢ * 2048 t0 i1 * 2048 + 1023 {

}
L3-1:forii = 0to1 {
for i = 4i * 2048 + 1024 to 37 * 2048 + 2047 {

}
(a) Restructured loop L3 in the code fragment in Figure 7(a).

[ Active  [_] Power-Down
Disk
' ﬁ

10240ms 20480ms 30720ms 40960ms 51200ms 61440ms 71680ms

l](mk:s)) Disk power state for the program given by Figure 7(a) with
loop nest restructuring, based on disk layout given in Fgi(b).
Figure 9: An example that illustrates the working of our loop
restructuring algorithm.

SR

might violate a data dependency within this loop nest. Furth
since disk layouts have already been determined, givén we

can computeS(L, d;) at compilation time. In this paper, we con-
sider only the loop nests whef& L, d;) can be represented using

Presburger formulations [24]Therefore, a loop nest of the form

for I € S(L,d;) {body}

can be built using a tool such as the Omega Library [1] at com-
pile time. That is, using the Omega library (or a similar faglral
tool?, we can identify the set of loop iterations that accaegsar-
ticular set of disks. In addition, we can increase the daratf

the periods spent in the low-power mode by minimizing the Aum
ber of disks whose states need to be changed when we transitio
from the current loop nest to the next one (considering thitiphe:
loop nests created from the original loop nest to be restrad).
This can be achieved by sorting the element®¢f) such that the
value of the following expression is minimized:

[D(L)|-1
Z |di Udiy1 — di Ndiga].

i=1

Note that,d; N d;+1 gives the set of disks that are used by the two
consecutive loop nests, aftl Ud;+1 —d;Nd;1| gives the number
of disks whose states must be changed when we transitiontfrem
i" loop nest to the(i + 4)"". Our code restructuring algorithm is
given in Figure 8.

As an example, based on the disk layouts given in Figure 7(b),
the loop L3 given in Figure 7(a) can be restructured as shown i
Figure 9(a). Figure 9(b) gives the disk power states for this
structured program. At this point, by comparing Figure %ﬂh
Figure 7(d), one can see that loop nest restructuring redtiee
number of reactivations from six to four. In addition, theotahort
power-down periods for the second disk are nhow combinedanto
single, longer period. Notice that, a longer idle period elaw
us use the low-power mode which would not be possible with a
shorter idle period.

3Presburger formulation is a class of logical formulas whiah be
built from affine constraints over integer variables, thgidal con-
nectives {, A, and-), and the existential and universal quantifiers
(3 andV). In this work, we employ the Omega Library to ma-
nipulate integer tuple relations and sets, which are dasgrising
Presburger formulas.
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Figure 10: Implementation and experimental platform.

6. EXPERIMENTAL EVALUATION

In this section, we first present our experimental platformd a
methodology (Section 6.1), and then we give our experinieeta
sults (Section 6.2).

6.1 Implementation and Simulation Platform

Figure 10 shows our implementation and simulation platform
Let us first focus on the implementation. If we use only layout
optimization (i.e., without code restructuring), we folldhe fol-
lowing path. The (instrumented) input code is fed to a traee-g
erator which gienerates a trace file that contains array seseas
explained earlier in the paper. This file is then given to cace
analyzer, which determines the disk layouts for all diskident
arrays manipulated by the application. The three specifi
nents of our trace analyzer are described in Section 4. agieut
information is then passed to the compiler along with thgipéil
code. The compiler (built upon SUIF [17]) modifies the apglic
tion code to specify the layout of each array ﬁthis is typicdbne
by inserting appropriate parameters in the file creatiofs)alf,
on the other hand, we use disk layout optimization in corjonc
with loop restructuring (explained in Section 5), the ¢ also
modifies the loop nests whose behaviors under the deterrdiaked
layouts are not satisfactory.

Let us now discuss the simulation environment, which is show
on the lower-left portion of Figure 10. We wrote a disk enesgy-
ulator to perform our experiments and gather power/peréoce
statistics. In addition to the trace file, this disk simutaneeds
a model for the target disk system. Using these parameteess, t
simulator determines, for each request, the disks that tedeelac-
cessed and the duration of access for each disk. The defaules
tion parameters used in our experiments are given in Taliath
performance and energy statistics were calculated basttdiy-
ures extracted from the data sheet of the IBM Ultrastar 328
and are given in Table 1. The values for power mode transition
(see Figure 2) are also included in Table 1. In the rest of te p
per, when we say “energy” we mean the energy consumed in the
disk system. When we say “execution time/cycles”, we mean th
time/cycles it takes to complete the application executidre disk
energy consumption includes the energy consumptionsglboth
active and idle periods, taking into account all the states the
disks go through during the entire execution (see Figure 2).

We performed experiments with five different schemes, which
can be summarized as follows:

e BASE:This is the base version that dagst use any energy
saving strategy. This also represents the best executin ti
across all the schemes tested since it does not incur any per-
formance penalty due to power management. It uses a fixed
stripe size of 64KB for all arrays, and stripes all arraysrove
all available disks in the system, starting with the firskdis

All the energy and performance (execution cycles) results
presented for the remaining schemes are given with respect
to this base version.

HW: This is a pure hardware based conventional disk power
management scheme used in studies such as [10] and [11]. It
uses the same layouts as B®SEscheme. In this approach,
however, a disk is spun down after some idleness to save
power, and is spun up when a new request arrives. Since the
performance cost of spinning up is typically large, this ap-




Table 1: Default simulation parameters.

Parameter [ Value |
Disk Model IBM Ultrastar 36215
Interface SCSI
Storage Capacity 18 GB
Rotation Speed 15,000 RPM

Maximum Stripe Factor
Stripe Size Granularity
Average seek time

8
4 (16KB, 32KB, 64KB, 128KB)
3.4 msec

Average rotation time 2 msec
Internal transfer rate 55 MB/sec
Power (active) 135W
Power (idle) 10.2W
Power (standby) 25W
Energy (spin down: idle— standby) 133
Time (spin down: idle— standby) 1.5sec
Energy (spin up: standby- active) 1357
Time (spin up: standby- active) 10.9 sec
T (in the stripe factor algorithm) 0.7

proach can incur significant performance degradation,Als
in order for this scheme to save power, the disk idleness
should be large enough to compensate for the spin-up and
spin-down latencies.

OPT: This is the profile-driven disk layout detection scheme
proposed in this paper. This scheme determines, for each
disk-resident array manipulated by the application, thaet st
disk, stripe size, and stripe factor. We also implementeskth
(more restricted) variants of this optimized schemeORiT-

1, we force each array to get striped from the first digk) (

on the disk system, and determine the stripe size and stripe
factor under this constraint. l@PT-2 we fix the stripe size

at 64KB for all arrays, and determine the start disk and etrip
factor. Finally, inOPT-3 we fix stripe factor at 8 (the total
number of disks in the system) for all arrays, and determine
the start disk and the stripe unit. Our main goal in making
experiments with these three varian®RT-1, OPT-2 and
OPT-3 is to quantify the influence/importance of each of the
three components of a disk layout individually.

LOOP: This scheme uses the same fixed layout for each ar-
ray as in the case of tHRASEandHW schemes. However, it
restructures code to increase disk idle periods. The specifi
transformation used is loop distribution, also known aploo
fission [29]. This transformation places the statements in a
given loop into separate loops, each with its own iteration
space. One can expect this transformation to be useful from
a disk energy viewpoint, in particular, in cases where it sep
arates the references to different arrays, thereby miinigiz
the number of disks that need to be activated for a given loop.
LOOP+OPT:This is the combined scheme discussed in Sec-
tion 5. It first determines the disk layouts usi@PT. Af-

ter that, it identifies the loop nests that need to restrectur
so that they can be transformed to work well with the de-
termined layouts. The purpose behind making experiments
with this version is to check whether the combined approach
brings any additional benefits over t& T scheme.

Note that, except for the BASE scheme, all the versions work
under the assumption that the disk hardware provides ctoneh
disk power management capabilities (see Figure 2). The powe
consumption at each state and power/latency values intstais-
tions are given in Table 1 along with the other simulationapar
eters. The necessary code modifications required by therelif
schemes tested in this paper are automated within the SEHSin
tructure [17]. SUIF consists of a small kernel and a toolkit@m-
piler passes built on top of the kernel. The kernel definesnan i
termediate representation, provides functions to aceessnanip-
ulate the intermediate representation, and structuremtbegace
between compiler passes. In our experiments, the largesdge
in compilation time occurred with theOOP+OPT scheme, and
was less than 40% (of the original compilation times) forta#
benchmark codes tested.

Table 2 lists the benchmark codes used in our experimerdakl ev
uation. We used all 10 applications from the Spec95 flogbioigrt
benchmark suite [2]. In a pre-processing step, we made Hezgdn-
marks 1/O intensive by making the arrays the?/ manipulatle iis-
ident. Each array is stored in a separate file on the disk rsyste
and each file stores only a single array (i.e., 1-to-1 mappinge

Table 2: Our benchmarks and their characteristics.

Benchmark | Brief Description Data Energy | Time
Size (GB) ) (sec)
101.tomcatv| Vectorized mesh gen| 39.9 4817.1 | 96.2
102.swim | Shallow water eqn 55.6 6021.7 | 139.3
103.su2cor| Monte-Carlo method 78.4 22794.2 | 592.7
104.hydro2d | Navier Stokes egn 96.7 27863.0 | 619.7
107.mgrid | 3D potential field 51.8 18122.4| 524.8
110.applu| Partial diff eqn 85.0 10634.1| 266.0
125.turb3d | Turbulence modeling| 71.3 20249.2 | 565.4
141.apsi| Weather prediction 98.1 26888.6 | 592.9
145.fpppp | Quantum chemistry 107.3 31296.7 | 598.4
146.wave5| Maxwell's egn 121.1 28792.8| 511.4
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Figure 11: Normalized energy consumptions.

second column of this table gives a brief description of daaich-
mark. The third column shows the amount of disk-residena dat
manipulated by each benchmark. The last two columns give the
energy consumption and execution cycles for BA&SEscheme.

All the energy and performance results presented in the sexxt
tion are normalized with respect to the values shown in thietleo
columns of Table 2.

6.2 Results

We start by presenting an evaluation ©PT and its variants.
Figure 11 presents energy consumption values for sch€mds
1, OPT-2 OPT-3 andOPT. As mentioned earlier, all the results
are normalized with respect to those of B&SEscheme. We see
from this bar-chart that the average energy improvemerieeed
by OPT-1, OPT-2 OPT-3 andOPTare 8.67%, 7.30%, 8.48%, and
17.95%, respectively. That is, tl@PT scheme generates signifi-
cantly better results than the three variants. These sesldarly
emphasize the importance of tuning all the three comporards
disk layout. Starting to stripe every array from the firskdis the
disk system prevents the alignment we want to achieve (sedish
cussion in Section 4). For example, in th@2.swimbenchmark,
this causes the energy savings drop from 17.80% to 6.70%i- Sim
larly, fixing stripe size prevents a fine granular clusteringich in
turn affects the energy savings in all benchmarks. As an plam
looking at the results for th&02.swimbenchmark again, we see
that fixing the stripe size causes the energy saving go down fr
17.80% to 0.20%. Similar observations can be made for bench-
marks103.su2coand107.mgridas well. Finally, when we fix the
number of disks over which arrays are striped, we have difficu
in achieving the alignment we want. Consequently, the gneag-
ings drop significantly, as compared to tB@Tscheme.

The results given in Figure 12 help us compafeT, HW, LOOP,
andLOOP+OPT. The first observation one can make from these re-
sults is that théHW version performs very poorly, mainly because
of the short idle periods in disk access traces. The ave
savings brought by this scheme is only 1.67% across the bench
marks in our experimental suite. This can be best explainéd w
the help of the CDF curves given in Figure 13. An (X,y) pointaon
CDF curve in this gfraph means that y% of the idle times has a du-
ration of x (ms) or lower, when the layouts BASEHW are used.
The minimum amount of idle time required to compensate tisé¢ co
of SEinning down/up the disk is called tipeofit threshold.Based
on the numbers from IBM Ultrastar 36215, this threshold isL®5
seconds. The results in this graph show that the idle diségiex-
hibited by these array/loop-intensive applications arehrahorter
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Figure 13: CDF curves for disk idle times, when the layouts in
BASE/HW are used.

than this threshold value, which explains why t#&/ scheme does

not achieve much savings. The second observation one cam mak

from Figure 12 is that theOOP scheme is successful in reducing
energy consumption. In fact, it achieves an average of %6.61-
ergy savings, which is very close to the 17.95% savings getlie
by OPT. Our last observation is that combining loop and data op-
timizations, that is th& OOP+OPTscheme, generates the highest
energy savings so far: 27.36% on the average. That is, duladis
out detection approach is very effective when it is combinith
code restructuring (transformation). In addition, it nreéalbe said
that the combined scheme evaluated here is actually noyzuen-
plex one. One can envision more sophisticated schemestigic
In future agenda) that integrate data and code optimizatitich
could potentially result in even better energy savings.

Another important metric to consider is the increase iningb
execution cycles caused by our disk layout based approaigh. F
ure 14 presents the percentage execution time increasaghh
OPTandLOOP+OPTover theBASEscheme. We see that the av-
erage increase with th@PT scheme is only 1.86%, which is not
too much at all, considering its large energy benefits. Theseo
sponding increase with theOOP+OPT scheme is 2.61%, when
averaged over all the benchmark codes in our experimenital. su
The reason that these values are not very high is the facbthat
approach tries to strike a balance between performancersangye
consumption. As has been discussed earlier in detail, wéotry
minimize the number of intra-array and inter-array corril,lcand
this in turn has a positive impact on performance, and affseine
of the performance overheads incurred by power managenitent.
needs also to be mentioned at this point that an increasesuex
tion cycles can also cause an increase in (leakage) enemgycgp-
tion of other system components such as caches, main memorie
and CPU data-path. However, recall that our applicationalons
large-scale scientific array codes that manipulate disldeat data
sets. In such applications, energy consumption on the gities
usually dominates the energy consumptions on caches, neimn m
ories, and CPU data-path. Therefore, the leakage ener
due to increased execution cycle count is unlikely to offisetarge
energy savings coming from the disk system.

In our next set of experiments, we measure energy savings whe
we change some of the default values used in our experiments s
far. We first focus on two parameters: the maximum number of
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Figure 14: Percentage increase in execution cycles with ti@PT
and LOOP+OPT.
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Figure 15: Normalized energy consumption with different vd-
ues of maximum stripe factor and stripe size granularity.

disks that can be used for striping and the stripe size gaaityl
An “x” on the x-axis of the graph in Figure 15 corresponds t® th
default number of stripe sizes that can be selected by oupapp
(which is 4 as given in Table 1). Also, a “y” on the y-axis desmt
the default maximum number of disks that can be used forilsgip
(which is 8 as given in Table 1). The results (the z- axis)eeg

the average (normalized energy) values over all benchnaat

We see from these results that our energy savings increasewuh
increase the number of disks or the stripe size granuldritis can
be explained as follows. When the number of disks is inciase
it gives more flexibility to our approach for determining thgout
and this increases the opportunities for power savings.il&im
when we have a larger set of stripe sizes to choose from, we can
select the most suitable one considering the impact on g ey
sumption.

We now investic?ate the influence of tfie(threshold) parame-
ter on energy and performance behavior of our profile-driapn
proach. Recall that this parameter can be used for spegithia
percentage of conflicts to eliminate. Therefore, it can bedue
study the trade-offs between performance and energy. Aehigh
value (ofT") means eliminating more conflicts, which usually re-
sults in more disks to store array data, which in turn meass le
power savings. The default value ®f used in our experiments
so far was 0.7, as given in Table 1. Figure 16 gives the normal-
ized energy consumption and percentage increase in espati
cles under the different values of tieparameter. All the curves
in this figure represent the average values across all telicapp
tions tested. We see from these results that, for bottOfA€ and
LOOP+0OPTschemes, as we reduce the valu&'dfeyond a certain
value, the execution cycle overhead curves increase yafibere-
fore, one may not want to work with very smdllvalues. On the
other hand, very largé' values may not be very good either, since
they increase energy consumption. We see that the valué® in t
middle range such as 0.5, 0.6, and 0.7 tend to strike a goaddml
between energy savings and performance overheads.
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Figure 16: Influence of theT parameter.
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Figure 17: Influence of the input set.

In our last set of experiments, we study the influence of thatin
set on our results. Since our approach is profile-drivers im-
portant to study how sensitive our results are to the inputised
In profiling. To test this, we performed another set of experits,
where we executed our benchmarks with inputs other thanrtbe o
used for profiling. We present the results only for #@.mgrid
benchmark; but, the trends exhibited by the other bencheramr
very similar. Figure 17 presents the normalized energy woips
tions for this benchmark with five different inputs (Inputfitough
Input-5). However, for all these cases, the disk layouts ase the
same and are determined by using the first input set (Inpubie
can see from these results that, while the actual savingslicgnly
change from one input set to another, the trends are verystens
across the different input sets. This is mainly due to thdiegp
tion domain we target. Recall that we are dealing with atoay-
intensive codes that perform I/O. In these applicationspoare
the main control structures, and there are very few cornwitig-
taken Paths. As aresult, the input set used does not affesit the
flow of execution taken at runtime. Consequently, the dighlgs
determined using one set of inputs can be used for execuiing t
application with another set of inputs.

7. CONCLUDING REMARKS AND
FUTURE WORK

Disk system is known to be a major contributor to overall powe
consumption of high-end parallel systems. Past reseangoped
several architectural level techniques to reduce disk ptyeaak-
ing advantage of idle periods exPerienced by disks. The ow@in
tribution of this paper is a profile-driven approach for deti-
ing disk layouts of array data to minimize the energy condionp
without increasing overall execution cycles excessivedpecifi-
cally, our algorithm determines, for each disk residenayrthe
stripe factor, stripe size, and start disk for striping. ©xperiments
with this algorithm reveal that (1) it reduces energy congtiom of
original applications significantly; (2) the energy sadnggener-
ates are competitive with those obtained through loop &itring
based strategy; and (3) the best energy savings are achigved

a combined scheme that employs both code and disk layout op-

timization. Our future work includes designing and implertireg
algorithms that integrate code and data optimizationseducing
disk power consumption. We are also planning to investigate

impact of such algorithms in other parts of the system suciacise
locality and data-path energy. Also in our agenda is exrenthis

work to other application domains.
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