Software-Directed Disk Power Management for Scientific Appcations *

S. W. Son M. Kandemir A. Choudhary
CSE Department ECE Department
Pennsylvania State University Northwestern University
University Park, PA 16802, USA Evanston, IL 60208, USA
{sson,kandem}j@cse.psu.edu choudhar@ece.northwestern.edu
Abstract 1. Introduction

Disk power consumption is becoming an increasingly power consumption of large servers has recently been a
importantissue in high-end servers that execute largéesca popular research topic. There are at least three reasons for
data-intensive applications. In particular, array-bassd- that. First, these servers are power hungry systems as doc-
entific codes can spend a significant portion of their power ymented by the prior work, which indicates that they can
budget on the disk subsystem. Observing this, the prior re-consume several mega-watts of power [4, 3]. Second, the
search proposed several strategies, such as spinning dowrygoling systems required for these servers can be extremely
to low-power modes or adjusting the speed of the disk in costly, which in turn contributes to expensive electridtib
lower RPM, to reduce power consumption on the disk sub-[2]. Third, since high power consumption is also harmful to
system. A common characteristic of most of these techenyironment, there is a strong motivation from an environ-
niques is that they are reactive, in the sense that they makenental perspective as well to focus on power consumption.
their decisions based on the disk access patterns observed The prior efforts that target at reducing power/energy
during execution. While such techniques are certainly use'consumption of servers can be broadly divided into three

ful and the published studies reveal that they can be Verycategories. The efforts in the first category [9] are CPU-

effective in some cases, one can conceivably achieve betéentric studies and consider techniques such as shutting
ter results by adopting a proactive scheme.

Focusi intensi ientifi licati thi down unused CPUs and voltage scaling. The second cate-
e o v 9505 13.]considers iferetcomporeisofr sarer
. . . . such as communication links, CPUs, and memories. The
a compﬂer-dnvgn proactive approach _to disk power man- third group, which our approach also belongs to, focuses on
agem_ent. In this approach, the gompller analyzes the aP"the disk subsystem of the servers and considers disk shut-
p"ca“of‘ qode anq extrapts the d|s_k access pattern. It thendown and adaptive speed-setting policies at the archiectu
uses this |r_1format|0n to |_nsert eXpl'C_'t disk power manage- and OS (operating system) levels. Note that, disk subsystem
me_nt calls in t_he approprlgte places in the code. It also pre- can be responsible for a large percentage of the total power
activates a disk (placed into the low-power mode) before budget of a system, as noted in several prior studies such
it is actually needed to eliminate the potential performanc ’

: 4 .7 as [10] and [16]. The representative studies for disk power
impact of disk power management. The second Comr'bu“onmanagement include spinning down to low-power modes
of this paper is a code transformation approach that can be [7, 8] (most traditional power management techniques, re-
used to increase the savings coming from a disk powerman-fe’rreol to as TPM in this paper, utilize this scheme) ’dy_
agement scheme (whether reactive or proactive). Our €X-.amic RPM (DRPM) [10], and P’opular Data Concentrétion
perimental results with several scientific application esd (PDC) [16]. An importani common characteristic of these

show r:hatdbtohth éhek p|>roactt|ve disk pgw::-r mefmage;nent ap'previous disk power management techniques is that they are
proach and the disk fayout aware code fransformations are reactive,n the sense that they make their decisions based on

beneficia_l from both power consumption and execution timethe disk access patterns observed during execution. While
perspectives. such techniques are certainly useful and the published stud
ies reveal that they can be very effective in some cases, one
can conceivably achieve better results by adoptipgac-
« This work is supported in part by NSF Grants #0444158, #0403 tive approach.

and #0093082. Focusing on scientific applications that manipu-

late large, disk-based datasets (mostly in the form oftion 2 gives a brief overview of TPM and DRPM, the
multi-dimensional arrays), this paper proposes such atwo previously-proposed approaches to disk power man-
proactive scheme based on analyzing the applicationagement. Section 3 presents the details of our compiler-
code and extracting data/disk access pattern informa-driven approach, focusing in particular on disk access pat-
tion. This information is in turn used during execution to tern extraction and code modification to insert explicikdis
proactively spin down/spin up disks (when used in con- power management calls. Section 4 explains our experi-
junction with TPM-capable disks), or change their rota- mental setup, benchmarks, and the different versionsteste
tion speeds (when used in conjunction with DRPM-capable Section 5 reports experimental data that demonstrate the ef
disks). In the proposed approach, we enlist the com-fectiveness of the compiler-directed scheme. Section-6 dis
piler's help to analyze and extract the data/disk accesscusses and quantifies the impact of code transformations
pattern, and decide the most suitable disk power man-(restructurings). Finally, Section 7 concludes the paptr w
agement strategy. There are at least two advantages o& summary of our major contributions.

such a proactive scheme over the reactive approaches pro-
posed by the prior research. First, since for array-based2
codes this approach can identify disk idle periods accu-~"
rately, this information can be used to select the most ap-

. Disk power management has been extensively studied
ropriate power management strategy/mode (e.g., the most .
guitgble dFi)sk speed ingDRPM), andg%/his in tlErngheIps re- N the context of laptop/desktop disks [7, 8]. Many current

duce the energy consumption on the disk subsystem.d'Sks have several operating modes such as active, idle, and

Second, the compiler-directed scheme can also Oleter_oneormoreIow—poweroperatmg modes. In traditional disk

mine when an idle disk will be requested again and powe_rfmr?nzgemenét((ja_crlln_lglues (d_e(rj\qte? as TPL/I in this pa-
pre-actvatethe disk (by spining it up) before it is acte- £ % PR SR RS RECE S CRe B e
ally needed; this helps reduce performance penalties (e.g.. ’ . .
due to spinning up or due to changing the speed). A po-'s spun down to the low-power mode. The disk remains

tential drawback of the proactive scheme is that we need" the low-power mode untll it receives the next request.

the source code to analyze and extract data access paggvt\?ntggg;ﬁf::;fiﬁg;ﬁﬂgillg ;::gr;s |$1 egorgasneﬁ?/iileome
tern. Therefore, in our work, we restrict ourselves to pin up

array-based scientific applications where source codesll;p;;:g'(;]?hzg?nﬁtb;xvargﬁqg_;ﬁg?:f;?es%n#gﬁOg]r(')gso_“Sk
e sl o srd sl by a1 kg o s o
junction with both TPM and DRPM. adaptive threshold based strategies, is crucial in magagin
o))) both disk energy and performance. While TPM is an effec-
The second contribution of this paper iscampiler- tive approach in the domain of laptop/desktop systems, re-
directed code transformation approach improve the ef- cent studies [10, 2] demonstrated that it is not an appropri-
fectiveness of the proactive power management strategy. Irhte choice for large servers and cluster based systems.
this approach, the code is restructl_Jred (automaticallf;f)ba Since the disk spin-up/down time is much greater in
on the layout of the data on the disk subsystem to increasgpe server class disks (as compared to laptop/desktop sys-
the disk inter-access times, which is beneficial for reac- gmg) and exploiting idle time is infeasible, Gurumurthi et
tive and proactive schemes alike. Lastly, we present a com- proposed dynamic RPM (DRPM) [10]. The DRPM tech-
prehensive experimental analysis of the proposed pr@&ctiv igue is similar, in principle, to CPU voltage scaling tech-
scheme as well as the code transformation approach Uspjqye in that it dynamically changes the RPM step (the ro-
ing a simulation platform, and demonstrate their effeetive ;4tion speed of the disk) and can service a request with a
ness through a set of scientific codes that manipulate diskveqyced speed, provided that the disk hardware/controller
resident datasets. We also discuss how different disk tayou supports several RPM steps, based on the 1/0 workload. It
of data can affect the benefits obtained from the proactivep,g heen observed that DRPM can save a significant amount
scheme. It should be noted that the proactive power man-o¢ gisk power in the presence of server workloads where, in
agement schemes have been employed by the prior researhunera|, exploiting idle time is not viable option if we re-
in the context of CPUs [9], main memories [6, 15], and net- gtrict ourselves to only TPM. In addition, since the RPM
work components [5]. Therefore, our work can also be con- mgqyation time from one level to another is usually much
sidered as an adaptation of such generic schemes to the disknaiier than typical spin-up/down times, the resulting per
domain, whose power consumption is becoming an increas+,rmance degradation is also small compared to the TPM-
ing concern in high-performance computing for both hard- paseq schemes. A similar technique to DRPM has been pro-
ware designers and software writers. posed and evaluated in [2]. When there is no confusion, in

The rest of this paper is organized as follows. Sec- the rest of the paper, we use the term “low-power mode”

TPM and DRPM

<Compiler-related components> <Simulator-related components> o ’U“ifugm

Disk activity, e

Input Program Performance, and <disk0> <disk1> fori = 5/2+1..8

1 Energy statistics Nest 1, 1, Active Nest 1, S+1, active T, UG

fori=1.N 1. 0.1024 R Nest 1, S, idle Nest 1, 28, idle spin_down(0);
1, 1024, 1024, R PN
\ Disk s, 2048, 1024, W _ s o P
. IS| 21 ’) fori=1.25 Nest 1, 1, active Nest 1, S+1, active for i - 3S/4+1..28
\ Simuator] i i e or i 284145 Nesl2, 2501 acive Neoi2 aghractve s ol
Access \ t, spin_down(0) -t Nest 2, 38, idle Nest 2, 4, idle spin_down(3);
gglg: fs:me(;r AF:_]aatlt)?ngr \ S‘r!pe oze, L (@) ?rnagg\ry\ﬂa;:‘:'ode (b) disk layout of arrays U1 and U2 (c) DAP (d)'t;?r(\rs‘;o’rirg‘zdmzzd:es'
Number o disks, N N ot sk Figure 2. An example application of our ap-
Array layouts \ Energy models proaCh
diskO:
Nest 1.1, activ fori=1.50 | I in the figure. Assuming that the stripe sizeSsand the
L, ’af:t € . Trace . . K) .
Nest 1, 50, idle opindowno) 1"\ Generator total array size istS (for illustrative purposes), the disk
............. Transiomed layout of this array can pe _expressgd(asl, S). To illus-
Disk Acooss Program - trate the process of identifying the disk accesses, letos co
Pattern (DAP) Energy models sider the code fragment in Figure 2(a). During the execu-
Figure 1. High-level view of our approach. tion of the first loop nest, this code fragment accesses the

to denote either a disk which is spun down (in TPM) or a array elements/l[1], U1[2], ..., UL[28] andU2[1],

: : - U2[2], ..., U2[2S] . Consequently, for arrail, we ac-
disk whose speed is set to a lower value than the maximum . ; . ' i
speed supported (in DRPM). cess the first two disks (diskO and disk1); and for atdady

The effectiveness of these prior efforts on disk power we access only the third disk (disk2). Note that, the several

management can be increased by analyzing the applicatior?urrent file systems and /O !ibraries for high-performan_ce
code and exploiting the disk idle/active periods determine Fomtht_'n? supi:_)ort carllls a\tlﬁ'la?:e t_o conV(;.'ydth?:m the disk
by the compiler. In addition, applying code and disk lay- '2YOUt Information when the fiie 1s created. For exam-

out optimizations can lead to further improvements. In the ple, in PVFS [1_7]’ we can chqnge the default striping pa-
rest of this paper, we study these issues in detail. rameter by settindbase (the first /O node to be used),
' pcount (stripe factor), andgsi ze (stripe size) fields of

the pvfs_fil estat structure. Then, the striping infor-
mation defined by the user viathgsf s fi | est at struc-
ture is passed to thevf s_open() call's parameter. When
creating a file from within the application, this layout info
mation can be made available to the compiler as well, and,
as explained above, the compiler uses this information in
conjunction with the data access pattern it extracts tordete
dmine the disk access pattern. On the other hand, if the file is

In order to determine the disk access pattern, we nee . .
. L . already created on the disk subsystem, the layout informa-
two types of information: data access pattern and disk lay- . : .
tion can be passed to the compiler as a command line pa-

out of array data. The data access pattern indicates the orde
in which the different array elements are accessed, and is exrameter. . . . S .
) . ' The DAP lists, for each disk, the idle and active times in
tracted by the compiler by analyzing the source code of the : . L
o . . S a compact form. An entry for a given disk looks like:
application. Since a number of compiler optimizations,,e.g

3. Our Approach

Our overall approach is depicted in Figure 1. In this
section, we explain the compiler-related part that costain
three important components: the compiler-analysis to-iden
tify disk accesses, thdisk access patter(DAP), and the
insertion of explicit power management calls in the code.

those target data locality and parallelism, already make us < Nestl iterationl idle >
of the results of this type of analysis (e.g., see [19] and the < Nest2 iteration5Q0 active>
references therein), we do not present its details hereeTo d < Nest2 iteration 100 idle >

termine which particular disks are being accessed, the com- . o .
piler also needs the layout of array data (i.e., the file that We see from this example DAP that, the disk in question re-
holds the array elements) on the disk subsystem. In this conmains in the idle state (not accessed) until the 50th itemati

text, the disk layout of an array (which is stored in a file) is 0f the second nest. It is active (used) between the 50th it-
specified using a 3-tuple: eration and the 100th iteration of the second nest, follow-

ing which it becomes idle again, and remains so for the
rest of execution. For the example code fragment in Fig-
The first element in this 3-tuple indicates the disk from ure 2(a) and the disk layouts illustrated in Figure 2(b); Fig

which the array is started to get striped. The second ele-ure 2(c) gives the DAPs for each of the four disks in the
ment gives the number of disks used to stripe the data, andsystem. The last component of our compiler-driven strategy
the third element gives the stripe (unit) size. As an exam- is responsible from inserting explicit disk power manage-
ple, in Figure 2(b), arrayJl is striped over all four disks ment calls in the code. It is important to note that a DAP is

(startingdisk, stripefactor, stripesize).

given in terms of loop iterations. In order to determine the
appropriate places in the code to insert explicit power man-

agement calls, we need to interpret the loop iterations in Interface SCsl

terms of cycles, which can be achieved as follows. The cy- Storage Capacity oo
i i i i Average seek time 3.4 msec

cle estimates for the loop iterations are obtapned from the Average rotation time Falioet
actual measurement of the program execution by using a Intggvleetrre(lgcstfﬁé)rate 551§/ISB</svec

high-quality timer calledgethrtime which is available on Power (idle 102 W

. Power (standby) 25W

the UltraSPARC-based systems. Using the measured exe- Energy (spin down; idle— standby) 133
cution time (in nanoseconds) and given the machine’s clock B ;Biﬂ%ﬁ?é{gﬁbﬁz@?ﬂg Losec
Time (spin up: standby- active) 10.9 sec

rate, we estimate the number of cycles per each loop itera-

tion. Maximum RPM Tevel 15,000 RPM
Once we determine the estimated disk idleness (in terms Miggl\ljlmsgz-’\gilggel ?1288 EEM

of cycles), if this idleness is larger than theeak-even T 30

threshold i.e., the minimum amount of idle time required Stri?é”fgﬁtgp'(tn(jf;'ggrscﬁ)isks) bIxE

to compensate the cost of either spinning down in a TPM

Parameter

Table 1. Default simulation parameters.
|

Value]

Parameters common to TPM and DRPM

Disk Model

[BM Ultrastar 36215

Parameters specific to DRPM

Starting iodevice (starting disk)

0

disk or changing RPM speeds in a RPM disk, the compiler case, we incur the associated spin-up delay fully. The pur-

inserts an appropriate power management call in the codeyose of the disk pre-activation is to eliminate this perfor-

depending on the underlying method used (e.g., TPM ver-mance penalty.

sus DRPM). The format of this call is as follows: To evaluate our proposed compiler-directed proactive ap-
spi n_down(di sk;) TPM disks proach to dis_,k power management, we wrote a trace gener-
set _RPMrpml evel ;, di sk;) DRPM disks, ator and a disk power simulator (see Figure 1). The_ details

]] o . . of the trace generator and the power simulator are discussed
wheredi sk; is the disk id, and pml evel ; is the jth

i | | . ' inthe next section.
RPM level (i.e., disk speed) available. Since a DAP indi-
cates not only idle times but also active times anticipated i
the future, we can use this information to preactivate disks
that have been either spun down g1& n_down call or set
to lowest RPM level by @et _RPMcall. To determine the
appropriate point in the code to spin up the disk, we take .
into account the spin-up time (delay) of the disk. Specifi- To gene_rate disk access patterns for each benchmark pro-
cally, the number of loop iterations before which we need gram, we implemented a trace generator. The cycle esti-

to insert the spin-up (pre-activation) call can be caladat matgs for the loop nests were obtained from actual ex-
as: ecution of the programs on a SUN Blade1000 machine

(UltraSPARC-III architecture operating at 750 MHz with
Solaris 2.9) and these estimates were used in all our simu-
lations. In addition to the I/O trace file, the simulator ngeed
the disk striping information (see the corresponding part i

4. Experimental Platform

4.1. Setup and Benchmarks

TSU
d= %1 ®

whered is the pre-activation distance (in terms of loop itera- . ;
tions), T, is the expected spin-up timé,, is the overhead Table 1). Based on these disk parameters, the simulator de-

of aspi n_up call or aset .RPMcall, andsis the number of termines which 1/0 nodes it should access when it reads an

cycles in the shortest path through the loop body. Note that,//O request. We assume that each I/O node has one disk
T,. is typically much larger thas We also stripe-mine the and no further striping is applied at the 1/O node level. That

loop, because it is unreasonable to unroll the loop to make!S: the data is striped across the I/O nodes. In our simula-
explicit the point at which the spin-up call is to be inserted tor, the striping information is provided in an external file

The format of the call that is used to pre-activate (spin up) along with other parameters. The default simulation param-
a disk is as follows: eters are given in Table 1.

In order to evaluate our approach and the prior pro-
posals to disk power management, we developed a trace-
where as beforedi sk; is the disk id. Note that, in driven simulator, which is similar to DiskSim [1]. The sim-
DRPM, we can use samset _RPM call with maxi- ulator is driven by externally-provided disk 1/0O request
mum RPM speed as a parameter. For our running ex-traces, which are generated, as explained earlier, from the
ample, Figure 2(d) shows the compiler-modified code compiler-transformed codes. Each I/O request is composed
with the spi n.down and spi n.up calls. Note that, of the four parameters: request arrival time (in millisec-
if we do not use pre-activation, the disk is automati- onds), start block number, request size (in bytes), and re-
cally spun up when an access (request) comes; but, in thigjuest type (read or write).

spi n_up(di sk;),

Table 2. Benchmarks and their characteris-

ergy and performance numbers presented in the rest of this
paper are with respect to the values listed in these last two

tics.
Benchmark Data Num of Base Execution
Name Size (MB) | Disk Reqs | Energy (J) | Time (ms)

168.wupwise 176.7 24,718 20835.96 248790.00
171.swim 96.0 3,159 2686.79 32088.98
172.mgrid 24.7 12,288 10600.54 | 126651.12
173.applu 54.7 7,004 5875.11 70142.24
177.mesa 24.0 3,072 2667.00 31869.54
178.galgel 16.0 2,048 1715.37 20478.80

Given an /O trace file, the simulator generates statistical

columns of Table 2.

4.2. Disk Power Management Schemes

To compare different approaches to disk power manage-

data for performance and energy consumption. Both perfor-ment, we implemented and performed experiments with dif-
mance and energy statistics were calculated based on théerent schemes:

figures extracted from the datasheet of the IBM Ultrastar

36715 [12], and are given Table 1. Because we are primar-
ily interested in the performance and energy consumption

of the disk subsystem, we assume that other performance
enhancement techniques like I/O prefetching are not em-
ployed.

For DRPM, we obtained statistics using the model de-
scribed in [10]. The simulation parameters specific to
DRPM are also given in Table 1. Besides the parame-
ters and values given in Table 1, we obtained the RPM tran-
sition time and energy consumption at each RPM level as
well. For the energy consumption at each RPM transition,
we conservatively assume that the energy consumed dur-
ing transition is the same as that of the faster RPM level
involved in the transition. In DRPM, each disk can tran-
sition from one RPM level to another based on the
response time change in therequest windows as sug-
gested in [10]. We used the same heuristic algorithm in
implementing DRPM for both upper and lower toler-
ance. However, we used a smaller window size (30) since
our evaluation considers one benchmark program at a
time, and the resulting number of 1/0 requests is com-
paratively small. In the rest of the paper, when we say
“energy” we mean the energy consumed in the disk sub-
system. When we say “execution time/cycles”, we mean
the time/cycles it takes to complete the application execu-
tion.

Table 2 gives the set of array-based benchmark codes
used in this study. These benchmarks were selected ran-
domly from the Specfp2000 benchmark suite [18]. We
made the data manipulated by these benchmarks disk res-
ident. As a result, each array reference causes a disk ac-
cess unless the data is captured in the buffer cache. Also,
to complete our simulations within a reasonable amount of
time, we focused only on time-consuming loop nests from
these applications. Specifically, from each applicatioa, w
selected the nests whose cumulative I/O time account for at
least 90% of the total I/O time of the application. The sec-
ond column in Table 2 gives the total dataset size manipu-
lated by the selected nests, and the third column shows the
number of total disk requests made by each application. The
last two columns, on the other hand, give the disk energy

Base: This is the base version that does not employ any
power management strategy. All the reported disk en-
ergy and performance numbers are given as values nor-
malized with respect to this version (see the last two
columns of Table 2).

TPM: This is the traditional disk power management
strategy used in studies such as [7] and [8], described
in Section 2.

Ideal TPM (ITPM): This is the ideal version of the
TPM strategy. In this scheme, we assume the existence
of anoracle predictorfor detecting idle periods. Con-
sequently, the spin-up/down activities are performed in
an optimal manner; i.e., the disk is not spun down un-
less the idleness duration is large enough so that one
can save power. While one can expect better perfor-
mance/energy behavior with this scheme as compared
to the TPM, it has still the same drawback of not be-
ing able to useful when the idle periods are small.

DRPM: This is the dynamic RPM strategy proposed
in [10], which is described earlier in Section 2.

Ideal DRPM (IDRPM): This is the ideal version of the
DRPM strategy. In this scheme, we assume the exis-
tence of aroracle predictorfor detecting idle periods,
asinthe ITPM case. Consequently, the disk speed to be
used is determined optimally. This does not just max-
imize energy savings on the disk subsystem, but also
eliminates the potential performance penalties.
Compiler-Managed TPM (CMTPM): This corre-
sponds to our compiler-driven approach when it is
used with TPM. The compiler estimates idle peri-
ods by analyzing code and considering disk lay-
outs, and then makes spin-down/up decisions based
on this information.

Compiler-Managed DRPM (CMDRPM): This corre-
sponds to our compiler-driven approach when it is used
with DRPM. The compiler estimates idle periods by
analyzing code and considering disk layouts, and then
selects the best disk speed to be used based on this in-
formation.

It must be emphasized that, the ITPM and IDRPM

consumption and execution time, respectively, for each ap-schemes araot implementable. The reason that we make
plication whemo power management is employed. The en- experiments with them is that we want to see how close our

Table 3. Percentage of mispredicted disk
speeds.

[[wupwise | swim [mgrid [applu | mesa [galgel |
[CMDRPM | 6.78 | 514 | 13.02 | 18.97 | 27.35 | 159 |

100% 1
90% -
80%
70% -
60% -
e spect to the base version) for the different schemes evalu-
30% | ated. The reason why the TPM-based schemes do not in-
I::; 1 cur any performance penalty is that they are not applicable,
ol given the short disk idle times discussed earlier. When we
[WTES W TEM RN Cl e o W TP mm&mpﬁlfd look at the DRPM-based schemes, we see that the conven-
Figure 3. Normalized energy consumptions. tional DRPM incurs a performance penalty of 15.9%, when
averaged over six benchmarks. We also see that the CM-
DRPM scheme incurs almost no performance penalty. The
main reason for this is that this scheme starts to bring the
" disk to the desired RPM level before it is actually needed,
1 and the disk becomes ready when the access takes place.
o This is achieved by accurate prediction of disk idle periods
e These results along with those presented in Figure 3 indi-
0 cate that the compiler-directed disk power management can
. be very useful in practice, in terms of both energy consump-
[EITPM B TPM O IDRPM L DRPM B CMTPM [CMDRPM| tion and execution time penalty. Specifically, as compared
Figure 4. Normalized execution times. to the reactive DRPM implementation, this scheme reduces

i , the disk power consumption and eliminates the performance
compiler-based schemes come close to the optimal. All nec

. X I;penalty. To better explain why the CMDRPM comes close
essary code modifications are automated using the SUI to the IDRPM, we give in Table 3 the percentage of time that
infrastructure [11].

CMDRPM mispredicts the optimal disk speed, as compared
to IDRPM. To collect this data, we recorded the RPM level

Normalized energy consumptions

———

140%

120% 4

Normalized execution times

=

5. Empirical Analysis used for each idleness for both IDRPM and CMDRPM. We
see that the percentage mispredictions are not very large,
5.1. Base Results which explains the success of the compiler-driven scheme.

The graph in Figure 3 gives the energy consumption of § 2. Sensitivity Analysis
our benchmarks under the different schemes described ear-
lier. One can make several observations from these results. The magnitude of the benefits obtained by the proac-
First, as the idle times exhibited by the benchmark used aretive strategy depends on a number of parameters such as
much smaller in length, the TPM version (ideal or other- the stripe factor and the stripe size. In this subsection, we
wise) does not achieve any energy savings. Second, whilevary the values of these parameters to see how our sav-
the DRPM version generates savings (26% on average), théngs are effected. For illustrative purposes, we choose one
difference between it and the IDRPM is very large; the lat- benchmarkswim and conducted all sensitivity analysis on
ter reduces the energy consumption by 51% when averagedhat. Figures 5 and 6 give the normalized energy consump-
over all benchmarks in our suite. This shows that a reac-tions and execution times, respectively, with differeripst
tive strategy is unable to extract the potential benefitsifro sizes. The values of the all other simulation parameters are
the DRPM scheme. Our next observation is that the CM- as givenin Table 1. We see from these results that the energy
DRPM scheme brings significant benefits over the DRPM savings brought by CMDRPM are consistent across wide
scheme, and improves the energy consumption of the baseange of stripe sizes. We also see that the compiler-based
scheme by 46%. In other words, it achieves energy savingsapproach to disk power management does not increase the
that are very close to those obtained by the IDRPM strat- original execution times for the stripe sizes tested. In-con
egy. These results demonstrate the benefits of the compilertrast, the behavior of the conventional DRPM becomes re-
directed proactive strategy. ally worse when we increase in the stripe size. This can be

It is to be noted, however, that the energy consump- explained as follows. As the stripe size increases and the
tion is just one part of the big picture. In order to have access pattern remains sequential, this increases theeserv
a fair comparison between the different schemes that tar-duration for a particular disk, i.e., more I/O requests go to
get disk power reduction, we need to consider their perfor- the same disk. The controller then tries to bring the current
mances (i.e., execution times/cycles) as well. The bartcha RPM level to a lower level since the current workload is
in Figure 4 gives the normalized execution times (with re- not heavy. This incurs a slowdown in response times for the

80% swim 90% swim

~IDRPM | |
-= DRPM

—+ IDRPM
-#DRPM [|

S
R

E; 70% = —4 CMDRPM |— g! \
E a —4 CMDRPM
%65% - —= ~ gm% 4 \
& 609% - ~. & \ DN e
3 55% S0 | e mom
kS — 2B ~
£ s0% 8 e
= 5% ?0%
=]
40% " " i Z40% —
16K 32K sm?eKsize 128K 236K 203405 6 T oo 1213 14 1S 16
Figure 5. Energy consumption with different Figure 7. Energy consumption with different
stripe sizes. stripe factor.
150% swim 150% swim
" TIDRPM WIDRPM
$140% T— @ prpM 140% HDRPM |
5 OCMDRPM 4 CCMDRPM
£130% £

130%

120% + 120%

10%

100%

Normalized execut
v = =
g 8 3
Normalized execution t

°
=4
+
[
[
[
[
[
[
[
[
[
[
[
[
[
[

80%

16K 32K 64K 128K 256K 80%

; H 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Stripe size Stripe factor

Figure 6. Execution times with different stripe Figure 8. Execution times with different stripe
sizes. factor.

nextn requests before the controller restores the RPM leveling its data (and consequently disk) access pattern. While
to a higher level to compensate for the previous slowdown it is known from the optimizing compiler research [19] that
in the response time. Since this trend holds as the stripe siz loop transformations are very effective in optimizing data
increases, we can conserve energy consumptions, wheredgcality (mainly cache behavior) and iteration-level para
the performance becomes worse with the larger stripe sizesjelism, there is no published study, to our knowledge, that
The next parameter whose variation we study is the stripestudies the impact of such optimizations on disk energy con-
factor (the number of disks). Figures 7 and 8 give the nor- sumption.
malized energy and execution time results, respectively,
with different stripe factors. As before, all other parame-
ters are set to their default values given in Table 1. One
g?gtstsaemfg:;n St‘geile ;esgtlr]s ttﬁst';hc?ecaf\';ﬂe?erT'\:wzgr]eoTzgig- It is possible to increase the effectiveness of disk power
This is because\gdginévéiisks tolthe system ililcreases tr:e er‘}maﬂagementtec.hniques by using loop distribution (fission)
i ; An important point to note here, though, is that the loop
ergy consumption of the base scheme dramatically. HO\N'distribution in this case should be applied with care, tak-
ever, l.mth the.IDRPM and CMDRPM take a_dvantage of the ing into account the layout of data on the disk subsystem.
extra idle periods generated by these additional disks. We.

see that, from both energy consumption and performance;rhat is, unlike the case with the conventional compilation
K : rameworks that target data cache locality, in our context a
angle, CMDRPM remains very close to the IDRPM. 9 ¥

loop transformation should be applied in a layout-serssitiv
manner. Considering underlying disk layouts, one can en-
6. Impact of Code Transformations vision a compilation scheme that combines code restructur-
ing and data layout optimizations under a unified setting.
Our discussion and experimental evaluation so far madeThat is, the compiler can determine the most suitable disk
a case for compiler-directed proactive disk energy managedayout of data along with the accompanying loop transfor-
ment. In this approach, the only modification made to the mation. As has been discussed in Section 3, the disk lay-
application code was the insertion of explicit power man- out of array data can be controlled by three parameters:
agement calls to spin up and down disks, or to set disk stripe size, stripe factor, and starting disk (startingeiade).
speeds. However, one can potentially achieve better energyrhe algorithm sketched in Figure 11 determines the neces-
savings by restructuring application code, i.e., by modify sary loop distribution (for each nest) and the correspandin

6.1. Transformation Approach

fori=1.N 1 U2
£°"l‘“’[qy L’{‘S[‘] : forii=1..N, T. - L ‘
ity LU forj=1.N, T, < AN i
ikl = fori=1.N for | = ii..min(N,ii+T,) \
é..Us[i’ L:[] ! Eorué[ii."tzs[\] } Iorj =1.N for j = jj..min(N jj+T,) —]
or | =1..1 or | =1..1 — - e "
J 53[[51155?3][i]) :..Ug['j' L:O['” (U1,U2,U5} {U3,U4,U8} {U6 U7} {U9,U10} } AL Bl } A, G disk1| |disk2| |disk3
fori = 1..1
O o L st o (e U @ © ©
L Figure 10. Loop tiling example. (a) original
@ ® © code fragment. (b) transformed code frag-
Figure 9. Loop fission example. (a) original ment. T; x Ty is the tile size. (c) tile-to-disk
code fragment. (b) transformed code frag- mapping.

ment. (c) disk allocation for array groups.]]] .)
tile. Therefore, if done appropriately, for a given exegnti

disk layout (for each array) for a given program. In infor- Of the tile iterators, the element iterators access onlgifipe
mal terms, it operates as follows. It visits each nest in the blocks of data. In our context, if we set the block size used
application code. For each nest, it considers a loop distri-in tiling to the disk stripe size, after tiling, at a given gém
bution such that the newly-generated loops after the dis-the execution operates on certain set of blocks (typicaley o
tribution access disjoint sets of arrays as much as possiblock from each array). As in the case of loop distribution,
ble. It then formsarray groups.The arrays in a group are it is required to collocate the blocks that are operatedet th
the ones that are accessed by the same set of statement&ame time, and thus this transformation also helps increase
After this step, each array group is assigned a disjoint setthe energy savings of TPM and DRPM. A sketch of our
of disks. In our current implementation, we distribute the layout-aware loop tiling algorithm for reducing disk engrg
available disks across the array groups based on the toconsumption is given in Figure 12. An example application
tal amount of data in each group; i.e., more data an arrayof this algorithm is illustrated in Figure 10. Figure 10(a)
group has, more disks it is assigned in a proportional man-shows the original code fragment, and Figure 10(b) gives
ner. Note that, what this algorithm is essentially trying to the tiled version. Note that, in this transformed code,
achieve is to place the disjointedly-accessed arrays ifitod andj j are the tile iterators, and andj are the element
ferent array groups (and eventually to different disks), so iterators. Figure 10(c) shows the tile-to-disk assignmint
that when one group is being accessed during execution théhould be noted that, in order to achieve this assignment, ar
disks that hold the arrays of the other groups can be placeday U2 needs to be layout-transformed (from row-major to
into the low-power mode. Figure 9 illustrates an example column-major). After this assignment, when we are work-
application of this algorithm. In the original code fragrhen ing with a specifid i ,j j pair (in Figure 10(b)) during exe-
shown in Figure 9(a), three loop nests access a total of 10cution, we access two specific tiles from arréjisandUz,
arrays (U1, U2, U3, ..., U10). Assuming that all the arrays ~and the disks that do not hold these tiles can be placed into
are of the same size and each loop nest has the same iterdhe low-power mode to save energy. Note that, unlike the
tion count, our approach forms four array groufgd], U2, loop distribution algorithm, the tiling algorithm explaid
Us}, {U3, U4, U8}, {U6, U7}, and{U9, U10}. Note that, here operates only for a single nest. Therefore, in our cur-
U2 and U5 belong to the same group, as they are coupled rent implementation, we applied it only to the most costly
via arrayUl. These four array groups are assigned to the nest (as far as disk energy consumption is concerned) from
disks as shown in Figure 9(c). The fissioned code is giveneach application. As a result, the layout determined based
in Figure 9(b). Now, for example, when the application ex- 0n this most costly nest may not be preferable for the re-
ecutes the first loop in the transformed code, the executionmaining nests. However, our experiments show that in sev-
accesses only the first three disks; one can save a signifieral cases this algorithm generates disk energy savings. Ex
cant amount of energy by putting the unused disks in thetending this tiling approach to multiple nests is in our fetu
low-power mode. agenda.

Another loop-based transformation, loop tiling [14], can
also be used for increasing the effectiveness of disk power6.2. Results
management. What this transformation essentially does is t
restructure a loop nest (by dividing it into iteration tjés To evaluate the impact of loop distribution and loop tiling
such a fashion that, at any given time, a single data blockon the effectiveness of TPM and DRPM, we performed a set
(from the array) is accessed, thereby exploiting the dataof experiments with the following new versions:
reuse within the block. In tiling, the transformed loop nest e LF: The loop fission based version that does not use
has two types of loops: tile iterators and element iterators disk layout optimization.
The tile iterators iterate over a given iteration tile, wéees e TL: Thelooptiling based version that does not use disk
the element iterators operate over the members of a given layout optimization.

e LF+DL: The layout-aware loop fission version based INPUT:

i . . R K loop nests and disk layout information.
on the algorithm given in Figure 11. OUTRUT: i cioned code and fhe transidriek lavout
o . N energy-optimized loop-Tissioned coade an e transrar ayout.
e TL+DL: The layout-aware tiling version based on the Begin o P Y
AG — 0 /I AG keeps array groups

algorithm given in Figure 12. for each loop nesto

for each statement in the loop nelst

i i _ B « array group accessed by the statement
It is to be noted that, each of these versions can be com iF (B 5 (ah ets mACH) s= 0 then

bined with TPM, ITPM, DRPM, IDRPM, CMTPM, or CM- elseAdd(B 10 AG as anew set
DRPM. That is, the proposed code (and data layout) op- Union B and the overlapping set iAG
timization approach can be useful with both reactive and end?{;ﬁ’ :

proactive schemes. The reason that we make experiments | &

with (layout-oblivious) versions such as LF and TL is that

we want to see whether conventional loop distribution and

Generate fissioned loops.
Allocate disks to array groups based on total data size ih gaaup.
tiling (i.e., without considering disk layouts) can be aisgu

End
Figure 11. Loop fissioning algorithm.

ful in reducing disk energy. Also, the DL denotes the dif- INPUT: o sk lavout informatl
ferent concepts in LF+DL and TL+DL. Specifically, in the QUTPUT. o e Ryt omaton

. T P An energy-optimized tiled code and the transformed disku)
LF+DL version, DL indicates the division of arrays across Begin_ Y P Y

the disks, whereas in the TL+DL version, it indicates the
layout transformation and tile-to-disk mapping.

N « the number of arrays accessed by the nest
Create tiled loop nest WitK tile siz&,S
for : =1to N do

dI?etermine the data siz&) S(i), required while iterating givefl’sS.
end for

The normalized energy consumptions with the different
schemes are given in Figure 13. As before, all the results are
normalized with respect to the base version. We can make

for each array used in the loop nelst
if data access pattega storage patterthen

Transform the data layout (e.g., from row-major
. to column-major{.
end if

end for
Reshape access patterns of arrays.
for i=1to N do
stripesize(i) <— D S(i) of each array
end for
End

the following observations based on these results. Fiet, t
LF and TL versions do not perform well. This is not sur-
prising since they do not consider disk layout, and indis-
criminately fissioning or tiling the loops without consider
ing disk layouts of the arrays involved does not lengthen

disk inter-access times. In other words, as mentioned ear- h ities for | q v it red h
lier, loop distribution and loop tiling make sense in our con SUCN opportunities for it, and consequently it reduces the

text only if they are accompanied with a suitable layout op- energy consumption of the base case by 31%, on average.
timization (DL). In comparison, five out of our six bench- Overall, these results show that layout-aware code transfo

fnations, whose further details are omitted here due to lack
of space, can be useful in practice. Finally, while we fo-
cused here on two specific code transformations only, we
believe that most of the other known loop transformations
can also be adapted to work with disk layouts for increas-
ing disk inter-access times.

Figure 12. Loop tiling algorithm.

mark codes can achieve further energy savings from one o
the LF+DL and TL+DL versions. Specifically, four bench-
mark programs, namelgwim mgrid, apply, andmesa get
additional benefits from using the LF+DL version, while
three benchmark programs, nameblypwise applu, and
mesa show additional benefits from the TL+DL version.
The reason why different benchmark programs exhibit dif-
ferent trends is that each benchmark has different accesy. Concluding Remarks

patterns. For example, two benchmark programswise

andgalgel do not contain any fissionable loop nests; so, This paper presents a compiler-driven approach to disk
we were unable to obtain any additional energy savingspower management for server environments that execute
through loop distribution. Howevewupwisecan achieve large, array-dominated scientific applications. As opgose
energy savings with TL+DL because it contains an accessto most of the previous work on the disk power manage-
pattern which is not conforming the data layout. So, after ment, our approach is proactive, and uses compiler analy-
transforming data layout along with tiling, we achieve ad- Sis to identify disk idle and active times. This allows our
ditional savings. Note thagialgeldoes not obtain any sav- approach to select the most appropriate power mode for a
ings from LF+DL or TL+DL, because the loop nests it con- given disk at any time. In addition, the paper demonstrates
tains are not fissionable as mentioned earlier, and thesccesthat loop distribution and loop tiling can be very useful in
pattern it exhibits already conforms the underlying dayala increasing the benefits of disk power management strate-
out. Maybe the most interesting trend that can be observedies if they could be made disk layout aware. Based on our
from Figure 13 is that our code transformations make the experimental evaluation, we conclude that:

TPM strategy a viable option for this set of benchmarks. In e For array-intensive scientific applications, the com-
other words, while the CMTPM strategy could not find any piler can extract disk access pattern, and use it for plac-
opportunity to save energy, the code transformationsereat ing disks into the most suitable low-power modes. In

Normalized energy consumptions

120% -

100% +

80% H

60% 1]

40%

20%

0% |l

ITPM #H

DRPM
IDRPM

DRPM

CMTPM M

CMDRPM

:
a

IDRPM
IDRPM

=
[
=
=
)

|

mgrid

CMTPM
ITPM

CMDRPM
CMDRPM

Figure 13.
principle, this approach can be used with both TPM
and DRPM disks.

The compiler-directed proactive approach to disk
power management is successful in improving the be-

wupwise

havior of the DRPM based scheme. On average, it (8]

brings an additional 18% energy savings over the
hardware-based DRPM.

The effectiveness of TPM and DRPM can be increased
by employing disk layout aware code transformations.

Specifically, our results show that two loop restruc- [10]

turing techniques, namely, loop distribution and loop
tiling, are very effective in some of the benchmark
codes tested, and they can make TPM a serious alter-
native for array-based scientific codes.

[11]

References

[1] J. S. Bucy, G. R. Ganger, and Contributors. The DiskSim [12]
Simulation Environment Version 3.0 Reference Manual. [13]

(2]

(3]

(4]

(5]

(6]

Technical Report CMU-CS-03-102, CMU, January 2003.

E. V. Carrera, E. Pinheiro, and R. Bianchini. Conserving
Disk Energy in Network Servers. IRroc. of the 17th In-
ternational Conference on Supercomputimmges 86-97.
ACM, June 2003.

J. Chase, D. Anderson, P. Thackar, A. Vahdat, and R. Boyle
Managing Energy and Server Resources in Hosting Centers.
In Proc. of the 18th Symposium on Operating Systems Prin-
ciples pages 103-116, October 2001.

J. Chase and R. Doyle. Balance of Power: Energy Manage-
ment for Server Clusters. IRroc. of the 8th Workshop on
Hot Topics in Operating Systemsage 165, May 2001.

X. Chen and L. Peh. Leakage Power Modeling and Opti- [16]

mization in Interconnection Networks. Froc. of the Inter-
national Symposium on Low Power and Electronics Design
pages 90-95, August 2003.

V. Delaluz, M. Kandemir, N. Vijaykrishnan, A. Sivasubra
maniam, and M. J. Irwin. DRAM Energy Management Us-
ing Software and Hardware Directed Power Mode Control
In Proc. of the International Conference on High Perfor-
mance Computer Architectyrpages 159-169, Jan 2001.

ITPM

nn
I Il
z
=
=
o

CMTPM ﬁ
=

OLF
mTL
OLF+DL
OTL+DL

zz s sz =iz 2

Z |2 g g | gE |z

Q|2 =] a|A =] Q

8 = a = g

] O

applu mesa

Normalized energy consumptions.

[7] F. Douglis, P. Krishnan, and B. Bershad. Adaptive DiskiSp

(9]

[14]

[15]

[17]

[18]
C[19]

down Policies for Mobile Computers. IRroc. of the 2nd
Symposium on Mobile and Location-Independent Comput-
ing, pages 121-137, 1995.

F. Douglis, P. Krishnan, and B. Marsh. Thwarting the Powe
Hungry Disk. InProc. of the USENIX Winter Conference
pages 292-306, 1994.

M. Elnozahy, M. Kistler, and R. Rajamony. Energy-effitie
Server Clusters. IRroc. of the Second Workshop on Power
Aware Computing Systenfsebruary 2002.

S. Gurumurthi, A. Sivasubramaniam, M. Kandemir, and
H. Franke. DRPM: Dynamic Speed Control for Power Man-
agement in Server Class Disks. Prmoc. of the International
Symposium on Computer Architectupages 169-179, June
2003.

M. W. Hall, J. M. Anderson, S. P. Amarasinghe, B. R. Mur-
phy, S.-W. Liao, E. Bugnion, and M. S. Lam. Maximizing
Multiprocessor Performance with the SUIF Compileom-
puter, 29(12):84-89, December 1996.

IBM. Ultrastar 36ZX & 18LZX 1999.

E. J. Kim, K. H. Yum, G. Link, M. K. N. Vijaykrishnan,
M. J. Irwin, M. Yousif, and C. R. Das. Energy Optimiza-
tion Techniques in Cluster Interconnects. Rroc. of Inter-
national Symposium on Low Power Electronics and Design
pages 459-464. ACM, August 2003.

M. Lam, E. Rothberg, and M. Wolf. The Cache Performance
of Blocked Algorithms. InProc. of the 4th International
Conference on Architectural Support for Programming Lan-
guages and Operating Systemgril 1991.

A.R. Lebeck, X. Fan, H. Zeng, and C. S. Ellis. Power Aware
Page Allocation. IrProc. of Ninth International Conference
on Architectural Support for Programming Languages and
Operating Systempages 105-116, November 2000.

E. Pinheiro and R. Bianchini. Energy Conservation Fech
niques for Disk Array-Based Servers. Rroc. of the 18th
International Conference on Supercomputipages 66—78,
June 2004.

R. B. Ross, P. H. Carns, W. B. L. lll, and R. Latham. Using
the Parallel Virtual File System, July 2002.

SPEC. http://www.specbench.org/cpu2000/CFP2000/.

M. Wolfe. High Performance Compilers for Parallel Com-
puting Addison-Wesley Publishing Company, 1996.

