
Software-Directed Disk Power Management for Scientific Applications ∗

S. W. Son M. Kandemir
CSE Department

Pennsylvania State University
University Park, PA 16802, USA
{sson,kandemir}@cse.psu.edu

A. Choudhary
ECE Department

Northwestern University
Evanston, IL 60208, USA

choudhar@ece.northwestern.edu

Abstract

Disk power consumption is becoming an increasingly
important issue in high-end servers that execute large-scale
data-intensive applications. In particular, array-basedsci-
entific codes can spend a significant portion of their power
budget on the disk subsystem. Observing this, the prior re-
search proposed several strategies, such as spinning down
to low-power modes or adjusting the speed of the disk in
lower RPM, to reduce power consumption on the disk sub-
system. A common characteristic of most of these tech-
niques is that they are reactive, in the sense that they make
their decisions based on the disk access patterns observed
during execution. While such techniques are certainly use-
ful and the published studies reveal that they can be very
effective in some cases, one can conceivably achieve bet-
ter results by adopting a proactive scheme.

Focusing on array-intensive scientific applications, this
paper makes two important contributions. First, it presents
a compiler-driven proactive approach to disk power man-
agement. In this approach, the compiler analyzes the ap-
plication code and extracts the disk access pattern. It then
uses this information to insert explicit disk power manage-
ment calls in the appropriate places in the code. It also pre-
activates a disk (placed into the low-power mode) before
it is actually needed to eliminate the potential performance
impact of disk power management. The second contribution
of this paper is a code transformation approach that can be
used to increase the savings coming from a disk power man-
agement scheme (whether reactive or proactive). Our ex-
perimental results with several scientific application codes
show that both the proactive disk power management ap-
proach and the disk layout aware code transformations are
beneficial from both power consumption and execution time
perspectives.

∗ This work is supported in part by NSF Grants #0444158, #0406340,
and #0093082.

1. Introduction

Power consumption of large servers has recently been a
popular research topic. There are at least three reasons for
that. First, these servers are power hungry systems as doc-
umented by the prior work, which indicates that they can
consume several mega-watts of power [4, 3]. Second, the
cooling systems required for these servers can be extremely
costly, which in turn contributes to expensive electrical bills
[2]. Third, since high power consumption is also harmful to
environment, there is a strong motivation from an environ-
mental perspective as well to focus on power consumption.

The prior efforts that target at reducing power/energy
consumption of servers can be broadly divided into three
categories. The efforts in the first category [9] are CPU-
centric studies and consider techniques such as shutting
down unused CPUs and voltage scaling. The second cate-
gory [3, 13, 5] considers different components of the servers
such as communication links, CPUs, and memories. The
third group, which our approach also belongs to, focuses on
the disk subsystem of the servers and considers disk shut-
down and adaptive speed-setting policies at the architecture
and OS (operating system) levels. Note that, disk subsystem
can be responsible for a large percentage of the total power
budget of a system, as noted in several prior studies such
as [10] and [16]. The representative studies for disk power
management include spinning down to low-power modes
[7, 8] (most traditional power management techniques, re-
ferred to as TPM in this paper, utilize this scheme) , dy-
namic RPM (DRPM) [10], and Popular Data Concentration
(PDC) [16]. An important common characteristic of these
previous disk power management techniques is that they are
reactive,in the sense that they make their decisions based on
the disk access patterns observed during execution. While
such techniques are certainly useful and the published stud-
ies reveal that they can be very effective in some cases, one
can conceivably achieve better results by adopting aproac-
tiveapproach.

Focusing on scientific applications that manipu-



late large, disk-based datasets (mostly in the form of
multi-dimensional arrays), this paper proposes such a
proactive scheme based on analyzing the application
code and extracting data/disk access pattern informa-
tion. This information is in turn used during execution to
proactively spin down/spin up disks (when used in con-
junction with TPM-capable disks), or change their rota-
tion speeds (when used in conjunction with DRPM-capable
disks). In the proposed approach, we enlist the com-
piler’s help to analyze and extract the data/disk access
pattern, and decide the most suitable disk power man-
agement strategy. There are at least two advantages of
such a proactive scheme over the reactive approaches pro-
posed by the prior research. First, since for array-based
codes this approach can identify disk idle periods accu-
rately, this information can be used to select the most ap-
propriate power management strategy/mode (e.g., the most
suitable disk speed in DRPM), and this in turn helps re-
duce the energy consumption on the disk subsystem.
Second, the compiler-directed scheme can also deter-
mine when an idle disk will be requested again and
pre-activatethe disk (by spinning it up) before it is actu-
ally needed; this helps reduce performance penalties (e.g.,
due to spinning up or due to changing the speed). A po-
tential drawback of the proactive scheme is that we need
the source code to analyze and extract data access pat-
tern. Therefore, in our work, we restrict ourselves to
array-based scientific applications where source codes
are accessible to and analyzable by an optimizing com-
piler. The proposed proactive scheme can be used in con-
junction with both TPM and DRPM.

The second contribution of this paper is acompiler-
directed code transformation approachto improve the ef-
fectiveness of the proactive power management strategy. In
this approach, the code is restructured (automatically) based
on the layout of the data on the disk subsystem to increase
the disk inter-access times, which is beneficial for reac-
tive and proactive schemes alike. Lastly, we present a com-
prehensive experimental analysis of the proposed proactive
scheme as well as the code transformation approach us-
ing a simulation platform, and demonstrate their effective-
ness through a set of scientific codes that manipulate disk-
resident datasets. We also discuss how different disk layouts
of data can affect the benefits obtained from the proactive
scheme. It should be noted that the proactive power man-
agement schemes have been employed by the prior research
in the context of CPUs [9], main memories [6, 15], and net-
work components [5]. Therefore, our work can also be con-
sidered as an adaptation of such generic schemes to the disk
domain, whose power consumption is becoming an increas-
ing concern in high-performance computing for both hard-
ware designers and software writers.

The rest of this paper is organized as follows. Sec-

tion 2 gives a brief overview of TPM and DRPM, the
two previously-proposed approaches to disk power man-
agement. Section 3 presents the details of our compiler-
driven approach, focusing in particular on disk access pat-
tern extraction and code modification to insert explicit disk
power management calls. Section 4 explains our experi-
mental setup, benchmarks, and the different versions tested.
Section 5 reports experimental data that demonstrate the ef-
fectiveness of the compiler-directed scheme. Section 6 dis-
cusses and quantifies the impact of code transformations
(restructurings). Finally, Section 7 concludes the paper with
a summary of our major contributions.

2. TPM and DRPM

Disk power management has been extensively studied
in the context of laptop/desktop disks [7, 8]. Many current
disks have several operating modes such as active, idle, and
one or more low-power operating modes. In traditional disk
power management techniques (denoted as TPM in this pa-
per), if the detected disk idle period is longer than a cer-
tain amount of time, called theidleness threshold, the disk
is spun down to the low-power mode. The disk remains
in the low-power mode until it receives the next request.
Note that this strategy typically incurs performance slow-
down because the disk should first spin up to service the
upcoming request. The time it takes to spin up/down a disk
is called thespin-up/down time. Therefore, in TPM, choos-
ing the idleness threshold, by making use of either fixed or
adaptive threshold based strategies, is crucial in managing
both disk energy and performance. While TPM is an effec-
tive approach in the domain of laptop/desktop systems, re-
cent studies [10, 2] demonstrated that it is not an appropri-
ate choice for large servers and cluster based systems.

Since the disk spin-up/down time is much greater in
the server class disks (as compared to laptop/desktop sys-
tems) and exploiting idle time is infeasible, Gurumurthi et
al proposed dynamic RPM (DRPM) [10]. The DRPM tech-
nique is similar, in principle, to CPU voltage scaling tech-
nique in that it dynamically changes the RPM step (the ro-
tation speed of the disk) and can service a request with a
reduced speed, provided that the disk hardware/controller
supports several RPM steps, based on the I/O workload. It
has been observed that DRPM can save a significant amount
of disk power in the presence of server workloads where, in
general, exploiting idle time is not viable option if we re-
strict ourselves to only TPM. In addition, since the RPM
modulation time from one level to another is usually much
smaller than typical spin-up/down times, the resulting per-
formance degradation is also small compared to the TPM-
based schemes. A similar technique to DRPM has been pro-
posed and evaluated in [2]. When there is no confusion, in
the rest of the paper, we use the term “low-power mode”



Figure 1. High-level view of our approach.

to denote either a disk which is spun down (in TPM) or a
disk whose speed is set to a lower value than the maximum
speed supported (in DRPM).

The effectiveness of these prior efforts on disk power
management can be increased by analyzing the application
code and exploiting the disk idle/active periods determined
by the compiler. In addition, applying code and disk lay-
out optimizations can lead to further improvements. In the
rest of this paper, we study these issues in detail.

3. Our Approach

Our overall approach is depicted in Figure 1. In this
section, we explain the compiler-related part that contains
three important components: the compiler-analysis to iden-
tify disk accesses, thedisk access pattern(DAP), and the
insertion of explicit power management calls in the code.

In order to determine the disk access pattern, we need
two types of information: data access pattern and disk lay-
out of array data. The data access pattern indicates the order
in which the different array elements are accessed, and is ex-
tracted by the compiler by analyzing the source code of the
application. Since a number of compiler optimizations, e.g.,
those target data locality and parallelism, already make use
of the results of this type of analysis (e.g., see [19] and the
references therein), we do not present its details here. To de-
termine which particular disks are being accessed, the com-
piler also needs the layout of array data (i.e., the file that
holds the array elements) on the disk subsystem. In this con-
text, the disk layout of an array (which is stored in a file) is
specified using a 3-tuple:

(startingdisk, stripefactor, stripesize).

The first element in this 3-tuple indicates the disk from
which the array is started to get striped. The second ele-
ment gives the number of disks used to stripe the data, and
the third element gives the stripe (unit) size. As an exam-
ple, in Figure 2(b), arrayU1 is striped over all four disks

Figure 2. An example application of our ap-
proach.

in the figure. Assuming that the stripe size isS and the
total array size is4S (for illustrative purposes), the disk
layout of this array can be expressed as(0, 4, S). To illus-
trate the process of identifying the disk accesses, let us con-
sider the code fragment in Figure 2(a). During the execu-
tion of the first loop nest, this code fragment accesses the
array elementsU1[1], U1[2], . . . ,U1[2S] andU2[1],
U2[2], . . . ,U2[2S]. Consequently, for arrayU1, we ac-
cess the first two disks (disk0 and disk1); and for arrayU2,
we access only the third disk (disk2). Note that, the several
current file systems and I/O libraries for high-performance
computing support calls available to convey them the disk
layout information when the file is created. For exam-
ple, in PVFS [17], we can change the default striping pa-
rameter by settingbase (the first I/O node to be used),
pcount (stripe factor), andssize (stripe size) fields of
the pvfs filestat structure. Then, the striping infor-
mation defined by the user via thispvfs filestat struc-
ture is passed to thepvfs open() call’s parameter. When
creating a file from within the application, this layout infor-
mation can be made available to the compiler as well, and,
as explained above, the compiler uses this information in
conjunction with the data access pattern it extracts to deter-
mine the disk access pattern. On the other hand, if the file is
already created on the disk subsystem, the layout informa-
tion can be passed to the compiler as a command line pa-
rameter.

The DAP lists, for each disk, the idle and active times in
a compact form. An entry for a given disk looks like:

< Nest 1, iteration 1, idle >

< Nest 2, iteration 50, active>

< Nest 2, iteration 100, idle >

We see from this example DAP that, the disk in question re-
mains in the idle state (not accessed) until the 50th iteration
of the second nest. It is active (used) between the 50th it-
eration and the 100th iteration of the second nest, follow-
ing which it becomes idle again, and remains so for the
rest of execution. For the example code fragment in Fig-
ure 2(a) and the disk layouts illustrated in Figure 2(b), Fig-
ure 2(c) gives the DAPs for each of the four disks in the
system. The last component of our compiler-driven strategy
is responsible from inserting explicit disk power manage-
ment calls in the code. It is important to note that a DAP is



given in terms of loop iterations. In order to determine the
appropriate places in the code to insert explicit power man-
agement calls, we need to interpret the loop iterations in
terms of cycles, which can be achieved as follows. The cy-
cle estimates for the loop iterations are obtained from the
actual measurement of the program execution by using a
high-quality timer calledgethrtime, which is available on
the UltraSPARC-based systems. Using the measured exe-
cution time (in nanoseconds) and given the machine’s clock
rate, we estimate the number of cycles per each loop itera-
tion.

Once we determine the estimated disk idleness (in terms
of cycles), if this idleness is larger than thebreak-even
threshold, i.e., the minimum amount of idle time required
to compensate the cost of either spinning down in a TPM
disk or changing RPM speeds in a RPM disk, the compiler
inserts an appropriate power management call in the code
depending on the underlying method used (e.g., TPM ver-
sus DRPM). The format of this call is as follows:
{

spin down(diski) : TPM disks
set RPM(rpm levelj,diski) : DRPM disks,

wherediski is the disk id, andrpm levelj is the jth
RPM level (i.e., disk speed) available. Since a DAP indi-
cates not only idle times but also active times anticipated in
the future, we can use this information to preactivate disks
that have been either spun down by aspin down call or set
to lowest RPM level by aset RPM call. To determine the
appropriate point in the code to spin up the disk, we take
into account the spin-up time (delay) of the disk. Specifi-
cally, the number of loop iterations before which we need
to insert the spin-up (pre-activation) call can be calculated
as:

d = ⌈
Tsu

s + Tm

⌉ (1)

whered is the pre-activation distance (in terms of loop itera-
tions),Tsu is the expected spin-up time,Tm is the overhead
of aspin up call or aset RPM call, ands is the number of
cycles in the shortest path through the loop body. Note that,
Tsu is typically much larger thans. We also stripe-mine the
loop, because it is unreasonable to unroll the loop to make
explicit the point at which the spin-up call is to be inserted.
The format of the call that is used to pre-activate (spin up)
a disk is as follows:

spin up(diski),

where as beforediski is the disk id. Note that, in
DRPM, we can use sameset RPM call with maxi-
mum RPM speed as a parameter. For our running ex-
ample, Figure 2(d) shows the compiler-modified code
with the spin down and spin up calls. Note that,
if we do not use pre-activation, the disk is automati-
cally spun up when an access (request) comes; but, in this

Table 1. Default simulation parameters.
Parameter Value

Parameters common to TPM and DRPM
Disk Model IBM Ultrastar 36Z15

Interface SCSI
Storage Capacity 18 GB

RPM 15,000
Average seek time 3.4 msec

Average rotation time 2 msec
Internal transfer rate 55 MB/sec

Power (active) 13.5 W
Power (idle) 10.2 W

Power (standby) 2.5 W
Energy (spin down: idle→ standby) 13 J
Time (spin down: idle→ standby) 1.5 sec
Energy (spin up: standby→ active) 135 J
Time (spin up: standby→ active) 10.9 sec

Parameters specific to DRPM
Maximum RPM level 15,000 RPM
Minimum RPM level 3,000 RPM

RPM Step-Size 1,200 RPM
Window size 30

Striping Information
Stripe unit (stripe size) 64 KB

Stripe factor (number of disks) 8
Starting iodevice (starting disk) 0

case, we incur the associated spin-up delay fully. The pur-
pose of the disk pre-activation is to eliminate this perfor-
mance penalty.

To evaluate our proposed compiler-directed proactive ap-
proach to disk power management, we wrote a trace gener-
ator and a disk power simulator (see Figure 1). The details
of the trace generator and the power simulator are discussed
in the next section.

4. Experimental Platform

4.1. Setup and Benchmarks

To generate disk access patterns for each benchmark pro-
gram, we implemented a trace generator. The cycle esti-
mates for the loop nests were obtained from actual ex-
ecution of the programs on a SUN Blade1000 machine
(UltraSPARC-III architecture operating at 750 MHz with
Solaris 2.9) and these estimates were used in all our simu-
lations. In addition to the I/O trace file, the simulator needs
the disk striping information (see the corresponding part in
Table 1). Based on these disk parameters, the simulator de-
termines which I/O nodes it should access when it reads an
I/O request. We assume that each I/O node has one disk
and no further striping is applied at the I/O node level. That
is, the data is striped across the I/O nodes. In our simula-
tor, the striping information is provided in an external file
along with other parameters. The default simulation param-
eters are given in Table 1.

In order to evaluate our approach and the prior pro-
posals to disk power management, we developed a trace-
driven simulator, which is similar to DiskSim [1]. The sim-
ulator is driven by externally-provided disk I/O request
traces, which are generated, as explained earlier, from the
compiler-transformed codes. Each I/O request is composed
of the four parameters: request arrival time (in millisec-
onds), start block number, request size (in bytes), and re-
quest type (read or write).



Table 2. Benchmarks and their characteris-
tics.

Benchmark Data Num of Base Execution
Name Size (MB) Disk Reqs Energy (J) Time (ms)

168.wupwise 176.7 24,718 20835.96 248790.00
171.swim 96.0 3,159 2686.79 32088.98
172.mgrid 24.7 12,288 10600.54 126651.12
173.applu 54.7 7,004 5875.11 70142.24
177.mesa 24.0 3,072 2667.00 31869.54
178.galgel 16.0 2,048 1715.37 20478.80

Given an I/O trace file, the simulator generates statistical
data for performance and energy consumption. Both perfor-
mance and energy statistics were calculated based on the
figures extracted from the datasheet of the IBM Ultrastar
36Z15 [12], and are given Table 1. Because we are primar-
ily interested in the performance and energy consumption
of the disk subsystem, we assume that other performance
enhancement techniques like I/O prefetching are not em-
ployed.

For DRPM, we obtained statistics using the model de-
scribed in [10]. The simulation parameters specific to
DRPM are also given in Table 1. Besides the parame-
ters and values given in Table 1, we obtained the RPM tran-
sition time and energy consumption at each RPM level as
well. For the energy consumption at each RPM transition,
we conservatively assume that the energy consumed dur-
ing transition is the same as that of the faster RPM level
involved in the transition. In DRPM, each disk can tran-
sition from one RPM level to another based on the
response time change in then-request windows as sug-
gested in [10]. We used the same heuristic algorithm in
implementing DRPM for both upper and lower toler-
ance. However, we used a smaller window size (30) since
our evaluation considers one benchmark program at a
time, and the resulting number of I/O requests is com-
paratively small. In the rest of the paper, when we say
“energy” we mean the energy consumed in the disk sub-
system. When we say “execution time/cycles”, we mean
the time/cycles it takes to complete the application execu-
tion.

Table 2 gives the set of array-based benchmark codes
used in this study. These benchmarks were selected ran-
domly from the Specfp2000 benchmark suite [18]. We
made the data manipulated by these benchmarks disk res-
ident. As a result, each array reference causes a disk ac-
cess unless the data is captured in the buffer cache. Also,
to complete our simulations within a reasonable amount of
time, we focused only on time-consuming loop nests from
these applications. Specifically, from each application, we
selected the nests whose cumulative I/O time account for at
least 90% of the total I/O time of the application. The sec-
ond column in Table 2 gives the total dataset size manipu-
lated by the selected nests, and the third column shows the
number of total disk requests made by each application. The
last two columns, on the other hand, give the disk energy
consumption and execution time, respectively, for each ap-
plication whennopower management is employed. The en-

ergy and performance numbers presented in the rest of this
paper are with respect to the values listed in these last two
columns of Table 2.

4.2. Disk Power Management Schemes

To compare different approaches to disk power manage-
ment, we implemented and performed experiments with dif-
ferent schemes:

• Base: This is the base version that does not employ any
power management strategy. All the reported disk en-
ergy and performance numbers are given as values nor-
malized with respect to this version (see the last two
columns of Table 2).

• TPM: This is the traditional disk power management
strategy used in studies such as [7] and [8], described
in Section 2.

• Ideal TPM (ITPM): This is the ideal version of the
TPM strategy. In this scheme, we assume the existence
of anoracle predictorfor detecting idle periods. Con-
sequently, the spin-up/down activities are performed in
an optimal manner; i.e., the disk is not spun down un-
less the idleness duration is large enough so that one
can save power. While one can expect better perfor-
mance/energy behavior with this scheme as compared
to the TPM, it has still the same drawback of not be-
ing able to useful when the idle periods are small.

• DRPM: This is the dynamic RPM strategy proposed
in [10], which is described earlier in Section 2.

• Ideal DRPM (IDRPM): This is the ideal version of the
DRPM strategy. In this scheme, we assume the exis-
tence of anoracle predictorfor detecting idle periods,
as in the ITPM case. Consequently, the disk speed to be
used is determined optimally. This does not just max-
imize energy savings on the disk subsystem, but also
eliminates the potential performance penalties.

• Compiler-Managed TPM (CMTPM): This corre-
sponds to our compiler-driven approach when it is
used with TPM. The compiler estimates idle peri-
ods by analyzing code and considering disk lay-
outs, and then makes spin-down/up decisions based
on this information.

• Compiler-Managed DRPM (CMDRPM): This corre-
sponds to our compiler-driven approach when it is used
with DRPM. The compiler estimates idle periods by
analyzing code and considering disk layouts, and then
selects the best disk speed to be used based on this in-
formation.

It must be emphasized that, the ITPM and IDRPM
schemes arenot implementable. The reason that we make
experiments with them is that we want to see how close our



Figure 3. Normalized energy consumptions.

Figure 4. Normalized execution times.

compiler-based schemes come close to the optimal. All nec-
essary code modifications are automated using the SUIF
infrastructure [11].

5. Empirical Analysis

5.1. Base Results

The graph in Figure 3 gives the energy consumption of
our benchmarks under the different schemes described ear-
lier. One can make several observations from these results.
First, as the idle times exhibited by the benchmark used are
much smaller in length, the TPM version (ideal or other-
wise) does not achieve any energy savings. Second, while
the DRPM version generates savings (26% on average), the
difference between it and the IDRPM is very large; the lat-
ter reduces the energy consumption by 51% when averaged
over all benchmarks in our suite. This shows that a reac-
tive strategy is unable to extract the potential benefits from
the DRPM scheme. Our next observation is that the CM-
DRPM scheme brings significant benefits over the DRPM
scheme, and improves the energy consumption of the base
scheme by 46%. In other words, it achieves energy savings
that are very close to those obtained by the IDRPM strat-
egy. These results demonstrate the benefits of the compiler-
directed proactive strategy.

It is to be noted, however, that the energy consump-
tion is just one part of the big picture. In order to have
a fair comparison between the different schemes that tar-
get disk power reduction, we need to consider their perfor-
mances (i.e., execution times/cycles) as well. The bar-chart
in Figure 4 gives the normalized execution times (with re-

Table 3. Percentage of mispredicted disk
speeds.

wupwise swim mgrid applu mesa galgel
CMDRPM 6.78 5.14 13.02 18.97 27.35 15.9

spect to the base version) for the different schemes evalu-
ated. The reason why the TPM-based schemes do not in-
cur any performance penalty is that they are not applicable,
given the short disk idle times discussed earlier. When we
look at the DRPM-based schemes, we see that the conven-
tional DRPM incurs a performance penalty of 15.9%, when
averaged over six benchmarks. We also see that the CM-
DRPM scheme incurs almost no performance penalty. The
main reason for this is that this scheme starts to bring the
disk to the desired RPM level before it is actually needed,
and the disk becomes ready when the access takes place.
This is achieved by accurate prediction of disk idle periods.
These results along with those presented in Figure 3 indi-
cate that the compiler-directed disk power management can
be very useful in practice, in terms of both energy consump-
tion and execution time penalty. Specifically, as compared
to the reactive DRPM implementation, this scheme reduces
the disk power consumption and eliminates the performance
penalty. To better explain why the CMDRPM comes close
to the IDRPM, we give in Table 3 the percentage of time that
CMDRPM mispredicts the optimal disk speed, as compared
to IDRPM. To collect this data, we recorded the RPM level
used for each idleness for both IDRPM and CMDRPM. We
see that the percentage mispredictions are not very large,
which explains the success of the compiler-driven scheme.

5.2. Sensitivity Analysis

The magnitude of the benefits obtained by the proac-
tive strategy depends on a number of parameters such as
the stripe factor and the stripe size. In this subsection, we
vary the values of these parameters to see how our sav-
ings are effected. For illustrative purposes, we choose one
benchmark,swim, and conducted all sensitivity analysis on
that. Figures 5 and 6 give the normalized energy consump-
tions and execution times, respectively, with different stripe
sizes. The values of the all other simulation parameters are
as given in Table 1. We see from these results that the energy
savings brought by CMDRPM are consistent across wide
range of stripe sizes. We also see that the compiler-based
approach to disk power management does not increase the
original execution times for the stripe sizes tested. In con-
trast, the behavior of the conventional DRPM becomes re-
ally worse when we increase in the stripe size. This can be
explained as follows. As the stripe size increases and the
access pattern remains sequential, this increases the service
duration for a particular disk, i.e., more I/O requests go to
the same disk. The controller then tries to bring the current
RPM level to a lower level since the current workload is
not heavy. This incurs a slowdown in response times for the



Figure 5. Energy consumption with different
stripe sizes.

Figure 6. Execution times with different stripe
sizes.

nextn requests before the controller restores the RPM level
to a higher level to compensate for the previous slowdown
in the response time. Since this trend holds as the stripe size
increases, we can conserve energy consumptions, whereas
the performance becomes worse with the larger stripe sizes.

The next parameter whose variation we study is the stripe
factor (the number of disks). Figures 7 and 8 give the nor-
malized energy and execution time results, respectively,
with different stripe factors. As before, all other parame-
ters are set to their default values given in Table 1. One
can see from these results that the CMDRPM scheme gen-
erates more savings with the increased number of disks.
This is because adding disks to the system increases the en-
ergy consumption of the base scheme dramatically. How-
ever, both the IDRPM and CMDRPM take advantage of the
extra idle periods generated by these additional disks. We
see that, from both energy consumption and performance
angle, CMDRPM remains very close to the IDRPM.

6. Impact of Code Transformations

Our discussion and experimental evaluation so far made
a case for compiler-directed proactive disk energy manage-
ment. In this approach, the only modification made to the
application code was the insertion of explicit power man-
agement calls to spin up and down disks, or to set disk
speeds. However, one can potentially achieve better energy
savings by restructuring application code, i.e., by modify-

Figure 7. Energy consumption with different
stripe factor.

Figure 8. Execution times with different stripe
factor.

ing its data (and consequently disk) access pattern. While
it is known from the optimizing compiler research [19] that
loop transformations are very effective in optimizing data
locality (mainly cache behavior) and iteration-level paral-
lelism, there is no published study, to our knowledge, that
studies the impact of such optimizations on disk energy con-
sumption.

6.1. Transformation Approach

It is possible to increase the effectiveness of disk power
management techniques by using loop distribution (fission).
An important point to note here, though, is that the loop
distribution in this case should be applied with care, tak-
ing into account the layout of data on the disk subsystem.
That is, unlike the case with the conventional compilation
frameworks that target data cache locality, in our context a
loop transformation should be applied in a layout-sensitive
manner. Considering underlying disk layouts, one can en-
vision a compilation scheme that combines code restructur-
ing and data layout optimizations under a unified setting.
That is, the compiler can determine the most suitable disk
layout of data along with the accompanying loop transfor-
mation. As has been discussed in Section 3, the disk lay-
out of array data can be controlled by three parameters:
stripe size, stripe factor, and starting disk (starting iodevice).
The algorithm sketched in Figure 11 determines the neces-
sary loop distribution (for each nest) and the corresponding



Figure 9. Loop fission example. (a) original
code fragment. (b) transformed code frag-
ment. (c) disk allocation for array groups.

disk layout (for each array) for a given program. In infor-
mal terms, it operates as follows. It visits each nest in the
application code. For each nest, it considers a loop distri-
bution such that the newly-generated loops after the dis-
tribution access disjoint sets of arrays as much as possi-
ble. It then formsarray groups.The arrays in a group are
the ones that are accessed by the same set of statements.
After this step, each array group is assigned a disjoint set
of disks. In our current implementation, we distribute the
available disks across the array groups based on the to-
tal amount of data in each group; i.e., more data an array
group has, more disks it is assigned in a proportional man-
ner. Note that, what this algorithm is essentially trying to
achieve is to place the disjointedly-accessed arrays into dif-
ferent array groups (and eventually to different disks), so
that when one group is being accessed during execution the
disks that hold the arrays of the other groups can be placed
into the low-power mode. Figure 9 illustrates an example
application of this algorithm. In the original code fragment
shown in Figure 9(a), three loop nests access a total of 10
arrays (U1, U2, U3, . . . ,U10). Assuming that all the arrays
are of the same size and each loop nest has the same itera-
tion count, our approach forms four array groups,{U1, U2,
U5}, {U3, U4, U8}, {U6, U7}, and{U9, U10}. Note that,
U2 andU5 belong to the same group, as they are coupled
via arrayU1. These four array groups are assigned to the
disks as shown in Figure 9(c). The fissioned code is given
in Figure 9(b). Now, for example, when the application ex-
ecutes the first loop in the transformed code, the execution
accesses only the first three disks; one can save a signifi-
cant amount of energy by putting the unused disks in the
low-power mode.

Another loop-based transformation, loop tiling [14], can
also be used for increasing the effectiveness of disk power
management. What this transformation essentially does is to
restructure a loop nest (by dividing it into iteration tiles) in
such a fashion that, at any given time, a single data block
(from the array) is accessed, thereby exploiting the data
reuse within the block. In tiling, the transformed loop nest
has two types of loops: tile iterators and element iterators.
The tile iterators iterate over a given iteration tile, whereas
the element iterators operate over the members of a given

Figure 10. Loop tiling example. (a) original
code fragment. (b) transformed code frag-
ment. T1 × T2 is the tile size. (c) tile-to-disk
mapping.

tile. Therefore, if done appropriately, for a given execution
of the tile iterators, the element iterators access only specific
blocks of data. In our context, if we set the block size used
in tiling to the disk stripe size, after tiling, at a given time
the execution operates on certain set of blocks (typically one
block from each array). As in the case of loop distribution,
it is required to collocate the blocks that are operated at the
same time, and thus this transformation also helps increase
the energy savings of TPM and DRPM. A sketch of our
layout-aware loop tiling algorithm for reducing disk energy
consumption is given in Figure 12. An example application
of this algorithm is illustrated in Figure 10. Figure 10(a)
shows the original code fragment, and Figure 10(b) gives
the tiled version. Note that, in this transformed code,ii
andjj are the tile iterators, andi andj are the element
iterators. Figure 10(c) shows the tile-to-disk assignment. It
should be noted that, in order to achieve this assignment, ar-
rayU2 needs to be layout-transformed (from row-major to
column-major). After this assignment, when we are work-
ing with a specificii, jj pair (in Figure 10(b)) during exe-
cution, we access two specific tiles from arraysU1 andU2,
and the disks that do not hold these tiles can be placed into
the low-power mode to save energy. Note that, unlike the
loop distribution algorithm, the tiling algorithm explained
here operates only for a single nest. Therefore, in our cur-
rent implementation, we applied it only to the most costly
nest (as far as disk energy consumption is concerned) from
each application. As a result, the layout determined based
on this most costly nest may not be preferable for the re-
maining nests. However, our experiments show that in sev-
eral cases this algorithm generates disk energy savings. Ex-
tending this tiling approach to multiple nests is in our future
agenda.

6.2. Results

To evaluate the impact of loop distribution and loop tiling
on the effectiveness of TPM and DRPM, we performed a set
of experiments with the following new versions:
• LF: The loop fission based version that does not use

disk layout optimization.
• TL: The loop tiling based version that does not use disk

layout optimization.



• LF+DL: The layout-aware loop fission version based
on the algorithm given in Figure 11.

• TL+DL: The layout-aware tiling version based on the
algorithm given in Figure 12.

It is to be noted that, each of these versions can be com-
bined with TPM, ITPM, DRPM, IDRPM, CMTPM, or CM-
DRPM. That is, the proposed code (and data layout) op-
timization approach can be useful with both reactive and
proactive schemes. The reason that we make experiments
with (layout-oblivious) versions such as LF and TL is that
we want to see whether conventional loop distribution and
tiling (i.e., without considering disk layouts) can be any use-
ful in reducing disk energy. Also, the DL denotes the dif-
ferent concepts in LF+DL and TL+DL. Specifically, in the
LF+DL version, DL indicates the division of arrays across
the disks, whereas in the TL+DL version, it indicates the
layout transformation and tile-to-disk mapping.

The normalized energy consumptions with the different
schemes are given in Figure 13. As before, all the results are
normalized with respect to the base version. We can make
the following observations based on these results. First, the
LF and TL versions do not perform well. This is not sur-
prising since they do not consider disk layout, and indis-
criminately fissioning or tiling the loops without consider-
ing disk layouts of the arrays involved does not lengthen
disk inter-access times. In other words, as mentioned ear-
lier, loop distribution and loop tiling make sense in our con-
text only if they are accompanied with a suitable layout op-
timization (DL). In comparison, five out of our six bench-
mark codes can achieve further energy savings from one of
the LF+DL and TL+DL versions. Specifically, four bench-
mark programs, namely,swim, mgrid, applu, andmesa, get
additional benefits from using the LF+DL version, while
three benchmark programs, namely,wupwise, applu, and
mesa, show additional benefits from the TL+DL version.
The reason why different benchmark programs exhibit dif-
ferent trends is that each benchmark has different access
patterns. For example, two benchmark programs,wupwise
and galgel, do not contain any fissionable loop nests; so,
we were unable to obtain any additional energy savings
through loop distribution. However,wupwisecan achieve
energy savings with TL+DL because it contains an access
pattern which is not conforming the data layout. So, after
transforming data layout along with tiling, we achieve ad-
ditional savings. Note that,galgeldoes not obtain any sav-
ings from LF+DL or TL+DL, because the loop nests it con-
tains are not fissionable as mentioned earlier, and the access
pattern it exhibits already conforms the underlying data lay-
out. Maybe the most interesting trend that can be observed
from Figure 13 is that our code transformations make the
TPM strategy a viable option for this set of benchmarks. In
other words, while the CMTPM strategy could not find any
opportunity to save energy, the code transformations create

INPUT :
K loop nests and disk layout information.
OUTPUT:
An energy-optimized loop-fissioned code and the transformed disk layout.
Begin
AG← ∅ // AG keeps array groups
for each loop nestdo

for each statement in the loop nestdo
B← array group accessed by the statement
if (B ∩ (all sets inAG)) == ∅ then

Add B to AG as a new set
else

UnionB and the overlapping set inAG
end if

end for
end for
Generate fissioned loops.
Allocate disks to array groups based on total data size in each group.
End

Figure 11. Loop fissioning algorithm.

INPUT:
A loop nest and disk layout information.
OUTPUT:
An energy-optimized tiled code and the transformed disk layout.
Begin
N ← the number of arrays accessed by the nest
Create tiled loop nest with tile size,TS
for i = 1 toN do

Determine the data size,DS(i), required while iterating givenTS.
end for
for each array used in the loop nestdo

if data access pattern6= storage patternthen
Transform the data layout (e.g., from row-major

to column-major).
end if

end for
Reshape access patterns of arrays.
for i = 1 toN do

stripe size(i)←DS(i) of each array
end for
End

Figure 12. Loop tiling algorithm.

such opportunities for it, and consequently it reduces the
energy consumption of the base case by 31%, on average.
Overall, these results show that layout-aware code transfor-
mations, whose further details are omitted here due to lack
of space, can be useful in practice. Finally, while we fo-
cused here on two specific code transformations only, we
believe that most of the other known loop transformations
can also be adapted to work with disk layouts for increas-
ing disk inter-access times.

7. Concluding Remarks

This paper presents a compiler-driven approach to disk
power management for server environments that execute
large, array-dominated scientific applications. As opposed
to most of the previous work on the disk power manage-
ment, our approach is proactive, and uses compiler analy-
sis to identify disk idle and active times. This allows our
approach to select the most appropriate power mode for a
given disk at any time. In addition, the paper demonstrates
that loop distribution and loop tiling can be very useful in
increasing the benefits of disk power management strate-
gies if they could be made disk layout aware. Based on our
experimental evaluation, we conclude that:
• For array-intensive scientific applications, the com-

piler can extract disk access pattern, and use it for plac-
ing disks into the most suitable low-power modes. In



Figure 13. Normalized energy consumptions.
principle, this approach can be used with both TPM
and DRPM disks.

• The compiler-directed proactive approach to disk
power management is successful in improving the be-
havior of the DRPM based scheme. On average, it
brings an additional 18% energy savings over the
hardware-based DRPM.

• The effectiveness of TPM and DRPM can be increased
by employing disk layout aware code transformations.
Specifically, our results show that two loop restruc-
turing techniques, namely, loop distribution and loop
tiling, are very effective in some of the benchmark
codes tested, and they can make TPM a serious alter-
native for array-based scientific codes.

References

[1] J. S. Bucy, G. R. Ganger, and Contributors. The DiskSim
Simulation Environment Version 3.0 Reference Manual.
Technical Report CMU-CS-03-102, CMU, January 2003.

[2] E. V. Carrera, E. Pinheiro, and R. Bianchini. Conserving
Disk Energy in Network Servers. InProc. of the 17th In-
ternational Conference on Supercomputing, pages 86–97.
ACM, June 2003.

[3] J. Chase, D. Anderson, P. Thackar, A. Vahdat, and R. Boyle.
Managing Energy and Server Resources in Hosting Centers.
In Proc. of the 18th Symposium on Operating Systems Prin-
ciples, pages 103–116, October 2001.

[4] J. Chase and R. Doyle. Balance of Power: Energy Manage-
ment for Server Clusters. InProc. of the 8th Workshop on
Hot Topics in Operating Systems, page 165, May 2001.

[5] X. Chen and L. Peh. Leakage Power Modeling and Opti-
mization in Interconnection Networks. InProc. of the Inter-
national Symposium on Low Power and Electronics Design,
pages 90–95, August 2003.

[6] V. Delaluz, M. Kandemir, N. Vijaykrishnan, A. Sivasubra-
maniam, and M. J. Irwin. DRAM Energy Management Us-
ing Software and Hardware Directed Power Mode Control.
In Proc. of the International Conference on High Perfor-
mance Computer Architecture, pages 159–169, Jan 2001.

[7] F. Douglis, P. Krishnan, and B. Bershad. Adaptive Disk Spin-
down Policies for Mobile Computers. InProc. of the 2nd
Symposium on Mobile and Location-Independent Comput-
ing, pages 121–137, 1995.

[8] F. Douglis, P. Krishnan, and B. Marsh. Thwarting the Power-
Hungry Disk. InProc. of the USENIX Winter Conference,
pages 292–306, 1994.

[9] M. Elnozahy, M. Kistler, and R. Rajamony. Energy-efficient
Server Clusters. InProc. of the Second Workshop on Power
Aware Computing Systems, February 2002.

[10] S. Gurumurthi, A. Sivasubramaniam, M. Kandemir, and
H. Franke. DRPM: Dynamic Speed Control for Power Man-
agement in Server Class Disks. InProc. of the International
Symposium on Computer Architecture, pages 169–179, June
2003.

[11] M. W. Hall, J. M. Anderson, S. P. Amarasinghe, B. R. Mur-
phy, S.-W. Liao, E. Bugnion, and M. S. Lam. Maximizing
Multiprocessor Performance with the SUIF Compiler.Com-
puter, 29(12):84–89, December 1996.

[12] IBM. Ultrastar 36ZX & 18LZX, 1999.
[13] E. J. Kim, K. H. Yum, G. Link, M. K. N. Vijaykrishnan,

M. J. Irwin, M. Yousif, and C. R. Das. Energy Optimiza-
tion Techniques in Cluster Interconnects. InProc. of Inter-
national Symposium on Low Power Electronics and Design,
pages 459–464. ACM, August 2003.

[14] M. Lam, E. Rothberg, and M. Wolf. The Cache Performance
of Blocked Algorithms. InProc. of the 4th International
Conference on Architectural Support for Programming Lan-
guages and Operating Systems, April 1991.

[15] A. R. Lebeck, X. Fan, H. Zeng, and C. S. Ellis. Power Aware
Page Allocation. InProc. of Ninth International Conference
on Architectural Support for Programming Languages and
Operating Systems, pages 105–116, November 2000.

[16] E. Pinheiro and R. Bianchini. Energy Conservation Tech-
niques for Disk Array-Based Servers. InProc. of the 18th
International Conference on Supercomputing, pages 66–78,
June 2004.

[17] R. B. Ross, P. H. Carns, W. B. L. III, and R. Latham. Using
the Parallel Virtual File System, July 2002.

[18] SPEC. http://www.specbench.org/cpu2000/CFP2000/.
[19] M. Wolfe. High Performance Compilers for Parallel Com-

puting. Addison-Wesley Publishing Company, 1996.


