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ABSTRACT
I/O prefetching has been employed in the past as one of the mech-
anisms to hide large disk latencies. However, I/O prefetching in
parallel applications is problematic when multiple CPUs share the
same set of disks due to the possibility that prefetches fromdiffer-
ent CPUs can interact on shared memory caches in the I/O nodes
in complex and unpredictable ways. In this paper, we (i) quantify
the impact of compiler-directed I/O prefetching – developed orig-
inally in the context of sequential execution – on shared caches at
I/O nodes. The experimental data collected shows that whileI/O
prefetching brings benefits, its effectiveness reduces significantly
as the number of CPUs is increased; (ii) identify inter-CPU misses
due to harmful prefetches as one of the main sources for this re-
duction in performance with the increased number of CPUs; and
(iii) propose and experimentally evaluate a profiler and compiler
assisted adaptive I/O prefetching scheme targeting sharedstorage
caches. The proposed scheme obtains inter-thread data sharing
information using profiling and, based on the captured data shar-
ing patterns, divides the threads into clusters and assignsa sep-
arate (customized) I/O prefetcher thread for each cluster.In our
approach, the compiler generates the I/O prefetching threads auto-
matically. We implemented this new I/O prefetching scheme using
a compiler and the PVFS file system running on Linux, and the em-
pirical data collected clearly underline the importance ofadapting
I/O prefetching based on program phases. Specifically, our pro-
posed scheme improves performance, on average, by 19.9%, 11.9%
and 10.3% over the cases without I/O prefetching, with indepen-
dent I/O prefetching (each CPU is performing compiler-directed
I/O prefetching independently), and with one CPU prefetching (one
CPU is reserved for prefetching on behalf of others), respectively,
when 8 CPUs are used.

Categories and Subject Descriptors
D.3.4 [Programming Languages]: Processors—Compilers; B.3.2
[Memory Structures]: Design Styles—Cache memories
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1. INTRODUCTION
I/O prefetching is an important optimization for improvingper-

formance [27, 2, 33, 1, 36, 19, 11, 15, 41, 7, 34]. In I/O prefetching,
data is brought from the disk to the memory cache (shared storage
buffer) ahead of time to hide the latency of disk accesses. However,
prefetching is known to be very sensitive to timing [33, 1]. First,
an early prefetch may not be very useful as the data block brought
into the memory cache can be discarded before it is used. Second,
a late prefetch may not be very useful either since it cannot elimi-
nate the entire disk access latency. Third, a prefetched data can be
even “harmful” by kicking out a data block from the memory cache
whose next usage is earlier than that of the prefetched block. In a
shared storage cache (i.e., a memory cache in an I/O node shared
by multiple CPUs), this type of “harmful prefetches” can involve
different CPUs as well. For example, a prefetched data blockcan
displace a data block which would be accessed earlier (by another
CPU) than the prefetched data block, as illustrated in Figure 1(a).
This type of harmful prefetches are referred to as “inter-CPU harm-
ful prefetches,” as opposed to “intra-CPU harmful prefetches,” an
example of which is given in Figure 1(b).

Clearly, the number of harmful prefetches can increase withthe
increased number of CPUs, and consequently, one can expect the
problem to be more severe as the degree of sharing of an I/O node
increases. This paper demonstrates the magnitude of this prob-
lem using four disk-intensive parallel applications and compiler di-
rected I/O prefetching, and proposes a solution that employs code
profiling and automated code restructuring. Our solution isbased
on several observations we made during our experiments:

• In general, the scalability of I/O-intensive applications(i.e., ap-
plications that frequently exercise disk subsystems of parallel ma-
chines) is not very good. As a result, a couple of CPUs can be
used for purposes other than executing application threads, without
impacting application performance too much.

•While compiler-directed I/O prefetching brings significant ben-
efits in cases when a small number of CPUs (e.g., 1–4) are used,its
performance degrades significantly as the number of CPUs is in-
creased. Dramatic increases in harmful prefetches play a key role
in this degradation with larger number of CPUs. This motivates
for an approach that uses only a small set of CPUs to perform I/O
prefetches, instead of all CPUs prefetching independentlythe data
they need and competing over the shared storage cache.

• Data sharing patterns exhibited by an I/O-intensive application
change significantly across the different phases of the application.
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Figure 1: Examples of inter-CPU (a) and intra-CPU (b) harm-
ful I/O prefetches. In (a), data blockBi brought into the mem-
ory cache (buffers) by CPUPk is replaced by the prefetch of
block Bj by CPU Pm, and Bi is referenced earlier thanBj . In
(b), a CPU’s (Pk) prefetch kicks out from the cache one of its
own data.

Therefore, to be successful, an I/O prefetching scheme should be
able to take these inter-thread data sharing patterns into account.
In particular, if, in a given execution phase, a certain set of threads
share significant amount of disk-resident data among them, one can
use only a single I/O prefetcher for all of them, thereby reducing
the impact of harmful prefetches.

This paper proposes an adaptive I/O prefetching scheme for disk-
intensive parallel applications. The proposed scheme obtains inter-
thread data sharing information using profiling and, based on the
captured patterns, divides the threads into clusters and assigns a
separate (customized) I/O prefetcher (thread) for each cluster. Since
the data sharing patterns across threads change during execution,
these clusterings and associated I/O prefetchers also change. That
is, depending on the program phase in question, we may have a
different number of I/O prefetchers assigned to different sets of
threads. Therefore, this scheme is called “adaptive,” as opposed
to alternate prefetching schemes that fix the number of prefetchers
for the entire duration of application execution.

Our approach brings benefits over conventional I/O prefetching
where each CPU performs its own prefetches from disks, indepen-
dently of the others. First, our approach reduces the additional cost
of issuing prefetch instructions, as in our case for each setof threads
a single prefetcher is reserved and thus other CPUs do not waste
cycles in issuing prefetch calls. Second, and more importantly, in
our approach for each shared data block a single prefetch is issued.
Therefore, we can expect significant reductions in the number of
harmful prefetches caused by multiple prefetches to the same data.
Third, threads using shared data coordinate their accesseswith each
other, as they all must synchronize with the helper prefetchthread
at the same point. This increases the chances that they will all find
the shared data in the storage cache.

To test the effectiveness of our proposed I/O prefetching scheme,
we implemented it using a compiler and the PVFS file system [25]
running on top of Linux, and compared its performance against a
number of alternate I/O prefetching schemes. Among the schemes
tested are no prefetching case, a simple extension of compiler di-
rected I/O prefetching to multiple CPUs (which we call “indepen-
dent I/O prefetching” in this paper), assigning a fixed CPU for
prefetching on behalf of all remaining CPUs (which do not per-
form prefetching), and assigning a small set of CPUs for prefetch-
ing. The empirical data collected clearly underline the importance
of adapting I/O prefetching based on program phases. Specifi-
cally, our proposed scheme improves performance, on average, by
19.9%, 11.9% and 10.3% over the cases without I/O prefetching,
with independent I/O prefetching, and with one CPU prefetching,
respectively, when 8 CPUs are used.

The next section presents empirical evidence to motivate our ap-
proach. Section 3 summarizes the original compiler-directed I/O
prefetching scheme proposed in [33]. Section 4 discusses the de-
tails of our adaptive I/O prefetching scheme. Sections 5 and6
present experimental setup and collected results, respectively. Sec-
tion 7 discusses related work, and Section 8 concludes the paper.

2. EMPIRICAL MOTIVATION
In this section, we present results from our experiments with four

I/O-intensive applications to motivate the approach presented in
this paper. The details of our experimental setup and applications
will be given later. All applications have been parallelized using
varying number of threads; each thread is assigned to a separate
CPU, and all CPUs share the same storage cache (see Figure 6),
which is 150MB (later we also present results with other cache
sizes). Since we consider only one-to-one mappings betweenthe
CPUs and threads, in the remaining part of the paper, we use the
terms “thread” and “CPU” interchangeably. Our first set of results
are given in Figure 2 and plots the speedup curves under different
CPU counts. These application codes are reasonably optimized for
I/O (using source level techniques such as collective I/O [35]) but
they do not use I/O prefetching. It can be observed from this plot
that speedup of these applications is not scalable with the number
of CPUs. As an example, when we use 16 CPUs, the speedups we
achieve in applications HF, 3D-vis, Cholesky, and Mgrid are9.3,
6.4, 10.4, and 6.5, respectively. In fact, the difference between the
speedup numbers obtained using 14 CPUs and 16 CPUs is negli-
gible. While these speedup results are collected with thesefour
applications, poor scalability of I/O-intensive applications is a well-
known fact. For example, the work in [22] reveals that lack ofI/O
scalability severely limits potential speedups that couldbe achieved
in I/O-intensive applications. As far as our research is concerned,
the main take away message from these results is that a coupleof
CPUs can be taken away from the application without affecting its
speedup too much. Clearly, as we move to larger number of CPUs
(e.g., 128-256 range), one can expect that taking away even 7or
8 CPUs from an application would not affect its performance too
much.

Our second set of results focus on the performance of I/O prefetch-
ing in parallel applications. Figure 3(a) presents the percentage im-
provements in total execution cycles of our four applications due
to I/O prefetching. Specifically, each bar corresponds to the per-
formance improvement brought by the I/O prefetching schemein
[33] over the no-prefetch case. In the prefetching case, we applied
the scheme in [33] to each thread of the application independently
(a summary of the I/O prefetching scheme in [33] is given later
in Section 3). An important observation from these results is that
the effectiveness of I/O prefetching diminishes dramatically as the
number of CPUs to execute the application code increases. For ex-
ample, with application HF, the improvement brought by prefetch-
ing is about 29.5% when a single CPU is used, whereas the same
is only 1.3% with 12 CPUs. In fact, I/O prefetching degrades the
overall performance (as compared to the no-prefetch case) in all
four applications when 15 or 16 CPUs are used. To understand
why this happens, we collected additional statistics capturing the
prefetch-related interactions among the CPUs1. Figure 3(b) gives
the fraction of harmful I/O prefetches. As stated earlier, we define
a “harmful prefetch” as a prefetch that leads to the removal of a
data block from the memory cache and the prefetched data block
is referenced only after the reference to the removed block.We
see from Figure 3(b) that, the contribution of harmful prefetches
increases with the increasing number of CPUs. This in a sensecan
be expected, as more CPUs are used for executing the application,
higher the chances that CPUs will replace each other’s data from
the shared storage cache when they prefetch. We need to mention
however that harmful prefetches alone may not be the only reason
for the sharp degradation in performance as we increase the num-
ber of CPUs. For example, we also noticed during our experiments
that the negative interactions even among normal disk fetches to
the memory cache also tend to increase with the large number of

1Since the shared storage cache we implemented is managed by
software, we modified it to collect harmful prefetches. Specifically,
we increment the counter when a prefetch leading to the removal of
a data block from the cache and the prefetched block is referenced
only after the reference to the removed block.
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Figure 2: Speedup numbers when all
CPUs sharing the same I/O node are used.

-10

-5

0

5

10

15

20

25

30

35

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Number of CPUs

P
er

fo
rm

an
ce

 Im
pr

ov
em

en
t (

%
)

HF 3D-vis Cholesky Mgrid

0

5

10

15

20

25

30

35

40

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Number of CPUs

F
ra

ct
io

n 
of

 H
ar

m
fu

l P
re

fe
tc

he
s 

(%
)

HF 3D-vis Cholesky Mgrid

(a) (b)
Figure 3: (a) Percentage improvements brought by I/O prefetching. (b) Percentage of
harmful prefetchings. All savings are with respect to the case without I/O prefetching.
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Figure 4: Data access patterns of four I/O-intensive applications obtained through profiling. (a) HF (b) 3D-vis (c) Cholesky (d)
Mgrid. In 3D-vis, the pattern shown repeats itself multipletimes. In HF, only the most time-consuming portion of the code is shown.
The ovals are used to capture sample patterns for which we canuse a common prefetcher (one per oval).

CPUs. Nevertheless, the results presented in Figures 3(a) and 3(b)
illustrate a strong correlation between the performance degradation
and the fraction of harmful I/O prefetches.

Our third set of results study the I/O access patterns of our ap-
plications focusing on shared data. Figure 4(a) illustrates an in-
teresting scenario when an application (HF) is executed using four
CPUs. The x-axis of this figure denotes the execution progress
and the y-axis captures the addresses of the data elements. In ob-
taining this graph, the total application execution periodis divided
into 500 epochs, and the addresses of the accessed data elements
are recorded. Note that the address space shown in Figure 4 is
rather a file offset since all the array data is stored on the disk.
Therefore, Figure 4 shows the access clustering patterns interms
of file domain instead of memory or cache address space. We can
identify two distinct execution phases in this graph, whichcorre-
spond to two different functions in the application code that con-
sume nearly 95% of the total application execution time. In the
first execution phase (function), CPU0 and CPU2 share the same
small set of data elements and similarly CPU1 and CPU3 access
a lot of common data elements, which constitute a small subset of
the total address space. In comparison, in the second phase which
starts around epoch 270, a much larger set of data are accessed
(note that some of these data are accessed by more than one CPU;
however, the total data range is too large). We believe that an I/O
prefetching strategy can be tuned by exploiting this execution pro-
file. Specifically, for the first phase of this application, itmay be
a good idea to use an I/O prefetcher (thread) for CPU0 and CPU2
and another I/O prefetcher for CPU1 and CPU3. In this case, the
application threads running on CPU0, CPU1, CPU2 and CPU3 do
not perform any I/O prefetching (the prefetch threads perform it on
behalf of them). Note that, in this phase, since CPU0 and CPU2
(and similarly CPU1 and CPU3) share a lot of data between them,
allocating a common prefetcher will cut the number of prefetches
and reduce the chances for harmful prefetches. On the other hand,
in the second phase, it may be more beneficial to employ a sep-
arate I/O prefetcher for each of the CPUs (each I/O prefetcher in
this phase can be integrated with its associated application thread,
as in [33]). Figure 4(b) shows the execution profile of another I/O-
intensive application (3D-vis). In this application, we observe even

more phases with interesting data sharing patterns. For instance,
between epochs 25 and 90 (which corresponds to a large loop nest
in the application), all four CPUs access a small set of data and can
potentially share the same I/O prefetcher. A similar behavior can
also be observed between epochs 320 and 430. In these portions,
it may be a good idea to employ only a single I/O prefetcher that
prefetches data on behalf of all four CPUs. On the other hand,be-
tween epochs 450 and 500, it may be a good idea to have a single
I/O prefetcher devoted to CPU0 and CPU3; the remaining CPUs
can have their own private prefetchers. The graphs in Figures 4(c)
and 4(d) present the execution profiles for our remaining twoap-
plications and one can make similar observations from theseplots
as well. Although not presented here, we also observed similar
clustering patterns when larger number of CPUs are used.

Considering the results presented in Figures 2 through 4, wecan
reach the following conclusions. The inter-CPU data sharing pat-
tern for a given I/O-intensive application varies significantly during
the course of execution. Given the poor performance of indepen-
dent I/O prefetching in large CPU counts (wherein each CPU is-
sues its I/O prefetches independently), it is clear that we have to
take inter-CPU data sharing patterns into account to achieve ac-
ceptable program performance through I/O prefetching. Instead of
allowing each CPU to perform I/O prefetching independently(i.e.,
execute I/O prefetcher threads in addition to application threads),
one option is to reserve a couple of CPUs to do prefetching on be-
half of the others which execute application code without issuing
any prefetch call. Based on our results above (Figures 2 and 3),
we know that this is unlikely to hurt scalability of the parallel ap-
plication. In the rest of this paper, we present and experimentally
evaluate such an adaptive I/O prefetching scheme which modulates
the number of the threads to use for I/O prefetching based on the
inter-thread data sharing patterns.

3. COMPILER-DIRECTED I/O PREFETCH-
ING

While there exist several I/O prefetching algorithms published
in literature [27, 2, 33, 36, 19, 11, 15], the one used in this work is
inspired by the work done by Mowry et al [33]. The original algo-



int X[0..N − 1];
int Y [0..N − 1];
int Z[0..N − 1];
for i = 0 to N − 1 {

Z[i] = X[i] × Y [i];
}

int X[0..N − 1], Y [0..N − 1], Z[0..N − 1];
prefetch(X, 0,P ); prefetch(Y , 0, P );
for t = 0 to ⌊N/P⌋ − 1 {

prefetch(X, (t + 1) × P , P );
prefetch(Y , (t + 1) × P , P );
for i = 0 to P − 1, 1

Z[t × P + i] = X[t × P + i]
×Y [t × P + i];

}
for j = ⌊N/P⌋ × P to N − 1

Z[j] = X[j] × Y [j];
(a) (b)

Figure 5: An example that illustrates compiler-directed I/O
prefetching. (a) Original code fragment. (b) Compiler-
generated code with explicit I/O prefetch calls inserted. The
syntax of the I/O prefetch call is similar to that of a regular
I/O call, i.e., prefetch (array_name, offset, size),
where the second parameter indicates the location and the third
one captures the length of the data.

rithm has actually been proposed for improving hardware cache
behavior for memory-resident data sets [32], and has later been
extended to implement I/O prefetching targeting virtual memory
based execution environments. We adapted this algorithm towork
with explicit disk I/O.

Figure 5 illustrates an example of this compiler-directed I/O prefetch-
ing scheme. For the sake of clarity, we omit the actual file I/O
statements (the PVFS [25] calls in our case). In this example, three
N -element “disk-resident” arrays (X, Y , andZ) are accessed us-
ing three references (X[i], Y [i], andZ[i]). P denotes the data
block size, which is assumed to be the unit for I/O prefetching (i.e.,
an I/O prefetch targets a data block of sizeP ). Figure 5(a) shows
the original loop (without I/O prefetching), and Figure 5(b) illus-
trates the compiler-generated code with prefetch calls embedded.
Note that, in order to perform prefetches with the specified block
size (P ), the loop is modified to operate on a block size granular-
ity. As can be seen in the compiler generated code of Figure 5(b),
the outermost loop iterates over individual data blocks, whereas the
innermost loop iterates over the elements within a block (this par-
ticular transformation is called strip-mining [38]). Thisway, it is
possible to prefetch a data block and operate on the data elements
it contains. The first set of prefetch statements in the compiler-
generated code is used to load the first set of data blocks intothe
memory cache prior to the main loop execution. In the steady state,
within the loop, we first issue the prefetch requests for the next set
of blocks, and then operate on the current set of blocks. The last
loop nest is executed separately as the total number of remaining
data elements may be smaller than a full block size.

We now briefly discuss the compiler analysis required for im-
plementing this I/O prefetching. First, the compiler analyzes the
given application code and predicts the future data access patterns.
This is done using “data reuse analysis”, a technique developed
originally for conventional cache locality optimization [37]. This
analysis identifies how a given data element is accessed by differ-
ent iterations and statements of a loop nest, and captures the reuse
distances (in terms of loop iterations). In [33], misses areisolated
through loop-splitting and prefetches are scheduled usingsoftware
pipelining based on the data locality information generated by the
compiler. In their I/O prefetching algorithm, one of the keymodi-
fications to the original algorithm (which targets memory resident
data sets) is to limit the prefetches only across the outermost loop
nest. This follows from the fact that cache lines have relatively
small sizes when compared to a page (unit of prefetch in the I/O
prefetching algorithm of [33]), hence inner loop nests often access
less data than a page (in our case, block) size. In deciding the loop
splitting point, the prefetching algorithm in [33] takes into account
the estimated I/O latencies as well.

In our implementation of this I/O prefetching algorithm, wehave
a layer in the file system that monitors the prefetch requestsand fil-

Disk 1
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Disk k

…
…

Computation nodes

(CPUs)
I/O node

…
…

Shared

Storage

Cache

Figure 6: I/O system abstraction.

ters unnecessary prefetches as much as possible (a similar runtime
layer is also used in [33]). In this layer, a “bitmap” is maintained to
capture the set of data blocks that are already in the memory cache.
Whenever a prefetch is to be issued to the disk, the corresponding
bit is checked to see whether the block in question is alreadyin the
memory cache, and if this is the case, that prefetch is suppressed. In
this way, a significant number of useless I/O prefetches can be elim-
inated. We want to emphasize that, while our experiments usethis
particular I/O prefetching algorithm, its choice is reallyorthogonal
to the main focus of this paper. In other words, as far as its applica-
bility is concerned, our approach can be used along with any exist-
ing I/O prefetching algorithm. Clearly, the savings achieved by our
schemes will be dependent on the underlying prefetching algorithm
used, and in fact, we believe our approach can bring larger bene-
fits when it is used along with simpler I/O prefetching algorithms
(instead of a compiler-directed one). The reason for this isthat the
algorithm in [33] inserts prefetches very carefully takinginto ac-
count loop-specific I/O behavior and estimated I/O latencies. As
a result, it inserts few useless prefetches and most of such useless
prefetches are filtered before they are actually issued to the disks.
Simpler schemes on the other hand would tend to insert more use-
less prefetches (some of which will also be harmful prefetches).

4. OUR APPROACH

4.1 I/O System Abstraction
Figure 6 shows the architecture of a typical modern storage sys-

tem interfaced with a computation system. The computation nodes
are connected to the disk storage system through the shared stor-
age cache. The purpose of the storage cache is to store a subset of
the disk-resident data. If the requested data is found in thestorage
cache, then the access time is much less than the case when thedisk
needs to be accessed. Therefore, proper maintenance of thisshared
cache is extremely important.

4.2 High Level View
Figure 7 gives a high-level view of our approach which consists

of three steps (components). In the first step, we profile the code
and identify the data sharing patterns among the different CPUs.
The outcome of this step can be shown in the form of plots, as in
Figures 4(a) through 4(d), which help us identify the numberand
types of the I/O prefetchers to use. In the second step, we associate
the identified sharing patterns to code sections. Note that,while the
first step gives us the thread groupings (i.e., which set of threads
should be assigned a common I/O prefetching thread), the second
step tells us the program segments where these groupings should be
considered. As a concrete example, let us consider once morethe
execution profile shown in Figure 4(a) where we can easily identify
two phases, which correspond to two different functions called by
the main(.) routine of this application. Each of these functions has a
very large loop nest in its body. For the first phase (loop nest), since
CPU0 and CPU2 share considerable amount of data, we assign a
common prefetcher for CPU0 and CPU2 and for similar reasons,
we assign a common prefetcher for CPU1 and CPU3.

Note that we need a metric using which we can decide whether
two (or more) CPUs can work with a common I/O prefetcher in
a given phase. The metric we use for this purpose is called the
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“sharing density”, and gives the ratio between the number ofdata
elements shared by CPUs and the total number of distinct datael-
ements accessed in that phase. If this number exceeds a preset
threshold value, those CPUs are given a common I/O prefetcher.
At the end of this assignment, a CPU that is not assigned a com-
mon prefetcher performs its own I/O prefetching (similar to[33]).
For example, if the sharing density threshold is set to 80% (the
default value used in our experiments), two CPUs that have a shar-
ing density of 80% or higher in a phase are assigned the same I/O
prefetcher in that phase.2 While in this paper we employ a profile-
based approach to capture inter-CPU data sharing patterns and de-
termine the program segments for which prefetchers are embed-
ded, one can also employ, where possible, static program analysis
to capture data sharing patterns across CPUs. The remainderof our
approach (that is, the third component in Figure 7), which gener-
ates I/O prefetchers, is actually independent of how data sharing
patterns have been identified.

4.3 Generating I/O Prefetchers
In this section, we explain how the I/O prefetchers are obtained

for a given cluster of CPUs in a code segment (phase) identified by
the previous steps. What we mean by “cluster” is a set of CPUs
such that, after our approach, one of them prefetches data onbe-
half of the others. We want to remind the reader that we assume
one thread per CPU. Throughout our discussion, we assume that
an identified program phase has only single loop nest (which can
contain multiple loops). If a phase contains more than one nest, we
apply our approach to each of them.

The main objective of our compiler algorithm is to transform
each identified phase from the earlier step into “computation threads”
and “helper threads”. In our approach, the computation threads per-
form only computation, whereas the helper threads perform all I/O
prefetches on behalf of the computation threads. This is accom-
plished by three steps which are also shown in Figure 7. The details
of the third step are discussed below.

4.3.1 Identifying Data Elements to be Prefetched
Let us focus on a phase (the corresponding code segment) and

a CPU cluster of sizeB. As stated earlier, a cluster ofB CPUs
means that one CPU will perform prefetches from the disks, i.e,
run the helper thread, and the remainingB − 1 CPUs will perform
computations, i.e., execute computation threads. Let us assume for
now B ≥ 2. We start by dividing the phase intom slicesand use
Ii,k to denote the set of iterations assigned to computation threadi
in slicek, where1 ≤ i ≤ B − 1 and1 ≤ k ≤ m. We can compute
Di,k, the set of data elements that will be accessed by computation
threadi in slicek as follows:

Di,k = {~d | ∃~I ∈ Ii,k, ∃R ∈ Ri,k such thatR(~I) = ~d}.

2A more accurate metric would take into account the length of the
phase as well, since working with small phases can lead to code
bloat. However, in the codes we used in this study, the phasescor-
respond to different functions that contain multiple nested loops,
and thus, they are very large. Therefore, using “sharing density”
works fine. In our implementation, if a phase corresponds to a
function that contains multiple, separate loop nests, we applied our
prefetching strategy to each of them independently.
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In this formulation,Ri,k is the set of references to the disk-
resident array;R represents a reference in the loop nest (i.e., a
mapping from the iteration space to the data space);~I is an iter-
ation point; and~d is the index to data elements (i.e., array subscript
function). Note that, sinceIi,ks within a particular slice are likely
to share data elements, we can expect that:

Dx,k ∩ Dy,k 6= ∅, for x 6= y.

After obtainingDi,k for each threadi in the kth slice, we next
determine the entire set of data elements accessed by thekth slice,
denoted asDk, by taking the union ofDi,k sets:

Dk =
[

1≤i≤B−1

Di,k,

whereB is the number of CPUs as stated earlier. Note that, de-
pending on the degree of data sharing among threads, the sizeof
Dk can be much smaller than the sum of the sizes of individual
Di,ks, i.e., |Dk| ≪

PB−1

i=1
{|Di,k |}. In fact, higher the sharing

density (as defined earlier), larger the difference between|Dk| and
PB−1

i=1
{|Di,k |}. Note that we can build aDk set for each disk res-

ident array to which I/O prefetching will be applied in slicek. For
each of these arrays, we insert separate prefetch instructions in the
code.

4.3.2 Generating Codes for the Computation Threads
and the Helper Thread

To generate code for inserting prefetch instructions, we need to
make the slice boundaries explicit in the thread codes. In our imple-
mentation, this is achieved for the computation threads using strip-
mining [38]. The work to be done for the helper thread is more
involved. We first generate the addresses to be prefetched for the
elements in eachDk, and then insert prefetch instructions for these
addresses. Clearly, we do not want to issue multiple prefetches for
the same data block. In our implementation, we use the Omega
Library [26] to generate a loop (or a set of loops depending onthe
addresses to be generated) that enumerates the addresses ofthe ele-
ments in aDk. After this, these individual loops for different slices
are combined to generate a compact code where the outer loop it-
erates over the different slices (k) and the inner loop iterates over
the addresses of the data blocks to be prefetched in a given slice.
The goal of this is to generate a compact code as much as possi-
ble, and the results were very satisfactory for the application codes
we targeted. At this point, we have the codes for both computation
threads and helper thread. The code for the helper thread also con-
tains I/O prefetch calls, and both computation thread and helper
thread codes are such that the slice boundaries are explicitto en-
able synchronization between the computation and helper threads,
which is discussed next.



Input:
P – an input program,P = (L1,L2, · · · ,Lx),

wherex is the number of phases inP ;
Output:

P′ – transformed program,P′ = (L′
1,L′

2, · · · ,L′
m);

Ck – CPU cluster that exhibits accesses on shared data;
B – the size ofCk;
C – all CPU clusters that belong toyth phase;
T – minimum cluster size, default is 2;
S – number of iterations used for strip-mining the original loop nest;

procedure gen_helper() {
for eachCk, Ck ∈ C {

if (B of Ck ≤ T )
for each computation threadti, ti ∈ C

apply conventional I/O prefetch scheme such as [33];
else { /* This is the case we want to tackle */

clone the original computation thread and tag it as helper thread;
assignB − 1 CPUs to the computation threads;
assign 1 CPU to the duplicated helper thread;
compute new lower and upper bound for the computation threads;
strip-mining both main and helper thread usingS;
for each threadti, ti ∈ C { computeDi,k };
call Omega_library to enumerate iterations of eachDi,k;
for each array∈ Lj { computeDk =

S

1≤i≤B−1

Di,k; };

for each array∈ Lj {
/* |Dk| is the size of array data to be prefetched */
emit “prefetch();” for Dk in the helper thread;

}
emit “synch()” for both computation and helper threads;

}
}

}
main() {

for each phaseLk , Lk ∈ P {
let C be the CPU cluster inLk;
read profiler information forC;
call gen_helper();

}
}

Figure 9: Compiler algorithm for transforming a given code to
insert I/O prefetch instructions.

4.3.3 Synchronizing the Computation Threads and
the Helper Thread

Figure 8 illustrates the interaction in a cluster among the com-
putation threads and the helper thread which prefetches on behalf
of those computation threads. As explained above, the phasein
question is divided into slices and each slice containsS iterations,
as shown in Figure 8(a). The synchronizations occur across slice
boundaries. The goal is to ensure that when the computation threads
start operating on slicek, all the prefetches (that bring data inDk to
the shared storage cache) are completed. As shown in Figure 8(b),
this is achieved in our approach by inserting synchronization calls
among the helper and computation threads. More specifically, at
the beginning of slice(k − 2), the helper thread issues the prefetch
calls for data inDk−1. However, before it issues the prefetch calls
for data inDk, it synchronizes with the computation threads indi-
cating that all the computation threads are done with their computa-
tions in slice(k−2) and are ready to proceed to slice(k−1). Once
the synchronizations take place, the helper thread starts prefetching
the data inDk and the computation threads start operating on the
data inDk−1 (see Figure 8(b)).

Figure 9 gives our compiler algorithm explained so far in a pseudo
code form. The main() procedure takes an input program,P , along
with the profile information (C for each loop nest) and the number
of CPUs (B) in each identified cluster, and outputs the transformed
version of the program that consists of the helper thread andcom-
putation threads.

4.3.4 Discussion
It is important to note that we target array-intensive applica-

tions, and in these codes, the data access/sharing patternsdo not

change much with input data. Therefore, we can expect that pro-
filing works well with these codes, and in fact, in our experiments,
the input data sets using for actual execution were different from
those used in profiling. Also, we want to mention that prefetch-
ing technique itself is not useful at all for the applications that do
not show any regularity of accesses, e.g., random access. Many
I/O-intensive applications spent quite amount of time in I/O and
they show regular access pattern, which makes sense for employ-
ing our helper thread based I/O prefetching for reducing harmful
prefetches. Although there is certain amount of temporal locality
in the data brought to the memory and current computers have un-
precedented memory capacity, we believe that applicationsbased
on out-of-core kernels are still needed to solve even largerapplica-
tions. We also want to mention that our technique can be applied
to other type of applications such as memory-intensive codes that
access the shared L2 cache in CMP.

Our approach, as explained so far, generates a helper threadfor
each cluster. As a result, for each cluster, we lose a CPU, which
can hurt performance for small sized clusters. We explored two
approaches to address this issue. The first approach is to runthe
helper thread of a cluster in one of the CPUs of that cluster. This
means that one CPU in the cluster will execute both its share of the
application code (a computation thread) and the prefetching code
(for all CPUs). Our experiments with this approach did not gener-
ate good results. In fact, the results obtained with this version were
not as good as those obtained through independent I/O prefetching.
The second approach is to go back to independent prefetchingif
the cluster size is lower than a preset threshold value. For example,
we found that when the cluster size is two, it is better to haveeach
CPU to prefetch its own data (rather than running the application
code in one CPU while the other one performs I/O prefetching).
On the other hand, when the cluster size is three, our approach,
which uses two CPUs for computation threads and reserves thelast
one for prefetching, generated better results. This was also the case
when the cluster size is larger than three. Therefore, we setthe
minimum cluster size for our approach to be applied to three in our
experiments.

In our approach, we used profiling to detect the CPU/thread clus-
tering that accesses the shared data. And this information may not
be available during static compilation time because many scientific
kernels (mostly loop nests) are written such that they are paral-
lelized according to the number of processors/CPUs given asan
input. The amount of profile data is also limited because we only
collect I/O request to disk-resident data set, not the everyaddresses
accessed by each thread. For less regular codes that do not have
easily analyzed or transformed loop nests, we still believethat our
approach can be applicable to some extent as long as a generated
helper thread is able to interact with runtime system, whichcol-
lects the information on what to prefetch and which CPUs access
the shared data.

Lastly, as our approach reduces both the number of harmful prefetch
instructions and the amount of duplicate data blocks brought in the
cache, we expect that it also incurs less paging in the underlying
operating system.

4.4 Example
We consider the example code fragment in Figure 10, which con-

tains three separate loop nests. For the illustrative purposes, let us
assume that there are 16 CPUs and each of these nests is paral-
lelized over these CPUs. For the sake of clarity, we omit the actual
file I/O (PVFS) statements. All arrays (X, Y , Z, A, R, andM ) are
assumed to be disk-resident. The first loop nest contains a compu-
tation that referencesZ, X andY using three references (X[i, j],
Y [i, j], andZ[i, j]), and similarly the second and third loop nests
contain computations that refer toZ, A, R andM . Based on the in-
formation from our profiling step, which indicates the data sharing
pattern, we can identify three distinct phases in this code fragment,
each corresponding to one of the loop nests. The first loop nest has
accesses to the distinct elements of the arrays in each iteration and



for i=0 to 63 { /* 1st loop nest */
for j=0 toN − 1

Z[i, j] = X[i, j] × Y [i, j];
}
for i=0 to 63 { /* 2nd loop nest */

for j=0 toN − 1 {
k = (int) i / 32;
Z[i, j] += A[i, j] × M [k, j];

}
}

for i=0 to 63 { /* 3rd loop nest */
for j=0 toN − 1 {

k = (int) log2((int)i/4) ;
Z[i, j] += R[k, j];

}
}

Figure 10: Original code fragment with three loop nests.
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Figure 11: Computation and helper thread assignments in dif-
ferent loop nests.

hence there is no data sharing among the data elements accessed
by different threads. In contrast, in the second loop nest, the first
half of the outer loop (i loop index) iterations access some common
data (M [k, j]), and the second half of the iterations also share simi-
lar data among themselves. As a result, two clusters of data sharing
(and thus two CPU clusters) can be clearly identified. The third
(last) loop nest also exhibits similar sharing but the correspond-
ing clusterings are quite different from those in the secondloop
nest. The clustering according to the outer loop iterationsis as fol-
lows: 12.5%, 12.5%, 25%, 50%, which means that the first 12.5%
iterations share the same data and so do the next 12.5%, the next
25% and then the last 50%. We have chosen this particular example
with these data access patterns for the purpose of clearly illustrating
and conveying the concept of clustered data sharing among threads.
The key point we wish to make here is the change in the clustering
pattern as the program execution goes through the differentphases
(loop nests).

Figure 11 gives a pictorial view, under our approach, of the thread
distribution structure in the three loop nests of the program. When
the first loop nest is in execution (there is no data sharing and hence
no clustering), all threads (t1 to t16) are computation threads do-
ing their own I/O prefetching (similar to [33]). As the execution
proceeds to the second loop nest, since there are two identifiable
clusters, one helper thread each (t1 for the first cluster,t9 for the
second cluster) is assigned to the clusters and are involvedin doing
the prefetching for the whole cluster. Finally, in the thirdloop nest,
threadst1 throught4 perform their own I/O prefetches because the
first two clusters have two CPUs each. The remaining two clusters
follow our adaptive prefetching scheme and get assigned 4 and 8
CPUs, respectively, with 1 helper thread per each cluster.

Figure 12(a) illustrates the traditional compiler-directed I/O prefetch
case used for CPU1 in the first loop nest. In the first loop, there is
no sharing among CPUs, and as a result, we apply the traditional
prefetching scheme to the code fragment assigned to each CPU.
In order to perform prefetches with the specified block size (P ),
the loop is modified to operate on a block size granularity. The

outermost loop iterates over individual data blocks, whereas the in-
nermost loop iterates over the elements within a block. The code
fragments for the remaining 15 CPUs have similar structures.

For the second loop nest, our algorithm, after identifying the
clustering pattern, assigns a helper thread to each of the two CPU
clusters. Since this takes away 2 CPUs (recall that we assignone
thread per CPU), the iterations are redistributed (parallelism is re-
tuned) among the remaining 7 threads in each cluster (see Fig-
ures 12(b) and (c)). The third loop nest in this example code frag-
ment has a more complex clustering pattern. We use the traditional
I/O prefetch insertion for the first two clusters since they consist
of only 2 threads and taking away one of the them for prefetch-
ing purposes would adversely affect the performance (basedon our
discussion in Section 4.3.4). One of the threads belongs to the first
cluster of the third loop nest is given in Figure 12(d). The remaining
two (third and fourth) clusters are assigned one helper thread each
and the iterations are redistributed among the remaining threads.
Figure 12(e) illustrates the structure of the helper thread, and Fig-
ure 12(f) shows the computation thread in the same cluster. This
thread is intended to perform only the computation since it has
a helper thread that performs prefetching for it. Similarly, Fig-
ures 12(g) and (h) show the helper and computation thread forthe
second cluster in the third loop nest. When we look at the helper
threads for the second (Figure 12(b)) and the third (Figure 12(e))
loop nests, an important difference can be noticed. The helper
thread for the second loop nest has a single prefetch instruction for
the shared data and a loop of prefetch instructions to prefetch un-
shared data while the helper thread for the third loop nest has only
one prefetch instruction since the clusters do not access unshared
data.

5. EXPERIMENTAL SETUP
We used four I/O-intensive applications in this study:
• HF: The Hartree-Fock (HF) method is an approximate method

for the determination of the ground-state wave function andground-
state energy of a quantum many-body system. At the heart of the
method is the construction of the Fock matrix using an iterative pro-
cedure. At each iteration, the Fock matrix is updated using integral
calculations. The results of these integrals in the currentiteration
are stored on disk and read by the next iteration. The molecule
sizes used in our setting resulted in a total dataset size of 12.4GB.
Our implementation of this code closely follows that of [22].

• 3D-vis: This is a visualization code for 3D image data such as
CT and MR. The code includes generation of 3D surface models
and 3D tetrahedral models, computation of iso-surfaces, and di-
rect volume rendering. The datasets manipulated by the codeare
disk-resident and the current implementation we have includes ad-
ditional optimizations such as collective I/O [35] to maximize the
I/O performance as much as possible. The dataset sizes used in our
experiments varied between 11.1GB and 16.8GB.

• Cholesky: This application implements the factorization and
solution of a dense system that stores its matrices on disks.Our im-
plementation closely follows the one discussed in [3] and the sub-
portions of the main disk resident matrix are transferred tomemory
as needed. As in the case of 3D-vis, the I/O behavior of the ap-
plication has been carefully optimized as much as possible using
known techniques such as collective I/O [35]. The total sizeof the
data manipulated by this benchmark is about 11.7GB.

• Mgrid: This is the out-of-core version of an application that
appears in both [39] and [16]. This application demonstrates the
capabilities of a simple multigrid solver in computing a three di-
mensional potential field. In this application, in additionto echoing
some of the inputs, the main part of the output gives the smoothed
approximate inverse. As in the case of Cholesky and 3D-vis, collec-
tive I/O is used for maximizing disk performance. In a typical run,
the total data size manipulated by this application is about13.4GB.

We made our experiments using PVFS, the Parallel Virtual File
System [25], which runs on top of a Linux cluster. PVFS is mainly
a user-level implementation, i.e., there is a library (libpvfs) linked



Pid = 1; B = 16;
lb = (Pid -1)× (64/B); /* lower loop bound */
ub = (Pid × (64/B))-1; /* upper loop bound */
for i = lb to ub {
prefetch(X, i, P );
prefetch(Y , i, P );
for t=0 to⌊N/P⌋ − 1 {
prefetch(X, (t + 1) × P , P );
prefetch(Y , (t + 1) × P , P );
for j=0 toP –1

Z[i, t × P + j] =
X[i, t × P + j] × Y [i, t × P + j];

}
for j=⌊N/P⌋×P to N–1

Z[i, j] = Z[i, j] × Y [i, j];
}

Nitr = number of iterations assigned to this cluster;
lb = first iteration of this cluster;
ub = lb + Nitr ; B = 8; BB = Nitr /B;
for i= lb to ub {

/*prefetch the shared reference(const=(int)i/32) only once*/
prefetch(M , const,P );
/*then prefetch the unshared data for all cores*/
for x = 0 toB − 1
prefetch(A, BB ×x + i, P );

for t=0 to⌊N/P⌋ − 1 {
prefetch(M , (t+1)×P , P );
for x=0 toB − 1 {
prefetch(A, BB × x + i, P );
synch(syncvar1);

}
}

}

lb = first iteration assigned to CPU2;
ub = last iteration assigned to CPU2;
for i= lb to ub {

k = (int) i / 32;
for t=0 to⌊N/P⌋ − 1 {

for j=0 toP –1
Z[i, t × P + j] +=

A[i, t × P + j]×
M[k, t × P + j];

synch(syncvar1)
}
for j=⌊N/P⌋× P to N–1

Z[i, j] += A[i, j] × M[k, j];
}

Pid = 1; B = 16;
lb = (Pid -1)× (64/B); /* lower loop bound */
ub = (Pid × (64/B))-1; /* upper loop bound */
for i = lb to ub {

k = (int) log2((int)i/4) ;
prefetch(R, k, P );
for t=0 to⌊N/P⌋ − 1 {
prefetch(R, (t + 1) × P , P );
for j=0 toP –1

Z[i, t × P + j] += R[k, t × P + j];
}
for j=⌊N/P⌋×P to N–1

Z[i, j] += R[k, j];
}

(a) Loop Nest 1, CPU1 (b) Loop Nest 2, CPU1 (helper thread) (c)Loop Nest 2, CPU2 (d) Loop Nest 3, CPU1

Nitr = number of iterations assigned to this cluster;
lb = first iteration of this cluster;
ub = lb + Nitr ;
for i= lb to ub {

/* prefetch the shared reference
(const=(int)log2(i/4)) only once */

prefetch(R, const,P );
for t=0 to⌊N/P⌋ − 1 {
prefetch(R, (t + 1, 1);
synch(syncvar1);

}
}

lb = first iteration assigned to CPU6;
ub = last iteration assigned to CPU6;
for i = lb to ub {

k = (int) log2((int)i/4) ;
for t=0 to⌊N/P⌋ − 1 {

for j=0 toP –1
Z[i, t × P + j] += R[k, t × P + j];

synch(syncvar1);
}
for j=⌊N/P⌋× P to N–1

Z[i, j] += R[k, j];
}

Nitr = number of iterations assigned to this cluster;
lb = first iteration of this cluster;
ub = lb + Nitr ;
for i= lb to ub {

/* prefetch the shared reference
(const=(int)log2(i/4)) only once */

prefetch(R, const,P );
for t=0 to⌊N/P⌋ − 1 {
prefetch(R, (t+1)×P , P );
synch(syncvar2);

}
}

lb = first iteration assigned to CPU10;
ub = last iteration assigned to CPU10;
for i= lb to ub {

k = (int) log2 ((int)i/4);
for t=0 to⌊N/P⌋ − 1 {

for j=0 toP –1
Z[i, t × P + j] += R[k, t × P + j];

synch(syncvar2);
}
for j=⌊N/P⌋× P to N–1

Z[i, j] += R[k, j];
}

(e) Loop Nest 3, CPU5 (helper thread) (f) Loop Nest 3, CPU6 (g)Loop Nest 3, CPU9 (helper thread) (h) Loop Nest 3, CPU10

Figure 12: Example application.

to application programs which provides a set of interface routines
(API) to distribute and retrieve data to/from the disk system. In
each I/O node designated, we created a “global” memory cache(file
buffer) which caches data that belong to the disk(s) attached to that
I/O node (see Figure 6). This cache is implemented as a user level
process and shared by all CPUs that use that I/O node (it is also pos-
sible to implement it within the Linux kernel). Since multiple CPUs
(computation nodes) can share the same memory cache, its efficient
utilization is clearly critical. Since global caches have already been
studied in the context of PVFS and it is not one of the contributions
of this paper, we do not elaborate on our PVFS-based global cache
implementation any further in this paper, except for sayingthat it
closely follows the implementation presented in [23]. Our global
cache management method employs an LRU (least-recently-used)
policy with aging method to determine the best candidate forre-
placement as a result of a cache miss.

We also implemented the compiler-directed I/O prefetchingal-
gorithm explained in Section 3 and our adaptive I/O prefetching
scheme, targeting this shared storage cache. We used the SUIF
compiler infrastructure [28] to modify the input code for inserting
explicit prefetch calls. We observed that the impact of our adaptive
prefetch implementation on compilation time was not too much
(less than 10% for all four applications used in this work). Also,
the code size increase due to the added prefetch calls was less than
17% in these applications. Note that, our approach does not in-
sert any unnecessary prefetch instruction in the code because the
insertion of such instructions is based on profiling and compiler
analysis. The main reason for increased code size is from thegen-
erated helper threads. As given in the example application code
in Figure 12, for each loop nest identified as a CPU cluster that
exhibits accesses on the shared data, our compiler algorithm gen-
erated a separate helper threads for that. Considering the fact that
executable sizes of these codes are in hundred kilobyte ranges, we
believe that this increase in code size is not that important(in fact,
we noticed no increase in the number of instruction cache misses
as a result of this increase in executable size).

The experimental results we present in this paper are obtained
using a Pentium/Linux based cluster of workstations. Each node
of this cluster has a 1.2GHz Intel Pentium-III microprocessor with
32KB of L1 cache, 256KB of L2cache, and 512 MB of main mem-
ory. Note that our global cache is implemented on multiple I/O
nodes, though most of our results are collected using a single I/O
node, and we also present results from a sensitivity analysis that
considers multiple I/O nodes, each with its own global cache. Each

I/O node is equipped with a 20GB Maxtor hard disk drive, a 32bit
PCI10/200Mbps3-Com3c59x network interface card, and a shared
cache of 150MB (our default shared storage cache capacity; later
we present results with larger caches as well). All the nodesare
connected through a Linksys Etherfast 10/200Mbps16 port hub.
Our default experimental platform has several computationnodes
(the number of which is varied in our experiments) and one I/O
node (which implements the global cache).

6. EXPERIMENTAL RESULTS
The performance improvements brought by our adaptive prefetch-

ing scheme are presented in Figure 13(a) under the differentCPU
counts. These improvements are with respect to the no-prefetch
case. Comparing this graph with that in Figure 3(a), we see that our
approach improves performance significantly. For example,when
8 CPUs are used, the average percentage improvements brought by
the independent prefetching scheme and our adaptive prefetching
scheme are 9.1% and 19.9%, respectively. More importantly,we
observe from this plot that, when our scheme is used, the perfor-
mance savings obtained using I/O prefetching are quite consistent
across different CPU counts. In other words, our approach helps
to mitigate the negative impact of harmful I/O prefetches with in-
creasing CPU counts.

At this point, it is also important to compare our scheme to alter-
nate prefetching strategies other than independent I/O prefetching.
Figure 13(b) plots, for the 8 and 16 CPU cases, the percentageim-
provements brought by different I/O prefetching schemes. In this
graph, xCPU-Pref denotes a scheme where x CPUs are devoted
for prefetching on behalf of the others throughout the entire ex-
ecution period and the remaining CPUs are used for application
execution. We present the results with 1≤ x ≤ 3, as higher x
values generated worse results than those reported in here.Let us
first focus on the 8 CPU case. We see that while 1CPU-Pref and
2CPU-Pref produce better savings than independent I/O prefetch-
ing, our adaptive scheme results in the best performance among all
the schemes tested. Note that fixing the number of CPUs devoted
to I/O prefetching at a large value (such as 3 or 4) throughoutthe
entire execution can be dangerous as this can hurt performance in
program phases that demand all CPUs for the best result. We can
make similar observations in the 16 CPU case as well. In this case
however, 3CPU-Perf generated better results as compared tothe 8
CPU case since we have a larger number of CPUs to use in execut-
ing the application code. In summary, when 8 CPUs are used, our
proposed adaptive I/O prefetching scheme improves performance,
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Figure 13: (a) Percentage improvements brought by I/O prefetching when our
scheme is used. (b) Comparison of different I/O prefetchingschemes.
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Figure 14: Impact of different storage cache
capacities.

on average, by 19.9%, 11.9%, and 10.3% respectively, over the no-
prefetching, independent prefetching, and 1CPU-Pref cases. When
16 CPUs are used, the performance improvements over the cases
with no prefetching, with independent prefetching, and with 1CPU-
Pref cases are 17.9%, 21.7%, and 16.5%, respectively.

6.1 Sensitivity Analysis
In this section, we change the default values of some of our major

simulation parameters and conduct a sensitivity analysis.Figure 14
shows, for the 8 and 16 CPU cases, the performance improvements
under different shared storage cache capacities. Recall that the de-
fault cache capacity used so far was 150MB. Each bar in this graph
represents the percentage improvement over the independent I/O
prefetching case. Our observation is that, while we witnessa re-
duction in our savings when the cache capacity is increased,even
with the largest cache capacity (500MB), we achieve important im-
provements.

Recall that our experiments so far used only one I/O node. We
also performed experiments that measure the sensitivity ofour ap-
proach to the number of I/O nodes. As mentioned earlier, when
multiple I/O nodes are used, we associate a separate global memory
cache (of the same size) with each I/O node. The results are pre-
sented in Figure 15 with 1, 2 and 4 I/O nodes (the x-axis). Eachbar
represents the performance improvement brought by our approach
over the independent I/O prefetching case. The figure presents the
results for only 8 and 16 computation node cases. As expected
the percentage savings brought by our approach get reduced when
the number of I/O nodes is increased. This is because, with a larger
number of I/O nodes, the prefetch requests are spread more and this
tends to reduce the number of harmful prefetches. Since the results
in Figure 15 are with respect to the case without our optimizations,
we observe a drop in percentage savings. Still, even with thelargest
number of I/O nodes tested, the savings we achieve are not bad.

Recall that so far in our experiments we assigned a common
prefetcher to two or more threads if the sharing density is 80%
or higher (in other words, the sharing density threshold was80%).
Figure 16 shows the percentage improvement results when theshar-
ing density threshold is varied between 50% and 90%. Our firstob-
servation is that when we set the threshold to 90%, the savings are
not good. The main reason is that, with such a high threshold,the
compiler cannot find much opportunity to apply our optimization,
and most of the time, each CPU ends up with performing its own
I/O prefetching. On the other hand, when the threshold is very low
(e.g., 50% or 60%), our approach behaves similar to the indepen-
dent I/O prefetching case.

Finally, we present the results with different slice sizes (S) in
Figure 17. In our default setting, the slice size is set to 10%of the
total loop iteration count. We see from these results that, while the
slice size has some impact on our results, unless one works with too
small or too large sizes, the results obtained with different values
of S are close.

7. RELATED WORK
The replacement algorithm for I/O caching has a significant in-

fluence on I/O performance. While the LRU (Least Recently Used)
replacement policy, which dates back at least to 1965 [10], has
been widely used to manage buffer cache, there are various ap-
proximations and enhancements to this, for example, the classi-
cal CLOCK algorithm [8]. To add adaptability to changing access
patterns, several researchers studied enhancements to theclassical
CLOCK algorithm, such as 2Q [18] and LRFU [9]. More recent
studies that try to handle accesses with weak temporal or spatial lo-
cality include CAR (Clock with Adaptive Replacement) [4], LIRS
(Low Inter-reference Recency Set) [17], ARC (Adaptive Replace-
ment Cache) [24], CLOCK-Pro [29], Second-Tier Cache Manage-
ment [42], and DULO (Dual LOcality)[30]. Patternson et al [27]
used a hint mechanism, which is designed to expose access pat-
terns, in managing prefetching and caching file cache blocks. They
also studied the same problems under multi-process execution en-
vironments [2]. Dahlin et al [12] on the other hand proposed coop-
erative caching, in which file caches of many client machinesare
coordinated to form a more effective global file cache. Kimbrel et
al [34] studied the prefetching and caching in a system with parallel
disks. [27] also provides a mechanism, called the “prefetchhori-
zon”, to limit prefetches that do not bring any benefit from prefetch-
ing. In comparison, our work limits redundantly-issued prefetches
based on identified inter-thread data sharing patterns.

I/O prefetching is also a very effective way of improving I/O
performance [33, 1, 7, 41, 21, 13]. Mowry et al [33] used compiler-
guided information to manage prefetch commands more effectively.
They also studied the cases where processes running concurrently
generate I/O prefetch commands simultaneously [5]. Li and Shen
proposed a memory management scheme that handles non-accessed
but prefetched pages separately from the rest of the memory buffer
cache [21]. More recent studies to improve conventional I/Oprefetch-
ing using additional file and access history information include
Diskseen [41], Competitive Prefetching [7] and AMP [15]. Incom-
parison to these studies, our work targets multiple-CPU execution
scenarios.

Targeting multi-level caches, several multi-level buffercache man-
agement policies have been proposed [43, 40, 23, 14]. [40] in-
troduced a DEMOTE operation where an evicted cache block is
migrated to lower level of buffer cache. Chen et al [43] used evic-
tion history observed in a higher level cache in determiningcache
blocks that need to be replaced in a lower level. Lastly, Yadgar et
al [14] proposed an approach, called Karma, that uses application
hints in maintaining the multi-level cache hierarchy.

The concept of a single separate helper thread to aid the com-
putation thread by exclusively prefetching the data required by the
computation thread has been explored in the domain of CMPs (Chip
Multiprocessors). Jung et al [6] use a helper thread based prefetch-
ing scheme for loosely-coupled processors, like the modernCMPs,
and demonstrate the utility of a helper thread in aiding the com-
putation. Kim et al [20] employ similar helper threads running in
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Figure 15: Impact of the number of I/O
nodes.
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Figure 16: Impact of the sharing density
threshold.
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Figure 17: Impact of different slice sizes
(S).

spare hardware contexts ahead of the main computation to start the
memory operations early so as to hide the memory latency. Liao
et al [31] identify and embed trigger points in the original binary
and produce a new binary with the prefetch threads attached.Our
approach is different from these efforts in two aspects. First, we
consider the cases where we have more than two CPUs, and con-
sequently, we employ a different (slice based) code restructuring
strategy. To our knowledge, the prior chip multiprocessor/helper
thread based efforts target at two-CPU cases. In addition, to our
knowledge, none of the prior studies considered an adaptiveap-
proach where prefetch threads change based on data sharing during
the course of execution. Second, we target I/O intensive applica-
tions. We want to say however that our adaptive prefetching algo-
rithm can be used, with appropriate modifications, in a CMP based
execution environment as well.

8. CONCLUSION
This paper presents a scheme that extends the concept of compiler-

directed I/O prefetching to the multiple CPU case using an adaptive
strategy. In the proposed adaptive scheme, the number and types
of I/O prefetchers are modulated to match inter-thread datashar-
ing patterns. The experimental results collected using four disk-
intensive applications are very promising, and indicate that large
performance gains are possible through adaptive I/O prefetching.
The percentage improvements brought by our approach over the
no-prefetching, independent prefetching, and one-CPU prefetching
cases are 19.9%, 11.9%, and 10.3%, on average, when 8 CPUs are
used. The average percentage improvements over the same three
cases are 17.9%, 21.7%, and 16.5% respectively, when 16 CPUs
are used.
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