Profiler and Compiler Assisted Adaptive I/O Prefetching for
Shared Storage Caches -

Seung Woo Son

Pennsylvania State University
sson@cse.psu.edu

Sai Prashanth
Muralidhara
Pennsylvania State University

Ozcan Ozturk
Bilkent University

ozturk@cs.bilkent.edu.tr

smuralid@cse.psu.edu

Mahmut Kandemir
Pennsylvania State University
kandemir@cse.psu.edu

ABSTRACT

1/0 prefetching has been employed in the past as one of the-mec
anisms to hide large disk latencies. However, 1/0O prefeighin
parallel applications is problematic when multiple CPUarstthe
same set of disks due to the possibility that prefetches ftiiffer-
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ent CPUs can interact on shared memory caches in the 1/O noded>refetching, Shared Storage Cache, Compiler, Profilerptda

in complex and unpredictable ways. In this paper, we (i) tjban
the impact of compiler-directed I/O prefetching — develbjeig-
inally in the context of sequential execution — on sharedeaat
1/0 nodes. The experimental data collected shows that vitle
prefetching brings benefits, its effectiveness reducesifgigntly

as the number of CPUs is increased; (ii) identify inter-CPiss@s
due to harmful prefetches as one of the main sources for ¢his r
duction in performance with the increased number of CPUd; an
(iif) propose and experimentally evaluate a profiler and iben
assisted adaptive 1/0 prefetching scheme targeting stsiogdge
caches. The proposed scheme obtains inter-thread datagshar
information using profiling and, based on the captured dasa-s
ing patterns, divides the threads into clusters and assigsep-
arate (customized) I/O prefetcher thread for each cludteour
approach, the compiler generates the 1/0 prefetching disreato-
matically. We implemented this new I/O prefetching schersiagi

a compiler and the PVFS file system running on Linux, and the em
pirical data collected clearly underline the importanced#pting
1/0 prefetching based on program phases. Specifically, o p
posed scheme improves performance, on average, by 19.998611
and 10.3% over the cases without 1/O prefetching, with iredep
dent I/O prefetching (each CPU is performing compiler-cliee
1/0 prefetching independently), and with one CPU prefetgtione
CPU is reserved for prefetching on behalf of others), rebgy,
when 8 CPUs are used.

Categories and Subject Descriptors

D.3.4 [Programming Language$: Processors-Sompilers B.3.2
[Memory Structures]: Design Styles—€ache memories
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1. INTRODUCTION

I/O prefetching is an important optimization for improvipgr-
formance [27, 2, 33, 1, 36, 19, 11, 15, 41, 7, 34]. In I/O pufetg,
data is brought from the disk to the memory cache (sharedgstor
buffer) ahead of time to hide the latency of disk accessewever,
prefetching is known to be very sensitive to timing [33, 1]rsE
an early prefetch may not be very useful as the data blockghitou
into the memory cache can be discarded before it is used.n8gco
a late prefetch may not be very useful either since it caniioi-e
nate the entire disk access latency. Third, a prefetchedadat be
even “harmful” by kicking out a data block from the memory lsac
whose next usage is earlier than that of the prefetched block
shared storage cache (i.e., a memory cache in an I/O nodedshar
by multiple CPUs), this type of “harmful prefetches” canatwe
different CPUs as well. For example, a prefetched data bback
displace a data block which would be accessed earlier (bthano
CPU) than the prefetched data block, as illustrated in Eidifa).
This type of harmful prefetches are referred to as “intetJ®Rrm-
ful prefetches,” as opposed to “intra-CPU harmful prefegshan
example of which is given in Figure 1(b).

Clearly, the number of harmful prefetches can increase thigh
increased number of CPUs, and consequently, one can exgect t
problem to be more severe as the degree of sharing of an I/© nod
increases. This paper demonstrates the magnitude of this pr
lem using four disk-intensive parallel applications anthpder di-
rected 1/O prefetching, and proposes a solution that ersptogle
profiling and automated code restructuring. Our solutiobaised
on several observations we made during our experiments:

e In general, the scalability of I/O-intensive applicatidhs., ap-
plications that frequently exercise disk subsystems ddlfgma-
chines) is not very good. As a result, a couple of CPUs can be
used for purposes other than executing application thredatisout
impacting application performance too much.

o While compiler-directed I/O prefetching brings signifitaen-
efits in cases when a small number of CPUs (e.g., 1-4) areitsed,
performance degrades significantly as the number of CPUs is i
creased. Dramatic increases in harmful prefetches play adte
in this degradation with larger number of CPUs. This motsat
for an approach that uses only a small set of CPUs to perfddm I/
prefetches, instead of all CPUs prefetching independéhéydata
they need and competing over the shared storage cache.

e Data sharing patterns exhibited by an I/O-intensive apfibn
change significantly across the different phases of thecgtjn.



2. EMPIRICAL MOTIVATION

CPU P, CPUP, In this section, we present results from our experiments foiir
: : 1/O-intensive applications to motivate the approach preskin

; ) . . this paper. The details of our experimental setup and zgjpits
crPUPp, icks out 5, CPU P, kicks out 5, will t?e%iven later. All applicatiogls have been pr;ralleda;;g?ng

i : varying number of threads; each thread is assigned to aaepar

Bl cache miss | cache miss CPU, and all CPUs share the same storage cache (see Figure 6),

CPUP, CPU, which is 150MB (later we also present regsults with(other gach )

: y sizes). Since we consider only one-to-one mappings betieen
CPUs and threads, in the remaining part of the paper, we &se th
terms “thread” and “CPU” interchangeably. Our first set afulées

are given in Figure 2 and plots the speedup curves underetliffe
CPU counts. These application codes are reasonably opfinfiir

@) (b)
Figure 1: Examples of inter-CPU (a) and intra-CPU (b) harm-
ful I/0 prefetches. In (a), data block B; brought into the mem-
ory cache (buffers) by CPU P, is replaced by the prefetch of

block B; by CPU P, and B; is referenced earlier than;. In I/0 (using source level techniques such as collective I/&))[But
(b), a CPU’s (Py) prefetch kicks out from the cache one of its they do not use I/O prefetching. It can be observed from this p
own data. that speedup of these applications is not scalable with aineber

of CPUs. As an example, when we use 16 CPUs, the speedups we
achieve in applications HF, 3D-vis, Cholesky, and Mgrid @ug,

6.4, 10.4, and 6.5, respectively. In fact, the differendsvben the
speedup numbers obtained using 14 CPUs and 16 CPUs is negli-
gible. While these speedup results are collected with tfase
applications, poor scalability of I/O-intensive applicais is a well-
known fact. For example, the work in [22] reveals that lack/6f
scalability severely limits potential speedups that cdndéchieved

in 1/0O-intensive applications. As far as our research isceoned,

the main take away message from these results is that a coluple
CPUs can be taken away from the application without affgatis
speedup too much. Clearly, as we move to larger number of CPUs

h P e.g., 128-256 range), one can expect that taking away ew®n 7
the data sharing patterns across threads change duringtiexec ( S .
these clusterings and associated I/O prefetchers alsgehdiat rSnSCF;]US from an application would not affect its performarae t

is, depending on the program phase in question, we may have a Our second set of results focus on the performance of I/@fmief

different number of 1/0O prefetchers assigned to differests of L A X }
g : p B ing in parallel applications. Figure 3(a) presents the @atage im-
threads. Therefore, this scheme is called “adaptive,” g provements in total execution cycles of our four applicagialue

Egri%ggﬁ{ﬁepﬁre;gghngfsgggl?ggtsigﬂaetxﬁe)éfﬂ%r?umber of furedes to 1/O prefetching. Specifically, each bar corresponds eogér-
: - ; formance improvement brought by the 1/0 prefetching schame
Our approach brings benefits over conventional I/O prefietch [33] over the no-prefetch case. In the prefetching case pptieal
where each CPU performs its own prefetches from disks, ienlep the scheme in [33] to each thread of the application ino]

dently of the others. First, our approach reduces the aditicost . X S
e . ; : (a summary of the 1/0 prefetching scheme in [33] is givenrlate
of issuing prefetch instructions, as in our case for eachfsbteads in Section 3). An important observation from these ressithat

a single prefetcher is reserved and thus other CPUs do ndéwas the effectiveness of I/0O prefetching diminishes dramdices the

cycles in issuing prefetch calls. Second, and more imptytan o ;
h oy number of CPUs to execute the application code increaseex-o
our approach for each shared data block a single prefetshtisdl. ample, with application HF, the imppprovement brought by gret-

Therefore, we can expect significant reductions in the nurobe P : .
harmful prefetches caﬁsed bS multiple prefetches to thesiata. ing is about 29.5% when a single CPU is used, whereas the same
Third, threads using shared data coordinate their accestfesach is only 1.3% with 12 CPUs. In fact, I/O prefetching degradm_t

' overall performance (as compared to the no-prefetch casal i

other, as they all must synchronize with the helper prefétogad four applications when 15 or 16 CPUs are used. To understand

at the same point. This increases the chances that theylMifich why this happens, we collected additional statistics aapguthe

the shared data in the storage cache. ; prefetch-related interactions among the CRUsigure 3(b) gives
Totestthe effectiveness of our proposed /0 prefetchingse, the fraction of harmful 1/O prefetches. As stated earliez, define

impl ted it usi il d the PVFS fil t 25
we Imp emen ea [l using a complier anc:ne lle syste [ a “harmful prefetch” as a prefetch that leads to the remofal o

running on top of Linux, and compared its performance agans
numbegr of altgrnate I/0 prefetching schemeps. Among thergebe data block from the memory cache and the prefetched dat& bloc
is referenced only after the reference to the removed blatk.

tested are no prefetching case, a simple extension of centi X o

rected 1/0O pref%tching togmultiple CPUps (which we call |rpxn£1 see from Figure 3(b) that, the contribution of harmful ptefies

dent 1/O prefetching” in this paper), assigning a fixed CP fo increases with the increasing number of CPUs. This in a searse

prefetching on behalf of all remaining CPUs (which do not-per D€ €xpected, as more CPUs are used for executing the afipiicat

form prefetching), and assigning a small set of CPUs forgcé: higher the chances that CPUs will replace each other’s data f

ing. The empirical data collected clearly underline the éntance the shared storage cache when they prefetch. We need tcomenti
however that harmful prefetches alone may not be the onkorea

of adapting I/O prefetching based on program phases. Specifi S e .
cally, our proposed scheme improves performance, on a@ebgg for the sharp degradation in performance as we increaseutine n

19.9%, 11.9% and 10.3% over the cases without I/O prefegchin Der of CPUs. For example, we also noticed during our experigne
with independent I/O prefetching, and with one CPU prefieigh that the negative interactions even among normal disk éstc¢h
respectively, when 8 CPUs are used. the memory cache also tend to increase with the large nuniber o

The next section presents empirical evidence to motivatapu
proach. Section 3 summarizes the original compiler-déx@dfO !Since the shared storage cache we implemented is managed by
prefetching scheme proposed in [33]. Section 4 discusseddh  software, we modified it to collect harmful prefetches. Sipeally,
tails of our adaptive I/O prefetching scheme. Sections 5@&nd  we increment the counter when a prefetch leading to the rehadv
present experimental setup and collected results, régplyciSec- a data block from the cache and the prefetched block is mederk
tion 7 discusses related work, and Section 8 concludes therpa only after the reference to the removed block.

Therefore, to be successful, an 1/0 prefetching schemeldteu
able to take these inter-thread data sharing patterns attouat.
In particular, if, in a given execution phase, a certain $é¢hi@ads
share significant amount of disk-resident data among thamcan
use only a single I/O prefetcher for all of them, thereby g
the impact of harmful prefetches.

This paper proposes an adaptive /O prefetching scheméstor d
intensive parallel applications. The proposed schemerabiater-
thread data sharing information using profiling and, basedhe
captured patterns, divides the threads into clusters asigresa
separate (customized) I/O prefetcher (thread) for eadtaluSince
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Figure 2: Speedup numbers when all Figure 3: (a) Percentage improvements brought by /0 prefething. (b) Percentage of

CPUs sharing the same 1/0 node are used. harmful prefetchings. All savings are with respect to the cae without I/O prefetching.
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Figure 4. Data access patterns of four I/O-intensive appliations obtained through profiling. (a) HF (b) 3D-vis (c) Choksky (d)
Mgrid. In 3D-vis, the pattern shown repeats itself multipletimes. In HF, only the most time-consuming portion of the coe is shown.
The ovals are used to capture sample patterns for which we camse a common prefetcher (one per oval).

CPUs. Nevertheless, the results presented in Figures 3gd(h) more phases with interesting data sharing patterns. Ftarnios,
illustrate a strong correlation between the performangeatkation between epochs 25 and 90 (which corresponds to a large I@p ne
and the fraction of harmful I/O prefetches. in the application), all four CPUs access a small set of dadecan

Our third set of results study the I/O access patterns of pur a potentially share the same 1/O prefetcher. A similar betragan
plications focusing on shared data. Figure 4(a) illustrate in- also be observed between epochs 320 and 430. In these gortion
teresting scenario when an application (HF) is executeahusiur it may be a good idea to employ only a single I/O prefetcher tha
CPUs. The x-axis of this figure denotes the execution pregres prefetches data on behalf of all four CPUs. On the other hagd,
and the y-axis captures the addresses of the data elemenib- | tween epochs 450 and 500, it may be a good idea to have a single
taining this graph, the total application execution pei®divided 1/O prefetcher devoted to CPUO and CPU3; the remaining CPUs

into 500 epochs, and the addresses of the accessed datatsleme can have their own private prefetchers. The graphs in Fgdife)
are recorded. Note that the address space shown in Figure 4 isand 4(d) present the execution profiles for our remaining ayo
rather a file offset since all the array data is stored on tek.di  plications and one can make similar observations from thess

Therefore, Figure 4 shows the access clustering pattertesrims as well. Although not presented here, we also observed aimil
of file domain instead of memory or cache address space. We canclustering patterns when larger number of CPUs are used.
identify two distinct execution phases in this graph, whicire- Considering the results presented in Figures 2 through 4¢ane
spond to two different functions in the application codet ttan- reach the following conclusions. The inter-CPU data shppiat-

sume nearly 95% of the total application execution time. Ha t  tern for a given I/O-intensive application varies signifittig during
first execution phase (function), CPUO and CPU2 share the sam the course of execution. Given the poor performance of iadep
small set of data elements and similarly CPU1 and CPUS3 accessdent I/O prefetching in large CPU counts (wherein each CRU is
a lot of common data elements, which constitute a small $udfse  sues its I/O prefetches independently), it is clear that exeho
the total address space. In comparison, in the second phidsk w  take inter-CPU data sharing patterns into account to aehéev
starts around epoch 270, a much larger set of data are adcesseceptable program performance through I/O prefetchingebtsof
(note that some of these data are accessed by more than one CPUWllowing each CPU to perform 1/O prefetching independefithy.,

however, the total data range is too large). We believe thatG execute 1/O prefetcher threads in addition to applicatfoedads),
prefetching strategy can be tuned by exploiting this exenytro- one option is to reserve a couple of CPUs to do prefetchingeen b
file. Specifically, for the first phase of this applicationpiay be half of the others which execute application code withosiiisg

a good idea to use an /O prefetcher (thread) for CPUO and CPU2any prefetch call. Based on our results above (Figures 2 and 3
and another I/O prefetcher for CPU1 and CPU3. In this case, th we know that this is unlikely to hurt scalability of the pdedlap-
application threads running on CPUO, CPU1, CPU2 and CPU3 do plication. In the rest of this paper, we present and expeariaiky

not perform any I/O prefetching (the prefetch threads parfib on evaluate such an adaptive 1/O prefetching scheme which latsdu
behalf of them). Note that, in this phase, since CPUO and CPU2 the number of the threads to use for I/O prefetching baseden t
(and similarly CPU1 and CPU3) share a lot of data between them inter-thread data sharing patterns.

allocating a common prefetcher will cut the number of prefes

and reduce the chances for harmful prefetches. On the oémet, h

in the second phase, it may be more beneficial to employ a sep-3- COMPILER-DIRECTED I/O PREFETCH-
arate 1/O prefetcher for each of the CPUs (each 1/O prefetithe ING

this phase can be integrated with its associated applicttiead, : . . . .
a5 1 [33). Figure (o) shows he execton profie o anotra- 1S 1118 ©X% sevre IO refreing aaorims e
intensive application (3D-vis). In this application, wesebve even inspired by the work done by Mowry et al [33]. The originaladg



int X[0..N — 1], Y[0..N — 1], Z[0..N — 1];
prefetch(X, 0, P); prefetch{’, 0, P);
fort =0to [N/P| —1{

prefetch(X, (t + 1) x P, P);

int X[0..N — 1]; prefetch’, (t + 1) x P, P);
intY[0..N — 1]; fori =0toP — 1,1
int Z[0.N — 1J; Zt X P+i] = X[t x P+ 1]
fori =0toN — 1{ XY [t x P+ 1i];

Zli) = X[ x Y[il; )

forj = |[N/P] x PtoN — 1
Z[5] = X[5] x Y[4l;

@) (b)
Figure 5: An example that illustrates compiler-directed 1/O
prefetching. (a) Original code fragment. (b) Compiler-
generated code with explicit I/O prefetch calls inserted. Te
syntax of the I/O prefetch call is similar to that of a regular
/O call,i.e.,prefetch (array_nane, offset, size),
where the second parameter indicates the location and the ittdl
one captures the length of the data.

rithm has actually been proposed for improving hardwaréneac

behavior for memory-resident data sets [32], and has laenb
extended to implement I/O prefetching targeting virtualnmoey
based execution environments. We adapted this algorithnotk
with explicit disk I/O.

Figure 5 illustrates an example of this compiler-direct€iprefetch-
ing scheme. For the sake of clarity, we omit the actual file /0O

statements (the PVFS [25] calls in our case). In this exantiplee
N-element “disk-resident” arraysX(, Y, andZ) are accessed us-
ing three referencesX([i], Y[i], and Z[i]). P denotes the data
block size, which is assumed to be the unit for I/O prefetgltire.,
an /O prefetch targets a data block of si2¢ Figure 5(a) shows
the original loop (without 1/O prefetching), and Figure b{lus-
trates the compiler-generated code with prefetch callseelaibd.
Note that, in order to perform prefetches with the specifiletio

size (P), the loop is modified to operate on a block size granular-

ity. As can be seen in the compiler generated code of Figung 5(

the outermost loop iterates over individual data blockenghs the
innermost loop iterates over the elements within a bloclis (par-
ticular transformation is called strip-mining [38]). Thigy, it is
possible to prefetch a data block and operate on the dataetem
it contains. The first set of prefetch statements in the ctampi
generated code is used to load the first set of data blockgheto
memory cache prior to the main loop execution. In the stetatg s
within the loop, we first issue the prefetch requests for #e set
of blocks, and then operate on the current set of blocks. a@ste |
loop nest is executed separately as the total number of némgai
data elements may be smaller than a full block size.

We now briefly discuss the compiler analysis required for im-

plementing this I/O prefetching. First, the compiler azaly the
given application code and predicts the future data accssrps.
This is done using “data reuse analysis”, a technique dpedio
originally for conventional cache locality optimizatioB7]. This
analysis identifies how a given data element is accessedfiey-di
ent iterations and statements of a loop nest, and captueastise
distances (in terms of loop iterations). In [33], missesisoéated
through loop-splitting and prefetches are scheduled usiftyvare
pipelining based on the data locality information genetdig the
compiler. In their I/O prefetching algorithm, one of the kewdi-
fications to the original algorithm (which targets memorgident
data sets) is to limit the prefetches only across the outstrioop
nest. This follows from the fact that cache lines have reddyi
small sizes when compared to a page (unit of prefetch in the
prefetching algorithm of [33]), hence inner loop nestsofiecess
less data than a page (in our case, block) size. In decidafptp
splitting point, the prefetching algorithm in [33] takesdraccount
the estimated I/O latencies as well.

In our implementation of this 1/O prefetching algorithm, heve
a layer in the file system that monitors the prefetch requesidil-

/

Computation nodes
(CPUs)

1/0 node

Shared

— | Storage
Cache

/

] ??
f-m

Figure 6: I/O system abstraction.

ters unnecessary prefetches as much as possible (a siamtane
layer is also used in [33]). In this layer, a “bitmap” is maiimed to
capture the set of data blocks that are already in the menaaiyec
Whenever a prefetch is to be issued to the disk, the correfppn
bit is checked to see whether the block in question is alr@athe
memory cache, and if this is the case, that prefetch is sepede In
this way, a significant number of useless 1/O prefetches eaatim-
inated. We want to emphasize that, while our experimentghise
particular I/O prefetching algorithm, its choice is readithogonal
to the main focus of this paper. In other words, as far as ticp
bility is concerned, our approach can be used along with aisy-e
ing I/0 prefetching algorithm. Clearly, the savings acbkiby our
schemes will be dependent on the underlying prefetchinoyisitom
used, and in fact, we believe our approach can bring larges-be
fits when it is used along with simpler 1/O prefetching altjoms
(instead of a compiler-directed one). The reason for thikasthe
algorithm in [33] inserts prefetches very carefully takimgp ac-
count loop-specific 1/0 behavior and estimated I/O latenciAs
a result, it inserts few useless prefetches and most of sselless
prefetches are filtered before they are actually issuedadligks.
Simpler schemes on the other hand would tend to insert mere us
less prefetches (some of which will also be harmful prefesgh

4. OUR APPROACH
4.1 1/O System Abstraction

Figure 6 shows the architecture of a typical modern storgge s
tem interfaced with a computation system. The computataaes
are connected to the disk storage system through the shiared s
age cache. The purpose of the storage cache is to store & sfibse
the disk-resident data. If the requested data is found istiiage
cache, then the access time is much less than the case whiiskthe
needs to be accessed. Therefore, proper maintenance siéned
cache is extremely important.

4.2 High Level View

Figure 7 gives a high-level view of our approach which cdssis
of three steps (components). In the first step, we profile tuke c
and identify the data sharing patterns among the differdhit<
The outcome of this step can be shown in the form of plots, as in
Figures 4(a) through 4(d), which help us identify the nunéoea
types of the I/O prefetchers to use. In the second step, voeiass
the identified sharing patterns to code sections. Notewfale the
first step gives us the thread groupings (i.e., which set iefattis
should be assigned a common I/O prefetching thread), thendec
step tells us the program segments where these groupingtsl sieo
considered. As a concrete example, let us consider once timore
execution profile shown in Figure 4(a) where we can easilgtifle
two phases, which correspond to two different functionsedaby
the main(.) routine of this application. Each of these fiord has a
very large loop nest in its body. For the first phase (loop)nestce
CPUO and CPU2 share considerable amount of data, we assign a
common prefetcher for CPUO and CPU2 and for similar reasons,
we assign a common prefetcher for CPU1 and CPU3.

Note that we need a metric using which we can decide whether
two (or more) CPUs can work with a common I/O prefetcher in
a given phase. The metric we use for this purpose is called the
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Figure 7: High-level view of our approach. ©

a
Figure 8: (a) Ovér)view of how helper thread and computation
threads are scheduled from a single cluster perspective. o
e;hat a phase identified in the profiling step contains multipe
slices. (b) Synchronization mechanism between helper thael

“sharing density”, and gives the ratio between the numbetatd
elements shared by CPUs and the total number of distinctedata
ements accessed in that phase. If this number exceeds d pres

threshold value, those CPUs are given a common |/O prefetche

At the end of this assignment, a CPU that is not assigned a com-

mon prefetcher performs its own I/O prefetching (similaf38]).

For example, if the sharing density threshold is set to 808é (t
default value used in our experiments), two CPUs that hataga s
ing density of 80% or higher in a phase are assigned the s&@ne |/
prefetcher in that phageWhile in this paper we employ a profile-
based approach to capture inter-CPU data sharing pattedndea
termine the program segments for which prefetchers are @mbe
ded, one can also employ, where possible, static prograigsima
to capture data sharing patterns across CPUs. The remaihaier
approach (that is, the third component in Figure 7), whichege
ates I/O prefetchers, is actually independent of how dadairsi
patterns have been identified.

4.3 Generating I/O Prefetchers
In this section, we explain how the 1/O prefetchers are oleti
for a given cluster of CPUs in a code segment (phase) idehbije
the previous steps. What we mean by “cluster” is a set of CPUs
such that, after our approach, one of them prefetches dake-on

(t») and computation thread (t.).

In this formulation, R; ;. is the set of references to the disk-
resident array;R represents a reference in the loop nest (i.e., a

mapping from the iteration space to the data spafé$; an iter-
ation point; andi is the index to data elements (i.e., array subscript

function). Note that, sincg, ;s within a particular slice are likely
to share data elements, we can expect that:

Dok NDy e £ 0, for z #y.

After obtainingD; . for each thread in the k™ slice, we next
determine the entire set of data elements accessed iy thléce,
denoted a9y, by taking the union oD; ;, sets:

U Dk,

1<i<B-1

Dy =

half of the others. We want to remind the reader that we assumewhere B is the number of CPUs as stated earlier. Note that, de-
one thread per CPU. Throughout our discussion, we assurhe thapending on the degree of data sharing among threads, thefsize

an identified program phase has only single loop nest (which ¢
contain multiple loops). If a phase contains more than ost me
apply our approach to each of them.

The main objective of our compiler algorithm is to transform
each identified phase from the earlier step into “computaticeads”
and “helper threads”. In our approach, the computatioretfseer-
form only computation, whereas the helper threads perfdriftCa
prefetches on behalf of the computation threads. This israec
plished by three steps which are also shown in Figure 7. Ttaélsle
of the third step are discussed below.

4.3.1 Identifying Data Elements to be Prefetched

Dy can be much smaller than the sum of the sizes of individual
D; kS, i.e.,|Dy| < Zi’ll{miﬂ}. In fact, higher the sharing
density (as defined earlier), larger the difference betw&gsh and
Zi’ll{miﬂ}. Note that we can build ®@;, set for each disk res-
ident array to which 1/0O prefetching will be applied in slike For
each of these arrays, we insert separate prefetch instngat the
code.

4.3.2 Generating Codes for the Computation Threads
and the Helper Thread

To generate code for inserting prefetch instructions, wezirte

Let us focus on a phase (the corresponding code segment) andnake the slice boundaries explicit in the thread codes. flinople-

a CPU cluster of sizéB. As stated earlier, a cluster & CPUs
means that one CPU will perform prefetches from the disks, i.
run the helper thread, and the remainiBg- 1 CPUs will perform
computations, i.e., execute computation threads. Letsigae for
now B > 2. We start by dividing the phase inta slicesand use
7., to denote the set of iterations assigned to computatiomdhire

in slicek, wherel < i < B—1andl < k < m. We can compute
D;, i, the set of data elements that will be accessed by computatio
thread: in slice k£ as follows:

Di {d|3I € Zix, IR € Ry such thatrR(l) = d}.

2A more accurate metric would take into account the lengtthef t
phase as well, since working with small phases can lead te cod
bloat. However, in the codes we used in this study, the prases
respond to different functions that contain multiple ndsteops,
and thus, they are very large. Therefore, using “sharingitén
works fine. In our implementation, if a phase corresponds to a
function that contains multiple, separate loop nests, vipdieghour
prefetching strategy to each of them independently.

mentation, this is achieved for the computation threadsgusirip-
mining [38]. The work to be done for the helper thread is more
involved. We first generate the addresses to be prefetchietido
elements in eac®;,, and then insert prefetch instructions for these
addresses. Clearly, we do not want to issue multiple prieéstéor

the same data block. In our implementation, we use the Omega
Library [26] to generate a loop (or a set of loops dependinghen
addresses to be generated) that enumerates the addretses|ef
ments in dD;. After this, these individual loops for different slices
are combined to generate a compact code where the outertioop i
erates over the different slice)(and the inner loop iterates over
the addresses of the data blocks to be prefetched in a giwen sl
The goal of this is to generate a compact code as much as possi-
ble, and the results were very satisfactory for the apptinatodes

we targeted. At this point, we have the codes for both contimuta
threads and helper thread. The code for the helper threadais
tains 1/0O prefetch calls, and both computation thread aridehe
thread codes are such that the slice boundaries are explieit-

able synchronization between the computation and helpeads,
which is discussed next.



Input:
P —aninput programP = (L1, L2, -+ , L),
wherez is the number of phases ;
Output:

P’ —transformed progran®?’ = (L3, L5, -+, L1.);

C',, — CPU cluster that exhibits accesses on shared data;

B —the size ofC};

C —all CPU clusters that belong 18" phase;

T — minimum cluster size, default is 2;

S — number of iterations used for strip-mining the originalpmest;

procedure gen_helper() {
for eachCl, Cy, € C{
if (BofCp, <T)
for each computation thread, t; € C
apply conventional I/O prefetch scheme such as [33];
else { /* This is the case we want to tackle */
clone the original computation thread and tag it as helpesatty
assignB — 1 CPUs to the computation threads;
assign 1 CPU to the duplicated helper thread,;
compute new lower and upper bound for the computation tistd
strip-mining both main and helper thread usisig
for each thread;, t; € C { computeD; ; };
callOnega_l i br ary to enumerate iterations of ea@h; ;
for each arraye £; { computeD, = U Dk b
1<i<B-1
for each arraye L {
[* | Dy | is the size of array data to be prefetched */
emit “pr ef et ch() ; " for Dy, in the helper thread;

emit “synch() " for both computation and helper threads;
}
}

main() {
for each phas€y, L, € P {
let C be the CPU cluster i ;
read profiler information fo€;
call gen_helper();
}
}

Figure 9: Compiler algorithm for transforming a given code to
insert I/O prefetch instructions.

4.3.3 Synchronizing the Computation Threads and
the Helper Thread

Figure 8 illustrates the interaction in a cluster among the-c
putation threads and the helper thread which prefetchesbalib
of those computation threads. As explained above, the pihase
question is divided into slices and each slice cont&lrierations,
as shown in Figure 8(a). The synchronizations occur aclass s
boundaries. The goal is to ensure that when the computdiieads
start operating on slick, all the prefetches (that bring dataZin, to
the shared storage cache) are completed. As shown in Fi¢uye 8
this is achieved in our approach by inserting synchrororagialls
among the helper and computation threads. More specificlly
the beginning of slicék — 2), the helper thread issues the prefetch
calls for data inD;._;. However, before it issues the prefetch calls
for data inDy, it synchronizes with the computation threads indi-
cating that all the computation threads are done with tleirmuta-
tions in slice(k —2) and are ready to proceed to slige—1). Once
the synchronizations take place, the helper thread statstphing
the data inDx and the computation threads start operating on the
data inDy_; (see Figure 8(b)).

Figure 9 gives our compiler algorithm explained so far ineyaio
code form. The main() procedure takes an input progfnalong
with the profile information( for each loop nest) and the number
of CPUs (B) in each identified cluster, and outputs the transformed
version of the program that consists of the helper threacdcand
putation threads.

4.3.4 Discussion

It is important to note that we target array-intensive agpli
tions, and in these codes, the data access/sharing paditenmst

change much with input data. Therefore, we can expect tlwat pr
filing works well with these codes, and in fact, in our experits,
the input data sets using for actual execution were diftefrem
those used in profiling. Also, we want to mention that préfetc
ing technique itself is not useful at all for the applicagdhat do
not show any regularity of accesses, e.g., random accessy Ma
1/O-intensive applications spent quite amount of time @ End
they show regular access pattern, which makes sense foogmpl
ing our helper thread based 1/O prefetching for reducingnifialr
prefetches. Although there is certain amount of temporedlity

in the data brought to the memory and current computers have u
precedented memory capacity, we believe that applicatiased
on out-of-core kernels are still needed to solve even laapgplica-
tions. We also want to mention that our technique can be egbpli
to other type of applications such as memory-intensive sadat
access the shared L2 cache in CMP.

Our approach, as explained so far, generates a helper tfmead
each cluster. As a result, for each cluster, we lose a CPWhwhi
can hurt performance for small sized clusters. We exploned t
approaches to address this issue. The first approach is tineun
helper thread of a cluster in one of the CPUs of that clustbis T
means that one CPU in the cluster will execute both its sHetteeo
application code (a computation thread) and the prefegcbote
(for all CPUs). Our experiments with this approach did natage
ate good results. In fact, the results obtained with thisiearwere
not as good as those obtained through independent 1/0O ghefgt
The second approach is to go back to independent prefetghing
the cluster size is lower than a preset threshold value. &omple,
we found that when the cluster size is two, it is better to heagh
CPU to prefetch its own data (rather than running the apjpica
code in one CPU while the other one performs I/O prefetching)
On the other hand, when the cluster size is three, our approac
which uses two CPUs for computation threads and reserveéaghe
one for prefetching, generated better results. This wasthéscase
when the cluster size is larger than three. Therefore, wehset
minimum cluster size for our approach to be applied to thmemur
experiments.

In our approach, we used profiling to detect the CPU/threast cl
tering that accesses the shared data. And this informataynrnat
be available during static compilation time because maigntific
kernels (mostly loop nests) are written such that they aralpa
lelized according to the number of processors/CPUs giveanas
input. The amount of profile data is also limited because wg on
collect I/0 request to disk-resident data set, not the eaddyesses
accessed by each thread. For less regular codes that doveot ha
easily analyzed or transformed loop nests, we still beltbe¢ our
approach can be applicable to some extent as long as a gaherat
helper thread is able to interact with runtime system, witich
lects the information on what to prefetch and which CPUs s&ce
the shared data.

Lastly, as our approach reduces both the number of harngtétah
instructions and the amount of duplicate data blocks broimgthne
cache, we expect that it also incurs less paging in the wyidgrl
operating system.

4.4 Example
We consider the example code fragment in Figure 10, which con
tains three separate loop nests. For the illustrative paqdet us

assume that there are 16 CPUs and each of these nests is paral-

lelized over these CPUs. For the sake of clarity, we omit tiea
file I/O (PVFS) statements. All arrayX(, Y, Z, A, R, andM) are
assumed to be disk-resident. The first loop nest containegweo
tation that reference&, X andY using three referencex(s, j],
Y[, ], and Z[i, 4]), and similarly the second and third loop nests
contain computations that refery A, R and)M . Based on the in-
formation from our profiling step, which indicates the dataring
pattern, we can identify three distinct phases in this coagnient,
each corresponding to one of the loop nests. The first loophass
accesses to the distinct elements of the arrays in eachidreand



for :=0to 63 { /* 1st loop nest */
forj=0toN — 1
2[4, j] = X4, 3] x YT, 51;

for i=0to 63 { /* 3rd loop nest *
for j=0to N — 1{
k = (int) loga2((int)i/4) ;
Z[i, ] += R[k, jl;

for :=0to 63 { /*2nd loop nest *
for j=0to N — 1{
k=(int)i/32;
Z[i, j1 += Ali, ] x Mk, j]; ||}

Figure 10: Original code fragment with three loop nests.
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Figure 11: Computation and helper thread assignments in dif
ferent loop nests.

hence there is no data sharing among the data elements ettcess
by different threads. In contrast, in the second loop nést first
half of the outer loopi(loop index) iterations access some common
data (M [k, ]), and the second half of the iterations also share simi-
lar data among themselves. As a result, two clusters of tarag
(and thus two CPU clusters) can be clearly identified. Thedthi
(last) loop nest also exhibits similar sharing but the cspomnd-
ing clusterings are quite different from those in the sectomph
nest. The clustering according to the outer loop iteratistas fol-
lows: 12.5%, 12.5%, 25%, 50%, which means that the first 12.5%
iterations share the same data and so do the next 12.5%, xhe ne
25% and then the last 50%. We have chosen this particularmgam
with these data access patterns for the purpose of clelasyriting
and conveying the concept of clustered data sharing amoegdb.
The key point we wish to make here is the change in the clusteri
pattern as the program execution goes through the diff@tees
(loop nests).

Figure 11 gives a pictorial view, under our approach, of tinead
distribution structure in the three loop nests of the progrévhen
the first loop nest is in execution (there is no data sharingh@mce
no clustering), all threadg to ¢16) are computation threads do-
ing their own 1/O prefetching (similar to [33]). As the exdicin
proceeds to the second loop nest, since there are two iddieifi
clusters, one helper thread each for the first clusterty for the
second cluster) is assigned to the clusters and are invohwaaing
the prefetching for the whole cluster. Finally, in the thiodp nest,
thread<; throughts perform their own 1/O prefetches because the
first two clusters have two CPUs each. The remaining two etast
follow our adaptive prefetching scheme and get assignedd48an
CPUs, respectively, with 1 helper thread per each cluster.

Figure 12(a) illustrates the traditional compiler-diextt/O prefetch
case used for CPUL in the first loop nest. In the first loop etler
no sharing among CPUs, and as a result, we apply the traalition

outermost loop iterates over individual data blocks, whsttbe in-
nermost loop iterates over the elements within a block. Tduec
fragments for the remaining 15 CPUs have similar structures
For the second loop nest, our algorithm, after identifyihg t
clustering pattern, assigns a helper thread to each of theCfU
clusters. Since this takes away 2 CPUs (recall that we assign
thread per CPU), the iterations are redistributed (pdisiteis re-
tuned) among the remaining 7 threads in each cluster (see Fig
ures 12(b) and (c)). The third loop nest in this example coag-f
ment has a more complex clustering pattern. We use theitiaalit
1/0 prefetch insertion for the first two clusters since theysist
of only 2 threads and taking away one of the them for prefetch-
ing purposes would adversely affect the performance (basedir
discussion in Section 4.3.4). One of the threads belondsetéirst
cluster of the third loop nest is given in Figure 12(d). Thaaining
two (third and fourth) clusters are assigned one helpeatheach
and the iterations are redistributed among the remainirepts.
Figure 12(e) illustrates the structure of the helper thread Fig-
ure 12(f) shows the computation thread in the same clusteis T
thread is intended to perform only the computation sinceai h
a helper thread that performs prefetching for it. Similafyg-
ures 12(g) and (h) show the helper and computation threatthéor
second cluster in the third loop nest. When we look at thedrelp
threads for the second (Figure 12(b)) and the third (Fig@(e))
loop nests, an important difference can be noticed. Theehelp
thread for the second loop nest has a single prefetch inistnuor
the shared data and a loop of prefetch instructions to mfefat-
shared data while the helper thread for the third loop nesbhdy
one prefetch instruction since the clusters do not accesisaned
data.

5. EXPERIMENTAL SETUP

We used four I/O-intensive applications in this study:

e HF: The Hartree-Fock (HF) method is an approximate method
for the determination of the ground-state wave functiongnodind-
state energy of a quantum many-body system. At the hearteof th
method is the construction of the Fock matrix using an iteeatro-
cedure. At each iteration, the Fock matrix is updated usitegral
calculations. The results of these integrals in the curiteration
are stored on disk and read by the next iteration. The maecul
sizes used in our setting resulted in a total dataset siz8.4{GB.
Our implementation of this code closely follows that of [22]

e 3D-vis: This is a visualization code for 3D image data such as
CT and MR. The code includes generation of 3D surface models
and 3D tetrahedral models, computation of iso-surfaced, din
rect volume rendering. The datasets manipulated by the aaxle
disk-resident and the current implementation we have dediad-
ditional optimizations such as collective 1/O [35] to maize the
1/0 performance as much as possible. The dataset sizesrused i
experiments varied between 11.1GB and 16.8GB.

e Cholesky: This application implements the factorization a
solution of a dense system that stores its matrices on dlksim-
plementation closely follows the one discussed in [3] arsthb-
portions of the main disk resident matrix are transferremémory
as needed. As in the case of 3D-vis, the I/O behavior of the ap-
plication has been carefully optimized as much as possiilegu
known techniques such as collective 1/O [35]. The total sizthe
data manipulated by this benchmark is about 11.7GB.

e Mgrid: This is the out-of-core version of an applicationttha
appears in both [39] and [16]. This application demonssrae
capabilities of a simple multigrid solver in computing aeé@rdi-
mensional potential field. In this application, in addittorechoing
some of the inputs, the main part of the output gives the sheabt
approximate inverse. As in the case of Cholesky and 3D-vlec
tive 1/0 is used for maximizing disk performance. In a typican,
the total data size manipulated by this application is ah8utGB.

prefetching scheme to the code fragment assigned to each CPU We made our experiments using PVFS, the Parallel Virtua Fil

In order to perform prefetches with the specified block si2g, (
the loop is modified to operate on a block size granularitye Th

System [25], which runs on top of a Linux cluster. PVFS is rhain
a user-level implementation, i.e., there is a library (ifs) linked



N ; ¢, = number of iterations assigned to this cluster;
Lb = first iteration of this cluster;

ub=1b+ N;z,; B=8, BB=N;;,./B;
fori=lbtoub {

Pig=1; B=16
b= (P;4-1) X (64/B); I* lower loop bound */
ub=(P; 4 X (64/B))-1;/* upper loop bound */
fori=lbtoub{
prefetch(X,i, P);
prefetch(Y,i, P);
fort=0to [N/ P] — 1{
prefetch(X, (t + 1) x P, P);
prefetch(Y,(t + 1) x P, P);
for j=0 to P-1
Zli,t X P + j]=
X[i,t X P+ 4] X Y[i,t X P+ jl;

pref et ch(M, const,P);
/*then prefetch the unshared data for all cores*/
forz=0toB — 1

prefetch(A, BB Xz +1i, P);
fort=Oto [ N/P| — 1{

prefetch(M, (¢+1)x P, P);

forz=0to B — 1{

prefetch(A, BB X x +1i, P);

} synch(syncvarl);
forj=|N/P] x Pto N-1
Z[i, 41 =2, 3] x Yi, il; }

[I*prefetch the shared reference(const=(if8p) only once*/

b =first iteration assigned to CPU2;
ub = last iteration assigned to CPU2;
fori=lbtoub{

Pig=1 B=16
1b=(P;4-1) X (64/B); * lower loop bound */
ub = (P; 4 X (64/B))-1;/* upper loop bound */

k=(int) i /32; fori=1btoub {
fort=0to [ N/P] — 1{ k = (int) logo((int)i/4) ;
for j=0to P-1 prefetch(R, k, P);

Z[i,t X P+ j]+=
Ali, t X P + j]x

fort=0to [ N/P] — 1{
prefetch(R,(t + 1) X P, P);
for j=0to P-1
Zli,t X P+ jl+=R[k,t X P + j];

Mk, t X P+ j];
synch(syncvarl)

}
forj=|N/P] x Pto N-1
Zli, j1+= Rk, j];

forj=|N/P] x PtoN-1
Z[i, ] += Ali, j] x Mk, j];

(a) Loop Nest 1, CPU1 (b) Loop Nest 2, CPU1 (helper thread)

(¢)oop Nest 2, CPU2 (d) Loop Nest 3, CPU1

N ;+,~ = number of iterations assigned to this clustg]
1b =first iteration of this cluster;
ub=1b+ Nty
fori=1lbtoub{

I* prefetch the shared reference

;b =first iteration assigned to CPU6;
ub = last iteration assigned to CPU6;
fori=1lbtoub{

k = (int) Logo ((int)i/4) ;
fort=0to [N/ P] — 1{

(const=(int)log2¢/4)) only once */ for j=0to P-1
pref et ch(R, const,P); Zli,t X P+ jl+=R[k,t x P + j];
fort=0to [N/ P| — 1{ synch(syncvarl);

prefetch(R, (t + 1,1);
synch(syncvarl); for j=|N/P] x Pto N-1

Zli, j1+= Rk, 5];

N +,~ = number of iterations assigned to this cluste|
1b =first iteration of this cluster;
ub=1b+ N,
fori=Ibtoub{

[* prefetch the shared reference

pref et ch(R, const,P);
fort=0to |[N/P| — 1{

;b = first iteration assigned to CPU10;
ub = last iteration assigned to CPU10;
fori=lbtoub{

k= (int) Lo go ((int)i/4);
fort=0to [N/ P] — 1{
for j=0to P-1

itrs

(const=(int)log2(i/4)) only once */
Zli,t X P+ jl+=R[k,t X P + j|;

synch(syncvar2);

prefetch(R, (t+1) x P, P);

synch(syncvar2); forj=|N/P] x Pto N-1
Z[4, j] += R[k, 3]

(e) Loop Nest 3, CPU5 (helper thread) (f) Loop Nest 3, CPU6

(d)oop Nest 3, CPU9 (helper thread) (h) Loop Nest 3, CPU10

Figure 12: Example application.

to application programs which provides a set of interfacgines
(API) to distribute and retrieve data to/from the disk sgsteln
each I/0 node designated, we created a “global” memory dditdne
buffer) which caches data that belong to the disk(s) atcthéhat
1/0 node (see Figure 6). This cache is implemented as a uggr le
process and shared by all CPUs that use that I/O node (iopaks
sible to implement it within the Linux kernel). Since mulggCPUs
(computation nodes) can share the same memory cache,dterffi
utilization is clearly critical. Since global caches halready been
studied in the context of PVFS and it is not one of the contidns

of this paper, we do not elaborate on our PVFS-based glolbhkca
implementation any further in this paper, except for sayhm it
closely follows the implementation presented in [23]. Olabgl
cache management method employs an LRU (least-recergtj)-us
policy with aging method to determine the best candidaterder
placement as a result of a cache miss.

We also implemented the compiler-directed I/O prefetchihg
gorithm explained in Section 3 and our adaptive /O prefetgh
scheme, targeting this shared storage cache. We used the SUI
compiler infrastructure [28] to modify the input code fos@rting
explicit prefetch calls. We observed that the impact of aaysive
prefetch implementation on compilation time was not too imuc
(less than 10% for all four applications used in this work)Jsdy
the code size increase due to the added prefetch calls veathées
17% in these applications. Note that, our approach doesrAot i
sert any unnecessary prefetch instruction in the code bectne
insertion of such instructions is based on profiling and dtenp
analysis. The main reason for increased code size is fromehe
erated helper threads. As given in the example applicatate ¢
in Figure 12, for each loop nest identified as a CPU cluster tha
exhibits accesses on the shared data, our compiler algogén-
erated a separate helper threads for that. Consideringthéhiat
executable sizes of these codes are in hundred kilobytesamg
believe that this increase in code size is not that impofiarfact,
we noticed no increase in the number of instruction cacheesis
as a result of this increase in executable size).

The experimental results we present in this paper are aatain
using a Pentium/Linux based cluster of workstations. Eamten
of this cluster has a 1.2GHz Intel Pentium-Ill microprocessith
32KB of L1 cache, 256KB of L2cache, and 512 MB of main mem-
ory. Note that our global cache is implemented on multip@ 1/
nodes, though most of our results are collected using aesingl
node, and we also present results from a sensitivity arsatpsit
considers multiple I/O nodes, each with its own global catech

1/0 node is equipped with a 20GB Maxtor hard disk drive, a 82bi
PCI10/200Mbps3-Com3c59x network interface card, and eesha
cache of 150MB (our default shared storage cache capaatsy; |
we present results with larger caches as well). All the nates
connected through a Linksys Etherfast 10/200Mbps16 pdst hu
Our default experimental platform has several computatiotes
(the number of which is varied in our experiments) and one I/O
node (which implements the global cache).

6. EXPERIMENTAL RESULTS

The performance improvements brought by our adaptive fofefe
ing scheme are presented in Figure 13(a) under the diffé&xBht
counts. These improvements are with respect to the notphefe
case. Comparing this graph with that in Figure 3(a), we sateoir
approach improves performance significantly. For examplen
8 CPUs are used, the average percentage improvements bbyugh
the independent prefetching scheme and our adaptive ginafgt
scheme are 9.1% and 19.9%, respectively. More importanty,
observe from this plot that, when our scheme is used, theperf
mance savings obtained using I/O prefetching are quiteistems
across different CPU counts. In other words, our approagishe
to mitigate the negative impact of harmful I/O prefetchethvim-
creasing CPU counts.

At this point, it is also important to compare our scheme teral
nate prefetching strategies other than independent I/@2tpfeng.
Figure 13(b) plots, for the 8 and 16 CPU cases, the percentage
provements brought by different 1/0 prefetching schemesthis
graph, xCPU-Pref denotes a scheme where x CPUs are devoted
for prefetching on behalf of the others throughout the engix-
ecution period and the remaining CPUs are used for apmitati
execution. We present the results with<Ix < 3, as higher x
values generated worse results than those reported in bereis
first focus on the 8 CPU case. We see that while 1CPU-Pref and
2CPU-Pref produce better savings than independent |/@fotef
ing, our adaptive scheme results in the best performancagualb
the schemes tested. Note that fixing the number of CPUs dkvote
to 1/0 prefetching at a large value (such as 3 or 4) throughttoeit
entire execution can be dangerous as this can hurt perfaerian
program phases that demand all CPUs for the best result. We ca
make similar observations in the 16 CPU case as well. In tég c
however, 3CPU-Perf generated better results as compatbd &
CPU case since we have a larger number of CPUs to use in execut-
ing the application code. In summary, when 8 CPUs are used, ou
proposed adaptive I/O prefetching scheme improves pesioce,
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Figure 13: (a) Percentage improvements brought by I/O prefeching when our
scheme is used. (b) Comparison of different I/O prefetchingchemes.

on average, by 19.9%, 11.9%, and 10.3% respectively, oeardh
prefetching, independent prefetching, and 1CPU-Prefccaséen

1CPU-prer=,
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Figure 14: Impact of different storage cache
capacities.

7. RELATED WORK

The replacement algorithm for I/O caching has a significant i

16 CPUs are used, the performance improvements over the casefluence on I/O performance. While the LRU (Least Recentlyd)se

with no prefetching, with independent prefetching, andii€PU-
Pref cases are 17.9%, 21.7%, and 16.5%, respectively.

6.1 Sensitivity Analysis

In this section, we change the default values of some of ojomma
simulation parameters and conduct a sensitivity analfsigire 14
shows, for the 8 and 16 CPU cases, the performance improiemen
under different shared storage cache capacities. Reaalité de-
fault cache capacity used so far was 150MB. Each bar in thistgr
represents the percentage improvement over the indepel@en
prefetching case. Our observation is that, while we witreess-
duction in our savings when the cache capacity is increasesh
with the largest cache capacity (500MB), we achieve impoita-
provements.

Recall that our experiments so far used only one I/O node.
also performed experiments that measure the sensitivibyioap-
proach to the number of I1/0 nodes. As mentioned earlier, when
multiple /0 nodes are used, we associate a separate gl@mabny
cache (of the same size) with each 1/0 node. The results are pr
sented in Figure 15 with 1, 2 and 4 1/0 nodes (the x-axis). Bach
represents the performance improvement brought by ouoappr
over the independent I/O prefetching case. The figure ptesea
results for only 8 and 16 computation node cases. As expected
the percentage savings brought by our approach get redunea w
the number of I/0O nodes is increased. This is because, wittger
number of I/O nodes, the prefetch requests are spread mdtaian
tends to reduce the number of harmful prefetches. Sincesthdts
in Figure 15 are with respect to the case without our optitiora,
we observe a drop in percentage savings. Still, even wittatigest
number of I/O nodes tested, the savings we achieve are not bad

Recall that so far in our experiments we assigned a common
prefetcher to two or more threads if the sharing density & 80
or higher (in other words, the sharing density threshold 8G#).
Figure 16 shows the percentage improvement results wheshére
ing density threshold is varied between 50% and 90%. Ourdfirst
servation is that when we set the threshold to 90%, the sanrg
not good. The main reason is that, with such a high threskioéd,
compiler cannot find much opportunity to apply our optimiaaf
and most of the time, each CPU ends up with performing its own
1/0 prefetching. On the other hand, when the threshold ig hoav
(e.g., 50% or 60%), our approach behaves similar to the emep
dent I/O prefetching case.

Finally, we present the results with different slice siz8% in
Figure 17. In our default setting, the slice size is set to Hi%he
total loop iteration count. We see from these results thhatlenhe
slice size has some impact on our results, unless one wotlk$ooi
small or too large sizes, the results obtained with diffexetues
of S are close.

We

replacement policy, which dates back at least to 1965 [18% h
been widely used to manage buffer cache, there are various ap
proximations and enhancements to this, for example, thesiela
cal CLOCK algorithm [8]. To add adaptability to changing ess
patterns, several researchers studied enhancementsdasbial
CLOCK algorithm, such as 2Q [18] and LRFU [9]. More recent
studies that try to handle accesses with weak temporal tinkfma
cality include CAR (Clock with Adaptive Replacement) [4]RS
(Low Inter-reference Recency Set) [17], ARC (Adaptive Rept
ment Cache) [24], CLOCK-Pro [29], Second-Tier Cache Manage
ment [42], and DULO (Dual LOcality)[30]. Patternson et a¥]2
used a hint mechanism, which is designed to expose access pat
terns, in managing prefetching and caching file cache blothsy
also studied the same problems under multi-process ereceiti-
vironments [2]. Dahlin et al [12] on the other hand proposeole
erative caching, in which file caches of many client machires
coordinated to form a more effective global file cache. Kielat

al [34] studied the prefetching and caching in a system watialtel
disks. [27] also provides a mechanism, called the “preféimfi-
zon”, to limit prefetches that do not bring any benefit frorafptch-
ing. In comparison, our work limits redundantly-issuedfetehes
based on identified inter-thread data sharing patterns.

I/0O prefetching is also a very effective way of improving 1/0
performance [33, 1, 7, 41, 21, 13]. Mowry et al [33] used cderpi
guided information to manage prefetch commands more afédygt
They also studied the cases where processes running centyrr
generate 1/O prefetch commands simultaneously [5]. Li amenS
proposed a memory management scheme that handles nosetces
but prefetched pages separately from the rest of the menudigrb
cache [21]. More recent studies to improve conventionaphietch-
ing using additional file and access history informationiude
Diskseen [41], Competitive Prefetching [7] and AMP [15].clom-
parison to these studies, our work targets multiple-CPdw@bien
scenarios.

Targeting multi-level caches, several multi-level buffache man-
agement policies have been proposed [43, 40, 23, 14]. [40] in
troduced a DEMOTE operation where an evicted cache block is
migrated to lower level of buffer cache. Chen et al [43] uséd-e
tion history observed in a higher level cache in determirdaghe
blocks that need to be replaced in a lower level. Lastly, éady
al [14] proposed an approach, called Karma, that uses apiplc
hints in maintaining the multi-level cache hierarchy.

The concept of a single separate helper thread to aid the com-
putation thread by exclusively prefetching the data rexubyy the
computation thread has been explored in the domain of CMRip (C
Multiprocessors). Jung et al [6] use a helper thread bassfdtph-
ing scheme for loosely-coupled processors, like the moGétRs,
and demonstrate the utility of a helper thread in aiding the-c
putation. Kim et al [20] employ similar helper threads rurin
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Figure 15: Impact of the number of 1/O
nodes. threshold.

spare hardware contexts ahead of the main computationrtdtsta
memory operations early so as to hide the memory latencyo Lia
et al [31] identify and embed trigger points in the originatdry
and produce a new binary with the prefetch threads attacbed.
approach is different from these efforts in two aspectsstFiwve
consider the cases where we have more than two CPUs, and con{17]
sequently, we employ a different (slice based) code resiring
strategy. To our knowledge, the prior chip multiprocedselger
thread based efforts target at two-CPU cases. In additmout
knowledge, none of the prior studies considered an adapfive
proach where prefetch threads change based on data sharing d
the course of execution. Second, we target I/O intensivéicaep
tions. We want to say however that our adaptive prefetchiog-a
rithm can be used, with appropriate modifications, in a CM&eda
execution environment as well.
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