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Abstract

The main contribution of this paper is a topology-
aware storage caching scheme for parallel architectures.
In a parallel system with multiple storage caches, these
caches form a shared cache space, and effective manage-
ment of this space is a critical issue. Of particular inter-
est is data migration (i.e., moving data from one storage
cache to another at runtime), which may help reduce the
distance between a data block and its customers. As the
data access and sharing patterns change during execution,
we can migrate data in the shared cache space to reduce
access latencies. The proposed storage caching approach,
which is based on the two-dimensional post-office place-
ment model, takes advantage of the variances across the ac-
cess latencies of the different storage caches (from a given
node’s perspective), by selecting the most appropriate loca-
tion (cache) to place a data block shared by multiple nodes.
This paper also presents experimental results from our im-
plementation of this data migration-based scheme. The re-
sults reveal that the improvements brought by our proposed
scheme in average hit latency, average miss rate, and aver-
age data access latency are 29.1%, 7.0% and 32.7%, re-
spectively, over an alternative storage caching scheme.

1 Introduction

I/O caching has been a popular research area to ad-
dress the problems associated with high disk latencies and
has been employed at different layers of the I/O stack (e.g.,
application level, file system level, and disk level). Most
of the file-level I/O caching (also calledstorage cachingin
this paper) schemes in parallel architectures are, however,
architecture agnostic; that is, the topology of the underlying
network of the parallel machine does not play a major role
in the caching decisions these schemes make. The main
contribution of this paper is atopology-aware I/O caching
scheme.The proposed storage caching scheme determines,
for each data block, the most appropriate location (stor-
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age cache) in the architecture to store it at any given point
during execution. This is accomplished by formulating the
caching problem as thetwo-dimensional post-office place-
ment problem.As a result, the chosen cache location for
a data block may not necessarily be one of the caches of
the customers of that block, though it is globally optimal
when considering all customers of the block. The proposed
scheme is dynamic; As a result, the location of a data block
in the shared cache space can change when its access and
sharing pattern changes, and this helps us adapt caching
to dynamic variations in data access and sharing patterns
at runtime. While we focus mainly on a two-dimensional
mesh type of network in this paper, our approach can be
extended to other network topologies, as long as the topol-
ogy and the access latencies associated with it are exposed
to our storage caching scheme. We also discuss in this pa-
per how the proposed approach can be extended to allow
data replication (i.e., having multiple copies of a given data
block in different caches).

We implemented our storage caching scheme and
tested its effectiveness using traces collected from actual
disk-intensive applications. In our experiments, we also
compared our approach to several other storage caching
schemes. Our results with six disk-intensive applications
show that (1) the proposed storage caching scheme is ef-
fective in practice and the performance difference between
our scheme and the next-best scheme (among all the stor-
age caching schemes we evaluated) is about 17.1% on av-
erage under the default values of our experimental parame-
ters and (2) the savings achieved by our caching scheme are
consistent across different network sizes, different block
sizes, different placements of disks in the mesh, and other
experimental parameters.

2 Target Architecture

In our target architecture, we assume a set of nodes
are connected to each other using a network topology. All
nodes are assumed to function as compute nodes (that is,
they can execute application threads), but only a select set
of nodes are attached storage (disks). As a result, these
nodes can function as I/O nodes as well. While the nodes



Figure 1: High-level view of the tar-
get architecture, where all nodes have
disks. Each node allocates a portion of
its available to storage cache.
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Figure 2: Distribution of the private and
shared data blocks in the storage cache
space.
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Figure 3: Distribution of accesses to the
data stored in the cache space.

in many current parallel systems and I/O clusters are inter-
connected through cascaded switches arranged in a tree, we
believe that more specialized network topologies, such as
two-dimensional and three-dimensional mesh, hypercube,
and torus, need to be utilized in order for a large number of
nodes to work together with high bandwidth and very low
latency. Each node of this parallel architecture is assumed
to execute one thread (that belongs to an application) and
uses a reserved portion of its main memory space as the
storage cache, which is used to cache frequently used disk
data. Note that the architecture has a shared view; that is, a
data block(which is the granularity of caching and data mi-
gration/replication in this work) can be cached in any of the
storage caches in the system; and, in fact, determining the
ideal location (storage cache) to cache a given data block is
our main goal. To keep our discussion simple, we assume
that the storage caches in different nodes are of the same
size, though our approach can also work with cases where
different caches have different capacities. In the rest of the
paper, the storage caches attached to nodes are said to form
a storage cache space. Note that this is ashared spacein
the sense that a node can access data cached in any storage
cache. However, the cost of an access depends on thedis-
tance(number of hops) between the requesting node and
the node that contains the data in its storage cache. The
disks can be attached to any of the nodes. Figure 1 depicts
our default disk placements for the two-dimensional grid.
Depending on the sharing patterns it exhibits, a data block
can move (migrate) from one storage cache to another dur-
ing the course of execution. If desired, a data block can
also be replicated across multiple storage nodes.

3 Data Sharing in the Storage Cache Space

We start by presenting in Figure 2 the distribution of
the private and shared data blocks, over the entire execu-
tion period of our applications, when each application is
parallelized using 25 threads on a5 × 5 mesh (the details
of our experimental platform will be given in Section 6). If

a data block is accessed by only one node during its life-
time (from its fetch from disk to its eviction from the stor-
age cache space), it is tagged as “private”; otherwise, it is
referred to as “shared.” In this barchart, Shared (2) repre-
sents the data blocks shared by two nodes, and Shared (>2)
represents the data blocks shared by more than two nodes.
We see from these results that an overwhelming majority
of data blocks are private (about 80.7% on average). In
comparison, Figure 3 gives the distribution ofaccessesto
the data stored in the cache space. One can observe that the
fraction of accesses to Private, Shared (2), and Shared (>2)
data are, on average, 33.3%, 2.8%, and 63.9%, respectively.
Putting the results presented in Figures 2 and 3 together, we
observe an interesting trend regarding the sharing behavior
of the data resident in the storage cache space. While the
majority of the storage cache resident data is private, most
of the accesses to the cache are for data shared by more
than two compute nodes. Consequently, careful placement
of this (small amount of) shared data in the storage cache
space can be critical for performance.

4 Our Approach

The target storage cache space we consider in this pa-
per is similar to those considered by the prior efforts [5]
[10] [21] [6] [20]. We assume that each node of our archi-
tecture is connected to each other through a network (a 2D
mesh in our case). We also assume in our default config-
uration that each node has its own disk (see Figure 1). In
our experimental evaluation, we take into account latencies
due to accesses to disks, communication latencies (includ-
ing latencies due to network contention), and latencies due
to storage cache accesses. We further assume that the cer-
tain portion of memory space in each node is used as a
local buffer cache space. These local cache spaces, called
storage cachesin this work, are maintained by each node
using the LRU replacement policy. To utilize this aggre-
gated cache space better, we also assume that each cache in
this architecture can be used by other nodes as well. The



main difference between our design and the previous pro-
posals is in the cache space management policy, which in-
cludes both a replacement policy and a migration policy,
discussed in the next two subsections. Note that, while
this storage cache space is shared, the latency of an access
depends on the distance between the requesting node and
the node that holds the requested data block. We use the
term “local cache” to denote the storage cache attached to
a node. However, all caches are accessible by all nodes in
this system. From a node’s perspective, any nonlocal cache
is referred to as “remote cache.” In our approach, there are
two types of migrations in the shared storage cache space:
victim related migrationsandsharing related migrations.
The first one is triggered by displacement of a data block
from a cache, whereas the second one is triggered when
there is a change in sharing patterns of a data block.

4.1 Initial Placement and Victim Migration

When a data block is brought from disk to the shared
storage space, we place it into the cache of the requesting
node just like most of existing techniques. We note that
the initial placement of data from disk to the shared cache
space may involve a replacement, which may in turn trig-
ger cascade migrationsin the storage cache space. Each
node has limited cache space, depending on the amount of
physical memory allocated for storage caching. Therefore,
placing a data block into a particular node may require the
eviction of a data block (victim) from that cache. At least
two questions need to be answered to solve this replace-
ment problem: How are we going to determine such a vic-
tim? and, Are we going to evict this victim from the entire
shared storage cache space?

Our answer to the first question is to use LRU to select
a victim from the storage cache to which we want to bring
the new block. The next question to address is whether we
directly evict such a victim to disk where the block is orig-
inally brought from. In a conventional system, the answer
to this question is “yes” because, for each node, its data
blocks can reside only in its local cache space, and victims
are sent to the disk. However, this option clearly reduces
the utilization of the aggregate storage cache space (e.g.,a
node with a large working set cannot make use of the idle
cache capacity that belongs to a neighboring node). There-
fore, we need to design a scheme that can handle victims
more carefully. Our idea is to determine the location of the
victim based on thelocal cache missratio, i.e., the fraction
of cache misses that occur during a certain period of time
in each node in our target architecture. Based on the stor-
age cache capacity in each node and the characteristics of
the workload, we determine a threshold value for the local
cache miss ratio, denotedTm in this paper. For a nodeN in
our architecture, when the (local) cache miss ratio is equal
to or higher thanTm, we set the flag (denoted asN.flag)
attached to that node to 1. If the cache miss ratio is less

INPUT: Source nodeNs that throws the victim
OUTPUT: Destination nodeNd for the victim

1: /* the following while loop is executed in background */
2: while there is a cache missdo
3: update counters for cache misses
4: if miss ratio>= Tm then
5: setN.flag to 1
6: else
7: setN.flag to 0
8: end if
9: end while

10:
11: /* the following routine is executed when a victim block has to

be displaced from its current cache */
12: if Ns.flag = 0 then
13: Nd = NULL /* evict from the cache */
14: else if Ns.flag = 1 then
15: if ∃Ni that d(Ni − Ns) = 1 andNi.flag = 0 then
16: Nd = Ni

17: else if ∃Ni thatNi.flag = 0 then
18: Nd = Ni

19: else
20: Nd = NULL /* evict from the cache */
21: end if
22: end if
23: if victim has been modifiedthen
24: write back the victim to disk
25: end if

Figure 4: Migration policy implementation for a victim
data block (function d(Ni − Nj) gives the Manhattan Dis-
tance between nodeNi and nodeNj). The victim is se-
lected by the LRU policy in each node.

thanTm, the flag is set to 0.

The combination of the local and remote node flag
values determines the migration target for a victim data
block. The pseudo-code for our migration policy is given
in Figure 4. The idea is that, if the flag (N.flag) of the
node evicting the data block is set to 1, it has higher ability
of keeping its victim within the storage cache space (in-
stead of sending it to disk) by checking more nodes’ stor-
age caches and asking one of them to accommodate this
victim if possible. On the other hand, if the flag of the
evicting node is 0, its victim will be evicted directly from
the entire cache space (accompanied with a possible write
back to the disk if it has been modified while residing in
the storage cache). The rationale behind this strategy can
be explained as follows. IfN.flag is 1, the local storage
cache attached to nodeN is under pressure: it cannot hold
the entire working set of the code running on that node and
experiences frequent misses. In this case, it may be more
beneficial to try to keep the discarded data block within the
shared storage space. On the other hand, ifN.flag is 0, the
local cache is not experiencing many misses. Hence, we
may afford to send the displaced block to the disk. While
even in this case it may look useful to keep the block in the
shared cache space, we emphasize that the cache space is
shared across multiple nodes and whenever we keep some
block in this space, this will have a cost when other blocks
are considered. While the victim migration policy given in



Figure 4 is our default policy, as will be discussed later, we
also conducted with other policies as well.
Overheads. Several overheads are associated with our mi-
gration policy implementation. First, each node needs to
keep track of its miss ratio and update flags. Maintaining
a flag in each node is not expected to incur excessive over-
head in practice. We need only to maintain two counters in
each node: one for block accesses and the other for cache
misses. The updates to these counters are triggered by the
local cache miss monitor in each node, which can be imple-
mented by using the performance counters available today
in many modern processors [24]. All overheads incurred
by our scheme are included in the experimental results pre-
sented later.
Locating a Data Block. How to locate a data block in the
large shared storage cache (i.e., search policy) is an impor-
tant issue. Since a data block can reside in any node, we
employ amultistep checking schemethat first checks the
local and neighboring nodes, and then sends requests (if
necessary) to remote nodes until we determine whether we
have a cache hit or miss (we found this multistep policy to
be less costly than an alternative search scheme that checks
all the nodes in parallel).

4.2 Migration of Shared Data Blocks within the Stor-
age Cache Space

To implement a data migration scheme, we need to
address two questions: How can we track the access pat-
terns so that we can easily calculate migration targets for
frequently accessed shared data blocks? and, How to trig-
ger the migration of these shared data blocks? To address
these two questions, we maintain, for each block, an array
of m× n counters, wherem andn are the number of rows
(X direction) and columns (Y direction), respectively, in
our two-dimensional mesh. As an example, in the default
configuration, (i.e.,5 × 5 mesh topology), we have an ar-
ray of 25 counters. Every time a nodeNi requests a data
block, the corresponding counter maintained by that block
is increased by 1. The total number of accesses to a data
block, which can be calculated by summing up all the en-
tries in the array, is used for determining whether the block
is frequently accessed. Once this value reaches athreshold
(denoted asTtr), the computation for determining the mi-
gration target is triggered. We first determine, as explained
below in detail, the target node for the data block. If the
calculated target node is not the current node (i.e., the one
whose local storage cache holds that block), this data block
is migrated to the determined target node. The widths for
each counter are same (i.e., 6 bits) because the default value
of Ttr in our experiments is 50 (see Table 1). All coun-
ters associated with a data block are reset to 0, whenever
a block is migrated. The total space requirement for main-
taining counters to track access patterns is 150 (25× 6) bits
per block. Since a typical size of a data block is 4 KB in

our default setup, the extra spaces needed for maintaining
the counters are negligible.

The average access latency of a shared data block can
be estimated as:

T =
∑

i∈N

c ∗ a[i] ∗ d(i, j)/
∑

i∈N

a[i],

wherej is the ID of the node where this data block cur-
rently resides,i is the ID of the requesting node (which
belongs to a set,N ), anda[i] is the number of accesses to
this block by nodei. Functiond(i, j) gives the Manhattan
distance between nodei and nodej, andc represents the
per hop access latency.

Although this equation does not consider the effect of
network contention (sincec is assumed to be constant)1 and
could not give an accurate average access latency value, it
can be used as a first-degree optimization metric for the
shared data blocks. Note that, if we can reduce the value
of this metric, the real average access latencies will also be
decreased most of the time.

Migrating a shared data block to an appropriate po-
sition (node) in the storage cache space has the potential
of reducing access latencies for shared blocks. This means
that if the owner of a data block is changed fromj to j′, the
average access latency for this data block becomes

T ′ =
∑

i∈N

c ∗ a[i] ∗ d(i, j′)/
∑

i∈N

a[i],

under the assumption of no contention in the network.
Note thatT ′ might be higher or lower than the original

T . Thus, our goal is to find a proper target nodej′ for this
data block so thatT ′ is minimized. Since the constantc and
the total number of accesses

∑
i∈N

a[i] do not change with
differentj′s, we can remove these two terms and obtain

C =
∑

i∈N

a[i] ∗ d(i, j′).

Our optimization goal then becomes one of determin-
ing a nodej′ so thatC is minimized. It turns out that this
problem is apost-office placementproblem: there aren in-
put pointsp1, p2, ..., pn with associated weightsw1, w2,
...,wn and we need to find a pointp (not necessarily one of
the input points) that minimizes the sum

∑n

i=1
wid(p, pi),

whered(p, pi) is the distance between pointsp andpi. Ac-
cording to [16], for the one-dimensional post-office place-
ment problem, that is, then distinct points are atx1, x2, ...,
xn, and their weights arew1, w2, ..., wn, respectively, the
optimal pointp is theweighted medianof thesen numbers
(weights). An important property of the weighted median,
xk, is thatxk satisfies both

∑
xi<xk

wi <
∑n

i=1
wi/2 and∑

xi>xk
wi ≤

∑n

i=1
wi/2.

1Note, however, that in our experimental evaluation we account for the
extra latency incurred as a result of conflicts in the network.



INPUT:
m: the number of nodes per row (X direction)
a[0 . . . m − 1]: access array for each node per row
A: total access count

OUTPUT: X coordinateXd of the migration target node

1: A′ = A / 2
2: w = 0
3: for i = 0 to m − 1 do
4: if w < A′ andw + f [i] ≥ A′ then
5: Xd = i
6: break
7: else
8: w = w + a[i]
9: end if

10: end for

Figure 5: Algorithm for computing the X coordinate of the
target node for a shared data block. The Y coordinate is
computed similarly.

Since our architecture is a 2D mesh, our optimiza-
tion problem can be described as thetwo-dimensional post
office placement problem.Let us assume that there are
n requesters, fromp1 to pn, each of which can be rep-
resented by its X and Y coordinates, that is, nodepi is
represented by(xi, yi). Each nodepi has an associated
weight wi, which is equal to the number of access re-
quests issued by it,a[i]. Our goal is to find a nodepj′

that minimizesC =
∑n

i=1
a[i] ∗ d(i, j′). The distance

between two nodesi and j′ is the Manhattan distance,
d(pi, pj′) = |xi − xj′ | + |yi − yj′ |. Therefore, we can
express our optimization target as

C =

n∑

i=1

a[i] ∗ |xi − xj′ | +
n∑

i=1

a[i] ∗ |yi − yj′ |.

Both parts on the right-hand side of this equation are
non-negative. Thus, we can determine the location of mi-
gration targetj′ by searching the weighted medians at the
X and Y directions separately and independently. The two
weighted medians,x andy, constitute the coordinates of
the final migration target (node). A simple linear-time al-
gorithm given in Figure 5 is used to obtain the weighted
median in a dimension, as we know the exact locations
of all the nodes in a mesh. Note that, since the search
for weighted medians is carried out separately for each
dimension (X and Y), the obtained migration target of a
data block maynot necessarily be one of the requesters of
that block. For example, if there are three requesters (3,4),
(4,3), and (8,8) of a data block and their access frequencies
are the same, the algorithm in Figure 5 determines the fi-
nal target as (4,4), which isnotone of the three requesters.
Although not currently implemented, this approach can be
enhanced to include thread priorities as well in deciding the
best location.

5 Data Replication

The potential advantage of data replication is that it
can further reduce the distance between the requesting node
and the node that currently has the requested block. We
focus on replicating onlyread-onlydata blocks. Similar
to Section 4.2, for a shared read-only data block withn
replicas, its average access latency can be estimated as

C =
n∑

k=0

∑

i∈Nk

a[i] ∗ d(i, jk).

Since this data block has a total ofn + 1 copies (1
original andn replicas), we say that there aren+1 sharing
ranges(from 0 to n) for this data block. In each sharing
range, the cache block has exactly one copy. Requesters
in Rk(0 ≤ k ≤ n) belong to sharing rangek and use the
copy in this sharing range. Herejk is the ID of the node
where the copy of cache block in sharing rangek resides,
andi is the ID of the requesting node, which belongs to a
sharing range,k. As in Section 4.2,a[i] is the number of
requests issued by nodei, and functiond(i, jk) returns the
Manhattan Distance between requesteri and nodejk.

The main issue to be addressed by the replication-
based scheme is to decide how to determine sharing ranges
by balancing two aspects. On the one hand, the number
of sharing ranges cannot be too large, since a large num-
ber of replications reduces the effective storage cache ca-
pacity and can cause increase in cache miss rates. On the
other hand, the sharing range has to be small enough that
the requesting processors can quickly access the replica in
the sharing range. We might classify the nodes into sev-
eral sharing ranges statically and force each sharing range
maintain at most one replica of a given cache block. The
main potential drawback of this static method is its inflexi-
bility. For example, two neighboring requesters can belong
to the different sharing ranges if they are boundary nodes
between neighboring sharing ranges. In this case, each of
them will have a separate replica of the shared block, which
is undesirable from the viewpoint of effective cache capac-
ity.

We propose a simple and flexible data replication
scheme for the shared storage cache space. First, we de-
fine the concept ofreplication distance,2 which is defined
in terms of the number of hops. When a node requests
a remote, shared, read-only data block, if the distance to
the requested data block is larger than the replication dis-
tance, this data block is replicated into the requester’s local
cache space. This simple replication rule provides a flexi-
ble way of determining the sharing ranges by the support of
our two-step sequential data block search policy (explained
earlier in Section 4). Specifically, once the node knows that

2Replication distance is an important parameter whose valuecan in-
fluence the behavior of our approach significantly. In our experiments, we
report results with different replication distances.



Table 1: Default simulation parameters.
Network Topology 2D Mesh

Network Size 5 × 5
Data Block Size 4 KB

Storage Cache Capacity 512 MB/node
Cache Access Latency 0.1 milliseconds (4 KB)

Per Hop Latency 0.1 milliseconds (4 KB)
Disks IBM 10,000 RPM

Disk Access Latency 8.2 milliseconds (4 KB)
Max Number of Migrations No limit

Disk Cache 16 MB (multisegmented)
Disk Capacity 40 GB

Counter Threshold (Tm) 400 misses per million cycles
Threshold for Triggering Migrations (Ttr ) 50 accesses

a nonlocal shared data block is close through the sequen-
tial search, it will not create a local replica. The sharing
pattern and the replication distance together determine the
sharing ranges for a data block. Note that under this scheme
the different data blocks are likely to have different sharing
ranges. Initially, we start with all the data blocks marked
as read-only. When a write is issued for a block for the first
time, we simply invalidate all the replicas (except the one
for which the write is issued) and maintain a single copy of
that shared block using a write-invalidate protocol [2]. The
read-only status of that block changes to the read-write sta-
tus, and thus no more replicas are created for it. Apart from
the cache coherence protocol for handling write operations,
the overhead incurred by replicating shared cache blocks is
negligible.

6 Experiments

We discuss in this section the benchmark experiments
we performed and the results we obtained.

6.1 Setup

To evaluate the effectiveness of our proposed topol-
ogy aware storage caching scheme, we implemented it us-
ing the SIMICS toolset [13]. SIMICS is a full-system simu-
lation platform, capable of simulating parallel systems with
various system configurations. We also implemented and
tested using SIMICS three other storage caching schemes
against which our approach is compared. Table 1 lists the
major simulation parameters and their default values. The
latency values used are similar to those reported in [1].

We used six benchmark programs in this study: ammp
[8], fma3d [8], wupwise [8], oltp [7], specjbb [17], and
specweb [18]. The total size of the disk-resident data ma-
nipulated by these applications varies between 9.3 GB and
21.8 GB. Note that ammp, fma3d, and wupwise are the out-
of-core versions of the corresponding SPEComp bench-
marks [3]. These out-of-core versions have been coded
carefully to optimize I/O as much as possible. For example,
where applicable, we used collective I/O [19] to reduce the
number of I/O requests issued at the application level.

For each application code in our experimental suite,
we conducted experiments with four different versions:
First-and-Forever(FAF): In this caching scheme, when
a data block is brought from disk to a storage cache, it
remains there as long as there is space. In other words,
it is never migrated to another storage cache. When it is
displaced from the cache, it is written back to disk if it
has been modified while residing in the cache. Many con-
ventional storage caching schemes work this way in prac-
tice. Always-Migrate(AMG): In this approach, when a
data block is requested by a node, the block is always mi-
grated to the storage cache of that node. Note that this
is an aggressive data migration strategy and can lead to
lots of data movements in the shared cache space.One-
Step-Migration(OSM): In this scheme, each time a non-
local data is requested, it moves one hop closer to the re-
quester (either in the X or Y direction). Note that under
this scheme in the stable state, we can expect a shared data
block to find its ideal position, though it may take some
time to do so.Post-Office-Placement(POP): This is our
post-office placement-based storage caching solution pre-
sented in Section 4. It performs both victim-related migra-
tions and sharing-related migrations.

We emphasize the common characteristics of these
four storage caching schemes. First, as far as the space
management of a local cache (attached to a node) is con-
cerned, all these schemes use LRU to select the victim
block. However, once the victim is selected, in all schemes
except ours, the victim is migrated to the place (a storage
cache or disk) from where the requested data block is com-
ing. That is, the locations of the requested and victim data
blocks are interchanged. In our scheme, however, the de-
fault policy is the counter-based one, which is explained
in Section 4. Also, in all four schemes, the requested data
from disk is first placed into the storage cache of the re-
quester node.

6.2 Evaluation

Our first set of results is presented in Figure 6 and
shows the average storage cache hit (access) latencies un-
der different caching schemes. In this graph, all bars are
normalizedwith respect to the FAF scheme. These results
clearly show that the proposed POP scheme generates bet-
ter results than all the other schemes tested. Specifically,
the percentage cache access latency improvements brought
by the AMG, OSM, and POP schemes (over the FAF
scheme) are -10.4%, 11.7% and 29.1%, respectively. To
understand these results better, we also collected distance-
to-data statistics. The graph in Figure 7 gives, for each of
the four caching schemes, the average number of hops tra-
versed to reach the requested data block. In other words,
these results capture the average distance between the node
that tries to access the data and the node that holds the re-
quested data in its storage cache. We see from these results
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Figure 6: Average storage cache hit
(access) latencies under the different
caching schemes.
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Figure 7: The average number of hops
traversed to reach the requested data
block.
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Figure 8: Storage cache miss rates for
the different caching schemes.
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Figure 9: Average data ac-
cess latencies, which include
the impact of cache misses as
well (all bars in this graph
are normalized with respect
to FAF).
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Figure 10: Number of times
data blocks are migrated
from one storage cache to an-
other under our scheme and
OSM.

that the average number of hops is 4.32, 4.61, 3.28, and
2.07 for FAF, AMG, OSM, and POP, respectively, which
explains why our proposed caching scheme generates bet-
ter hit latencies than the other schemes tested.

Note that hit latency is only one part of the picture.
We are also interested in average data access latency, which
includes cache misses as well. Figure 8 gives the storage
cache miss rates3 for the different schemes, and Figure 9
shows the average data access latencies, which include the
impact of cache misses as well (all bars in this graph are
normalizedwith respect to FAF). We can observe from Fig-
ure 8 that our approach generates better miss rates than the
others, thanks to the careful selection of the node to which
the victim block is sent. Specifically, our scheme tries to
keep the victim block in the shared storage cache space as
long as it is beneficial to do so, and this leads to an im-
provement in miss rates. As a result, the overall data ac-
cess latency results in Figure 9 are better than the cache
hit latency results presented in Figure 6. Overall, the aver-
age improvements brought by the OSM and POP schemes
(over the FAF scheme) are 15.3% and 32.6%, respectively.

3Note that a cache miss occurs when the requested data block isnot in
any of the storage caches, and a disk access needs to be made.

Figure 10 presents, for our scheme and OSM, the
number of times data is migrated from one storage cache
to another during execution. Clearly, our storage caching
scheme reduces the number of migrations experienced by
the OSM scheme by about 19.6% on average. The reason is
that in OSM, data is brought closer to its customers one hop
at a time, resulting in a lot of reads and writes in the stor-
age cache. In comparison, our approach tries to migrate the
data to its ideal position quickly, and this helps to cut the
number of migrations significantly. While not quantified in
this paper, this reduction in migration counts can also help
reduce the power consumption in the storage cache space.

7 Related Work

Shared cache management requires meeting the de-
mands of competing services for space in the shared cache,
while minimizing their interference with each other. Cache
interference can lead to significant performance degrada-
tion and reduce overall system throughput. In order to al-
leviate this problem, the shared cache is partitioned such
that, each application is allocated a portion of the cache
buffers. Recently, many research groups have explored
shared cache partitioning designs that attempt to avoid con-
flicts among multiple applications [25] [22] [23]. In Argon
[22], the cache partitioning algorithm uses a simulator to
predict the cache absorption rate with hypothetical cache
sizes.

Managing shared cache among multiple concurrently
executing applications requires minimizing the possibility
of destructive interferences caused by their interaction with
each other. Prior research has shown that lack of efficient
shared cache management schemes can degrade cache per-
formance significantly and lead to unpredictable system
performance [4]. While single-server storage cache man-
agement has been studied well in the literature [14], there
remains a need to understand and optimize caching when
the storage caches are shared by multiple, simultaneously
executing applications. Cooperative caching [5] seeks to



improve the network file system performance by coordinat-
ing the contents of client caches and allowing requests not
satisfied by a client’s local in-memory file cache to be satis-
fied by the cache of another client. Systems employing this
technique include GMS [6] and PGMS [21]. Many tech-
niques have been proposed for improving the management
of second-tier server caches. Li et al. [12] use write hints to
improve the performance of second-tier cache replacement
policies. Moreover, storage cache management bears sim-
ilarities to shared on-chip cache management in the chip
multiprocessor domain. Several dynamic L2 cache par-
titioning algorithms have been proposed in hardware [9].
They focus their work on CMP/SMT systems and try to
control the cache space and memory bandwidth. These
papers strive to meet the QoS demands of applications by
maintaining some hardware counters. Qureshi and Patt [15]
partition the cache among multiple concurrently executing
applications such that more cache is provided to an appli-
cation if it helps reduce the number of misses without con-
sidering any QoS. Kandemir et al. [11] approximate a post-
office placement based solution in hardware and apply it
to nonuniform L2 architectures in chip multiprocessors. In
comparison, our approach targets storage caches, is imple-
mented in software (Linux), uses a different algorithm, and
includes a data replication module.

8 Conclusion

In a parallel system with multiple storage caches, ef-
fective management of these caches is crucial, especially
when they form a shared storage cache space. As the data
access and sharing patterns change during execution, mi-
grating data in the shared cache space can improve access
latencies by reducing the distance between a data block and
its customers. In this paper, we propose for such archi-
tecture, a topology-aware storage caching scheme that is
based on the two-dimensional post-office placement prob-
lem. Our approach determines the most suitable location
(storage cache) of data block shared by multiple nodes. Our
experimental results with six applications codes show that
our approach can improve the average hit latency, average
miss rate, and average data access latency by 29.1%, 7.0%,
and 32.7%, respectively. We also show that our approach
can be extended to employ replication in the shared storage
cache space.
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