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ABSTRACT
Disk subsystem is known to be a major contributor to overall power
consumption of high-end parallel systems. Past research proposed
several architectural level techniques to reduce disk power by tak-
ing advantage of idle periods experienced by disks. While such
techniques have been known to be effective in certain cases,they
share a common drawback: they operate in a reactive manner; i.e.,
they control disk power by observing past disk activity (e.g., idle
and active periods) and estimating future ones. Consequently, they
can miss opportunities for saving power and incur significant per-
formance penalties, due to inaccuracies in predicting idleand ac-
tive times. Motivated by this observation, this paper proposes and
evaluates a compiler-driven approach to reducing disk power con-
sumption of array-based scientific applications executingon paral-
lel architectures. The proposed approach exposes disk layout in-
formation to the compiler, allowing it to derive disk accesspat-
tern, i.e., the order in which parallel disks are accessed. This paper
demonstrates two uses of this information. First, we can do proac-
tive disk power management, i.e., we can select the most appro-
priate power-saving strategy and disk preactivation strategy based
on the compiler-predicted future idle and active periods ofparallel
disks. Second, we can restructure the application code to increase
length of idle periods, which leads to better exploitation of available
power-saving capabilities. We implemented both these approaches
within an optimizing compiler and tested their effectiveness using a
set of benchmark codes from the Spec2000 suite and a disk power
simulator. Our results show that the compiler-driven disk power
management is very promising. The experimental results also re-
veal that, while proactive disk power management is very effective,
code restructuring for disk power achieves the best energy savings
across all the benchmarks tested.

Categories and Subject Descriptors
B.4.3 [Input/Output and Data Communications]: Interconnec-
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tions (Subsystems)—Parallel I/O; D.3.4 [Programming Languages]:
Processors—Compilers, Optimization

General Terms
Algorithms, Design, Performance, Experimentation
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1. INTRODUCTION AND MOTIVATION
Power consumption is becoming an increasing concern for high-

performance parallel systems that execute large, data-intensive ap-
plications. There are several reasons for this. First, continuously
increasing clock frequencies take power consumption to dramatic
levels, as noted by several recent studies [12, 13]. Second,comput-
ing servers typically contribute to a large fraction of overall power
budget of institutions and even cities [8, 6, 7]. Third, froman envi-
ronmental viewpoint, reducing power consumption is desirable [1].
Therefore, several prior efforts considered hardware and software
optimizations for reducing power consumption in high-end parallel
systems.

Past research [14, 6, 8, 12] indicates that disk subsystems of par-
allel architectures can be a major power consumer. One way of
reducing this power consumption is to adopt architectural mech-
anisms such as spinning down idle disks [10, 11, 18] or rotating
disks with reduced speed [14, 6] when some amount of latency can
be tolerated. A review of the prior work on disk power management
is given in Section 2. While such techniques have been shown to be
effective in certain cases, they have a common drawback: they op-
erate in areactivemanner, that is, they control disk behavior based
on observed disk activity (e.g., idle and active periods). In prac-
tice, this can bring two problems. First, they may fail to select the
most appropriate disk power management scheme since their disk
idleness estimation can be inaccurate. For example, if diskidleness
is underestimated, these schemes behave conservatively inselect-
ing the low-power mode to be employed. Consequently, they may
not be able to use the most aggressive low-power mode. Second,
they can incur performance penalties if they cannot determine ac-
curately when an idle disk is going to be needed in the future.This
is one of the most pressing problems facing parallel systemswhere
disk requests coming from individual processors can interleave in
time, and eventually make disk idle time (and active time) predic-
tion very difficult.

Motivated by these observations, this paper proposes and eval-
uates acompiler-directeddisk power management scheme target-
ing array-based scientific parallel applications executing on envi-



ronments with parallel disks. An optimizing compiler is in avery
good position for the application domain and execution platform as
stated above. This is because the compiler can analyze data access
pattern of a scientific application based on a high level representa-
tion of the program [26], which enables users to capture how the
disk resident data are accessed and shared by parallel processors.
As for determining disk idle and active periods, extractingdata ac-
cess pattern alone may not be sufficient, and one actually needs
the disk access pattern.We propose to obtain this pattern byex-
posingthe layout information of disk resident data to the compiler.
In other words, the proposed compiler support obtains disk access
pattern by using data access pattern and disk layout information for
array data. Section 3 explains the disk access pattern extraction
process we proposed in detail.

After extracting the disk access pattern, this informationcan be
used in at least two ways, both of which are explored in this study.
First, one can implement aproactivedisk power management strat-
egy. What we mean by this is to let the compiler decide the times
at which disks are switched to a low-power operating mode (e.g.,
spinning down a disk or operating it under reduced speed) andre-
stored to the active status. As will be demonstrated in this pa-
per, this proactive scheme can bring significant additionalpower
benefits over the state-of-the-art hardware-based reactive strategies.
Second, the compiler can restructure code to increase idle periods
of disks, thereby allowing a more effective disk power manage-
ment. We demonstrate that this restructuring can be expressed as a
scheduling problem,which in turn can be handled by any known
heuristic or exact scheduler. This paper discusses two variants
of this scheduling problem, one that considers the problem from
each processor’s perspective independently and one that accounts
for inter-processor disk sharing. Section 4 discusses proactive disk
power management and Section 5 gives the details of our code re-
structuring strategy for reducing disk power, which is the main con-
tribution of this paper.

We built a prototype of our approach using an optimizing com-
piler [15] and measured energy savings through a disk simulation
environment. Our experimental results, obtained using several Spec
2000 benchmarks [25] with disk-resident data sets, show that, while
proactive disk management is very effective, code restructuring
achieves the best energy savings across all the applications tested.
Our results also indicate that the benefits of our compiler-directed
approach increases with increasing number of disks and datastripe
sizes. Section 6 explains our experimental platform, simulation en-
vironment and benchmarks, and Section 7 presents experimental
data. To test the behavior of our approach under different hard-
ware and software parameters, we also conduct a sensitivitystudy
in which we modify the default values of several simulation param-
eters used in our experimentation, and study their impact.

This study demonstrates that an optimizing compiler can be very
successful in reducing disk energy consumption in a multiprocessor
environment, provided that we can convey the disk layout informa-
tion to the compiler thereby making the compiler aware of how
data is striped (distributed) across parallel disks. Therefore, this
paper discusses a different (non-traditional) usage of thecompiler
technology developed in the context of array-based parallel appli-
cations with regular data access patterns. The paper also shows that
a compiler-directed scheme can be much more successful thanthe
state-of-the-art hardware-based approaches to disk powermanage-
ment for array-intensive scientific applications.

2. DISCUSSION OF RELATED WORK
There has been significant past work on power management of

high-end computing systems [7, 19, 9] and low-end embedded de-

vices [21, 24, 3]. Due to space concerns, we limit ourselves in this
section to disk energy optimization related studies. In particular,
we focus mainly on two previously-proposed disk power manage-
ment techniques.

The basic approach to save disk power is based on exploiting
disk idle times, i.e., if there is enough idle time, the disk is spun
down, meaning that it is transitioned into a low-power operating
mode. The disk remains in the low-power mode until a new request
arrives. This technique, denoted as TPM (traditional powerman-
agement [10, 18, 11]) in this paper, has been extensively studied
in the context of mobile disks since energy consumption in mobile
systems is an important metric to minimize. Since a TPM disk op-
erates in a reactive manner, i.e., the disk needs to be spun upbefore
servicing a request, it incurs some performance penalty in general.
To cut this potential performance penalty, determining a thresh-
old value for idle period by employing either fixed or adaptive ap-
proaches is crucial in TPM. In this context, the threshold value is
the minimum duration of idleness for which TPM makes sense. Al-
though TPM is good mechanism for conserving disk power in lap-
top systems and embedded environments, recent studies alsoshow
that it is not a preferable option in the server or cluster domains,
due to two reasons. First, the access patterns in server workloads
are mainly small and non-contiguous, and consequently, disk idle
times are not long enough to accommodate TPM. Second, for per-
formance reasons, server class disks are operated at a very high
RPM (revolutions per minute), typically above 10K RPM, and the
disk spin-up/down times are really long, which in turn makesthe
threshold value very large.

Since exploiting idle time is hardly a viable option in the server
class disks, [14] proposed dynamic RPM (referred to as DRPM in
this paper) in which the disk hardware/controller providesseveral
RPM steps. Note that, the higher RPM a disk spins at, the faster
it services the I/O requests, and the higher power it consumes. An
application that executes on a platform with DRPM capability can
select disk speed dynamically at runtime to achieve the optimal bal-
ance point between energy consumption and execution time. In a
sense, DRPM is similar in principle to CPU voltage scaling tech-
niques proposed in literature because the selection of RPM step
is made based on the change in the average disk response time
recorded forn-request windows. Note that DRPM also incurs per-
formance penalty because a lower RPM can potentially degrade
response time. This can occur because a hardware-based DRPM
strategy (like TPM) works with an estimation of disk idle times.
If the estimation is not accurate, DRPM can select a wrong disk
speed. It has been observed by the prior research [14] that DRPM
can save significant amount of disk power by exploiting even small
idle times, and it incurs relatively small performance penalty com-
pared to TPM. Another technique based on modulating disk speed
has been proposed and evaluated in [6]. In the rest of this paper,
the term “low-power mode” (or “low-power state”) refers to either
a disk which is spun down (in TPM) or a disk whose speed is set to
a lower RPM than the maximum RPM supported by the architec-
ture (in DRPM). The focus of our approach is on maximizing the
effectiveness of TPM and DRPM by scheduling the order of disk
accesses in parallel disk based systems. Therefore, our approach
can work with both TPM and DRPM based I/O systems.

In [16], Heath et al. describe an application code transformation
technique for energy/performance-aware device management. Our
work is different from their work in three aspects. First, weexclu-
sively focus on disk power management by making use of proac-
tive power mode selection and by employing a code transformation
strategy oriented towards increasing disk idle times. In comparison,
[16] tries to make best use of available buffer space. Consequently,



the code transformation approaches employed by the two studies
are entirely different from each other (as the objectives are differ-
ent). The second difference is that our focus is on server/cluster
disks, while [16] concentrates on laptop disks. Therefore,they do
not address the problem of compiler-driven use of DRPM, which
is the main mechanism to save power in server class disks. Third,
since these two efforts target different execution environments, they
use different set of applications. In contrast to [16], our focus is on
array-intensive scientific applications that spend a largefraction of
their power budget on the disk subsystem. Since the strategypro-
posed in [16] is a generic scheme (not exclusively for disks), one
can also envision it to co-exist with our scheme under a unified
optimization framework.

3. DISK ACCESS PATTERN EXTRACTION
Our focus is on array based scientific applications with affine ref-

erences. One of the important characteristics of these applications
is that their data access patterns can be analyzed by an optimizing
compiler and can be reshaped for different purposes such as opti-
mizing data locality or improving parallelism.

One of the requirements for being able to use a compiler in re-
ducing disk power consumption is to capture how parallel disks are
accessed at a high level (i.e., source code level). We use theterm
disk access patternin this paper to refer to the high-level informa-
tion on the order in which parallel disks are accessed by a given ap-
plication code. This order is important since it determines, for each
disk in the system, active and idle periods, which is the primary
information used for power management as explained in Section 2.
Disk access patterns can be extracted at the loop iteration,loop
nest, procedure, or even larger granularities. To obtain this infor-
mation, the compiler needs data access pattern of the application
code being optimized and disk layout information for array data
(see Figure 1(a)). The first of these can be obtained by analyzing
the application source code. Since such an analysis is performed by
many optimizing compilers for different purposes (e.g., optimizing
loop-level parallelism or cache locality), we do not discuss its de-
tails in this paper. As for the second parameter needed, we propose
to exposethe disk layout information to the compiler. In this way,
the compiler will be aware of how array data is striped acrossthe
parallel disks, and can optimize the code accordingly.

We next discuss what type of disk layout abstraction is needed
by the compiler in the proposed approach. File striping is a tech-
nique that divides a large data into small portions and stores these
portions on separate disks in a round-robin fashion (as depicted in
Figure 1(b)). This permits multiple processes to access different
portions of the data concurrently without much disk contention.
While striping can be performed manually, many file systems to-
day provide automatic support for it, as will be explained below. In
this work, we represent disk layout of an array using a triplet of the
form:

(startingdisk, stripefactor, stripesize).

The first component in this triplet indicates the disk from which
the array is started to get striped. The second component gives
the number of disks used to stripe the data, and the third com-
ponent gives the stripe (unit) size. Note that the several current
file systems and I/O libraries for high-performance computing pro-
vide APIs to convey them the disk layout information when the
file is created. For example, in PVFS [23], one can change the
default striping parameters by settingbase (the first I/O node to
be used),pcount (stripe factor), andssize (stripe size) fields
of thepvfs filestat structure. Then, the striping information

Figure 1: (a) Determining disk access pattern. (b) Stripingan
array over four disks.

Figure 2: A data access pattern and the corresponding disk
access pattern.< di, tj > means that diskdi is (estimated to
be) used fortj cycles.

defined by the user via thispvfs filestat structure is passed
to thepvfs open() call’s parameter. When creating a file from
within the application, this layout information can be madeavail-
able to the compiler as well, and, as explained above, the compiler
uses this information in conjunction with the data access pattern it
extracts to determine the disk access pattern. On the other hand, if
the file is already created on the disk system, the layout information
can be passed to the compiler as a command line parameter.

The important point to note here is that we assume each data
array manipulated by the application is stored in a separatefile in
the I/O system1. Since each file can have a different triplet of the
kind shown above, each array can have a different disk layoutthan
the others. While determining power-efficient disk layoutsitself is
an interesting research topic that we want to tackle in the future,
in this paper we concentrate on code restructuring for low power.
As a consequence, we assume that the disk layout informationis
given to the compiler, which subsequently uses it for determining
disk access patterns.

Figure 2 shows a sample data access pattern and the correspond-
ing disk access pattern. This disk access pattern is obtained under
the disk layout shown in the same figure. In this layout, for il-
lustrative purposes, the twelve elements of an array are distributed
(striped) across four disks (d0 throughd3). In the disk access pat-
tern, a< di, tj > means that diskdi is used fortj cycles. tj

is estimated by the compiler. It is to be noted that the compiler
can represent a disk access pattern using different representations
and with different granularities. Since a given disk accesspattern
captures idle and active periods for each disk and their durations,
it can be used for proactive power management (Section 4) or to
restructure code to increase idle periods (Section 5).

1Our approach can be modified to handle other scenarios as well,
e.g., multiple arrays per file, or multiple files per array.



4. PROACTIVE DISK POWER
MANAGEMENT

After extracting disk access patterns, the compiler can insert ex-
plicit disk power management calls (instructions) in appropriate
places in the source code. The purpose of these calls varies based
on the underlying disk capabilities (e.g., TPM versus DRPM). For
TPM disks, we usespin up() andspin down() calls. The
format of thespin down() call is as follows:

spin down(di),

wherediski is the disk id. Since a disk access pattern indicates
not only idle times but also active times anticipated in the future,
we can use this information topreactivatedisks that have been spun
down by aspin down() call. To determine the appropriate point
in the code to start spinning up the disk (that is, preactivation point),
we take accounts of the spin-up time (delay) of the disk (i.e., the
time it takes for the disk to reach its full speed where it can perform
read/write activity). Specifically, the number of loop iterations be-
fore which we need to insert the spin-up (preactivation) call can be
calculated as:

Qsu = ⌈
Tsu

s + Tm

⌉,

whereQsu is the preactivation distance (in terms of loop itera-
tions), Tsu is the expected spin-up time,Tm is the overhead in-
curred by aspin up call, ands is the number of cycles in the
shortest path through the loop body. It is to be noted thatTsu is
typically much larger thans. The format of the call that is used to
preactivate (spin up) a disk is as follows:

spin up(di),

where as beforedi is the disk id. Note that, if we do not use pre-
activation, a TPM disk is automatically spun up when an access
(request) comes; but, in this case, we incur the associated spin-up
delay fully. The purpose of the disk preactivation is to eliminate
this performance penalty. While our discussion so far has focused
on the TPM disks as the underlying mechanism to save power, this
compiler-driven proactive strategy can also be used with DRPM
disks. The necessary compiler analysis and the disk access pattern
construction process in this case are the same as in the TPM case.
The main difference is how the disk access pattern collectedis used
(by taking the times to change disk speed into account) and the calls
inserted in the code. In this case, we employ the following call:

set RPM(rpm levelj,di),

wheredi is the disk id, andrpm levelj is the jth RPM level
(i.e., disk speed) available. When executed, this call brings the disk
in question to the speed specified. The selection of the appropri-
ate disk speed is made as follows. Since the transition time from
one RPM step (level) to another is proportional to the difference
between the two RPM steps involved [14], we need to consider the
detected idle time to determine the target RPM step. Consequently,
we select an RPM level if and only if it is the slowest available
RPM level that does not degrade the original performance.

It must be mentioned that a wrong placement of thespin up(),
spin down(), andset RPM() calls in the code doesnot create
a correctness issue. In the worst case scenario, they increase execu-
tion cycles and/or energy consumption. For example, prematurely
spinning down a disk (in the TPM-based architecture) delaysthe
time to service the next request, and leads to some extra energy

Figure 3: Comparison of the hardware-based TPM and
the proposed compiler-directed TPM. In the hardware-based
scheme, periodTw is for detecting idleness andTsu is the spin-
up latency. The compiler-directed scheme can eliminate theim-
pact of both these latencies.

consumption. Similarly, selecting a wrong RPM level to use (in the
DRPM-based architecture) can increase disk energy consumption
(if the selected level is faster than the optimal one) or execution
time (if the selected level is slower than the optimal one). In either
case, however, this is not a correctness issue. Notice however that
the compiler places these power management calls into the code
based on the disk access pattern it constructs for each disk.Since
the compiler is conservative in handling the control flow within
the loop bodies (i.e., it assumes that all branches of a conditional
construct can be taken at runtime with an equal probability), the
information it extracts (regarding disk idle/active times) may not
be hundred percent accurate. The experimental results presented
in this paper include such inaccuracies arising from the imperfect
knowledge of the future access patterns. Notice also that while this
compiler-directed proactive management can be very effective in
reducing disk power (as will be shown by our experimental analy-
sis), one can go beyond this by restructuring the source codeso that
disk reuse can be increased significantly. The second contribution
of this paper is such a compiler-guided code restructuring strategy,
and is explained in the next section in detail.

Figure 3 illustrates the difference between the hardware-based
TPM and the compiler-directed TPM. Compared to the hardware-
based TPM, our approach has two advantages. First, the compiler-
directed TPM can put idle disks in low-power mode earlier than the
hardware-based TPM can do. Second, the compiler-directed TPM
can avoid the performance overhead, using preactivation, due to
the spin up latency when an idle disk is accessed. Figure 4 presents
our compiler algorithm for disk energy optimization.2 Our algo-
rithm works in two steps. In the first step, we build aLoop Transi-
tion Graph(LTG) for a given procedure.3 Each nodeLi in the LTG
corresponds to a loop nest in the procedure. A loop nest whoseexe-
cution time is longer than a given thresholdQ is recursively broken
down into smaller loop nests until no loop nest contains any internal
loop, or the execution time of the loop is shorter thanQ. Each edge
(from Li to Lj ) in LTG has a tagCi,j , indicating the condition un-
der which the flow of execution transitions from loop nestLi to Lj .
Figure 5(b) shows an LTG for the code fragment in Figure 5(a).In
the second step, our algorithm inserts code to the program tospin
up/down the disks. Specifically, for each nodeLi in LTG, our al-
gorithm inserts, before the entry ofLi, thespin down calls for
the disks that are not accessed inLi. Further, if nodeLi has a suc-
cessorLj that accesses a disk that has been spun down inLi, we

2Due to lack of space, we give the formal algorithm only for insert-
ing spin up andspin down calls. The algorithm for inserting
theset RPM calls is similar.
3Our current implementation is applied to each procedure sepa-
rately; i.e., we do not perform any inter-procedural optimization.



procedure loopTransformation(){
buildLTG();
transform();

}

procedure buildLTG(){
for each outermost loopLi

addNode(Li);
for each node (Li) in the LTG

determine disk access patternDi;
for each pair of nodes (Li andLj ) in the LTG

determine transition conditionCi,j ;
}

procedure addNode(Li) {
if(execTime(Li ) > Q andLi contains inner loops){

for each outermost loopLj in Li

addNode(Lj );
} else{

add nodeLi to the LTG;
}

}

procedure transform(){
for each nodeLi in the LTG{

if(execTime(Li ) > Q) {
for each diskdx

if(Di[x] = 0)
insert before the entry of loop nestLi:

“spin down(dx)”;

if(existsLi

Ci,j
→ Lj such thatd[j]&d[i] 6= d[j]) {

split Li into two consecutive loop nests:L′

i andL′′

i
such that execTime(L′′

i ) = Qsu;
for each diskdx such thatDi[x] = 0

for each loop nestLj such thatLi

Ci,j
→ Lj

if(Dj [x] = 1)
insert before the entry of ofL′′

i :
“if( Ci,j ) spin up(dx)”;

}
}

}

Figure 4: Compiler algorithm for inserting disk power man-
agement calls in a given code fragment.

split Li into two consecutive loop nests,L′

i andL′′

i , such that the
execution time ofL′′

i is equal toQsu, the time required to spin up
a disk. BeforeL′′

i , our algorithm inserts thespin up calls for the
disks that will be used inLj . By doing this transformation, we hide
the performance overhead due to disk spin up. That is, as explained
earlier, this preactivation eliminates potential performance penalty.
Figure 5(a) shows an example code fragment, and Figure 5(b) gives
the corresponding LTG. Figure 5(c) is the transformed code frag-
ment after applying our algorithm.

5. CODE RESTRUCTURING FOR REDUC-
ING DISK ENERGY CONSUMPTION

In this section, we present a strategy that restructures a given
procedure for increasing the benefits that could be obtainedfrom
the proactive scheme discussed above. This code restructuring ap-
proach operates on a graph representation called theInter-Processor
Disk Access Graph(or IDAG for short). An IDAG is composed of
a number ofProcessor Disk Access Graphs (PDAGs). Each node
in an IDAG represents a set of loop iterations (as will be explained
shortly), and the directed edges between nodes capture datadepen-
dences.

for I1 = 0 to N1 {
for I2 = 0 to N2 {

L1: for I3 = 0 to N3

access:d0, d1;
L2: for I4 = 0 to N4

access:d0, d3;
}
L3: for I5 = 0 to N5

access:d4;
}
L4: for I6 = 0 to N6

access:d3;

(a) Original code fragment.

(b) Loop Transition Graph
(LTG) for the code fragment
in (a). Nodes L1, L2, L3,
and L4 correspond to the loop
nests with labels L1, L2, L3,
and L4, respectively.

for I1 = 0 to N1 {
for I2 = 0 to N2 {
spin down(d2, d3);
L′

1
: for I3 = 0 to N3

access:d0, d1;
if(true) spin up(d3);
L′′

1
: for I3 = N3 − Qsu to N3

access:d0, d1;
L′

2
: spin down(d1, d4);

for I4 = 0 to N4 − Qsu − 1;
access:d0, d3;

if(I2 < N2) spin up(d1);
if(I2 = N2) spin up(d4);
L′′

2
: for I4 = N4 − Qsu to N4

access:d0, d3;
}
spin down(d1, d2, d3);
L′

3
: for I5 = 0 to N5 − Qsu − 1
access:d4;

if(I1 < N1) spin up(d0, d1);
if(I1 = N1) spin up(d3);
L′′

3
: for I5 = N5 − Qsu to N5

access:d4;
}
spin down(d0, d1, d2, d4);
L4: for I6 = 0 to N6

access:d3;

(c) Transformed code frag-
ment. The loops L1, L2, and
L3 in (a) are split. For exam-
ple, loop L1 is split into L′1 and
L′′

1 , and the estimated execu-
tion time of L′′1 is equal toQsu.

Figure 5: An example that illustrates proactive disk power
management.

We assume that the set of loop iterations that will be executed by
each processor has already been determined prior to approach. For
this purpose, either user-assisted (e.g., [20]) or compiler-directed
(e.g., [2]) code parallelization methods can be employed. The se-
lection of the method to be used for assigning loop iterations to
parallel processors in the system is orthogonal to the focusof this
paper. LetIp represent the set of iterations assigned to processor
p (as a result of loop parallelization), where0 ≤ p ≤ P − 1. We
note that, for any legal parallelization scheme, we have:

P−1
[

p=0

Ip = Itotal,

whereItotal is the set of total iterations in the procedure (including
all the loop nests).

We attach atag, denotedT , consisting ofD bits, whereD is
the number of parallel disks in the I/O system, to each iteration I

in Ip. A bit in the dth position ofT (0 ≤ d ≤ D − 1) is 1 if
and only if loop iterationI accesses diskd.4 Otherwise, we set
this bit to 0. For the sake of explanation, we assume existence of
a function calledtag() that gives the tag of any iterationI , given
as input. Now, we can classify the iterations inIp into 2D classes.
The common characteristic of the iterations assigned to a class is
that they have the same tag. In mathematical terms, we have:

Ip,T = {I | I ∈ Ip ∧ tag(I) = T},

that is,Ip,T holds the loop iterations that are assigned to processor
p and have the tagT .
4Our approach is conservative in the sense that ifI may access
disk d (depending on conditional execution flow at runtime), we
conservatively set the corresponding bit to 1.



Note that, from the disk power management perspective, it is
beneficial to execute iterations inIp,T one after another. This is be-
cause all the iterations in this set access the same set of disks, and
the remaining disks can be placed into a low-power mode during
these accesses to save power. However, it is also important to de-
termine a good execution order for differentIp,T s. In Sections 5.1
and 5.2, we present scheduling schemes, where the problem iscon-
sidered from single processor’s perspective and multi-processors’
perspective, respectively. What we mean by “scheduling” inthis
context is an order in which the nodes in an IDAG (or PDAG when
considering from the perspective of a single processor) areexe-
cuted. In Sections 5.1 and 5.2, we explain our approach, assuming
that PDAGs (or IDAG) in question arecycle-free. Later in Sec-
tion 5.3, we discuss code transformations to eliminate cycles in
IDAG/PDAGs. After these code restructurings, the resulting code
is further modified by inserting the proactive disk power manage-
ment calls as has been discussed in Section 4.

5.1 Single Processor Perspective
EachIp,T class (set of iterations) is represented by a node in

PDAGp, the PDAG for processorp. We can formally define a data
dependence fromIp,T to Ip,T ′ as follows:

dep(p, T, T ′) =



true, if∃I ∈ Ip,T , I′ ∈ Ip,T ′ : such thatI → I′

false, otherwise

where symbol→ represents a data dependence. We have an di-
rected edge in PDAGp from the node that representsIp,T to the
node that representsIp,T ′ if and only if dep(p, T, T ′) holds true.

We now discuss how PDAGp can be scheduled to reduce energy
consumption in disk subsystem. As we discussed earlier, it is im-
portant to schedule the iterations in a class one after another. This
is not difficult to achieve if we just schedule these iterations such
that any two iterations keep their relative orders in the original iter-
ation space traversal (due to our cycle-free assumption). However,
as mentioned above, effectiveness of disk power managementalso
depends on the order in which the nodes in PDAGp are traversed.
Specifically, to keep a given disk in the idle state for longerdura-
tions of time, we need to select the next node to schedule suchthat
between the two consecutively scheduled nodes, the disks main-
tain their status as much as possible. Since each node represents a
class (a set of iterations) and the tag attached to it indicates us the
disks it uses (and the disks that it does not use), one can use this
information to select the next node to schedule.

We use a Hamming distance based approach to select the next
node to schedule. More specifically, the following observation guides
us in selecting a suitable order of scheduling for classes:

If Ip,T andIp,T ′ are the two nodes (in PDAGp) that
are successively visited whereT and T ′ are the re-
spective tags, the variation in disk activation and disk
idleness patterns in going fromIp,T toIp,T ′ is a func-
tion of the Hamming distance betweenT andT ′.

For instance, in an I/O system with eight disks, if we schedule
Ip,01101010 andIp,01100101 one after another, the first four disks
preserve their states (during this transition), whereas the remaining
four disks change their states. Minimizing the Hamming distance
between the tags of classes that are visited successively isuseful in
reducing the disks energy consumption. In other words, for agiven
disk in the I/O system, in going from one class (node) to another,
it is better to keep the states of the disks (active or idle) similar
as much as possible. This is because if the first state is 0 and the
second is also 0, the disk in question will have a long idle period
(which is good from an energy consumption viewpoint); and simi-
larly, if both the states in question are 1, this means that the active

Step Random Hamming Based
d0d1d2d3 d0d1d2d3

1 1001 1001
2 0110 1000
3 1000 1100
4 1100 0100
5 0100 0110

Figure 6: Left: An example PDAG. Right: Two different
scheduling.

Figure 7: Example optimization schemes (low-power modes).

periods are clustered together; so, we will also have clustered idle
periods for the disk (later when we visit the remaining classes).
Based on this observation, from the viewpoint of a single processor
(p), the problem of reducing disk energy consumption becomes one
of scheduling a group of nodes taking accounts of some constraints
(inter-class dependences) to minimize (optimize) some objective
function (minimizing the Hamming distance between the number
of successively visited classes).

To demonstrate how such a scheduling can be beneficial, we con-
sider the PDAGp shown on the left side of Figure 6. Each node is
annotated using its tag (assuming an I/O system with 4 disks). The
column titled “Random” on the right side of Figure 6 gives a legal
schedule, wherein the next node to be scheduled is selected ran-
domly (by observing the dependences though). Assume that each
node takes the same amount of time. Assume further that we have
three power optimization schemes that operate as follows (see Fig-
ure 7). The first scheme (S1) is applicable when we have, for a disk,
two consecutive “0”s in the schedule (i.e., the same disk is idle in at
least two successively-scheduled nodes). The second scheme (S2)
and the third scheme (S3), on the other hand, are applicable when
we have at least three and four consecutive “0”s in the schedule.
Based on these power modes, the “Random” scheme can useS2

for the third disk (d2) andS3 for the fourth disk (d3). In compari-
son, the last column of the table on the right side of Figure 6 shows
the result of our scheduling that minimizes the Hamming distance
between the successively-scheduled nodes, as explained above. We
see that this schedule is able to use schemeS1 for disksd0 andd1,
and schemeS3 for disksd2 andd3, a much better situation com-
pared to the random scheduling case. This small example illustrates
how scheduling can impact the opportunities for disk power man-
agement.

5.2 Multi-Processor Perspective
An IDAG is constructed from individual PDAGs. One poten-

tial problem with the single processor based approach explained
above (that operates on individual PDAGs) is that the scheduling is
performed for each processor independently. Consequently, while
the resulting schedule can appear very good from the perspective
of a given processor (as far as reducing disk energy is concerned),
when IDAGs are considered together (i.e., the individual schedules
are executed in parallel by observing data dependences across pro-
cessors), they may not perform well. To illustrate this point, let us
consider an IDAG for a two processor based system with 4 disks
(see Figure 8(a)). As before, each node is annotated using its tag.
Let us assume, for simplicity, each node takes the same time (C



(a) An example IDAG constructed from PDAGs of processors
p0 and p1.

d0d1d2d3

Time p0 p1 Usage
1 1000 0100 1100
2 0100 1000 1100
3 1001 1011 1011
4 0011 1010 1011
5 0001 0010 0011
6 0111 0110 0111
7 1110 1111 1111

d0d1d2d3

Time p0 p1 Usage
1 1000 0100 1100
2 1001 1000 1001
3 0100 1010 1110
4 0001 1011 1011
5 0011 0010 0011
6 0111 0110 0111
7 1110 1111 1111

(b) Scheduling obtained us-
ing our algorithm.

(c) Another legal scheduling.

Figure 8: An example application of our scheduling approach.

cycles) to execute. In Figure 8(c), the columns titled asp0 and
p1 give the schedules for the two processors (when each schedule
is optimized independently as explained in Section 5.1). The last
column (marked “Usage”), on the other hand, gives the disk usage
when the interleaving effect of these two schedules are taken into
account (i.e., each entry in the last column is the result of bit-wise
OR of the corresponding entries in the second and third columns).
Under the same power-saving schemes assumed above (i.e.,S1,
S2, andS3 in Figure 7), looking at the “Usage” column, we see
that schemeS1 can be used for disksd0, d1, andd2, and there is
no opportunity for applyingS2 or S3. Figure 8(b) shows the result
of our proposed scheduling. This scheduling, whose algorithm will
be presented shortly, captures inter-processor effects and results in
the disk usage shown in the last column of Figure 8(b). It can be
observed that, in this case, we are able to use schemeS1 for disks
d0, d2, andd3 and schemeS2 for diskd1.

Our scheduling algorithm for an architecture withP processors
andD disks is given in Figure 9. This algorithm takes an IDAG as
input, and determines the schedule of nodes for each processor by
considering the global (inter-processor) usage of the disks. It uses a
D-bit global variableG to represent the current usage of the disks.
It schedules a node that is ready to be scheduled for each processor
that finishes its current task. At each step, the algorithm first tries to
schedule the node whose disk requirement can be satisfied with the
current active disks, i.e., we can execute this node withoutrequiring
any disks currently in low-power mode. If multiple nodes satisfy
this criterion, we select the one that requires the maximum number
of disks to make full utilization of the currently active disks. If such
a node does not exist, our algorithm schedules the node whosetag
is the closest (in terms of Hamming distance) toG, the bit pattern
that represents the current disk usage (i.e., the disk usageat that
particular point in scheduling). This is to minimize the number of
disks whose (active/idle) states need to be changed.

5.3 Node Merging and Node Partitioning
In some cases, an IDAG may contain cycles which prevent a le-

gal traversal (scheduling). We refer to these types of IDAGsas
cyclic IDAGs. To schedule such graphs, we need to apply some
node transformations and eliminate the cycles. An example cyclic
IDAG is illustrated on the left side of Figure 10 for an I/O sys-
tem with 4 disks. Notice that the nodes (classes) with tags 1101,
0001, and 0010 form a cycle, hence the IDAG shown in the figure
is not scheduleable. We handle such graphs using two techniques,
referred to asnode mergingandnode partitioningin this paper.5

|a − b| — Hamming distance between the class{I}a and{I}b

last[i] — the last class (node) executed on processori

schld[i] — set of nodes already scheduled on processori

cansch[i] — set of nodes that can be scheduled on processori

next time[i] – the time when the current node on processori is finished
G — global disk usage bit vector
P — number of processors
D — number of disks
| — bit-wise “or”
& — bit-wise “and”
∪ — unordered set union operation
⊕ — ordered set union operation (used for adding a node to set

for i := 0 to P − 1 do{
next time[i] = 0;
last[i] := 0;

}
G := 0;
while(exists unscheduled nodes) do{

// determineS – the set of processors that are ready
// to schedule new nodes
t := ∞;
for i := 0 to P − 1 do

if(next time[i] < t) {
S := {i};
t := next time[i];

} else if(nexttime[i] = t)
S := S ∪ {i};

}

// determineU – the minimum upper boundary of the disk
// usage after scheduling new nodes
U := G;
for eachi ∈ S do{

// X – the set of loop nests that can be scheduled
// onPi without turning on new disk
X := {x|x ∈ cansch[i] and (d[x]&U) = d[x]};
if(X = φ)

X := cansch[i]; // allowing turning on new disk
selectx ∈ X such that|x − U| is minimized;
U := U|d[x];

}

// schedule nodes on the processors that have
// finished with the previous nodes
for eachi ∈ S do{

X := {x|x ∈ cansch[i] and (d[x]&U) = d[x]};
selectx ∈ X such that|x − U| is minimized;
// schedulex onPi;
schld[i] := schld[i] ⊕ x;
next time[i] += t[x];
last[i] := d[x];

}

// determineG – current usage of disks
G := 0;
for i := 0 to P do{ G := G | last[i]; }

for i := 0 to P do{ update cansch[i];}
}

Figure 9: Proposed scheduling algorithm.

5An alternate approach would be constructing the IDAG in a cycle-
free manner in the first place. We omit the detailed discussion of
this alternative, since the results it generated were very similar to
those obtained using node partitioning.



Our first transformation, node merging, combines all the nodes
involved in a cycle into a single node. All incident edges on the
nodes merged become incident edges on the combined node. The
upper right part of Figure 10 illustrates how the nodes that form the
cycle in our example can be merged, resulting in a scheduleable
(acyclic) IDAG. The important point here is that node merging can
be useful even when we do not have any cycles. This is because
merging two nodes typically reduces the overhead to be incurred
by the generated code and code expansion. One can see this by ob-
serving that the number of classes grows exponentially withrespect
to the number of disks. Therefore, if the underlying disks subsys-
tem has too many disks, we may end up with too many nodes in the
IDAG, and for each node we need to generate a different code (as
will be explained in the following subsection). In such cases, re-
ducing the number of nodes in the IDAG can be very useful sinceit
reduces the size of the generated code and improves performance.
However, a potential drawback of node merging is that the class
that represents the combined node accesses in general more disks
than the individual classes representing the nodes merged.More
specifically, the tag of the combined node is the logical (bit-wise)
OR of the tags of the constituent nodes. For example, in Figure 10,
the tag of the resulting node is 1111, obtained by bit-wise ORing
1101, 0001, and 0010.

The other technique that can be used for eliminating a cycle in
PDAG/IDAG is called node partitioning in this paper. This trans-
formation is in a sense the opposite of node merging, and gener-
ates multiple nodes from a single node. To illustrate how it op-
erates, we consider the original cyclic IDAG shown on the left
side of Figure 10 again. The lower part of the same figure illus-
trates the acyclic IDAG obtained by partitioning the node with tag
“1101”. It is assumed, for illustrative purposes, that after this par-
titioning, there is a dependence from node “1001” to one of the
new nodes, and another dependence from node “0010” to the other
new node. Notice that, in the worst case, each of these new nodes
inherits the tag of the original node (as in the case of Figure10).
In general, the possibility of node partitioning can be checked as
follows. Let us assumeI = Ip,T1

∪ Ip,T2
∪ ... ∪ Ip,Tn , where

Ip,T1
, Ip,T2

, ..., Ip,Tn are the nodes in a cycle. We select a node
Ip,Ti

and split it into two nodes (Jp,T ′ andKp,T ′′ ) such that all
the following constraints are satisfied:

Jp,T ′ ∩ Kp,T ′′ = φ (1)

{J → K|J ∈ Jp,T ′ , K ∈ Kp,T ′′} = φ (2)

{J → X|J ∈ Jp,T ′ , X ∈ I − Ip,Ti
} = φ (3)

{X → K|X ∈ I − Ip,Ti
, K ∈ Kp,T ′′} = φ (4)

Note that, if no node in the cycle can be split with respect to these
constraints, we cannot eliminate that cycle by applying node par-
titioning. In our current implementation, to eliminate a cycle, we
first attempt node partitioning. If it does not work, we use node
merging.

5.4 Implementation Details
This section gives details of how we generate scheduled code.

The main issue here is to generate code for a given class (Ip,T ).
While one can propose an approach employing classical loop trans-
formations such as loop tiling and loop interchange for thispur-
pose, such an approach would not be sufficient, mainly because the
iterations that belong to a class may not form a set that can becap-
tured by these (structured) code transformations. Instead, in this
study, we use a polyhedral tool called the Omega Library to gener-
ate code. The Omega library [22] is a set of routines for manipulat-
ing linear constraints over integer variables, Presburgerformulas,

Figure 10: An example that illustrates node merging and node
partitioning.

and integer tuple relations and sets. In our context, this library can
be used for generating code that enumerates the iterations that be-
long to a given class. To see this, consider a scenario where anested
loop accesses the arrays stored in an I/O system that consists of two
disks (each can hold 45 elements for illustrative purposes). Let us
assume that there are two arrays accessed in the nest (U andV ),
and that the array-to-disk mappings are as follows:

d0 : {U [i]|1 ≤ i ≤ 30} ∪ {V [i]|1 ≤ i ≤ 15},

d1 : {V [i]|16 ≤ i ≤ 30}.

We also assume that the references used in the nest areU [i] and
V [31 − i], and that the loop iterator (i) takes values between 1 and
29. Using these mappings and references, we can writeIp,10, the
class that contains iterations which access onlyd0, as:

Ip,10 = {i| (1 ≤ i ≤ 29) ∧ (1 ≤ i ≤ 30)

∧ (1 ≤ 31 − i ≤ 15) ∧ ¬(16 ≤ 31 − i ≤ 30)}.

The first constraint in this formulation,(1 ≤ i ≤ 29), comes from
the loop bounds. The second and third constraints ensure that the
array elements accessed byU andV fall into the first disk (d0).
Finally, the last constraint guarantees that the elements referenced
by V do not reside in the second disk (d1). By simplifying this set
formulation, we obtain:

Ip,10 = {i| (16 ≤ i ≤ 29)}.

Then, using the Omega Library’s code generator, we can obtain
a loop nest that enumerates only these iterations. With a similar
analysis, we can also show that:

Ip,01 = ∅ and Ip,11 = {i| (1 ≤ i ≤ 15)}.

6. EXPERIMENTAL SETUP
To generate disk access patterns for our benchmark programs, we

designed and implemented a trace generator. This trace generator
creates a trace for each processor. The generated trace (which cap-
tures parallel disk accesses) is then fed to the simulator. The cycle
estimates for the loop nests were obtained from the actual execu-
tion of the programs on a SUN Blade1000 machine (UltraSPARC-
III architecture operating at 750 MHz with Solaris 2.9) and these
estimates were used in all our simulations. In addition to the I/O
trace file, the simulator needs the disk layout information for each
array, which includes stripe unit size, striping factor (the number



Table 1: Default simulation parameters.
Parameter Value

Processor Parameters
Number of Processors 8

Processor Clock Frequency 1.5GHz
Parameters common to TPM and DRPM

Disk Model IBM Ultrastar 36Z15
Interface SCSI

Storage Capacity 18 GB
RPM 15,000

Average seek time 3.4 msec
Average rotation time 2 msec
Internal transfer rate 55 MB/sec

Power (active) 13.5 W
Power (idle) 10.2 W

Power (standby) 2.5 W
Energy (spin down: idle→ standby) 13 J
Time (spin down: idle→ standby) 1.5 sec
Energy (spin up: standby→ active) 135 J
Time (spin up: standby→ active) 10.9 sec

Parameters specific to DRPM
Maximum RPM level 15,000 RPM
Minimum RPM level 3,000 RPM

RPM Step-Size 3,000 RPM
Window Size 250

Striping Information
Stripe unit (stripe size) 64 KB

Stripe factor (number of disks) 8
Starting iodevice (starting disk) 0

of disks), and starting iodevice (disk). Using disk layout parame-
ters and traces, the simulator determines, for each request, the I/O
node(s) that need to be accessed and the duration of access for each
I/O node. We assume that each I/O node has one disk and no fur-
ther striping is applied at the I/O node level, i.e., the datais striped
across the I/O nodes only. In our simulator, the striping informa-
tion is provided from an external file along with other simulation
parameters. The default simulation parameters are given inTable 1.

Our disk power simulator, which is similar to DiskSim [5], is
driven by externally-provided disk I/O request traces, which are
generated, as explained above, by the trace generator. EachI/O
request is composed of the following five parameters:

• The id of the processor that issues the request.
• Request arrival time: Time in milliseconds specifying the time

at which the disk request arrives.
• Start block number: An integer specifying a logical disk block

striped over several I/O nodes.
• Request size: An integer in bytes specifying the size of a re-

quest.
• Request type: A character specifying whether the request isa

read (R) or a write (W).
Given an I/O trace file, the simulator generates statisticaldata for

performance and energy consumption. Both performance and en-
ergy statistics were calculated based on the figures extracted from
the data sheet of the IBM Ultrastar 36Z15 [17], and are given in
Table 1. The values for power mode transitions are also included
in Table 1. Because we are primarily interested in the performance
and energy consumption of the disk subsystem, we assume that
other performance enhancement techniques like I/O prefetching [4]
are not employed. In the rest of the paper, when we say “energy”
we mean the energy consumed in the disk subsystem. When we
say “execution time/cycles”, we mean the time/cycles it takes to
complete the application execution. The disk energy consumption
includes the energy consumptions in both active and idle periods,
taking into account all the states that the disks experienceduring
the entire execution. Also, the performance numbers include all
conflicts in accessing the parallel disk system.

Table 2 gives the set of array-based benchmark codes used in

Table 2: Benchmarks and their characteristics.
Data Number of Base Execution

Name Size(MB) Disk Reqs Energy(J) Time(ms)
168.wupwise 176.7 24,718 20835.96 248790.00

171.swim 96.0 3,159 2686.79 32088.98
172.mgrid 384.0 49,152 32759.71 388436.95
173.applu 256.0 32,768 22763.58 270278.68

this study. These benchmarks were randomly chosen from the
Spec2000 floating-point benchmark suite [25]. We made the data
manipulated by these benchmarks disk resident. As a result,each
array reference causes a disk access unless the data is captured in
the buffer cache. Also, to complete our simulations within area-
sonable amount of time, we focused only on time-consuming loop
nests from these applications. Specifically, from each application,
we selected the loop nests whose cumulative I/O times account for
at least 90% of the total I/O time of the application using theSUN
Analyzer utility. The second column in Table 2 gives the total disk-
resident data size manipulated by the selected loop nests, and the
third column shows the number of total disk requests made by each
application. The last two columns, on the other hand, give the disk
energy consumption and execution time, respectively, for each ap-
plication whenno disk power management is employed. The en-
ergy and performance numbers presented in the rest of this paper
are with respect to the values listed in these last two columns of
Table 2.

To compare different approaches to disk power management,
we implemented and performed experiments with nine different
schemes for each benchmark code in our experimental suite:

• Base: This is the base version that does not employ any power
management strategy.All the reported disk energy and perfor-
mance numbers are given as normalized values with respect tothis
version(see the last two columns of Table 2).

• TPM: This is the traditional disk power management strategy
used in studies such as [10] and [11]. In this approach, a diskis
spun down after some idleness to save power, and is spun up when
a new request arrives. Since the performance cost of spinning up
is typically large, TPM can incur significant performance degrada-
tions. Also, in order for this scheme to save power, the idleness
should be large enough to compensate for the spin-up and spin-
down latencies.

• DRPM: This is the dynamic RPM strategy proposed in [14].
Considering the predicted length of the idleness, it sets the rotation
speed of the disk to an appropriate level to save power. Therefore, it
is effective in saving power even if the idle periods are short. Note
that the RPM level used is selected based on the estimated idleness
(as in [14]) and we may incur performance penalties, depending on
the accuracy of idle time prediction.

• Compiler-directed TPM (C-TPM): This proactive scheme
lets the compiler estimate idle periods by analyzing code and con-
sidering disk layouts, and then generates TPM power-management
calls (spin down/up calls) based on this information.

•Compiler-directed DRPM (C-DRPM): This proactive scheme
performs the same estimation of idle periods as in C-TPM, butit
generates DRPM power-management calls (set rpm calls). Both
C-TPM and C-DRPM are discussed in Section 4.

• Intra-processor TPM (Intra-P-TPM): This corresponds to
our code restructuring based approach (from a single-processor per-
spective) when it is used with C-TPM. The compiler restructures
(schedules) code considering disk layout information.

• Intra-processor DRPM (Intra-P-DRPM): This corresponds
to our code restructuring based approach (from a single-processor
perspective) when it is used with C-DRPM. It uses the same (re-



Figure 11: Energy consumptions with different schemes.

structured) code as in Intra-P-TPM. The scheduling strategy used
by Intra-P-TPM and Intra-P-DRPM are explained in Section 5.1.

• Inter-processor TPM (Inter-P-TPM): This corresponds to
our code restructuring based approach (from a multi-processor per-
spective) when it is used with C-TPM. The compiler restructures
code considering disk layout information.

• Inter-processor DRPM (Inter-P-DRPM): This corresponds
to our code restructuring based approach (from a multi-processor
perspective) when it is used with C-DRPM. It uses the same (re-
structured) code as in Inter-P-TPM. The scheduling strategy used
by Intra-P-TPM and Inter-P-DRPM are explained in Section 5.2.

Note that the only modification to the input code made by C-
TPM and C-DRPM are the insertions of explicit power manage-
ment calls (which are then simulated by the disk simulator).In
comparison, Intra-P-TPM, Intra-P-DRPM, Inter-P-TPM and Inter-
P-DRPM restructure the application code using scheduling.The
necessary code modifications for these schemes are automated us-
ing the SUIF infrastructure [15], with the help of Omega Library
[22] as has been discussed earlier. As a result of these compiler
transformations, we observed that the original compilation times
were almost doubled. We believe that, considering the largebene-
fits of the approach, this increase in compilation times is tolerable.

7. EXPERIMENTAL RESULTS
The graph in Figure 11 gives the energy consumptions of our bench-
marks under the different schemes explained above. One can make
several observations from these results. First, the TPM scheme
does not achieve any disk energy savings since most of the disk
idle times in these applications are not very large as shown in Fig-
ure 12. And, for very few relatively long idle periods, the TPM
scheme fails to exploit them as well, mainly because it waitsfor
some time (at the beginning of each idle period) before spinning
down the disk (see Figure 3). In comparison, C-TPM brings about
9% energy savings by taking advantage of these few relatively long
idle periods, which demonstrates the benefits brought by proac-
tive disk power management. The second observation is that the
DRPM scheme consumes more energy than the original version
(Base), due to poor estimation of idle periods. However, itsproac-
tive version (C-DRPM) achieves nearly 24% disk energy savings
on average. Our third observation is that the best results for all
applications are obtained with the Inter-P-TPM and Inter-P-DRPM
versions. Specifically, they achieve, respectively, about38% and
43% savings in disk energy. In comparison, Intra-P-TPM and Intra-
P-DRPM save around 18% and 30% disk energy, respectively. In
other words, capturing and exploiting interprocessor diskaccess
pattern is critical in maximizing savings. In fact, Inter-P-TPM gen-

Figure 12: CDF (cumulative distribution function) curves for
disk idle times. An (x,y) point on a curve indicates that y%
of the idle times has a duration of x (ms) or lower. As men-
tioned earlier, the minimum amount of idle time required to
compensate the cost of spinning down the disk and up (under a
TPM-based scheme) is called the threshold. Based on the num-
bers from IBM Ultrastar 36Z15, the threshold is 15.19 seconds.
The results in this graph show that the idle disk times exhibited
by these array-based applications are much shorter than the
threshold value.

erates better energy savings on average than Intra-P-DRPM,mean-
ing that using a less powerful architectural mechanism withmore
sophisticated code restructuring generates better results than em-
ploying more powerful architectural mechanism with less sophisti-
cated code restructuring for this set of applications.

It is to be noted however that the energy consumption is just
one part of the big picture. To have a fair comparison betweenthe
different schemes tested, one needs to consider their performances
(i.e., execution times/cycles) as well. The bar-chart in Figure 13
gives the normalized execution times (with respect to the base ver-
sion) for the different schemes evaluated. One can observe that only
the DRPM version incurs some performance penalty, 70% on av-
erage across our four benchmarks. The reason why TPM does not
incur any performance penalty is that it is not generally applicable,
given the short disk idle times as discussed earlier. We alsosee
that all the compiler-directed schemes, C-DRPM, C-TPM, Intra-P-
TPM, Intra-P-DRPM, Inter-P-TPM, and Inter-P-DRPM, incur al-
most no performance penalty. The main reason for this is thatthese
schemes start to bring the disk to the desired RPM level before it is
actually needed (using preactivation), and the disk becomes ready
when the access takes place. This is achieved by accurate predic-
tion of disk idle periods for the application domain we target. These
results, along with those presented in Figure 11, indicate that the
compiler-guided proactive disk power management and code re-
structuring can be very useful in practice, in terms of both disk en-
ergy consumption and execution time penalty, and the best savings
are achieved by our code restructuring approach. Note that,since
our compiler approach does not increase execution times, itdoes
not cause much extra power consumption on other system compo-
nents. The only additional energy overhead is due to execution of
the inserted power management calls (instructions); but, we found
this cost to be negligible.

In the rest of our experimental analysis, we vary the values of
some of the simulation parameters, and study their impacts on en-
ergy consumption. We do not present any further performancedata,
mainly because, except for the DRPM scheme, none of the schemes
evaluated causes any substantial increase in original execution cy-
cles. More specifically, except for DRPM, the average execution



Figure 13: Execution cycles with different schemes.

time increase was always less than 1%. We focus on two impor-
tant parameters in our sensitivity analysis: disk layout and num-
ber of processors. Since disk layout has three components asex-
plained in Section 3, we study each of them separately. In each
experiment, we change the value of only one parameter; the rest
of the simulation parameters use their default values listed in Ta-
ble 1. Also, since our results with different benchmarks resulted in
similar trends and observations, we present the result for the mgrid
benchmark only.

Figure 14 gives the normalized energy consumptions with the
different stripe sizes. We see from these results that the energy sav-
ings brought by the compiler-based schemes increase as the stripe
size increases. This can be explained as follows. When the stripe
size is very small (16K), disks do not experience much idleness. In
fact, the disk idleness in this case becomes so small that even code
restructuring cannot take advantage of it. When the stripe size is in-
creased, more disk requests can be serviced by a single stripe, i.e.,
the stripe-level data reuse improves. As a result, the compiler-based
approaches have more opportunities for optimization, which in turn
helps reduce disk energy consumption. We see from Figure 14 that
Inter-P-DRPM generates the best savings with 256K stripe size,
and the difference between it and the DRPM scheme reaches its
peak at this value. The next parameter whose variation we study is
the stripe factor (the number of disks). Recall that the default num-
ber of disks used so far in our experiments was 8. Figure 15 gives
the normalized energy values under different stripe factors. An ob-
servation we can make from these curves is that, when we have only
two disks, there is not much opportunity for power saving (due to
lack of disk idleness), and (except for DRPM) all the schemesbe-
have similarly. As the number of disks is increased, disk idleness
increases, and consequently, the compiler schemes exhibita better
behavior. When the number of disks is very high (32), the diskidle-
ness reaches a very high level, and one may not need sophisticated
code restructuring in this case (for our particular data setsizes). In
fact, at this point, all the TPM-based compiler schemes behave sim-
ilarly, and all the DRPM-based compiler schemes behave similarly.

We next study how the starting disk used for striping could affect
the results. To perform this set of experiments, we generated a
random integer number (for each array in the mgrid benchmark)
between 1 and 8 to select the disk from which the array is striped.
The results for five such experiments are presented in Figure16.
We see from these results that the general trends (and our savings)
are very similar across these different layouts. This indicates that
the starting disk (for striping) may not be a very important factor as
far as our compiler-based schemes are concerned.

The last parameter whose variation we study is the number of
processors. Figures 17 gives the normalized energy resultswith

Figure 14: Impact of stripe size on energy consumption.

Figure 15: Impact of stripe factor on energy consumption.

different processor counts. As before, all other parameters are set to
their default values given in Table 1. One can see from these results
that the effectiveness of the compiler-directed code restructuring is
consistent across the different processor counts. The reason that
the C-TPM and C-DRPM schemes do not behave very well with
the large number of processors is the difficulty in insertingexplicit
power management calls, due to small iteration counts with large
number of processors. This problem does not usually exist inthe
code restructuring based schemes since they cluster idle and active
periods.

8. CONCLUDING REMARKS
Excessive power consumption is becoming a major barrier to

extracting the maximum performance from high-end parallelsys-
tems. Therefore, techniques oriented towards reducing power con-
sumption of such systems are expected to become increasingly im-
portant in the future. Since disk subsystems of parallel architec-
tures are known to consume a large fraction of the overall power
budget, they are an important optimization target. Unfortunately,
most of the prior work on disk power management focused exclu-
sively on hardware-based approaches that operate with pasthis-
tory information collected during execution. In contrast,this paper
proposes a compiler-driven approach to disk power management
for data-intensive scientific applications. The compiler in our ap-
proach derives data access pattern and, by combining this informa-
tion with disk layout of array data, it obtains the disk access pattern.
This paper demonstrates two ways of utilizing disk access patterns:
proactive disk power management and code restructuring forreduc-
ing disk power consumption. Our experimental analysis withsev-
eral applications that operate with disk-resident data sets are very
promising and show that the proposed compiler-driven approach
performs much better than existing hardware-based techniques.



Figure 16: Impact of starting disk on energy consumption.

Figure 17: Impact of processor count on energy consumption.
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