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ABSTRACT

Disk subsystem is known to be a major contributor to overagr
consumption of high-end parallel systems. Past reseangoped
several architectural level techniques to reduce disk ptyeaak-
ing advantage of idle periods experienced by disks. Whithsu
techniques have been known to be effective in certain céseg,
share a common drawback: they operate in a reactive manaer; i
they control disk power by observing past disk activity (eidle
and active periods) and estimating future ones. Conselgutey
can miss opportunities for saving power and incur signitigear-
formance penalties, due to inaccuracies in predicting adie ac-
tive times. Motivated by this observation, this paper psgsoand
evaluates a compiler-driven approach to reducing disk poae-
sumption of array-based scientific applications executimgaral-
lel architectures. The proposed approach exposes diskitlayo
formation to the compiler, allowing it to derive disk accexa-
tern, i.e., the order in which parallel disks are accessads Faper
demonstrates two uses of this information. First, we canrdag
tive disk power management, i.e., we can select the mosbappr
priate power-saving strategy and disk preactivation etrabased
on the compiler-predicted future idle and active periodpatllel
disks. Second, we can restructure the application codectedse
length of idle periods, which leads to better exploitatibawailable
power-saving capabilities. We implemented both theseagures
within an optimizing compiler and tested their effectives@sing a
set of benchmark codes from the Spec2000 suite and a disk powe
simulator. Our results show that the compiler-driven diskver
management is very promising. The experimental resultsrals
veal that, while proactive disk power management is veryotife,
code restructuring for disk power achieves the best enegyngs
across all the benchmarks tested.

Categories and Subject Descriptors
B.4.3 [Input/Output and Data Communications]: Interconnec-

*This work was supported in part by NSF grants #0444158,
#0406340, #0093082, and a grant from GSRC.

Permission to make digital or hard copies of all or part o twork for

personal or classroom use is granted without fee providatdbpies are
not made or distributed for profit or commercial advantage that copies
bear this notice and the full citation on the first page. Toyoofherwise, to
republish, to post on servers or to redistribute to listguies prior specific
permission and/or a fee.

PPoPP’05,June 15-17, 2005, Chicago, lllinois, USA.

Copyright 2005 ACM 1-59593-080-9/05/0006$5.00.

Disk Based Systems ~

A. Choudhary
ECE Department
Northwestern University
Evanston, IL 60208, USA

choudhar@ece.northwestern.edu

tions (Subsystems)+arallel 1/0; D.3.4 [Programming Language$:
Processors-Gompilers, Optimization

General Terms
Algorithms, Design, Performance, Experimentation

Keywords

Optimizing Compiler, Parallel Disk, Low Power

1. INTRODUCTION AND MOTIVATION

Power consumption is becoming an increasing concern fér hig
performance parallel systems that execute large, dagasivie ap-
plications. There are several reasons for this. First,icoatisly
increasing clock frequencies take power consumption tmédtia
levels, as noted by several recent studies [12, 13]. Seconahut-
ing servers typically contribute to a large fraction of @alepower
budget of institutions and even cities [8, 6, 7]. Third, framenvi-
ronmental viewpoint, reducing power consumption is désirfl].
Therefore, several prior efforts considered hardware aftsvare
optimizations for reducing power consumption in high-eadgtiel
systems.

Past research [14, 6, 8, 12] indicates that disk subsystépe-0
allel architectures can be a major power consumer. One way of
reducing this power consumption is to adopt architecturatim
anisms such as spinning down idle disks [10, 11, 18] or mgati
disks with reduced speed [14, 6] when some amount of latesaty ¢
be tolerated. A review of the prior work on disk power managetn
is given in Section 2. While such techniques have been showa t
effective in certain cases, they have a common drawback:dahe
erate in aeactivemanner, that is, they control disk behavior based
on observed disk activity (e.g., idle and active periods).piac-
tice, this can bring two problems. First, they may fail toestlthe
most appropriate disk power management scheme since thkir d
idleness estimation can be inaccurate. For example, ifidishess
is underestimated, these schemes behave conservativedyeict-
ing the low-power mode to be employed. Consequently, they ma
not be able to use the most aggressive low-power mode. Second
they can incur performance penalties if they cannot detezrac-
curately when an idle disk is going to be needed in the futlinés
is one of the most pressing problems facing parallel systenese
disk requests coming from individual processors can ieé# in
time, and eventually make disk idle time (and active timedis-
tion very difficult.

Motivated by these observations, this paper proposes ad ev
uates acompiler-directeddisk power management scheme target-
ing array-based scientific parallel applications executin envi-



ronments with parallel disks. An optimizing compiler is ivery
good position for the application domain and executionfpiat as
stated above. This is because the compiler can analyze dztasa
pattern of a scientific application based on a high levelesgnta-
tion of the program [26], which enables users to capture Huv t
disk resident data are accessed and shared by parallekporse
As for determining disk idle and active periods, extractiada ac-
cess pattern alone may not be sufficient, and one actuallgsnee
the disk access patternWe propose to obtain this pattern by-
posingthe layout information of disk resident data to the compiler
In other words, the proposed compiler support obtains diskss
pattern by using data access pattern and disk layout intasmgor
array data. Section 3 explains the disk access patterncériia
process we proposed in detail.

After extracting the disk access pattern, this informatian be
used in at least two ways, both of which are explored in thidyst
First, one can implement@oactivedisk power management strat-
egy. What we mean by this is to let the compiler decide thedime
at which disks are switched to a low-power operating modg ,(e.
spinning down a disk or operating it under reduced speedyeand
stored to the active status. As will be demonstrated in this p
per, this proactive scheme can bring significant additigruater
benefits over the state-of-the-art hardware-based reasttistegies.
Second, the compiler can restructure code to increase élleds
of disks, thereby allowing a more effective disk power manag
ment. We demonstrate that this restructuring can be exqgulessa
scheduling problemwhich in turn can be handled by any known
heuristic or exact scheduler. This paper discusses twanari
of this scheduling problem, one that considers the problemm f
each processor’s perspective independently and one tbatiais
for inter-processor disk sharing. Section 4 discussescpveadisk
power management and Section 5 gives the details of our ede r
structuring strategy for reducing disk power, which is th@mton-
tribution of this paper.

We built a prototype of our approach using an optimizing com-
piler [15] and measured energy savings through a disk stionla
environment. Our experimental results, obtained usingreg¢Gpec
2000 benchmarks [25] with disk-resident data sets, shotwitale
proactive disk management is very effective, code resiring
achieves the best energy savings across all the applisatsted.
Our results also indicate that the benefits of our compilereted
approach increases with increasing number of disks andsttate
sizes. Section 6 explains our experimental platform, satih en-
vironment and benchmarks, and Section 7 presents expdgdmen
data. To test the behavior of our approach under differerd-ha
ware and software parameters, we also conduct a sensgivity
in which we modify the default values of several simulati@ngm-
eters used in our experimentation, and study their impact.

This study demonstrates that an optimizing compiler careig v
successful in reducing disk energy consumption in a multiessor
environment, provided that we can convey the disk layoutrinf-
tion to the compiler thereby making the compiler aware of how
data is striped (distributed) across parallel disks. Tioeee this
paper discusses a different (non-traditional) usage ottmepiler
technology developed in the context of array-based pauagbieli-
cations with regular data access patterns. The paper assghat
a compiler-directed scheme can be much more successfuttthan
state-of-the-art hardware-based approaches to disk poaeage-
ment for array-intensive scientific applications.

2. DISCUSSION OF RELATED WORK

There has been significant past work on power management of
high-end computing systems [7, 19, 9] and low-end embedded d

vices [21, 24, 3]. Due to space concerns, we limit ourselnekis
section to disk energy optimization related studies. Irtipalar,
we focus mainly on two previously-proposed disk power manag
ment techniques.

The basic approach to save disk power is based on exploiting
disk idle times, i.e., if there is enough idle time, the diskspun
down, meaning that it is transitioned into a low-power ofiata
mode. The disk remains in the low-power mode until a new rsique
arrives. This technique, denoted as TPM (traditional powan-
agement [10, 18, 11]) in this paper, has been extensivetjiextu
in the context of mobile disks since energy consumption ibiteo
systems is an important metric to minimize. Since a TPM djsk o
erates in a reactive manner, i.e., the disk needs to be spoefape
servicing a request, it incurs some performance penaltgieral.

To cut this potential performance penalty, determining r@gh-
old value for idle period by employing either fixed or adaptap-
proaches is crucial in TPM. In this context, the thresholti@as
the minimum duration of idleness for which TPM makes sende. A
though TPM is good mechanism for conserving disk power in lap
top systems and embedded environments, recent studieshalao
that it is not a preferable option in the server or cluster dins,
due to two reasons. First, the access patterns in servetoads
are mainly small and non-contiguous, and consequently, idie
times are not long enough to accommodate TPM. Second, fer per
formance reasons, server class disks are operated at aigéry h
RPM (revolutions per minute), typically above 10K RPM, ahd t
disk spin-up/down times are really long, which in turn makes
threshold value very large.

Since exploiting idle time is hardly a viable option in thees
class disks, [14] proposed dynamic RPM (referred to as DR#®PM i
this paper) in which the disk hardware/controller provideseral
RPM steps. Note that, the higher RPM a disk spins at, therfaste
it services the I/O requests, and the higher power it consure
application that executes on a platform with DRPM capabddn
select disk speed dynamically at runtime to achieve ther@toal-
ance point between energy consumption and execution time. |
sense, DRPM is similar in principle to CPU voltage scalinthte
nigues proposed in literature because the selection of Riepl s
is made based on the change in the average disk response time
recorded fom-request windows. Note that DRPM also incurs per-
formance penalty because a lower RPM can potentially degrad
response time. This can occur because a hardware-based DRPM
strategy (like TPM) works with an estimation of disk idle 8m
If the estimation is not accurate, DRPM can select a wrong dis
speed. It has been observed by the prior research [14] thBMVMDR
can save significant amount of disk power by exploiting evaals
idle times, and it incurs relatively small performance pggneom-
pared to TPM. Another technique based on modulating diskdpe
has been proposed and evaluated in [6]. In the rest of thierpap
the term “low-power mode” (or “low-power state”) refers tither
a disk which is spun down (in TPM) or a disk whose speed is set to
a lower RPM than the maximum RPM supported by the architec-
ture (in DRPM). The focus of our approach is on maximizing the
effectiveness of TPM and DRPM by scheduling the order of disk
accesses in parallel disk based systems. Therefore, ouwaabp
can work with both TPM and DRPM based 1/O systems.

In [16], Heath et al. describe an application code transftion
technique for energy/performance-aware device managei@en
work is different from their work in three aspects. First, @elu-
sively focus on disk power management by making use of proac-
tive power mode selection and by employing a code transfiooma
strategy oriented towards increasing disk idle times. mpgarison,
[16] tries to make best use of available buffer space. Caressty,
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the code transformation approaches employed by the twaestud = :
are entirely different from each other (as the objectivesdiifer- Access Lg'yf)‘jn —— _
ent). The second difference is that our focus is on servestiet hatter l\// \\ | Stiee
disks, while [16] concentrates on laptop disks. Thereftirey do \ / VAW
not address the problem of compiler-driven use of DRPM, tvhic _
is the main mechanism to save power in server class disksd, Thi e
since these two efforts target different execution envirents, they Pattern e e
use different set of applications. In contrast to [16], aaus is on ”
arallel Disks

array-intensive scientific applications that spend a |&etion of . o ) o
their power budget on the disk subsystem. Since the strategy Figure 1: (a) Det.ermlnlng disk access pattern. (b) Stripingan
posed in [16] is a generic scheme (not exclusively for diskap array over four disks.
can also envision it to co-exist with our scheme under a uhifie

optimization framework.

Disk Layout

Data Access Pattern

3. DISKACCESS PATTERN EXTRACTION [ 2,3,4,5,0,1,2,3,15, 12 }

Our focus is on array based scientific applications with affef-
erences. One of the important characteristics of thesécapiphs
is that their data access patterns can be analyzed by anizipim
compiler and can be reshaped for different purposes suchtas o
mizing data locality or improving parallelism. [ <dg, ty>, <dy, t;>, <dp, t,>, <d, t> ]
One of the requirements for being able to use a compiler in re-
ducing disk power consumption is to capture how paralldiglae
accessed at a high level (i.e., source code level). We useettime Figure 2: A data access pattern and the corresponding disk
disk access patterim this paper to refer to the high-level informa-  access pattern.< d;, t; > means that diskd; is (estimated to
tion on the order in which parallel disks are accessed byengip- be) used fort; cycles.
plication code. This order is important since it determjfieseach
disk in the system, active and idle periods, which is the prim

Disk Access Pattern

information used for power management as explained in @e2ti defined by the user via thjgvf s _fi | est at structure is passed
Disk access patterns can be extracted at the loop iterdtop, to thepvf s_open() call's parameter. When creating a file from
nest, procedure, or even larger granularities. To obtamirtiior- within the application, this layout information can be maudeil-

mation, the compiler needs data access pattern of the apptic able to the compiler as well, and, as explained above, theitem
code being optimized and disk layout information for arrayad uses this information in conjunction with the data accestepait
(see Figure 1(a)). The first of these can be obtained by anglyz  extracts to determine the disk access pattern. On the o#imet, fif

the application source code. Since such an analysis isrpegtbby the file is already created on the disk system, the layoutrimdion
many optimizing compilers for different purposes (e.gtimjzing can be passed to the compiler as a command line parameter.
loop-level parallelism or cache locality), we do not disits de- The important point to note here is that we assume each data
tails in this paper. As for the second parameter needed, opope array manipulated by the application is stored in a sepditaten

to exposethe disk layout information to the compiler. In this way, the I/O systerh Since each file can have a different triplet of the
the compiler will be aware of how array data is striped actbhss kind shown above, each array can have a different disk layaun

parallel disks, and can optimize the code accordingly. the others. While determining power-efficient disk layatgslf is
We next discuss what type of disk layout abstraction is n@ede an interesting research topic that we want to tackle in theré
by the compiler in the proposed approach. File striping iscit in this paper we concentrate on code restructuring for lowgvo
nigue that divides a large data into small portions and sttirese As a consequence, we assume that the disk layout informistion
portions on separate disks in a round-robin fashion (asctkgpin given to the compiler, which subsequently uses it for deieinmg
Figure 1(b)). This permits multiple processes to accederdifit disk access patterns.
portions of the data concurrently without much disk coritent Figure 2 shows a sample data access pattern and the corlespon
While striping can be performed manually, many file systeoas t  ing disk access pattern. This disk access pattern is oltainger
day provide automatic support for it, as will be explainetblae In the disk layout shown in the same figure. In this layout, fer il
this work, we represent disk layout of an array using a ttiplehe lustrative purposes, the twelve elements of an array ateltited
form: (striped) across four diskgl{ throughds). In the disk access pat-
tern, a< d;,t; > means that diskd; is used fort; cycles. ¢;
(startingdisk, stripefactor, stripesize). is estimated by the compiler. It is to be noted that the coenpil

can represent a disk access pattern using different remie¢®ms

The first component in this triplet indicates the disk fromisth ~ and with different granularities. Since a given disk acqesttern

the array is started to get striped. The second componeas giv captures idle and active periods for each disk and theirtidumns
the number of disks used to stripe the data, and the third com- it can be used for proactive power management (Section 4) or t

ponent gives the stripe (unit) size. Note that the severakeau restructure code to increase idle periods (Section 5).
file systems and /O libraries for high-performance commpro-

vide APIs to convey them the disk layout information when the
file is created. For example, in PVFS [23], one can change the
default striping parameters by settibgse (the first I/O node to

be used)pcount (stripe factor), andgsi ze (stripe size) fields 1Our approach can be modified to handle other scenarios as well
of thepvf s_fil estat structure. Then, the striping information  e.g., multiple arrays per file, or multiple files per array.




4. PROACTIVE DISK POWER
MANAGEMENT

After extracting disk access patterns, the compiler cagrirex-
plicit disk power management calls (instructions) in ajppiate
places in the source code. The purpose of these calls va#esib
on the underlying disk capabilities (e.g., TPM versus DRPRbY
TPM disks, we usespi n_up() andspi n.down() calls. The
format of thespi n_down() call is as follows:

spi n.down(d;),

wheredi sk; is the disk id. Since a disk access pattern indicates
not only idle times but also active times anticipated in theurfe,

we can use this information freactivatedisks that have been spun
down by aspi n.down() call. To determine the appropriate point
in the code to start spinning up the disk (that is, preadtwgtoint),

we take accounts of the spin-up time (delay) of the disk, (ire
time it takes for the disk to reach its full speed where it carfgrm
read/write activity). Specifically, the number of loop &é&ons be-
fore which we need to insert the spin-up (preactivation|) cah be
calculated as:

Tsu
Qsu = (mL

where Q.. is the preactivation distance (in terms of loop itera-
tions), Ts,, is the expected spin-up timd},, is the overhead in-
curred by aspi n_up call, ands is the number of cycles in the
shortest path through the loop body. It is to be noted fhatis
typically much larger thas. The format of the call that is used to
preactivate (spin up) a disk is as follows:

spi n_up(d;),

where as beford; is the disk id. Note that, if we do not use pre-
activation, a TPM disk is automatically spun up when an axces
(request) comes; but, in this case, we incur the associaiaeup
delay fully. The purpose of the disk preactivation is to éfiate
this performance penalty. While our discussion so far hasged

on the TPM disks as the underlying mechanism to save powsr, th
compiler-driven proactive strategy can also be used wittPBIR
disks. The necessary compiler analysis and the disk ace#ssmp
construction process in this case are the same as in the TB# ca
The main difference is how the disk access pattern colléstased
(by taking the times to change disk speed into account) andetlis
inserted in the code. In this case, we employ the followirg ca

set RPM rpml evel j, d;),

whered; is the disk id, and pml evel ; is thejth RPM level
(i.e., disk speed) available. When executed, this calgsrthe disk
in question to the speed specified. The selection of the appro
ate disk speed is made as follows. Since the transition tioma f
one RPM step (level) to another is proportional to the déffere
between the two RPM steps involved [14], we need to consfkder t
detected idle time to determine the target RPM step. Comrseiyy
we select an RPM level if and only if it is the slowest avaitabl
RPM level that does not degrade the original performance.

It must be mentioned that a wrong placement ofgpen_up() ,
spi n.down(), andset _-RPM ) calls in the code doewot create
a correctness issue. In the worst case scenario, they sgcesacu-
tion cycles and/or energy consumption. For example, praraigt
spinning down a disk (in the TPM-based architecture) dethgs
time to service the next request, and leads to some extrgyener

Spin - L | — Ty %
Hardware-based 4\—

TPM Time
Active Idle Active
Spin 1
r T,

Compiler-directed i
TPM Time

Active Idle Active

Figure 3: Comparison of the hardware-based TPM and
the proposed compiler-directed TPM. In the hardware-based
scheme, periodr’, is for detecting idleness andl’s., is the spin-
up latency. The compiler-directed scheme can eliminate thien-

pact of both these latencies.

consumption. Similarly, selecting a wrong RPM level to usdhe
DRPM-based architecture) can increase disk energy corgmp
(if the selected level is faster than the optimal one) or etien
time (if the selected level is slower than the optimal one)either
case, however, this is not a correctness issue. Notice reoweat
the compiler places these power management calls into tthe co
based on the disk access pattern it constructs for each Siske
the compiler is conservative in handling the control flowhiit
the loop bodies (i.e., it assumes that all branches of a tondl
construct can be taken at runtime with an equal probahilttyg
information it extracts (regarding disk idle/active timasay not
be hundred percent accurate. The experimental resultergsss
in this paper include such inaccuracies arising from theeirfget
knowledge of the future access patterns. Notice also thie wiis
compiler-directed proactive management can be very éfeeat
reducing disk power (as will be shown by our experimentalyana
sis), one can go beyond this by restructuring the source sotteat
disk reuse can be increased significantly. The second batitn
of this paper is such a compiler-guided code restructuriragegy,
and is explained in the next section in detail.

Figure 3 illustrates the difference between the hardwaset
TPM and the compiler-directed TPM. Compared to the hardware
based TPM, our approach has two advantages. First, the leampi
directed TPM can put idle disks in low-power mode earlienttiee
hardware-based TPM can do. Second, the compiler-dirededd T
can avoid the performance overhead, using preactivatioe,td
the spin up latency when an idle disk is accessed. Figuresépte
our compiler algorithm for disk energy optimizatiénOur algo-
rithm works in two steps. In the first step, we buildl@op Transi-
tion Graph(LTG) for a given procedurg Each node.; inthe LTG
corresponds to a loop nest in the procedure. A loop nest whase
cution time is longer than a given thresha@)ds recursively broken
down into smaller loop nests until no loop nest contains atgrnal
loop, or the execution time of the loop is shorter tlianEach edge
(from L; to L;) in LTG has a tad”;, ;, indicating the condition un-
der which the flow of execution transitions from loop nésto L ;.
Figure 5(b) shows an LTG for the code fragment in Figure 3(a).
the second step, our algorithm inserts code to the prograspito
up/down the disks. Specifically, for each naflgin LTG, our al-
gorithm inserts, before the entry &f;, thespi n_.down calls for
the disks that are not accessed.in Further, if nodel; has a suc-
cessorL; that accesses a disk that has been spun dowh,ime

2Due to lack of space, we give the formal algorithm only foreiris
ing spi n_up andspi n_down calls. The algorithm for inserting
theset _RPMcalls is similar.

30ur current implementation is applied to each procedura-sep
rately; i.e., we do not perform any inter-procedural opzation.



procedure loopTransformation()
buildLTG();
transform();

}

procedure buildLTG(X
for each outermost loop;
addNode(;);
for each nodel;) in the LTG
determine disk access pattein;
for each pair of nodesl(; andL;) in the LTG
determine transition conditio@’; ;;

}

procedure addNodég) {
if(execTime(;) > Q andL; contains inner loops)
for each outermost loop; in L;
addNode(.;);
} else{
add nodel; to the LTG;

}
}

procedure transform()
for each nodd_; in the LTG{
if(execTime(;) > Q) {
for each diskd,,
if(D; ] = 0)
insert before the entry of loop nekt:
“spi n.down(dg)";

if(exists L; Ty L; such thad[5]&d[i] # d[4]) {
split L; into two consecutive loop nest&;; and L/
such that execTimé() = Qsu;
for each diskd; such thatD;[x] = 0
for each loop nest ; such thatZ; Giyg L;
if(D;[z] = 1)
insert before the entry of !/
if( Cs,5) spi nup(dz)";
}
}
}

Figure 4: Compiler algorithm for inserting disk power man-
agement calls in a given code fragment.

split L; into two consecutive loop nest&, and L), such that the
execution time ofZ;’ is equal toQ., the time required to spin up
a disk. BeforeL;’, our algorithm inserts thepi n_up calls for the
disks that will be used if;. By doing this transformation, we hide
the performance overhead due to disk spin up. That is, asiexol
earlier, this preactivation eliminates potential perfarmoe penalty.
Figure 5(a) shows an example code fragment, and Figure by g
the corresponding LTG. Figure 5(c) is the transformed codg-f
ment after applying our algorithm.

5. CODE RESTRUCTURING FOR REDUC-
ING DISK ENERGY CONSUMPTION

In this section, we present a strategy that restructuresengi
procedure for increasing the benefits that could be obtdimed
the proactive scheme discussed above. This code restnucap-
proach operates on a graph representation callddtieProcessor
Disk Access Grapfor IDAG for short). An IDAG is composed of
a number ofProcessor Disk Access GrapliPDAGs). Each node
in an IDAG represents a set of loop iterations (as will be aix@d
shortly), and the directed edges between nodes captureleiaesn-
dences.

forI; = 0to Ny {
for I = 0to Na {
Lqi:forI3 = 0to N3
accessdy, d1;
Lo:forIy = 0to Ny
accessdp, ds;

forI; =0to Ny {
for I = 0to N2 {

spi n.down(dz, ds);

Ly:forI3 = 0to N
accessdo, d1;

if(true) spi n_up(ds);

LY:forIs = N3 — Qqu to N3
accessdg, d1;

L%: spi n.down(dy, da);

forIy = 0to Ny — Qsu — 1;
accessdo, ds;

if(I2 < N2)spin.up(di);

if(I2 = N2) spi n_up(da);

Ly:for Iy = Ny — Qsu to Ny
accessdg, ds;

}
Ls: for Is = 0to N5
accessiy;

}
L4: for Is = 0to Ng
accessds;

(a) Original code fragment.

}

spi n.down(dy, do, ds3);

Li:forIs = 0to N5 — Qoo — 1
accessdy;

if(11 < N1)spin.up(do, di);

if(I1 = N1) spi n.up(ds);

Ly:for Is = N5 — Qqu to N5
accessdy;

}

spi n.down(do, d1, d2, d4);

L4: for Is = 0to Ng
accessids;

(b) Loop Transition Graph
(LTG) for the code fragment
in (a8). Nodes L, Lz, Ls,
and Ly correspond to the loop
nests with labels |, L2, L3,
and Ly, respectively.

(c) Transformed code frag-
ment. The loops L, Lo, and
Ls in (a) are split. For exam-
ple, loop Ly is splitinto L} and
7, and the estimated execu-
tion time of LY is equal toQ s,

Figure 5: An example that illustrates proactive disk power
management.

We assume that the set of loop iterations that will be exeldoye
each processor has already been determined prior to ajppreac
this purpose, either user-assisted (e.g., [20]) or comgilected
(e.g., [2]) code parallelization methods can be employdte Je-
lection of the method to be used for assigning loop iteratitm
parallel processors in the system is orthogonal to the fo€tisis
paper. LetZ, represent the set of iterations assigned to processor
p (as a result of loop parallelization), whebe< p < P — 1. We
note that, for any legal parallelization scheme, we have:

P-1

U Ip = Itotah

p=0

whereZ; .+, is the set of total iterations in the procedure (including
all the loop nests).

We attach aag, denotedT’, consisting ofD bits, whereD is
the number of parallel disks in the 1/0O system, to each itemak
in Z,. A bitin the dth position of T (0 < d < D —1)is 1if
and only if loop iteration] accesses disk.* Otherwise, we set
this bit to 0. For the sake of explanation, we assume existehc
a function callectag() that gives the tag of any iteratiah given
as input. Now, we can classify the iterationsZininto 27 classes.
The common characteristic of the iterations assigned tassdb
that they have the same tag. In mathematical terms, we have:

Iy ={I | tag(I) =T},

that is,Z,, r holds the loop iterations that are assigned to processor
p and have the tag@'.

Iel, A

40ur approach is conservative in the sense thdt ifiay access
disk d (depending on conditional execution flow at runtime), we
conservatively set the corresponding bit to 1.



Note that, from the disk power management perspective, it is

beneficial to execute iterationsip r one after another. This is be-
cause all the iterations in this set access the same setksf disd
the remaining disks can be placed into a low-power mode durin
these accesses to save power. However, it is also impodala-t
termine a good execution order for differéft rs. In Sections 5.1
and 5.2, we present scheduling schemes, where the probtem-is
sidered from single processor’s perspective and multt¢ssors’
perspective, respectively. What we mean by “schedulingthia
context is an order in which the nodes in an IDAG (or PDAG when
considering from the perspective of a single processor)eaes
cuted. In Sections 5.1 and 5.2, we explain our approachpasgu
that PDAGs (or IDAG) in question areycle-free. Later in Sec-
tion 5.3, we discuss code transformations to eliminateesy@h
IDAG/PDAGSs. After these code restructurings, the resgltnde

is further modified by inserting the proactive disk power e+
ment calls as has been discussed in Section 4.

5.1 Single Processor Perspective
EachZ, r class (set of iterations) is represented by a node in

PDAG,, the PDAG for processas. We can formally define a data
dependence froif, r to Z,, - as follows:

.

true, if3I € 7, v, I’ € Z, 7 : suchthatl — I’

!
dep(p, T, T) false, otherwise

where symbol— represents a data dependence. We have an di-

rected edge in PDAgGfrom the node that represerifs r to the
node that represents, 7 if and only if dep(p, T, T") holds true.

We now discuss how PDAGcan be scheduled to reduce energy
consumption in disk subsystem. As we discussed earlies,iihi
portant to schedule the iterations in a class one after anotihis
is not difficult to achieve if we just schedule these itenagiguch
that any two iterations keep their relative orders in thgiodl iter-
ation space traversal (due to our cycle-free assumptioayvetder,
as mentioned above, effectiveness of disk power manageatsmt
depends on the order in which the nodes in PRA®e traversed.
Specifically, to keep a given disk in the idle state for londera-
tions of time, we need to select the next node to schedulethath
between the two consecutively scheduled nodes, the disks ma
tain their status as much as possible. Since each node eefses
class (a set of iterations) and the tag attached to it ineicas the
disks it uses (and the disks that it does not use), one carhisse t
information to select the next node to schedule.

@ [Step| Random | Hamming Based|
[ | dodidads | dodidads |

1 1001 1001
@ @ 2 0110 1000
3 1000 1100

4 1100 0100

@ @ 5 0100 0110

Figure 6: Left: An example PDAG. Right: Two different
scheduling.
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Figure 7: Example optimization schemes (low-power modes).

periods are clustered together; so, we will also have diedtille
periods for the disk (later when we visit the remaining aa3$s
Based on this observation, from the viewpoint of a singlepssor
(p), the problem of reducing disk energy consumption becomes o
of scheduling a group of nodes taking accounts of some @intgr
(inter-class dependences) to minimize (optimize) somedaibge
function (minimizing the Hamming distance between the nemb
of successively visited classes).

To demonstrate how such a scheduling can be beneficial, we con
sider the PDAG shown on the left side of Figure 6. Each node is
annotated using its tag (assuming an I/O system with 4 digk®
column titled “Random” on the right side of Figure 6 gives gdke
schedule, wherein the next node to be scheduled is seleated r
domly (by observing the dependences though). Assume tloat ea
node takes the same amount of time. Assume further that wee hav
three power optimization schemes that operate as folloaesK&y-
ure 7). The first schemé() is applicable when we have, for a disk,
two consecutive “0”s in the schedule (i.e., the same disiiésin at
least two successively-scheduled nodes). The second sdfSein
and the third schemeS§), on the other hand, are applicable when
we have at least three and four consecutive “0”s in the sdbedu
Based on these power modes, the “Random” scheme cafuse
for the third disk ¢2) and S5 for the fourth disk {3). In compari-
son, the last column of the table on the right side of Figuredis

We use a Hamming distance based approach to select the nexthe result of our scheduling that minimizes the Hammingadise

node to schedule. More specifically, the following obsaoragjuides
us in selecting a suitable order of scheduling for classes:

If Z,, 7 andZ, 1+ are the two nodes (in PDAS that
are successively visited whe¥e and T’ are the re-
spective tags, the variation in disk activation and disk
idleness patterns in going frof), r to Z,, 1 is a func-
tion of the Hamming distance betwe€ErandT”.

For instance, in an 1/0 system with eight disks, if we schedul
Ip,01101010 andZ, 01100101 ONE after another, the first four disks
preserve their states (during this transition), whereasemaining
four disks change their states. Minimizing the Hammingatise
between the tags of classes that are visited successivgdgfsl in
reducing the disks energy consumption. In other words, fpven
disk in the 1/O system, in going from one class (node) to agmth
it is better to keep the states of the disks (active or idlmjilar
as much as possible. This is because if the first state is Ohend t
second is also 0, the disk in question will have a long idleqaer
(which is good from an energy consumption viewpoint); amdisi
larly, if both the states in question are 1, this means thatthive

between the successively-scheduled nodes, as explainee. alve
see that this schedule is able to use sch&mfor disksdy andd1,
and schemes for disksd2 andds, a much better situation com-
pared to the random scheduling case. This small exampierilies
how scheduling can impact the opportunities for disk powanm
agement.

5.2 Multi-Processor Perspective

An IDAG is constructed from individual PDAGs. One poten-
tial problem with the single processor based approach mqia
above (that operates on individual PDAGS) is that the sdheglis
performed for each processor independently. Consequevitiie
the resulting schedule can appear very good from the peigpec
of a given processor (as far as reducing disk energy is coadgr
when IDAGs are considered together (i.e., the individubesltles
are executed in parallel by observing data dependencessaoro-
cessors), they may not perform well. To illustrate this pdigt us
consider an IDAG for a two processor based system with 4 disks
(see Figure 8(a)). As before, each node is annotated usinagt
Let us assume, for simplicity, each node takes the same tife (
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(a) An example IDAG constructed from PDAGs of processors
po and ps.

dodldgdg d0d1d2d3
Time| po p1 | Usage| Time Po p1 Usage
1 |1000[0100] 1100 1 1000 | 0100 | 1100
2 [0100(1000| 1100 2 1001 | 1000 1001
3 [1001|1011| 1011 3 0100 | 1010 1110
4 |0011|1010( 1011 4 0001 | 1011 1011
5 |0001|0010| 0011 5 0011 | 0010 | 0011
6 |0111|0110| 0111 6 0111 | 0110 | 0111
7 [1110f1111) 1111 7 1110 | 1111 1111

(b) Scheduling obtained us- (c) Another legal scheduling.
ing our algorithm.

Figure 8: An example application of our scheduling approach

cycles) to execute. In Figure 8(c), the columns titledpasand

p1 give the schedules for the two processors (when each sehedul
is optimized independently as explained in Section 5.1)e [Bist
column (marked “Usage”), on the other hand, gives the disiges
when the interleaving effect of these two schedules arentake
account (i.e., each entry in the last column is the resuliteivise
OR of the corresponding entries in the second and third cadim
Under the same power-saving schemes assumed aboveS(i.e.,
S2, and.Ss in Figure 7), looking at the “Usage” column, we see
that scheme5; can be used for diskdo, d1, anddz, and there is
no opportunity for applyingss or Ss. Figure 8(b) shows the result
of our proposed scheduling. This scheduling, whose algoriwill

be presented shortly, captures inter-processor effedtsemults in
the disk usage shown in the last column of Figure 8(b). It can b
observed that, in this case, we are able to use scttanfier disks
do, d2, andds and scheme; for disk d; .

Our scheduling algorithm for an architecture withprocessors
and D disks is given in Figure 9. This algorithm takes an IDAG as
input, and determines the schedule of nodes for each parcegs
considering the global (inter-processor) usage of thesdigkises a
D-bit global variableG to represent the current usage of the disks.
It schedules a node that is ready to be scheduled for eachgsarc
that finishes its current task. At each step, the algorithshtfiies to
schedule the node whose disk requirement can be satisfiedheit
current active disks, i.e., we can execute this node wittemutiring
any disks currently in low-power mode. If multiple nodesisfgt
this criterion, we select the one that requires the maximumbrer
of disks to make full utilization of the currently active Hss If such
a node does not exist, our algorithm schedules the node whgse
is the closest (in terms of Hamming distance)ipthe bit pattern
that represents the current disk usage (i.e., the disk usatiat
particular point in scheduling). This is to minimize the rien of
disks whose (active/idle) states need to be changed.

5.3 Node Merging and Node Partitioning

In some cases, an IDAG may contain cycles which prevent a le-
gal traversal (scheduling). We refer to these types of IDAGS
cyclic IDAGs. To schedule such graphs, we need to apply some
node transformations and eliminate the cycles. An examyakcc
IDAG is illustrated on the left side of Figure 10 for an I/O sys
tem with 4 disks. Notice that the nodes (classes) with tagd 11
0001, and 0010 form a cycle, hence the IDAG shown in the figure
is not scheduleable. We handle such graphs using two tasksiq
referred to amode mergingindnode partitioningin this paper.

|a — b] — Hamming distance between the clgds}, and{I},
las{i] — the last class (node) executed on processor

schid¢] — set of nodes already scheduled on processor
canschi] — set of nodes that can be scheduled on processor
nexttime[i] — the time when the current node on processsifinished
G — global disk usage bit vector

P — number of processors

D — number of disks

| — bit-wise “or”

& — bit-wise “and”

U — unordered set union operation

@ — ordered set union operation (used for adding a node to set

fori:=0to P — 1do{
nexttime[s] = 0;
lasts] := 0;
}
G:=0;
while(exists unscheduled nodes) {lo
/I determineS — the set of processors that are ready
/I to schedule new nodes
t=o0;
fori:=0to P — 1do
if(nexttimefi] < t) {
S:={i};
t := nexttime[];
} else if(nexttime[z] = t)
S:=Su{i};

/I determinel/ — the minimum upper boundary of the disk
/I usage after scheduling new nodes
U:=aG,
for eachi € S do{
/I X —the set of loop nests that can be scheduled
/I on P; without turning on new disk
X :={z|z € canschi| and {[z]&U) = d[z]};
if(X = )
X = canschi]; // allowing turning on new disk
selectz € X suchthafxz — U| is minimized,;
U :=Ul|d[z];

/I schedule nodes on the processors that have
/I finished with the previous nodes
for eachi € S do {
X = {z|z € canscHi] and {[z]&U) = d[z]};
selectr € X such thafz — U| is minimized;
/I scheduler on P;;
schid4] := schidi] & z;
nexttimel[i] += t[x];

lasts] := d[z];
}
/I determineG — current usage of disks
G =0

fori:=0toPdo{ G:=G |lasfi]; }

for 7 := 0 to P do { update carsch¢];}

Figure 9: Proposed scheduling algorithm.

5An alternate approach would be constructing the IDAG in desyc
free manner in the first place. We omit the detailed discusefo
this alternative, since the results it generated were vienilas' to
those obtained using node partitioning.



Ouir first transformation, node merging, combines all theaesod
involved in a cycle into a single node. All incident edges ba t

nodes merged become incident edges on the combined node. The

upper right part of Figure 10 illustrates how the nodes thahfthe
cycle in our example can be merged, resulting in a schedealeab
(acyclic) IDAG. The important point here is that node meggoan

be useful even when we do not have any cycles. This is because

merging two nodes typically reduces the overhead to be iiadur
by the generated code and code expansion. One can see tltis by o
serving that the number of classes grows exponentially regpect

to the number of disks. Therefore, if the underlying diskissys-

tem has too many disks, we may end up with too many nodes in the

IDAG, and for each node we need to generate a different caxe (a
will be explained in the following subsection). In such se-
ducing the number of nodes in the IDAG can be very useful since
reduces the size of the generated code and improves perfoena
However, a potential drawback of node merging is that thescla
that represents the combined node accesses in general iskse d
than the individual classes representing the nodes mengkexe
specifically, the tag of the combined node is the logical(b#e)
OR of the tags of the constituent nodes. For example, in EigQr
the tag of the resulting node is 1111, obtained by bit-wisen@R
1101, 0001, and 0010.

The other technique that can be used for eliminating a cycle i
PDAGI/IDAG is called node partitioning in this paper. Thiaris-
formation is in a sense the opposite of node merging, andrgene
ates multiple nodes from a single node. To illustrate howpit o
erates, we consider the original cyclic IDAG shown on the lef
side of Figure 10 again. The lower part of the same figure-illus
trates the acyclic IDAG obtained by partitioning the nodéhwtag
“1101". Itis assumed, for illustrative purposes, that aftes par-
titioning, there is a dependence from node “1001” to one ef th
new nodes, and another dependence from node “0010” to tke oth
new node. Notice that, in the worst case, each of these neasnod
inherits the tag of the original node (as in the case of Figue
In general, the possibility of node partitioning can be deecas
follows. Let us assumé& = I, 1, UZ, 1, U ... UZp 1, , Where
Ip, 1y Ip, 15, - Ip,T, are the nodes in a cycle. We select a node
Zp,1, and split it into two nodes [, r+ andC,, 1) such that all
the following constraints are satisfied:

Tprr NKprir = ¢ (1)
{J—=K|JeTyr , KeKyrn}=¢ 2)
=X\ JeTpr, XTI -Tpyr,}=¢ 3)
(X 2 KIX€T-Tpr, KKyl =06 (4

Note that, if no node in the cycle can be split with respechasée
constraints, we cannot eliminate that cycle by applyingenpdr-
titioning. In our current implementation, to eliminate aclg; we
first attempt node partitioning. If it does not work, we usel@o
merging.

5.4 Implementation Details

This section gives details of how we generate scheduled. code
The main issue here is to generate code for a given clgss)(
While one can propose an approach employing classical taog-t
formations such as loop tiling and loop interchange for this-
pose, such an approach would not be sufficient, mainly bedhes
iterations that belong to a class may not form a set that caajpe
tured by these (structured) code transformations. Instieatthis
study, we use a polyhedral tool called the Omega Library tege
ate code. The Omega library [22] is a set of routines for maatp
ing linear constraints over integer variables, Presbuigenulas,

Figure 10: An example that illustrates node merging and node
partitioning.

and integer tuple relations and sets. In our context, thisuty can
be used for generating code that enumerates the iteratiahbe-
long to a given class. To see this, consider a scenario wheestad
loop accesses the arrays stored in an 1/O system that cooftsto
disks (each can hold 45 elements for illustrative purpodes) us
assume that there are two arrays accessed in the Uiestd V),

and that the array-to-disk mappings are as follows:

do :
d1:

{U]i]]1 <3 <30} U{V][i|1 <1i <15},
{V[i]|16 <4 < 30}.

We also assume that the references used in the nesf[drand
V[31 — 4], and that the loop iteratof)(takes values between 1 and
29. Using these mappings and references, we can @jite, the
class that contains iterations which access aplyas:

Ip0 {if(1<i<29) A (1 <4 <30)

A(1<31—i<15)A—(16<31—1i<30)}

The first constraint in this formulatioril < ¢ < 29), comes from
the loop bounds. The second and third constraints ensur¢htna
array elements accessed byandV fall into the first disk @o).
Finally, the last constraint guarantees that the elemefésenced
by V' do not reside in the second disk §. By simplifying this set
formulation, we obtain:

Zpao = {i] (16 < i <29)}.

Then, using the Omega Library’s code generator, we canrobtai
a loop nest that enumerates only these iterations. With dasim
analysis, we can also show that:

Ip,Ol =@ and Ip,ll = {7,| (1 <1< 15)}.

6. EXPERIMENTAL SETUP

To generate disk access patterns for our benchmark progveans
designed and implemented a trace generator. This traceagene
creates a trace for each processor. The generated traceh(vdp-
tures parallel disk accesses) is then fed to the simulatw.cfcle
estimates for the loop nests were obtained from the actwaduex
tion of the programs on a SUN Blade1000 machine (UltraSPARC-
Il architecture operating at 750 MHz with Solaris 2.9) ahdde
estimates were used in all our simulations. In addition ®ItD
trace file, the simulator needs the disk layout informatianeach
array, which includes stripe unit size, striping factore(tumber



Table 1: Default simulation parameters.

[ Parameter Value |
Processor Parameters
Number of Processors 8
Processor Clock Frequency 1.5GHz

Parameters common to TPM and DRPM

Disk Model IBM Ultrastar 36215
Interface SCsl
Storage Capacity 18 GB
RPM 15,000
Average seek time 3.4 msec
Average rotation time 2 msec
Internal transfer rate 55 MB/sec
Power (active) 13.5W
Power (idle) 10.2W
Power (standby) 25W
Energy (spin down: idle— standby) 133
Time (spin down: idle— standby) 1.5sec
Energy (spin up: standby- active) 1357
Time (spin up: standby- active) 10.9 sec
Parameters specific to DRPM
Maximum RPM level 15,000 RPM
Minimum RPM level 3,000 RPM
RPM Step-Size 3,000 RPM
Window Size 250
Striping Information
Stripe unit (stripe size) 64 KB
Stripe factor (number of disks) 8
Starting iodevice (starting disk) 0

of disks), and starting iodevice (disk). Using disk layoatgme-
ters and traces, the simulator determines, for each reghesiyO
node(s) that need to be accessed and the duration of accessfo

Table 2: Benchmarks and their characteristics.
Data Number of Base Execution
Name Size(MB) | Disk Reqs | Energy(J)| Time(ms)
168.wupwise 176.7 24,718 20835.96 | 248790.00
171.swim 96.0 3,159 2686.79 | 32088.98
172.mgrid 384.0 49,152 32759.71 | 388436.95
173.applu 256.0 32,768 22763.58 | 270278.68

this study. These benchmarks were randomly chosen from the
Spec2000 floating-point benchmark suite [25]. We made th& da
manipulated by these benchmarks disk resident. As a resdh
array reference causes a disk access unless the data iseckiptu
the buffer cache. Also, to complete our simulations withirea-
sonable amount of time, we focused only on time-consuming lo
nests from these applications. Specifically, from eachiegipbn,
we selected the loop nests whose cumulative I/O times atdéoun
at least 90% of the total I/O time of the application using $téN
Analyzer utility. The second column in Table 2 gives the ltdisk-
resident data size manipulated by the selected loop nexishe
third column shows the number of total disk requests madebly e
application. The last two columns, on the other hand, gieedibk
energy consumption and execution time, respectively, dohep-
plication whenno disk power management is employed. The en-
ergy and performance numbers presented in the rest of thier pa
are with respect to the values listed in these last two cotupfn
Table 2.

To compare different approaches to disk power management,
we implemented and performed experiments with nine differe

1/0 node. We assume that each 1/O node has one disk and no fur-schemes for each benchmark code in our experimental suite:

ther striping is applied at the 1/0 node level, i.e., the dststriped
across the 1/0 nodes only. In our simulator, the stripingrinfa-
tion is provided from an external file along with other sinmida
parameters. The default simulation parameters are givéalle 1.

Our disk power simulator, which is similar to DiskSim [5], is
driven by externally-provided disk I/O request traces, alahare
generated, as explained above, by the trace generator. |IEach
request is composed of the following five parameters:

e The id of the processor that issues the request.

e Request arrival time: Time in milliseconds specifying timeet
at which the disk request arrives.

e Start block number: An integer specifying a logical diskdio
striped over several I/0 nodes.

e Request size: An integer in bytes specifying the size of a re-
quest.

e Request type: A character specifying whether the request is
read (R) or a write (W).

Given an I/O trace file, the simulator generates statistiatd for
performance and energy consumption. Both performance and e
ergy statistics were calculated based on the figures egttdctm
the data sheet of the IBM Ultrastar 36215 [17], and are given i
Table 1. The values for power mode transitions are also deciu
in Table 1. Because we are primarily interested in the paréorce

e Base: This is the base version that does not employ any power
management strategyAll the reported disk energy and perfor-
mance numbers are given as normalized values with respéuisto
version(see the last two columns of Table 2).

e TPM: This is the traditional disk power management strategy
used in studies such as [10] and [11]. In this approach, aidisk
spun down after some idleness to save power, and is spun up whe
a new request arrives. Since the performance cost of sgjrupn
is typically large, TPM can incur significant performanceydela-
tions. Also, in order for this scheme to save power, the ielisn
should be large enough to compensate for the spin-up and spin
down latencies.

e DRPM: This is the dynamic RPM strategy proposed in [14].
Considering the predicted length of the idleness, it setsdtation
speed of the disk to an appropriate level to save power. Tdrerat
is effective in saving power even if the idle periods are shdote
that the RPM level used is selected based on the estimatatbis
(as in [14]) and we may incur performance penalties, depenoin
the accuracy of idle time prediction.

e Compiler-directed TPM (C-TPM): This proactive scheme
lets the compiler estimate idle periods by analyzing codkcam-
sidering disk layouts, and then generates TPM power-manage
calls (spi n.down/ up calls) based on this information.

and energy consumption of the disk subsystem, we assume that e Compiler-directed DRPM (C-DRPM): This proactive scheme

other performance enhancement techniques like I/O prefeg§4]
are not employed. In the rest of the paper, when we say “ehergy

performs the same estimation of idle periods as in C-TPMiitbut
generates DRPM power-management calkst(_r pmcalls). Both

we mean the energy consumed in the disk subsystem. When weC-TPM and C-DRPM are discussed in Section 4.

say “execution time/cycles”, we mean the time/cycles ietako
complete the application execution. The disk energy compsiom
includes the energy consumptions in both active and idlegsr
taking into account all the states that the disks experieluriag
the entire execution. Also, the performance numbers irclit
conflicts in accessing the parallel disk system.

e Intra-processor TPM (Intra-P-TPM): This corresponds to
our code restructuring based approach (from a single-psocger-
spective) when it is used with C-TPM. The compiler restreesu
(schedules) code considering disk layout information.

e Intra-processor DRPM (Intra-P-DRPM): This corresponds
to our code restructuring based approach (from a singleegssor

Table 2 gives the set of array-based benchmark codes used inperspective) when it is used with C-DRPM. It uses the same (re
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Figure 11: Energy consumptions with different schemes.

structured) code as in Intra-P-TPM. The scheduling styatesgd
by Intra-P-TPM and Intra-P-DRPM are explained in Sectidn 5.

e Inter-processor TPM (Inter-P-TPM): This corresponds to
our code restructuring based approach (from a multi-psmrgzer-
spective) when it is used with C-TPM. The compiler restreesu
code considering disk layout information.

e Inter-processor DRPM (Inter-P-DRPM): This corresponds
to our code restructuring based approach (from a multigssar
perspective) when it is used with C-DRPM. It uses the same (re
structured) code as in Inter-P-TPM. The scheduling styategd
by Intra-P-TPM and Inter-P-DRPM are explained in Secti¢h 5.

Note that the only modification to the input code made by C-
TPM and C-DRPM are the insertions of explicit power manage-
ment calls (which are then simulated by the disk simulatdn).
comparison, Intra-P-TPM, Intra-P-DRPM, Inter-P-TPM antel-
P-DRPM restructure the application code using schedulifige
necessary code modifications for these schemes are autboste
ing the SUIF infrastructure [15], with the help of Omega labyr
[22] as has been discussed earlier. As a result of these mympi
transformations, we observed that the original compitationes
were almost doubled. We believe that, considering the |lbege-
fits of the approach, this increase in compilation times|er&ble.

7. EXPERIMENTAL RESULTS

The graph in Figure 11 gives the energy consumptions of qwtbe
marks under the different schemes explained above. One ak@ m
several observations from these results. First, the TPMraeh
does not achieve any disk energy savings since most of thke dis
idle times in these applications are not very large as shaviig-
ure 12. And, for very few relatively long idle periods, the MIP
scheme fails to exploit them as well, mainly because it wiaits
some time (at the beginning of each idle period) before spgn
down the disk (see Figure 3). In comparison, C-TPM bringsiabo
9% energy savings by taking advantage of these few relgtioa
idle periods, which demonstrates the benefits brought bagsro
tive disk power management. The second observation is tieat t
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Figure 12: CDF (cumulative distribution function) curves for
disk idle times. An (x,y) point on a curve indicates that y%
of the idle times has a duration of x (ms) or lower. As men-
tioned earlier, the minimum amount of idle time required to
compensate the cost of spinning down the disk and up (under a
TPM-based scheme) is called the threshold. Based on the num-
bers from IBM Ultrastar 36215, the threshold is 15.19 secons.
The results in this graph show that the idle disk times exhikied
by these array-based applications are much shorter than the
threshold value.

erates better energy savings on average than Intra-P-DRiekh-
ing that using a less powerful architectural mechanism witire
sophisticated code restructuring generates better sethdh em-
ploying more powerful architectural mechanism with legstssti-

cated code restructuring for this set of applications.

It is to be noted however that the energy consumption is just
one part of the big picture. To have a fair comparison betviken
different schemes tested, one needs to consider theirrpafaces
(i.e., execution times/cycles) as well. The bar-chart iguFé 13
gives the normalized execution times (with respect to thse bher-
sion) for the different schemes evaluated. One can obdeavenly
the DRPM version incurs some performance penalty, 70% on av-
erage across our four benchmarks. The reason why TPM does not
incur any performance penalty is that it is not generallyliapple,
given the short disk idle times as discussed earlier. We sd¢g0
that all the compiler-directed schemes, C-DRPM, C-TPMahR-
TPM, Intra-P-DRPM, Inter-P-TPM, and Inter-P-DRPM, inclr a
most no performance penalty. The main reason for this igtieste
schemes start to bring the disk to the desired RPM level béfis
actually needed (using preactivation), and the disk besamady
when the access takes place. This is achieved by accuratie-pre
tion of disk idle periods for the application domain we targenese
results, along with those presented in Figure 11, indidaa¢ the
compiler-guided proactive disk power management and cede r
structuring can be very useful in practice, in terms of baghk én-
ergy consumption and execution time penalty, and the bestgsa
are achieved by our code restructuring approach. Note shrate
our compiler approach does not increase execution timegeis

DRPM scheme consumes more energy than the original versionnot cause much extra power consumption on other system compo

(Base), due to poor estimation of idle periods. Howevepiitsac-
tive version (C-DRPM) achieves nearly 24% disk energy sgsvin
on average. Our third observation is that the best resuitslfo
applications are obtained with the Inter-P-TPM and IntddiRPM
versions. Specifically, they achieve, respectively, at3a% and
43% savings in disk energy. In comparison, Intra-P-TPM autich}

nents. The only additional energy overhead is due to e>atuaf
the inserted power management calls (instructions); betfound
this cost to be negligible.

In the rest of our experimental analysis, we vary the valdes o
some of the simulation parameters, and study their impactne
ergy consumption. We do not present any further performdats

P-DRPM save around 18% and 30% disk energy, respectively. In mainly because, except for the DRPM scheme, none of the &hem

other words, capturing and exploiting interprocessor diskess
pattern is critical in maximizing savings. In fact, Inteffi®M gen-

evaluated causes any substantial increase in originaligzaay-
cles. More specifically, except for DRPM, the average exenut
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Figure 13: Execution cycles with different schemes. Figure 14: Impact of stripe size on energy consumption.
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time increase was always less than 1%. We focus on two impor- 160%

tant parameters in our sensitivity analysis: disk layoud anm-
ber of processors. Since disk layout has three componergz-as
plained in Section 3, we study each of them separately. Ih eac
experiment, we change the value of only one parameter; gte re
of the simulation parameters use their default valuesdisteTa-

ble 1. Also, since our results with different benchmarksiitesl in
similar trends and observations, we present the resulb&ntgrid
benchmark only.

140% -

120% 1

100% -
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Normalized Energy Consumption

40%

Figure 14 gives the normalized energy consumptions with the s 4 s s s
different stripe sizes. We see from these results that theggrsav- Stripe factor
ings brought by the compiler-based schemes increase atrifhe s ] ) ]
size increases. This can be explained as follows. When tipe st Figure 15: Impact of stripe factor on energy consumption.

size is very small (16K), disks do not experience much iddenén
fact, the disk idleness in this case becomes so small thateae
restructuring cannot take advantage of it. When the stigagisin-
creased, more disk requests can be serviced by a single,step
the stripe-level data reuse improves. As a result, the dempased
approaches have more opportunities for optimization, vhidurn

helps reduce disk energy consumption. We see from Figural4 t the large number of processors is the difficulty in insergmglicit

Inter-P-DRPM generates the best savings with 256K stripe, si ower management calls. due to small iteration counts \si
and the difference between it and the DRPM scheme reaches itsp 9 ! il

peak at this value. The next parameter whose variation vy ssu nu(rjnber of proc_esst? rs. ;’hlshproblem doef‘ not Iusuall_)(/“exmen
the stripe factor (the number of disks). Recall that the ulefaum- coce restructuring based schemes since they cluster idlave

. . ; . . periods.
ber of disks used so far in our experiments was 8. Figure l&sgiv
the normalized energy values under different stripe factdn ob-
servation we can make from these curves is that, when we lméye o 8. CONCLUDING REMARKS
two disks, there is not much opportunity for power savinge(ti Excessive power consumption is becoming a major barrier to
lack of disk idleness), and (except for DRPM) all the schebees extracting the maximum performance from high-end paralst
have similarly. As the number of disks is increased, diskndks tems. Therefore, techniques oriented towards reducingpoen-
increases, and consequently, the compiler schemes eatieitter sumption of such systems are expected to become increagimgl

different processor counts. As before, all other pararaetar set to
their default values given in Table 1. One can see from tresdts
that the effectiveness of the compiler-directed code uwesiring is
consistent across the different processor counts. Themghast
the C-TPM and C-DRPM schemes do not behave very well with

behavior. When the number of disks is very high (32), the ik portant in the future. Since disk subsystems of parallehitec-
ness reaches a very high level, and one may not need soptestic  tures are known to consume a large fraction of the overallgpow
code restructuring in this case (for our particular dates&ets). In budget, they are an important optimization target. Unfuataly,
fact, at this point, all the TPM-based compiler schemes\ehian- most of the prior work on disk power management focused exclu
ilarly, and all the DRPM-based compiler schemes behavdailyi sively on hardware-based approaches that operate withhpast

We next study how the starting disk used for striping coutdcif tory information collected during execution. In contrdkts paper
the results. To perform this set of experiments, we gengrate  proposes a compiler-driven approach to disk power manageme
random integer number (for each array in the mgrid benchmark for data-intensive scientific applications. The compileour ap-
between 1 and 8 to select the disk from which the array iseddrip  proach derives data access pattern and, by combining fbisria-
The results for five such experiments are presented in Figoire  tion with disk layout of array data, it obtains the disk accesttern.
We see from these results that the general trends (and dagsav ~ This paper demonstrates two ways of utilizing disk accetise:
are very similar across these different layouts. This iaigis that proactive disk power management and code restructurimgélrc-
the starting disk (for striping) may not be a very importatbr as ing disk power consumption. Our experimental analysis wét
far as our compiler-based schemes are concerned. eral applications that operate with disk-resident data asd very

The last parameter whose variation we study is the number of promising and show that the proposed compiler-driven agyro
processors. Figures 17 gives the normalized energy resiths performs much better than existing hardware-based teghsiq
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