
A Compiler-Directed Data Prefetching Scheme for Chip
Multiprocessors ∗

Seung Woo Son

Pennsylvania State University

sson@cse.psu.edu

Mahmut Kandemir

Pennsylvania State University

kandemir@cse.psu.edu

Mustafa Karakoy

Imperial College

m.karakoy@yahoo.co.uk

Dhruva Chakrabarti

HP Labs

dhruva.chakrabarti@hp.com

Abstract

Data prefetching has been widely used in the past as a technique
for hiding memory access latencies. However, data prefetching
in multi-threaded applications running on chip multiprocessors
(CMPs) can be problematic when multiple cores compete for a
shared on-chip cache (L2 or L3). In this paper, we (i) quantify
the impact of conventional data prefetching on shared caches in
CMPs. The experimental data collected using multi-threaded ap-
plications indicates that, while data prefetching improves perfor-
mance in small number of cores, its benefits reduce significantly as
the number of cores is increased, that is, it is not scalable; (ii) iden-
tify harmful prefetches as one of the main contributors for degraded
performance with a large number of cores; and (iii) propose and
evaluate a compiler-directed data prefetching scheme for shared
on-chip cache based CMPs. The proposed scheme first identifies
program phases using static compiler analysis, and then divides the
threads into groups within each phase and assigns a customized
prefetcher thread (helper thread) to each group of threads. This
helps to reduce the total number of prefetches issued, prefetch
overheads, and negative interactions on the shared cache space due
to data prefetches, and more importantly, makes compiler-directed
prefetching a scalable optimization for CMPs. Our experiments
with the applications from the SPEC OMP benchmark suite indi-
cate that the proposed scheme improves overall parallel execution
latency by 18.3% over the no-prefetch case and 6.4% over the
conventional data prefetching scheme (where each core prefetches
its data independently), on average, when 12 cores are used. The
corresponding average performance improvements with 24 cores
are 16.4% (over the no-prefetch case) and 11.7% (over the con-
ventional prefetching case). We also demonstrate that the proposed
scheme is robust under a wide range of values of our major simula-
tion parameters, and the improvements it achieves come very close
to those that can be achieved using an optimal scheme.

Categories and Subject Descriptors D.3.4 [Processors]: Compil-
ers, Optimization; C.1.4 [Processor Architecture]: Parallel Archi-
tectures

General Terms Algorithms, Experimentation, Performance

Keywords Chip multiprocessors, compiler, prefetching, helper
thread

∗ This work is supported in part by NSF grants CCF #0702519, CNS
#0720749, CNS #0720645, CCF #0811687 and a grant from Microsoft
Research.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

PPoPP’09, February 14–18, 2009, Raleigh, North Carolina, USA.
Copyright c© 2009 ACM 978-1-60558-397-6/09/02. . . $5.00

corek

Fetch blocki Prefetch blockj

[Kicks out blocki]

Access blocki

[Cache miss]

(a)

…… …… ……

corei

Fetch blocki Prefetch blockj

[Kicks out blocki]

Access blocki

[Cache miss]

(b)

…… …… ……

Time

corei corei

corei corek

Figure 1. Example of intra-core (a) and inter-core (b) harmful
prefetches.

1. Introduction

Prefetching has been shown to be a very effective technique for im-
proving performance by hiding memory access latencies. However,
timing and scheduling of prefetch instructions is a critical issue in
software data prefetching and prefetch instructions must be issued
in a timely manner for them to be useful. If a prefetch is issued
too early, there is a chance that the prefetched data will be replaced
from the cache before its use or it may also lead to replacement of
other useful data from the higher levels of the memory hierarchy.
If the prefetch is issued too late, the requested data may not arrive
before the actual memory reference is made, thereby introducing
processor stall cycles.

Software data prefetching (implemented through compiler-
inserted explicit prefetch instructions) is inherently less specula-
tive in nature than its hardware counterpart. However, scheduling
prefetch instructions is the key for the success of any software
prefetching algorithm. The criticality of scheduling the prefetch
instructions increases in emerging chip multiprocessors (CMPs)
where multiple cores prefetch data to the shared on-chip L2/L3
caches, due to the additional possibility of negative interactions
among different processor cores.

The latest versions of many architectures employ some form
of chip multiprocessing with a shared L2/L3 cache (20; 18; 17;
26; 23; 35). In these CMPs, the cores compete for the cache as
any other shared resource. In the context of CMPs with shared on-
chip caches, existing compiler algorithms for scheduling software
prefetch instructions and existing techniques to compute prefetch
distances may not be very effective. This is because prefetches from
different cores to the same shared on-chip cache can pollute this
cache, i.e., data brought to the cache by one core can be kicked out
from the cache by another core. As a result, uncoordinated prefetch
requests from different cores can significantly reduce cache uti-
lization and lead to performance loss. This is unfortunate as the
shared L2/L3 cache is the last line of defense before off–chip mem-
ory accesses in these systems and therefore achieving a high accu-
racy/success for data prefetches is of critical importance.

We call a prefetch harmful if the prefetched data is used later
than the data it displaces from the on-chip cache. Note that, harmful
prefetches can occur among the accesses made by the same core, or
among the accesses from different cores, as illustrated in Figure 1.
Harmful prefetches that involve a single core are referred to as

intra-core (as shown in Figure 1(a)) harmful prefetches whereas
those involving different cores are called inter-core (as shown in
Figure 1(b)) harmful prefetches. Reducing the number of harmful
prefetches can lead to a better utilization of the shared cache space
and improve overall performance. Motivated by this observation,
this paper makes the following contributions:

• We quantify the impact of harmful prefetches in the context
of shared L2 based CMPs, when existing compiler-directed
prefetching is used. Our experiments with several data-intensive
multi-threaded applications indicate that the effectiveness of the
conventional compiler-directed prefetching (which allows each
core to perform its own prefetches independently) drops sig-
nificantly as we move from single-core execution to multi-core
execution. For example, in two of our applications (gafort and
ammp), the performance with conventional data prefetching is
even worse than the performance with the no-prefetch case be-
yond a certain number of cores.

• We show that the contribution of harmful prefetches also in-
creases with the increased number of cores. And, therefore,
there is a correlation between the degradation in the effective-
ness of prefetching and the increase in the fraction of harmful
prefetches, when the number of cores is increased. For instance,
in applications like galgel, swim, and mgrid, the fraction of
harmful prefetches can be as high as 20% beyond a core count.

• We demonstrate that data access and sharing patterns of a given
multi-threaded application can be divided into distinct phases,
and each phase typically requires a different prefetching strat-
egy than the others for the maximum performance.

• We propose a novel, compiler directed data prefetching scheme
that targets shared cache based CMPs. In this scheme, referred
to as L2 aware prefetching or helper thread based prefetching,
the compiler identifies program phases using static analysis and
develops a customized data prefetching scheme for each phase.
This scheme partitions, for each phase, threads into groups,
and assigns a helper thread to each group. The assigned helper
thread performs prefetching on behalf of all the threads in
its group, and the application threads themselves do not issue
prefetch requests.

• We present experimental evidence demonstrating the effec-
tiveness of our approach. The results obtained using full sys-
tem simulation indicate that our approach reduces the number
of harmful prefetches significantly. As a result, the proposed
scheme improves overall parallel execution latency by 18.3%
over the no-prefetch case and 6.4% over the conventional data
prefetching scheme (where each core prefetches its data in-
dependently), on average, when 12 cores are used. The cor-
responding average performance improvements with 24 cores
are 16.4% (over the no-prefetch case) and 11.7% (over the
conventional prefetching case). We also show that the proposed
scheme is robust under a wide range of values of our major sim-
ulation parameters, and the improvements it achieves come very
close to those that can be achieved using an optimal scheme.

The next section briefly explains the baseline data prefetching
scheme, and presents an experimental evaluation of it in the context
of CMPs using multi-threaded applications. Our new data prefetch-
ing scheme is explained in Section 3, and evaluated experimentally
in Section 4. Related work is discussed in Section 5, and the paper
is concluded in Section 6.

2. An Evaluation of the Conventional Prefetching
for CMPs

In this section, we first explain the conventional compiler-directed
data prefetching scheme against which our new scheme is com-
pared and then evaluate its performance in the context of CMP. The
baseline software based data prefetching approach used in this pa-
per is similar to that proposed in (37). In this approach, which is
developed in the context of single core systems, prefetches are in-

int a[N];
int b[N];
int c[N];
for (i = 0; i < N ; i++) {

c[i] = a[i] ∗ b[i];
}

int a[N], b[N], c[N];
prefetch(&a[0], D); prefetch(&b[0], D);
for (t = 0; t < ⌊N/D⌋; t++) {

prefetch(&a[(t + 1) ∗ D], D);
prefetch(&b[(t + 1) ∗ D], D);
for (i = 0; i < D; i++)

c[t ∗ D + i] = a[t ∗ D + i] ∗ b[t ∗ D + i];
}
for (j = ⌊N/D⌋ × D; j < N ; j++)

c[j] = a[j] ∗ b[j];

(a) (b)

Figure 2. An example that illustrates compiler-directed data
prefetching. (a) Original code fragment. (b) Code with explicit
prefetch instructions targeting arrays a and b inserted. D represents
the unit for prefetching.

serted into the code based on data reuse analysis. More specifically,
an optimizing compiler analyzes the application code and identifies
future accesses to data elements that are not likely to be in the data
cache. It then inserts explicit prefetch instructions to bring such el-
ements into the data cache ahead of time to ensure that data is in
the cache when it is actually referenced. As a result, a successful
data prefetch effectively hides the off-chip memory latency.

Figure 2 illustrates an example application of this prefetching
scheme. In this example, three N -element arrays (a, b, and c) are
accessed using three references (a[i], b[i], and c[i]). D denotes the
block size, which is assumed to be the unit for data prefetching
(i.e., a prefetch targets a data block of size D). Figure 2(a) shows
the original loop (without any data prefetching), and Figure 2(b)
illustrates the compiler-generated code with explicit prefetch in-
structions embedded. The original loop is modified to operate on
a block size granularity. As can be seen in the compiler gener-
ated code of Figure 2(b), the outermost loop iterates over individ-
ual blocks, whereas the innermost loop iterates over the elements
within a block. This way, it is possible to prefetch a data block and
operate on the elements it contains. The first two prefetch state-
ments in the optimized code are used to load the first data blocks
into the cache prior to loop execution. In the steady state, we first
issue prefetch requests for the next set of blocks and then operate on
the current set of blocks. The last loop nest is executed separately
as the total number of remaining data elements may be smaller than
a full block size.

This compiler based data prefetching scheme has two compo-
nents: compiler component and runtime system support. The com-
piler component analyzes the given application code and predicts
the future data access patterns. This is done using data reuse anal-
ysis, a technique developed originally in the context of cache lo-
cality optimization (54). After that, potential cache misses are iso-
lated through loop-splitting and prefetches are pipelined based on
the data reuse information generated by the compiler. In deciding
the loop splitting point, the prefetching algorithm takes into ac-
count the estimated off-chip memory latencies as well (i.e., the
time it takes to bring the data from the off-chip memory to the
on-chip cache). The runtime layer on the other hand monitors the
prefetch requests made by the application, and filters unnecessary
prefetches as much as possible. For this purpose, the runtime layer
maintains a fixed-size FIFO list that holds the most recent prefetch
addresses. Therefore, whenever there is a new prefetch request to
the L2 cache, it compares the requested address with the ones in
the list. If there is a matching entry, that request is discarded; oth-
erwise, it is allowed to proceed. By doing so, we attempt to min-
imize the cost of useless/duplicate prefetch requests. Note that, in
a CMP architecture, this prefetch filtering component can be im-
plemented in two different ways: per core or per chip. When the
filtering module is implemented per core, each core has its own
filtering module and performs individual prefetch filtering, inde-
pendent of the other cores. When the filtering module is imple-
mented per chip on the other hand, there is only one filtering mod-
ule that does prefetch filtering. Clearly, the second option can filter

-5

0

5

10

15

20

25

30

p
e
rc
e
n
ta
g
e
 i
m
p
ro
v
e
m
e
n
t
d
u
e
 t
o
 p
re
fe
tc
h
in
g

number of cores

wupwise swim mgrid applu

galgel equake apsi gafort

fma3d art ammp

0

5

10

15

20

25

30

fr
a
c
ti
o
n
 o
f
h
a
rm
fu
l
p
re
fe
tc
h
e
s
 (
%
)

number of cores

wupwise swim mgrid applu

galgel equake apsi gafort

fma3d art ammp

(a) (b)

Figure 3. Behavior of the compiler-directed prefetching scheme in
(37) when used in a CMP. (a) Performance improvement due to data
prefetching under different core counts (savings are over the no-
prefetch case). (b) Fraction of harmful prefetches under different
core counts.

more duplicate prefetches. In this case however, the FIFO list be-
comes a shared entity and updates to it should be controlled using
a semaphore or a similar mechanism.

In order to see how this conventional compiler-directed prefetch-
ing (also called independent prefetching in this paper) performs
when applied to a multi-threaded application running on a CMP,
we performed a set of experiments. Note that we compare our
approach to this alternate prefetching scheme in which each core
performs its own prefetching. In this initial set of experiments, the
per core prefetch filtering has been used (later we also present re-
sults with the per chip prefetch filtering). The results from these
experiments are presented in Figure 3.1 In Figure 3(a), we quantify
the percentage improvements this conventional data prefetching
scheme brings over the no-prefetch case under varying core counts
(from 1 to 24). Our main observation is that the improvements
brought by this independent prefetching scheme keep reducing as
we increase the number of cores. In fact, it is interesting to note
that, in two applications (gafort and ammp), the prefetched ver-
sion performs even worse than the no-prefetching case beyond
21 cores. Clearly, independent prefetching does not scale well for
CMPs. We also want to mention that this independent prefetch-
ing scheme represents current state-of-the-art as far as single core
based prefetching schemes are concerned. In fact, the performance
of this independent prefetching scheme was very similar to the
commercial prefetching scheme used in SUN’s compiler (48) (the
difference between two schemes was less than 3% for all the appli-
cations tested).

The results in Figure 3(b) provide an answer for why this trend
occurs. This graph plots the fraction of data prefetches that are
harmful. These results represent both intra- and inter-core harmful
prefetches and nearly 72% of these harmful prefetches are inter-
core ones. Recall that we refer to a prefetch as harmful if the
prefetched data displaces a data block from the cache whose next
usage is earlier than that of the prefetched block. We see that the
contribution of harmful prefetches increases as we increase the
number of cores. In fact, for some applications such as galgel, swim
and mgrid, the fraction of harmful prefetches is above 20% beyond
a certain core count. Now, putting the results in Figures 3(a) and (b)
together, we can see the correlation2 between harmful prefetches
and degradation in the performance of the prefetch based code. This
means, if we can reduce the number of harmful prefetches, we can
improve performance significantly and make prefetching a scalable
optimization. Clearly, making optimizations such as prefetching
scalable is very important for current CMPs, and one can expect
that it will be even more so for future many-core architectures

1 The details of our experimental setup and applications will be given later
after discussing our proposed scheme.
2 It needs to be mentioned that the degradation in performance of the
prefetched code with larger core counts cannot solely be explained by the
increase in the contribution of harmful prefetches. It is also known for
example that, as the number of cores increases, the contribution of conflict
misses due to normal reads may also play a role (47).

(21). The rest of this paper presents and evaluates a novel data
prefetching scheme for CMPs to achieve this goal.

Before starting a discussion of the technical details of our
scheme however, we want to briefly discuss why in general in-
dependent prefetching described and evaluated above faces perfor-
mance problems when it is used in CMPs with large number of
cores. First, prefetch instructions inserted by the compiler bring
certain CPU overhead (whether or not prefetching itself is harm-
ful), though one can expect this overhead not to be a major player.
Second, as the number of cores increases, the number of prefetches
issued for data that are already in the L2 cache increases. That is,
multiple cores can issue prefetches for the same data. While as
explained earlier our prefetch implementation filters some of such
duplicate prefetches before they go to the cache, there is still an
overhead associated with each such (filtered) prefetch request. In
any case, eventually, some duplicate prefetches do go to the cache.
Third, as the number of cores increases, chances for negative inter-
ferences between prefetch instructions and normal data fetches also
increase. It is important to emphasize that reducing the number of
harmful prefetches can help reduce the impacts of all these factors.

3. Data Prefetching for CMPs

3.1 Target CMP Abstraction

In our target CMP architecture, on-chip memory space is organized
as a hierarchy (each core having a private L1 cache and all cores
sharing the same on-chip L2 space). The coherence at the L1
level is assumed to be maintained using a MESI-like protocol. The
prefetching algorithms we discuss and evaluate in this work target
the shared on-chip L2 cache, that is, we are trying to optimize the
performance of data prefetching from the off-chip memory to the
shared L2 space. Although not essential for our proposed scheme,
we also assume that only one thread is executed on each core at
any given time. As a result, we use the terms “thread” and “core”
interchangeably when there is no confusion.

3.2 A Quantitative Analysis of Data Access/Sharing Patterns

To further motivate our approach, we present data access patterns
from three of our benchmarks (galgel, equake, and ammp) when 8
cores are used. In all these figures, the x-axis denotes the execution
progress and the y-axis captures the addresses of the data elements
accessed. In obtaining our graphs, the observed application execu-
tion period is divided into equal-sized epochs,3 and the addresses of
the accessed data elements are recorded. We see from Figure 4(a)
that, this application’s execution can be divided into four distinct
phases. In the first phase, while cores 0, 1, 2 and 3 share the same
set of elements, the rest of the cores share a lot of data between
them. In the second phase, we see that all cores except core 0 share
the same set of data elements. In the third phase, we can divide the
cores into groups of two, the cores in each group sharing data be-
tween them. The last phase is very similar to the first one (i.e., cores
can be divided into two groups, each having 4 cores) except that the
set of elements accessed are different. The data access pattern illus-
trated in Figure 4(b) shows three easily identifiable phases. In the
first phase, four of the cores share the same set of elements, whereas
the remaining cores access a large region of the address space with-
out much sharing. In the second phase, there is not much sharing at
all. But, in the third phase, all cores except core 0 share the same
set of data elements. Finally, one can also observe several distinct
phases in the data access/sharing pattern plotted in Figure 4(c).

We argue that a data prefetching strategy can be tuned based
on these data access/sharing patterns, instead of allowing each core
to issue prefetch requests independently (as we discussed earlier
independent prefetching did not generate good results with large
number of cores). Consider for instance the patterns shown in Fig-

3 In most of our applications the phases are repetitive, that is, the same data
pattern occurs multiple times when the entire application execution period
is considered. In these graph of Figure 4, we only look at a small portion of
the execution.

0

100

200

300

400

500

600

700

800

900

1000

1

5
2

1
0
3

1
5
4

2
0
5

2
5
6

3
0
7

3
5
8

4
0
9

4
6
0

5
1
1

5
6
2

6
1
3

6
6
4

7
1
5

7
6
6

8
1
7

8
6
8

9
1
9

9
7
0

D
a
ta
 S
p
a
c
e

Epochs

core 0 core 1 core 2 core 3

core 4 core 5 core 6 core 7

0

100

200

300

400

500

600

700

800

900

1000

1

5
2

1
0
3

1
5
4

2
0
5

2
5
6

3
0
7

3
5
8

4
0
9

4
6
0

5
1
1

5
6
2

6
1
3

6
6
4

7
1
5

7
6
6

8
1
7

8
6
8

9
1
9

9
7
0

D
a
ta
 S
p
a
c
e

Epochs

core 0 core 1 core 2 core 3

core 4 core 5 core 6 core 7

0

100

200

300

400

500

600

700

800

900

1000

1

5
3

1
0
5

1
5
7

2
0
9

2
6
1

3
1
3

3
6
5

4
1
7

4
6
9

5
2
1

5
7
3

6
2
5

6
7
7

7
2
9

7
8
1

8
3
3

8
8
5

9
3
7

9
8
9

D
a
ta
 S
p
a
c
e

Epochs

core 0 core 1 core 2 core 3

core 4 core 5 core 6 core 7

(a) galgel (b) equake (c) ammp

Figure 4. Data access patterns exhibited by three applications executing using 8 cores. The x-axis captures the initial epochs of the
application, and the y-axis represents the data elements accessed. All data elements are renumbered (sequentially) and the total data space is
divided into 1000 equal-sized regions).

Input

code
Phase

Extraction

Prefetch

Analyzer

Prefetch

Set

Detection

Output

code

Step 1 Step 2

Helper

Thread

Generation

Synchronization

Generation

CPU

Group

Generation

Figure 5. Major components of our helper thread based data
prefetching scheme.

ure 4(a). In the first phase of this application, it may be a good
idea to have one prefetcher (helper) thread for cores 0, 1, 2, 3 and
another prefetcher thread for cores 4, 5, 6, 7. In this case, the appli-
cation threads running on these cores will not perform any data
prefetching. Instead, all prefetches will be issued by the helper
threads on behalf of them. In this way, the number of harmful
prefetches and their impact on performance can be reduced signif-
icantly. Specifically, a helper thread will issue a single prefetch for
each data element in a timely manner and consequently the number
of times a prefetched data conflicts with other prefetches or with
normal reads gets reduced.

Similarly, in the second phase of this application, all cores
except core 0 can share the same helper thread that can prefetch
for all of them, and core 0 can perform its own prefetches. In the
third phase of this application, we can assign a prefetcher thread
for each group of two. In the second phase in Figure 4(b), on the
other hand, all cores can perform their own prefetches, as there is no
sharing across their data accesses. Although the results in Figure 4
are all for an 8 core execution, we observed similar mixed data
access patterns with other core counts as well. In the rest of this
section, we present the technical details of our new data prefetching
scheme that takes advantage of this diversity in data access and
sharing patterns. Basically, our L2 aware data prefetching divides
the program into phases and, for each phase, divides the cores into
groups based on their data sharing patterns. Each group contains
threads (cores) that share data among them, and is assigned a single
helper thread that performs prefetching on behalf of all the cores
in that group. This relieves the application threads from issuing
prefetch requests and cuts the number of harmful prefetches.

3.3 Details of Our Approach

Our approach has two major steps, as illustrated in Figure 5. In
the first step, called the phase extraction, the compiler analyses
the multi-threaded application code and divides it (logically) into
phases. The second step, called prefetch analyzer, operates on each
phase independently (i.e., it handles one phase at a time). Its main
job is to decide what prefetch instructions to insert in the code and
where to insert them. Below, we discuss these steps in detail.

for i
1

 for i
2

 for i
3

 …

 end i
3

 for i
4

 …

 for i
5

 …

 end i
5

 end i
4

 end i
2

end i
1

Figure 6. An example that shows three different SNLNs.

3.3.1 Step 1: Phase Extraction

In the first step, the compiler analyzes the application code and
divides it into phases. There exist several static/dynamic phase ex-
traction schemes proposed in literature (10; 3; 9; 42; 19; 2). In our
approach, we use a simple static phase partitioning scheme based
on the concept on Singly-Nested Loop Nests (SNLNs), proposed
originally in (55). An SNLN is either a perfectly-nested loop nest or
an imperfectly-nested loop nest where the imperfect code does not
have any loops or complex control flow. In fact, in our implementa-
tion, imperfect code is allowed to have only assignment statements,
call instructions, and simple conditionals. As an example, consider
the code sketch given in Figure 6.

In this sketch, we have three different SNLNs. The first one in-
cludes loop i3; the second one includes loops i4 and i5; and the last
one includes the outer loops i1 and i2. Once the SNLNs are iden-
tified, our approach operates as an SNLN granularity, that is, each
SNLN is assumed to be a phase and is processed independently.
The outer SNLNs (e.g., the one that contains loops i1 and i2 in the
example above) are not operated unless they include imperfectly
nested non-loop statements for which data prefetching can be per-
formed. In the example above, if there were assignment statements
between loops i2 and i3, we would perform prefetching for them as
well. Also, in operating on an SNLN, our approach targets parallel
loops (in that SNLN); the serial loops are handled using the conven-
tional prefetching strategy. In the rest of this section, we describe
how our approach handles a given phase (SNLN). The reason that
we adopt this particular phase extraction scheme is two-fold. First,
we observed after experimenting with several multi-threaded codes
that different SNLNs have typically very different data access and
sharing patterns. Therefore, it makes sense to consider two differ-
ent SNLNs as two different phases. Second, an SNLN is the largest
code segment for which we know how to perform data prefetching.
A similar observation is made in (55) for other types of optimiza-
tions (e.g., loop permutation, tiling) as well.

t
h

t
1

t
2

t
N-1

Phase…

SM-1

SM

S2

S1

slices tc

…

CPU Group

t
h

t
c

Sj

Sj+1

Sj-1
sync

sync

slices

(a) (b)

Figure 7. (a) Overview of how helper thread and computation
threads are scheduled in a given phase. Note that a phase identi-
fied during compiler analysis (Step 1) contains multiple slices. (b)
Synchronization strategy between helper thread (th) and computa-
tion thread (tc).

3.3.2 Step 2: Prefetch Analyzer

As shown in Figure 5, this step has four subcomponents, namely,
CPU group generation, prefetch set determination, helper thread
generation, and synchronization generation. The goal of this sec-
ond step is to restructure each identified program phase into com-
putation threads and helper threads. In our approach, computation
threads (also called application threads) perform computation only
while the helper threads perform data prefetches on behalf of the
computation threads. The details of each of these four subcompo-
nents are discussed below.

CPU Group Generation The first task of the prefetch analyzer is
to divide the cores into groups, which we call CPU Groups. Two
processor cores (or more) are assigned to the same CPU group if
they share a large number of data elements. Let Yi denote the set of
elements accessed by thread i in the phase (SNLN) being analyzed.

If
sizeof(Yi) ∩ sizeof(Yj)

sizeof(Yi) + sizeof(Yj)
> ∆, threads i and j are assumed to

belong to the same CPU group. Here, ∆ is the sharing density
threshold and can be set to different values to control groupings
of the cores. Note that a large ∆ value means that two cores are
placed into the same CPU group only if they share a large fraction
of data accesses between them, and in such cases, it is better to
assign a dedicated prefetch thread (helper thread) to those cores,
instead of allowing each core to perform its own data prefetching.
For example, if ∆ is set to 70%, cores that have a ∆ of 70% or
higher in a phase are assigned the same data prefetcher in that
phase.

Prefetch Set Determination After determining CPU groups, the
next task is to determine the set of data elements that need to be
prefetched for each CPU group identified. Note that a program
typically has multiple phases and each phase also has multiple CPU
groups depending on the data sharing patterns among the cores.
A prefetch set is determined for each CPU group in each phase.
We start by dividing the phase into M slices, i.e., S1, S2, · · · , SM .
More specifically, we divide the entire loop iterations in a phase
into equal-sized chunks using predefined slice size, which is 10%
of total number of iterations. Let us focus on a CPU group that
holds N cores. We use Ii,j to denote the iterations assigned to
computation thread ti in slice j, where 1 ≤ i ≤ N − 14 and
1 ≤ j ≤ M . We then compute Xi,j , the data elements that are
accessed by ti in slice j as follows:

Xi,j = {~d | ∃~I ∈ Ii,j , ∃R ∈ Ri,j such that R(~I) = ~d}.

In this equation, Ri,j is the set of references to the array data;
R represents a reference in the loop nest (i.e., a mapping from the

4 Without loss of generality, we assume that cores 1 through N − 1 execute
application threads (one thread per core) and the N th core executes the
helper thread.

iteration space to the data space); ~I is an iteration point; and ~d
is the index to data elements (i.e., array subscript function). For
example, if two references A[i1][i2] and B[i1][i2] appear within a

nest constructed using two loops i1 and i2, we have ~I = (i1 i2)
T ,

and Ri,j is {A[i1][i2], B[i1][i2]}. Since Ii,js in a particular slice
are likely to share data elements, we can expect that:

Xx,j ∩ Xy,j 6= ∅, for x 6= y.

After calculating Xi,j for each thread ti in the j th slice, our next
task is to figure out the total set of data elements accessed by the
slice Sj , denoted as Xj , which can be obtained by the union of Xi,j

sets:

Xj =
[

1≤i≤N−1

Xi,j ,

where N is the number of CPU cores as stated earlier. Note that the
size of Xj is far smaller than the total of each Xi,js if the sharing
density between threads is high. That is, we have sizeof(Xj) ≪
PN−1

i=1 { sizeof(Xi,j) } if the threads access the same (small)
data region. Therefore, the higher the sharing density ∆ (as de-

fined earlier), the larger the gap between sizeof(Xj) and
PN−1

i=1 {
sizeof(Xi,j)}. Note that, if there are multiple array data in slice
M , we need to build a Xj set for each array for which data prefetch-
ing will be performed.

Helper Thread Generation The next step is to generate code for
helper threads that contain data prefetch instructions. To accom-
plish this, both computation and helper thread code should have
explicit boundaries in each slice. To obtain these boundaries, we ap-
ply strip-mining (56) to the computation threads and helper threads.
Besides strip-mining, there are additional tasks to be performed
for helper threads. The first task is to generate the addresses to be
prefetched for the elements in each Xj , and then insert prefetch in-
structions for these addresses. Since iterations in a slice can share
data, we do not want to issue multiple prefetches for the same data
block. Our solution to prevent redundant prefetches to the same
data block is to use the Omega Library (39) to generate a loop (or a
set of loops depending on the addresses to be generated) that enu-
merates the addresses of the elements in a Xj . After this, these indi-
vidual loops for different slices are combined to generate a compact
code where the outer loop iterates over the different slices (Sj) and
the inner loop iterates over the addresses of the data blocks to be
prefetched in a given slice. The goal of this is to generate a compact
code as much as possible. Note that while we use the Omega Li-
brary for address generation, any other polyhedral arithmetic tool
could also be used for this purpose. After completing these steps,
we have the codes for both computation threads and helper thread.
The code for the helper thread also contains data prefetch instruc-
tions, and the code for both threads, computation and helper, are
generated such that they have explicit slice boundaries. This ex-
plicit boundaries are used for inserting synchronizations between
the computation and helper threads, which is discussed in the fol-
lowing paragraph.

Synchronization Generation The last task of our compiler algo-
rithm is to generate synchronizations between the helper thread and
computation threads to ensure timely pipelining of data prefetches.
Figure 7(b) illustrates the interaction between the computation
threads and the helper thread, the latter of which prefetches on
behalf of computation threads. As explained earlier, the phase is
divided into slices, each of which contains Ij iterations. As shown
in Figure 7(a), the synchronizations occur in these slice boundaries
in order to make sure that when the jth computation threads start
execution, all the prefetches that bring Xj to the shared L2 cache
should be finished. That is, the computation on that data element
cannot start until all the data elements in Xj are brought into the
shared cache. This is achieved in our scheme by inserting explicit
synchronization instructions, sync(), between the helper thread
and computation threads. As shown in Figure 7(b), the prefetch in-
structions to the data in Xj is issued at the beginning of slice (j−1).
Issuing the prefetch instructions for the data in Xj , the helper thread

1: Input: P = (L1, L2, · · · , LQ), where Q is the number of phases in P ;

2: Output: P ′ = (L′
1, L′

2, · · · , L′
Q);

3: C = (C1, C2, · · · , CD) – CPU core groups that belong to a particular phase;
4: Cl – CPU core group that exhibits accesses on shared data;
5: |Cl| – the size of Cl;
6: T – minimum CPU group size, default is 2;
7: S – number of iterations used for strip-mining the original loop nest;
8: ∆ – sharing density threshold;
9: Yi – the set of data elements accessed by thread i;

10: for each Li ∈ P do

11: detect singly-nested loop nest (SNLN) and mark it as a phase;
12: end for

13: for each detected phase ∈ P do

14: for each thread, tx and ty ∈ phase do

15: if
sizeof(Yi) ∩ sizeof(Yj)

sizeof(Yi) + sizeof(Yj)
> ∆ then

16: ti and tj belong to the same Cl;
17: end if

18: end for

19: for each Cl, Cl ∈ C do

20: if |Cl| ≤ T then

21: for each computation thread ti ∈ Cl do

22: apply normal data prefetching scheme;
23: end for

24: else

25: duplicate the original ti and mark it as helper thread;
26: let N be the size of Cl, i.e., |Cl| = N ;
27: allocate N − 1 cores to the ti;
28: allocate one core to the duplicated helper thread;
29: recalculate the loop bounds for ti;
30: strip-mine both the main and helper thread using S;
31: for each thread ti, ti ∈ Cl do

32: compute Xi,j for the jth slice;
33: end for

34: compute Xj ;
35: call Omega library to enumerate iterations of each Xj ;
36: for each array ∈ Lx do

37: add ‘‘prefetch()’’ for Xj in th;
38: end for

39: add ‘‘sync()’’ for both tc and th;
40: end if

41: end for

42: end for

Figure 8. Compiler algorithm for transforming a given code to
insert explicit prefetch instructions and necessary synchronizations.

needs to synchronize with computation threads, which is to ensure
that all the computations in slice j − 1 are completed before pro-
ceeding to slice j. After completion of all synchronizations, the
helper thread resumes prefetching for the data in Xj+1 while the
computation threads start executing their computation on the data
in Xj .

Figure 8 gives a high-level view of our compiler algorithm
explained so far. It takes an input program (P) divided into Q
phases, along with the number of cores (N) in each identified CPU
group, and generates the two versions of the code: helper thread
and computation threads.

3.3.3 Discussion

This section briefly discusses a couple of important points regard-
ing our scheme. The first issue we want to discuss is about helper
threads. As explained so far, our approach generates a helper thread
for each CPU group. Therefore, for small sized CPU groups, we
might hurt performance due to reduced number of CPU cores. We
tried to address this issue as follows. The first option we tried was
to execute the helper thread in a CPU group using one of the cores
within that group. That is one core is responsible for executing both
computation thread and the prefetching code. The experimental re-
sults with this approach were not good and, in fact, close to those
obtained through independent data prefetching.5 The second option

5 Note that this option is different from independent prefetching as all
prefetches of a CPU group are performed by a single core which also

we tried was to stick to independent data prefetching when the size
of a CPU group is smaller than a certain threshold value, which
is preset as a parameter. As a matter of fact, we found that when
the group size is two, independent data prefetching performs better
rather than executing one computation thread and one helper thread
separately. However, when the group size is three, our approach,
which allocates two cores to computation and one dedicated core
to data prefetching, performs better. Therefore, we set the mini-
mum size for our approach to be applied to three throughout our
experiments.

Note that the helper threads in our approach execute on sepa-
rate cores and therefore they run in parallel with the application
threads. Therefore, most of their execution latency is hidden in par-
allel execution except for synchronizations. Synchronization be-
tween helper threads and application threads occurs only at slice
boundaries and thus they do not affect performance significantly.
Note also that typically we have very few helper threads execut-
ing on the system at any given time (in fact, in about 75% of our
phases, we had either 2 or 3 helper threads). In addition, a helper
thread prefetches only the data requested by the application threads
to which it is assigned, and brings a data element only once. In
any case, all the overheads associated with creating and manag-
ing helper threads are captured during our full system simulation
and included in all our results. We also want to mention that the
code generated for helper thread and the memory footprint it takes
up during execution is small enough to fit them into the L1 cache
in our default configuration, which has 32KB L1 instruction cache
and 32KB L1 data cache. This is because the helper thread has
less computation to execute than computation threads. Therefore,
the interference to shared L2 cache due to the helper thread is also
negligible.

A limitation of our proposed scheme is that it is applicable to
codes that can be analyzed by the compiler. It is important to note
however that, while there are codes that fall outside of this cat-
egory, many application codes from scientific computing domain
and embedded image/video processing are amenable to compiler
analysis and thus can be optimized using our prefetching scheme.
The main point we want to make is that a simple extension of con-
ventional compiler-directed prefetching (i.e., independent prefetch-
ing) does not work well when ported to a CMP environment, due
to the negative interactions on the shared L2 space. Therefore, to
obtain comparable benefits from compiler-directed prefetching in
single core as well as multiple core environments, we need to mod-
ify the multi-core version to make it aware of data sharings across
processor cores, as shown in this paper. It is to be noted that scien-
tific applications and embedded image/video codes are maybe the
first set of applications that can take advantage of future many-core
architectures due to inherent parallelism they contain. Therefore,
it is important to enhance their CMP performance using compiler
techniques that are scalable, and our scheme is an effort in this di-
rection.

Nevertheless, we also would like to briefly mention how our
scheme can be made to work with other types of applications. Re-
call that the first step of our scheme is to identify the program
phases. While this step cannot be done very easily for applications
whose access patterns cannot be analyzed statically by the com-
piler, we might be able to use profile information to compensate for
this. Specifically, we can first profile the application code and iden-
tify the data sharing patterns among the different cores. The out-
come of this step can be shown in the form of plots, as illustrated
in Figure 4, which help us identify the CPU groups as well as the
number and types of the helper to use. Next, we can associate the
identified data sharing patterns to code sections. Note that, while
the first step gives us the CPU groups (i.e., which set of threads
(cores) should be assigned a common I/O prefetching thread), the
second step tells us the program segments where these groupings
should be considered. After that, we can divide each phase into
slices and place prefetch instructions in the code (helper threads)

executes a thread of the application. This is in contrast to independent
prefetching where each core performs only its own prefetches.

/* 1st loop nest */
for (i=0; i < N1; i++) {

for (j=0; j < N2; j++) {
a[i][j] += b[i][j];

}

/* 2nd loop nest */
for (i=0; i < N1; i++) {

for (j=0; j < N2; j++) {
k = (int)(2j/N1);
c[i][j] *= d[k][j];

}

Figure 9. Original code fragment with two loop nests.

1st loop nest (no group) 2nd loop nest (2 groups)

t1 t2 t16t3

……

t1 t2 t16t8

…

… t9 t10

…

Figure 10. Computation and helper thread assignments in different
loop nests.

that prefetch the required data elements for each slice (this set of
elements can be determined using profile information). While this
extension depends heavily on profile data, we believe it can be a
first step toward handling application codes that are difficult to an-
alyze statically.

Our approach is a compiler based prefetching mechanism that
uses explicit prefetch instructions. In our modeled system, we did
not have a hardware prefetcher. Certainly, existence of a hardware
prefetcher can affect the behavior of our scheme (e.g., can increase
the number of harmful prefetches). If a hardware prefetcher exists
in the architecture, one way of using our approach would be dis-
abling hardware prefetcher if the compiler can analyze the code
and is able to insert prefetch instructions. If not, we can let the
hardware prefetcher to take control. In this way, the execution can
switch between two prefetchers at runtime.

3.4 Example

This section illustrates how our approach explained so far operates
in practice using the example code fragment shown in Figure 9. For
ease of illustration, let us assume that the code is parallelized using
16 cores. This code fragment contains computations that access
four data arrays, a, b, c and d, using different references. As a
result of our phase identification (see Step 1 in Figure 5), we have
two distinct phases, i.e., each phase corresponds to a loop nest. The
next step of our scheme is to extract CPU groups within a phase.
Since each thread in the first loop nest accesses array elements
independently, the first loop nest does not have any shared data
accesses. The second loop nest on the other hand has two separate
CPU groups where the iterations assigned to each group access
their own shared data elements from array d.

Figure 10 gives a pictorial view of the thread distribution after
applying our scheme to the two loop nests. When the first loop nest
is in execution (there is no data sharing and hence no grouping), all
threads (t1 to t16) are computation threads performing their own
data prefetching (similar to (37)). For the second loop nest on the
other hand, since there are two identifiable groups, our approach
assigns a separate helper thread to each group (t1 for the first group,
t9 for the second group). In this case, the application threads (t2
through t8 in the first group and t10 through t16 in the second
group) do not perform any prefetches.

Figure 11(a) shows the code fragment after applying the con-
ventional data prefetching scheme for core 1. This is because in
the first loop nest (as stated earlier), there is no data sharing be-
tween cores, i.e., no grouping. Since the prefetches are executed
in a block-size granularity, the outermost loop is modified to work
with the specified block size, D. The innermost loop, on the other
hand, iterates over the elements within a block. The code fragments
for the remaining 15 cores have the same code structures except for
the lower and upper loop bounds specific to each core.

For the second loop nest, our algorithm, after identifying the
data sharing patterns, assigns a helper thread to each of the two

for (i=0, j=0; i < N1/16; i++) {
prefetch(&b[i][j], D);
for (jj=0; jj < ⌊N1/D⌋; jj+=D) {
prefetch(&b[i][jj + D], D);
for (j=jj; j < j + D; j++)

a[i][j] += b[i][j];
}
for (j=⌊N1/D⌋ * D; j < N1; j++)

a[i][j] += b[i][j];
}

(a) Loop Nest 1, core 1

for (i=0; i < N1/16; i++) {
for (j=0; j < ⌊N1/D⌋; j++ {

k = (int)(2(i + D)/N1);
prefetch(&d[k][j], D);
sync (syncvar);

}
}

(b) Loop Nest 2, core 1 (helper thread)

for (i=0; i < N1/16; i++) {
for (jj=0; jj < ⌊N1/D⌋; jj++ {

for (j=jj; j < jj + D; j++) {
k = (int)(2j/N1);
c[i][j] *= d[k][j];

}
sync(syncvar)

}
for (j=⌊N1/D⌋ * D; j < N1; j++) {

k = (int)(2j/N1);
c[i][j] *= d[k][j];

}
}

(c) Loop Nest 2, core 2
(computation thread)

Figure 11. Example application of our scheme.

Table 1. Experimental setup.
Processor Cores 8 processors with private L1 data and instruc-

tion caches, each processor is single threaded

Processor Model Each processor is a 4-way fetch and issue in-
order processor, 1 GHz frequency

Private L1 D-Caches Direct mapped, 32KB, 64 bytes line size, 3
cycle access latency

Private L1 I-Caches Direct mapped, 32KB, 64 bytes line size, 3
cycle access latency

Shared L2 Cache 8-way set associative, 8MB, 64 bytes line size,
15 cycle access latency

Memory 4GB, 200 cycle off-chip access latency

Sharing Density Threshold 70%

Slice Size 10%

groups. Since this takes away 2 cores (recall that we assign one
thread per core), the iterations are redistributed (parallelism is re-
tuned) among the remaining 7 threads in each group (see Fig-
ures 11(b) and (c)). The helper thread for the second loop nest has
a single prefetch instruction for the shared data and a loop that con-
tains instructions to prefetch the unshared data.

4. Experimental Evaluation

4.1 Setup

Our L2 aware prefetching scheme has been implemented using
Phoenix, which is a framework from Microsoft for developing
compilers as well as program analysis, testing and optimization
tools (36). Phoenix defines an Intermediate Representation (IR)
for programs, using ASTs, flow graphs, and an exception handling
model. Its structure is highly modular which allows any of its
components to be replaced with others without affecting the rest
of the system. We also implemented the conventional prefetching
scheme in (37) using Phoenix so that it can be compared to our
approach.

We used SIMICS (34) to evaluate both our prefetching scheme
and the conventional prefetching scheme. SIMICS is a full-system
simulator used to run unchanged production binaries of the target
hardware at high speeds. It can simulate a variety of architectures
and operating systems. We enhanced the base SIMICS infrastruc-
ture with accurate timing models. We want to mention that this
accurate timing models using the full system simulator which in-
cludes all effects due to operating systems allows us to capture real
execution to the extent possible. Table 1 gives the default system
configuration used in most of our simulations. We also changed the
default values of some of our simulation parameters to conduct a
sensitivity study.

We also added new synchronization APIs in our simulation
platform. We assume that each synchronization API incurs a certain
amount of latency, which is similar to the one used in Jung et
al (22). For example, latency for transferring an address from the

Table 2. Important characteristic of the SPEC OMP benchmarks.
The numbers are for the no-prefetch case except the last column
which shows the percentage improvements in L2 misses by our
approach with 12 cores.

Benchmark L1 miss
rates

L2 miss
rates

Memory foot-
print (MB)

L2 miss rate im-
provement

wupwise 1.6% 11.2% 1480 23.6%

swim 8.1% 20.6% 1580 26.1%

mgrid 11.3% 16.4% 450 28.1%

applu 0.8% 11.9% 1510 32.8%

galgel 1.1% 10.1% 955 19.3%

equake 2.4% 7.8% 860 26.0%

apsi 8.4% 7.2% 1650 19.6%

gafort 6.8% 11.6% 1680 15.7%

fma3d 4.1% 7.6% 1020 23.2%

art 0.9% 38.0% 2760 34.3%

ammp 0.6% 5.3% 475 16.8%

0

5

10

15

20

25

30

p
e
rc
e
n
ta
g
e
 i
m
p
ro
v
e
m
e
n
t
d
u
e
 t
o
 p
re
fe
tc
h
in
g

number of cores

wupwise swim mgrid applu

galgel equake apsi gafort

fma3d art ammp

0

10

20

30

40

50

60

70

80

90

100

B
re
a
k
d
o
w
n
 o
f
B
e
n
e
fi
ts
 (
%
)

I II III IV

(a) (b)

Figure 12. (a) Performance improvement (over the no-prefetch
case) when our data prefetching scheme is used. (b) Breakdown of
the benefits brought by our scheme over the conventional prefetch-
ing: (I) benefits due to reducing the CPU cycles spent by applica-
tion threads while executing prefetch instructions; (II) benefits due
to coordinating accesses from different threads to shared data; (III)
benefits due to reducing the number of duplicated prefetches; (IV)
benefits that we could not include into one of these three categories.

application to a synchronization register in the memory controller is
about 68 cycles. The effect of these instructions is already captured
in our results.

Table 2 gives important characteristics of the application codes
used in this study. Basically, we used the entire SPEC OMP bench-
mark suite (45), which includes applications to evaluate the per-
formance on OpenMP based implementations (we used the latest
version which is V3.2). All the performance data, cache miss rates
for L1 and L2, and memory footprints, presented in Table 2 are
for the case when no data prefetching is used (i.e., the no-prefetch
case). The last column in Table 2 shows the percentage improve-
ments in L2 misses with our approach when 12 cores are used. All
the applications use the reference input set and are fast forwarded
to the beginning of the main loops. We warm the caches for about
1 billion instructions and collect results until the loop iterations ter-
minate.

4.2 Results

Recall that Figure 3(a) gives the performance improvements the
independent prefetching (with the per core FIFO implementation)
brings over the no-prefetch case, and Figure 3(b) presents the con-
tribution of harmful prefetches. As discussed earlier in Section 2,
the independent prefetching fails to scale as we increase the num-
ber of cores in the CMP. In fact, in some applications, it even gen-
erates worse results than the base case which does not use any data
prefetching.

Figure 12(a) gives the performance of the prefetched code when
our scheme is used, instead of conventional prefetching. As in Fig-
ure 3(a), the improvements are with respect to the base case which
does not employ any data prefetching (i.e., with respect to the no-

-5

0

5

10

15

20

25

In
d

e
p

e
n

d
e

n
t

L
2

 a
w

a
re

1
-c

o
re

-p
re

f

2
-c

o
re

-p
re

f

3
-c

o
re

-p
re

f

4
-c

o
re

-p
re

f

In
d

e
p

e
n

d
e

n
t

L
2

 a
w

a
re

1
-c

o
re

-p
re

f

2
-c

o
re

-p
re

f

3
-c

o
re

-p
re

f

4
-c

o
re

-p
re

f

12 cores 24 cores

p
e

rc
e

n
ta

g
e

 i
m

p
ro

v
e

m
e

n
t
d

u
e

 t
o

 p
re

fe
tc

h
in

g wupwise swim mgrid applu
 galgel equake apsi gafort
fma3d art ammp

Figure 13. Comparison of dif-
ferent data prefetching schemes
(savings are with respect to the
no-prefetch case).

-5

0

5

10

15

20

25

In
d

e
p

e
n

d
e

n
t

In
d

e
p

e
n

d
e

n
t

(S
h

a
re

d
)

L
2

 a
w

a
re

In
d

e
p

e
n

d
e

n
t

In
d

e
p

e
n

d
e

n
t

(S
h

a
re

d
)

L
2

 a
w

a
re

12 cores 24 cores

p
e

rc
e

n
ta

g
e

 i
m

p
ro

v
e

m
e

n
t

d
u

e
 t

o
 p

re
fe

tc
h

in
g

wupwise swim mgrid applu galgel equake

apsi gafort fma3d art ammp

Figure 14. Comparison with
alternate independent prefetch-
ing scheme (savings are with
respect to the no-prefetch case).

prefetch case). When Figure 12(a) and Figure 3(a) are compared,
it can be seen that our prefetching scheme performs much better
than the conventional prefetching scheme (note that the improve-
ments in both Figures 3(a) and 12(a) are with respect to the no-
prefetch case). In fact, we observe that the percentage benefits from
prefetching are quite stable across varying core counts when our
L2 aware prefetching scheme is used. To explain the difference
between Figure 12(a) and Figure 3(a), we also collected statis-
tics that help us understand where these improvements are com-
ing from. Figure 12(b) plots the breakdown of benefits brought by
our prefetching approach, when averaged over all core counts used.
We divide the benefits of our new data prefetching scheme into four
categories: (I) Benefits due to reducing the CPU cycles spent by ap-
plication threads due to prefetch instructions inserted by the com-
piler. Since our scheme reduces the number of prefetches issued,
it also reduces the CPU overhead due to fetching, decoding and
committing the prefetch instructions. (II) Benefits due to coordi-
nating accesses from different threads to shared (prefetched) data.
As explained earlier, our approach restructures a given phase such
that the cores perform coordinated accesses to the shared data (on a
slice basis). As a result, our approach in a sense improves locality of
the prefetched data in the L2 cache. More specifically, the first set
of shared data elements are brought into the L2 cache, and all the
cores operate on it. Then, they synchronize (with the helper thread)
and the second set of shared data are brought and operated on, and
so on. In this way, our approach increases the odds that shared data
will be caught in the cache when it is reused. (III) Benefits due to
reducing the number of harmful prefetches. As explained earlier,
our approach reduces the number of duplicate prefetches through
the use of a single helper thread per CPU group. (IV) Benefits that
we could not include into one of these three categories. The results
in Figure 12(b) clearly show that most of the benefits we obtain
come from eliminating duplicate prefetches and reducing negative
interactions on the shared cache, though the exact contribution of
each category varies from benchmark to benchmark.

We now compare the performance of our prefetching algorithms
against a simpler prefetching scheme, which allocates a fixed num-
ber of helper threads to perform prefetching. We use “x-core-pref”
to denote a scheme where x cores are devoted for prefetching on
behalf of the others throughout the entire execution period (in each
phase) and the remaining cores are used for application execution.
We present the results with 1 ≤ x ≤ 4, as higher x values always
generated worse results than those reported in here. Our first ob-
servation from Figure 13, which presents results for the 12 and 24
core cases, is that 1-core-pref, 2-core-pref and 3-core-pref gener-
ally result in better performance than the independent prefetching
scheme. However, the same cannot be said for 4-core-pref, as in
this case too many (4) cores allocated for just prefetching and this
hurts performance, especially when the number of cores is 12. The
second observation one can make from Figure 13 is that our L2
aware prefetching scheme outperforms all the alternate prefetching
schemes tested for all application codes we have, which indicates
that fixing the number of prefetch threads may not be the best op-
tion in general.

0

4

8

12

16

20

4MB 8MB 16MB 32MB 4MB 8MB 16MB 32MB

12 cores 24 cores

p
e

rc
e

n
ta

g
e

 i
m

p
ro

v
e

m
e

n
t

d
u

e
 t

o
 p

re
fe

tc
h

in
g

wupwise swim mgrid applu galgel equake

apsi gafort fma3d art ammp

Figure 15. Impact of differ-
ent cache sizes when 12 and
24 cores are used (savings are
with respect to the independent
prefetching case).

-5

0

5

10

15

20

25

50% 60% 70% 80% 50% 60% 70% 80%

12 cores 24 coresp
e

rc
e

n
ta

g
e

 i
m

p
ro

v
e

m
e

n
t
d

u
e

 t
o

 p
re

fe
tc

h
in

g

wupwise swim mgrid applu
 galgel equake apsi gafort
fma3d art ammp

Figure 16. Impact of variation
on the sharing density threshold
(savings are with respect to the
no-prefetch case).

0

5

10

15

20

25

30

2% 5% 10% 15% 20% 50% 2% 5% 10% 15% 20% 50%

p
e
rc
e
n
ta
g
e
 i
m
p
ro
v
e
m
e
n
t
d
u
e
 t
o
 p
re
fe
tc
h
in
g

wupwise swim fma3d art ammp

Figure 17. Impact of different
slice sizes (savings are with re-
spect to the no-prefetch case).

0

5

10

15

20

25

30

p
e
rc
e
n
ta
g
e
 i
m
p
ro
v
e
m
e
n
t
d
u
e
 t
o
 p
re
fe
tc
h
in
g

number of cores

wupwise swim mgrid applu

galgel equake apsi gafort

fma3d art ammp

Figure 18. Comparison with
optimal prefetching scheme.

As stated earlier, we also implemented an alternate version of
the independent prefetching scheme where the runtime system ap-
plies duplicate prefetching check across all cores. That is, if a core
issued prefetch request for a data item, another prefetch request
for the same data item from a different core can be caught and
filtered in this alternate implementation. As discussed earlier, this
implementation is more costly than our default implementation,
which applies duplicate checks to only to the prefetches issued by
the same core. Figure 14 presents the percentage performance im-
provements with this new implementation (denoted as independent
(shared)). The results with the default independent prefetching im-
plementation and our L2 aware scheme are also reproduced for ease
of comparison. We observe that, while there are exceptions, in gen-
eral the per chip version of the prefetch filtering generates worse
results than the default implementation (per core based) due to in-
creased overhead incurred within the runtime system. However, we
want to emphasize that even if we could implement a hypotheti-
cal (independent prefetching) scheme that eliminates all duplicate
prefetches without incurring any costs, that version would not be
better than our L2 aware scheme. This is because, as discussed
above, a large portion of the benefits of our approach comes from
improved L2 locality (category (II) in Figure 12(b)), which cannot
be achieved by an independent prefetching strategy.

In the rest of this section, we present results from our sensitivity
experiments. In each sensitivity experiment, we change the value
of one simulation parameter only; the values of the remaining
parameters remain as shown in Table 1. The first parameter we
study is the L2 cache capacity. Recall that the default L2 capacity
used in our simulations so far is 8MB. The results (savings over
the independent prefetching case) with different cache capacities
are given in Figure 15 for the 12 and 24 core cases. While, as
expected, the achieved savings get reduced as we increase the L2
cache capacity, even with the largest L2 capacity used (32MB), we
achieve on average 4.7% improvement for the 12 core case and
5.2% improvement for the 24 core case.

Recall that so far in our experiments we assigned a separate
helper thread to two or more threads if the sharing density is 70%
or higher (in other words, the sharing density threshold was 70%).
Figure 16 shows the percentage improvement results when the shar-

ing density threshold is varied between 50% and 80%. Our first
observation is that when we set the threshold to 80%, the savings
are not good. The main reason is that, with such a high thresh-
old, the compiler cannot find much opportunity to apply our opti-
mization, and most of the time, each core ends up with performing
its own data prefetching. On the other hand, when the threshold is
low (50%), our approach starts behaving similar to the independent
prefetching case. Next, we present the results with different slice
sizes (S) in Figure 17. In our default setting, the slice size is set
to 10% of the total loop iteration count. We see from these results
that, while the slice size has some impact on our results, unless
one works with too small or too large sizes, the results obtained
with different values of S are not too far from each other. We also
would like to mention that while in this section we presented a sen-
sitivity analysis of our approach to sharing density threshold and
slice size, we believe both these parameters are important and re-
quire a thorough study. In particular, it is an open research problem
whether appropriate values for these parameters can be automati-
cally derived by the compiler, or whether profile information can be
used for this purpose. Exploring this issue further is in our future
research agenda.

Finally, we also performed experiments with a (hypothetical)
optimal prefetching scheme that eliminates all harmful prefetches
without any cost and maximizes data reuse in L2. To obtain this,
we augmented our base SIMICS simulation platform and col-
lected traces for cache accesses. These collected traces have perfect
knowledge on future access behavior and we used them for simulat-
ing optimal prefetching such that there exist no prefetches that leads
to a harmful prefetch. The results with this hypothetical scheme are
presented in Figure 18. If we compare these results against those
obtained using our L2 aware prefetching scheme (Figure 12(a)), we
see that our savings come very close to those that can be achieved
using the optimal scheme (the average difference is about 7%), in-
dicating that our approach performs very well in practice (i.e., it
eliminates most of the harmful prefetches that can be eliminated
and maximizes locality of the shared L2 data as much as possible).

5. Related Work

Data prefetching is known to be a very effective way of improv-
ing performance of applications by hiding CPU stall time by issu-
ing instructions ahead of the time when they are actually needed
(37; 12; 33; 49; 33; 6; 8; 16; 24; 29; 32; 43; 46; 51; 53; 52; 1; 7;
40; 41; 14). Since prefetched blocks can pollute the normal cached
blocks, prefetching should be designed and implemented carefully.
Mowry et al (37) used compiler-guided information to minimize
any unnecessary or redundant prefetches. They also employed co-
ordination with runtime layer in order to eliminate the total mes-
sage traffic with prefetching for multiprocessors (32). Vander Wiel
and Lilja also used compiler help for data prefetching controller
(51).

In the context of SMT (simultaneous multi-threading) and CMP
(chip multiprocessor) domain, several prior studies considered em-
ploying a helper thread to hide memory latency (22; 30; 46; 25;
28; 31). This is done by converting an extracted program slice that
executes critical instructions into helper thread. Jung et al (22) use
a helper thread based prefetching scheme for loosely-coupled pro-
cessors, like the modern CMPs. Kim et al (25) employ a similar
scheme that employs helper threads running in spare hardware con-
texts ahead of the main computation to start the memory operations
early so that memory latency can be tolerated. Liao et al (28) pin-
point the trigger points in the executable and generate a new exe-
cutable with the prefetch threads embedded. Song et al (44) pro-
posed a detailed compiler framework that generates helper thread
prefetching for dual-core SPARC microprocessors. Our approach
is different from these efforts in two aspects. First, we consider
the cases where there are multiple CPU cores, and therefore, our
scheme applies a different code modification, which is slice based.
To our knowledge, the prior efforts based helper thread target at
two-core cases. That is they runs one one application in one core
and the prefetcher in the other. In contrast, our scheme is more

general and can work with any number of cores. In addition, to our
knowledge, none of the prior studies considered a program phase
based approach where a number of helper threads that perform data
prefetching on behalf of application threads changes during execu-
tion time. Second, we target array-intensive multi-threaded appli-
cations.

Prefetching is also extensively studied in the context of improv-
ing I/O performance (50; 38; 4; 13). Mowry et al use compiler-
guided information to manage I/O prefetch commands effectively
(38). They also studied the cases where multiple processes issue I/O
prefetch commands concurrently (4). Li and Shen (27) proposed
a memory management framework that handles non-accessed but
prefetched pages separately from the rest of the memory buffer
cache. Recent studies to improve conventional I/O prefetching us-
ing additional file and access history information include Diskseen
(11), Competitive Prefetching (5) and AMP (15). In comparison to
these studies, our work targets multiple prefetching on a CMP.

6. Conclusion and Future Work

Shared on-chip cache management is a crucial CMP design aspect
for the performance of the system. It is very important to maximize
the effective utilization of this cache through hardware and soft-
ware based techniques. While compiler based data prefetching is
known to be an effective technique for improving data cache be-
havior, it has not been tested thoroughly in the context of CMPs.
This paper first presents such an evaluation using the entire suite
of the SPEC OMP applications, and then proposes a new prefetch-
ing scheme for the shared L2 based CMPs. The proposed prefetch-
ing scheme is oriented toward reducing the number of harmful
prefetches. The collected results indicate that, in 12 and 24 core
cases, our scheme improves overall parallel execution latency by
18.3% and 16.4% respectively over the no-prefetch case and by
6.4% and 11.7% respectively over the independent prefetching case
(on average). Our results also show that the proposed prefetching
scheme is robust across a wide range of values of our major simula-
tion parameters such as the number of cores, on-chip cache capac-
ity, sharing density threshold, and slice sizes. In our future work,
we will focus on sharing density threshold and slice size parame-
ters and explore whether compiler can help determine suitable val-
ues for them automatically. Work is also underway in integrating
the proposed prefetching scheme with existing cache optimizations
such as tiling, targeting a CMP setting.

References
[1] A. R. Alameldeen and D. A. Wood. Interactions Between Compression and

Prefetching in Chip Multiprocessors. In HPCA, pages 228–239, 2007.
[2] Bala et al. Dynamo: a transparent dynamic optimization system. In PLDI, pages

1–12, 2000.
[3] Balasubramonian et al. Memory hierarchy reconfiguration for energy and perfor-

mance in general-purpose processor architectures. In MICRO, pages 245–257,
2000.

[4] A. D. Brown and T. C. Mowry. Taming the Memory Hogs: Using Compiler-
Inserted Releases to Manage Physical Memory Intelligently. In OSDI, pages
31–44, 2000.

[5] C. Li et al. Competitive Prefetching for Concurrent Sequential I/O. In EuroSys,
pages 189–202, 2007.

[6] T.-F. Chen and J.-L. Baer. A performance study of software and hardware data
prefetching schemes. In ISCA, pages 223–232, 1994.

[7] Cooksey et al. A stateless, content-directed data prefetching mechanism. In
ASPLOS, pages 279–290, 2002.

[8] Dahlgren et al. Fixed and adaptive sequential prefetching in shared memory
multiprocessors. In ICPP, pages 56–63, 1993.

[9] A. S. Dhodapkar and J. E. Smith. Managing Multi-Configuration Hardware via
Dynamic Working Set Analysis. In ISCA, pages 233–244, 2002.

[10] A. S. Dhodapkar and J. E. Smith. Comparing Program Phase Detection Tech-
niques. In MICRO, pages 217–227, 2003.

[11] Ding et al. DiskSeen: Exploiting Disk Layout and Access History to Enhance
I/O Prefetch. In USENIX, pages 261–274, 2007.

[12] Doshi et al. Optimizing Software Data Prefetches with Rotating Registers. In
PACT, pages 257–267, 2001.

[13] P. et al. Informed Prefetching and Caching. In SOSP, pages 79–95, 1995.
[14] I. Ganusov and M. Burtscher. Efficient Emulation of Hardware Prefetchers via

Event-Driven Helper Threading. In PACT, pages 144–153, 2006.
[15] B. S. Gill and L. A. D. Bathen. AMP: Adaptive Multi-Stream Prefetching in a

Shared Cache. In USENIX FAST, pages 185–198, 2007.

[16] E. H. Gornish and A. Veidenbaum. An integrated hardware/software data
prefetching scheme for shared-memory multiprocessors. Int. J. Parallel Pro-
gram., 27(1):35–70, 1999.

[17] Hammond et al. A Single-Chip Multiprocessor. Computer, 30(9):79–85, 1997.
[18] Hsu et al. Exploring the cache design space for large scale CMPs. SIGARCH

Comput. Archit. News, 33(4):24–33, 2005.
[19] Huang et al. Positional Adaptation of Processors: Application to Energy Reduc-

tion. In ISCA, pages 157–168, 2003.
[20] Intel. Intel Core Duo Processor and Intel Core Solo Processor on 65 nm Process,

January 2007. Datasheet.
[21] Intel Corporation. Intel Develops Tera-Scale Research Chips, 2006. http://

www.intel.com/pressroom/archive/releases/20060926corp_b.htm.
[22] Jung et al. Helper Thread Prefetching for Loosely-Coupled Multiprocessor

Systems. In IPDPS, 2006.
[23] Kalla et al. IBM Power5 Chip: A Dual-Core Multithreaded Processor. IEEE

Micro, 24(2):40–47, 2004.
[24] A. Ki and A. E. Knowles. Adaptive data prefetching using cache information. In

ICS, pages 204–212, 1997.
[25] D. Kim and D. Yeung. Design and Evaluation of Compiler Algorithms for Pre-

Execution. In ASPLOS, pages 159–170, 2002.
[26] Kongetira et al. Niagara: A 32-Way Multithreaded Sparc Processor. IEEE Micro,

25(2):21–29, 2005.
[27] C. Li and K. Shen. Managing prefetch memory for data-intensive online servers.

In USENIX FAST, pages 253–266, 2005.
[28] Liao et al. Post-Pass Binary Adaptation for Software-Based Speculative Precom-

putation. In PLDI, pages 117–128, 2002.
[29] Lu et al. The Performance of Runtime Data Cache Prefetching in a Dynamic

Optimization System. In MICRO, page 180, 2003.
[30] Lu et al. Dynamic Helper Threaded Prefetching on the Sun UltraSPARC CMP

Processor. In MICRO, pages 93–104, 2005.
[31] C.-K. Luk. Tolerating Memory Latency through Software-controlled pre-

execution in Simultaneous Multithreading Processors. In ISCA, pages 40–51,
2001.

[32] C.-K. Luk and T. C. Mowry. Architectural and compiler support for effective
instruction prefetching: a cooperative approach. ACM Trans. Comput. Syst.,
19(1):71–109, 2001.

[33] Luk et al. Profile-guided post-link stride prefetching. In ICS, pages 167–178,
2002.

[34] Magnusson et al. Simics: A Full System Simulation Platform. IEEE Computer,
35(2):50–58, 2002.

[35] C. McNairy and R. Bhatia. Montecito - The next product in the Itanium(R)
Processor Family, 2004. In Hot Chips 16, http://www.hotchips.org/
archives/.

[36] Microsoft. Phoenix as a Tool in Research and Instruction. http://research.
microsoft.com/phoenix/.

[37] Mowry et al. Design and Evaluation of a Compiler Algorithm for Prefetching.
In OSDI, pages 62–73, 1992.

[38] Mowry et al. Automatic Compiler-Inserted I/O Prefetching for Out-of-Core
Applications. In OSDI, pages 3–17, 1996.

[39] W. Pugh and D. Wonnacott. Going Beyond Integer Programming with the Omega
Test to Eliminate False Data Dependences. IEEE Trans. Parallel Distrib. Syst.,
6(2):204–211, 1995.

[40] Rabbah et al. Compiler orchestrated prefetching via speculation and predication.
In ASPLOS, pages 189–198, 2004.

[41] Roth et al. Dependance Based Prefetching for Linked Data Structures. In
ASPLOS, pages 115–126, 1998.

[42] T. Sherwood, S. Sair, and B. Calder. Phase Tracking and Prediction. In ISCA,
pages 336–349, 2003.

[43] Shi et al. Coterminous locality and coterminous group data prefetching on chip-
multiprocessors. In IPDPS, 2006.

[44] Song et al. Design and Implementation of a Compiler Framework for Helper
Threading on Multi-Core Processors. In PACT, 2005.

[45] SPEC. SPEC OMP Version 3.0 Documentation (OpenMP Benchmark Suite).
http://www.spec.org/omp/.

[46] Spracklen et al. Effective Instruction Prefetching in Chip Multiprocessors for
Modern Commercial Applications. In HPCA, pages 225–236, 2005.

[47] Srikantaiah et al. Adaptive set pinning: managing shared caches in chip multi-
processors. In ASPLOS, pages 135–144, 2008.

[48] Sun Microsystems. UltraSPARC-II Enhancements: Support for Software Con-
trolled Prefetch, 1997. White Paper WPR-0002.

[49] Tian et al. Impact of Compiler-based Data-Prefetching Techniques on SPEC
OMP Application Performance. In IPDPS, page 53.1, 2005.

[50] Tomkins et al. Informed Multi-Process Prefetching and Caching. In SIGMET-
RICS, pages 100–114, 1997.

[51] S. P. Vanderwiel and D. J. Lilja. Data prefetch mechanisms. ACM Comput. Surv.,
32(2):174–199, 2000.

[52] Wang et al. Guided Region Prefetching: A Cooperative Hardware/Software
Approach. In ISCA, pages 388–398, 2003.

[53] S. P. V. Wiel and D. J. Lilja. A compiler-assisted data prefetch controller. In
ICCD, pages 372–377, 1999.

[54] M. E. Wolf and M. S. Lam. A Data Locality Optimizing Algorithm. In PLDI,
pages 30–44, 1991.

[55] Wolf et al. Combining Loop Transformations Considering Caches and Schedul-
ing. In MICRO, pages 274–286, 1996.

[56] M. J. Wolfe. High Performance Compilers for Parallel Computing. Addison-
Wesley Longman Publishing Co., Inc., 1995.

