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Abstract

Reducing power consumption is quickly becoming a firstslagtimization metric for many high-performance
parallel computing platforms. One of the techniques engaddyy many prior proposals along this direction is voltage
scaling and past research used it on different componealsasunetworks, CPUs, and memories. In contrast to most of
the existent efforts on voltage scaling that target a siogieponent (CPU, network or memory components), this paper
proposes and experimentally evaluates a voltage/frequssating algorithm that considers CPU and communication
links in a mesh network at the same time. More specificallycitles voltages/frequencies of CPUs in the nodes and
the communication links among them in a coordinated fasfiistead of one after another) such that energy savings
are maximized without impacting execution time. Our experits with several tree-based sparse matrix computations
reveal that the proposed integrated voltage scaling appr@avery effective in practice and brings 13% and 17%
energy savings over the pure CPU and pure communicatiowdittige scaling schemes, respectively. The results also
show that our savings are consistent with the different agtwizes and different sets of voltage/frequency levels.
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1 Introduction

Power consumption is becoming a critical issue for high-emehputing platforms due to several factors in-
cluding cost, space, reliability, and maintenance. Comsety, recent research efforts from different groups
in both academia and industry have focused on techniquéséfia us accurately model and reduce power
consumption of different hardware components in a largepedimg infrastructure. These studies, details of
which are discussed in Section 2, include CPU power optitioizs, memory banking and low-power operat-
ing mode management, network power minimization, and grergnted disk I/O optimizations.

Voltage and frequency scaling has been identified by pasarels as one of the most effective ways of
reducing CPU power [10, 34]. More recently, there have be&epgsals [30, 35] that apply voltage/frequency
scaling to network links to save communication power. Hoaveto our knowledge, none of the prior efforts
in the domain of high-performance computing consideredgugoltage scaling on both CPUs and communi-
cation links of a given parallel architecture in a coordambfashion to save power. The work described in this
paper is a step in this direction. More specifically, focgsim sparse matrix computations that can be repre-
sented as trees, this paper studies the potential benefitsah be accrued when using CPU and communica-
tion link voltage/frequency scaling in a coordinated fashiTo achieve this, we propose and experimentally
evaluate a voltage/frequency scaling algorithm.

In this paper, we proposewmltage scalingoased energy reduction scheme for tree-based parallelespar
computations. Our first approach is based on extracting r@septation of load imbalances across the pro-
cessors in the parallel system, and using this informaticaissigning the most suitable supply voltages and



frequencies to processors in the system. This represemtegtiextracted after applying the load-balancing

techniques available for the problem [12, 20, 26, 27]. Weertbat many state-of-the-art processors (e.g.,
[1, 33, 19]) employ circuit mechanisms that support voltagguency scaling; and in large parallel systems
built from such components, the voltage/frequency of eackgssor can be scaled independently of others.
Our goal is to reduce the energy consumption of processoosigh voltage/frequency scaling as much as
possible, without increasing the execution time of the igptibn. Therefore, our approach exploits load im-

balance across parallel processors, and applies voltagjiagto only the processors that are not in the critical

path.

Based on our voltage/frequency scaling techniques tag&PU power, we next propose and evaluate
our integrated technique that scales down the voltagestbf®BUs and communication links. An important
characteristic of the proposed algorithm is that it scdiessbltages of CPUs and links considering the impact
of doing so on each other; this is radically different fromedternate approach that applies CPU voltage scaling
after communication link voltage scaling or vice versa. gt the effectiveness of our approach, we applied it
to a set of tree-based sparse matrix computations runnimgwa-dimensional mesh network and compared it
to two alternate schemes, one that applies voltage scatityg@ CPUs and the other one that applies voltage
scaling to only communication links. Our experiments réteat the proposed integrated voltage/frequency
scaling approach is very effective in practice and bring® BE&d 17% energy savings over the pure CPU and
pure communication link voltage scaling schemes. The tesil8o show that our savings are consistent with
the different network sizes and different sets of voltageffiency levels.

The remainder of this paper is structured as follows. In tiwing section, we describe the related
work on voltage scaling in the context of the interconnectietworks and processors. Section 3 explains
the tree based computation model for parallel sparse msdhisers. In Section 4, we propose several voltage
scaling techniques for tree based parallel matrix sohard, present our evaluation methodology and results
with our algorithms given in the same section. Our integtdited/CPU voltage scaling algorithm is presented
and experimentally evaluated in Section 5. We conclude #peipin Section 6 with a summary of our major
contributions.

2 Related Work

Several studies in the past have proposed dynamic voltadjeg¢DVS) techniques for reducing energy con-
sumption of communication links in the NoC (Network-on-@hbased systems and high-end multiprocessor
systems [30, 31, 35]. The main idea behind these approastesdale down the voltage/frequency of commu-
nication links when there is enough communication slaek,(ihe amount of latency by which communication
can be delayed without affecting overall execution timeesteed or predicted. In order for these DVS tech-
niques to be feasible, Kim et al [22] proposed serial linkd tan operate under various link voltage/frequency
levels. Employing links with variable voltage/frequen8hang et al [30] presented and evaluated a history-
based DVS scheme for the communication links. Worm et alp@&hosed an adaptive low-power transmission
technique for on-chip networks, whereas Shin et al [31]udised a task mapping technique based on genetic
algorithms to utilize voltage scalable links for saving igyein NoC based systems. Besides DVS techniques
for communication links, several techniques that shut domused or underutilized links have been proposed.
Kim et al [21] proposed a dynamic link shutdown (DLS) techugdor chip-to-chip networks. Soteriou et al
[32] explored the design space for communication links witin on/off capability.

In addition to these efforts that target reducing power gorgion in communication links, there are also
studies that target reducing power/energy consumptioargélserver and cluster systems. These efforts can
be broadly classified into three categories. The first cayegiothe efforts considered CPU-centric techniques
that turn off unused CPUs [8] or scale down CPUs that execotecnitical execution [9, 10, 4]. \oltage
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Figure 1: An example weighted tree and its VTE (Voltage-TFarergy) tree. (a) Weighted tree. The numbers
written inside the nodes indicate the associated computticost. Leaf nodes represent the local phase
computations, and each of them is assigned to a process®4P@he bold lines represent the critical path.
(b) VTE tree. The three numbers inside each node, from topttofn, represent the voltage level, the time it
takes, and the energy consumption required to compute diis. n

scaling on processors [34] has been extensively studiederatal commercial processors (e.g., Transmeta’s
Crusoe [33] and AMD'’s Athlon 64 [1]) already provide mechsms to control the frequency and voltage of
processors. The second category of studies [3, 21, 5] pedpssveral techniques that focus on individual
components of the server based computing systems such as &®lUnain memory. Lastly, many studies
focused on reducing energy consumption on the disk sulmysthich is a huge energy consumer for large
data centers, by completely spinning down disks [7] or dyinaly adjusting the rotational speed of disks [16].
As compared to these prior efforts, our approach combinés &% communication link voltage scaling.

Lastly, in the domain of real-time distributed embeddedeys, Luo et al [23] proposed a technique that
simultaneously scales voltages of processors and comationidinks. Our approach is different from Luo et
al’'s work in that we focus exclusively on parallel sparsenmapplications and consider the underlying net-
work topology in selecting proper link voltages (and copasling frequencies). Consequently, our integrated
voltage scaling algorithm is entirely different from their

3 Tree-Based Computation Model

In this paper, we concentrate on parallel sparse lineaesysto study the impact of CPU and link voltage
scaling without impacting performance. Such computatiypscally dominate the execution time of many
large-scale parallel applications on multiprocessors @nsters of workstations. There are many classes of
parallel sparse linear solvers and important classesdegbarallel direct solvers based on sparse factorization
[6, 14, 20, 24], iterative solvers [18, 29], and directdtdre hybrids through preconditioning [15, 25, 28].
While there is no single method that is always better thaersthcross the different application domains and
the underlying parallel execution platforms, they shaseshime notion that a given sparse matrix can be rep-
resented as a graph, which can be partitioned across poosdes parallel execution. This partitioning [20]

is usually performed using a recursive scheme for computertex or edge separators, and the associated
partitioning tree (and related trees) can serve as a usefdéhfor the underlying parallelism and data depen-
dencies.

We focus on tree-based parallel sparse computations tha¢presentative of parallel sparse solvers when
matrix is symmetric positive definite. Such solvers consis initial symbolic phase followed by a numeric
phase. In the symbolic phase, the matrix for parallel coatjon is partitioned to determine the actual structure
of the Cholesky factof. [17]. The numeric phase, which represents the dominantigdstal solver time,
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involves computation of the sparse factor and solving tlablpm using the determined sparse factor. The
columns ofLL can be clustered intsupernodeseach of which contains a set of consecutive columns with the
same zero/nonzero structure. The overall numeric phaseeaerformed in parallel otiee of supernodes.
The tree structure represents the data dependencies, eimdrea node denotes a supernodeloénd its
corresponding set of dense-matrix operations. The altwtaf processors to subtrees is based on the weights
on the tree to represent the computation cost. While theatilon procedure can be done in several phases
to balance computational load on each processor, inhameguiarities in the sparse matrix often result in
workload imbalance across processors during parallesspaatrix computation.

In general, for sparse systems from modeling and simulajaplications with coefficient matrices of
dimensionN, the number of levels in the tree is approximatkly, N. For illustrative purposes, let us assume
that the tree has more leaves than the number of proceBsdisre often, the top 5 to 10 highest levels of the
tree nodes account for more than 50% of the total communitaind computation time [24]. Since process
execution roughly occurs &g, P levels from the root and the subtrees rooted below thesesrergéeassigned
to the P different processors (as local computations at procesdmace the tree based sparse system with the
number of P processors is scalable because it is applied in detail ttofheg, P levels.

In this paper, we use such weighted trees as the model of datigpu Specifically, the weighted paths
in this tree can be used to compute loads at each processidip datermine theritical path (corresponding
to the largest load across all processors). An example wegighee is depicted in Figure 1(a). In this figure,
the number inside each node represents the computatiostaflaad) at that node, and we use capital letters
(A-l, in this example) to identify different nodes. Leaf rexdrepresent the local phase computations, and each
of them is assigned to a single processor. For example, nddeag€signed to processor PO, and node E is
assigned to processor P1. Root nodes of different tree¢gmsotepresent the distributed phase computations.
The computations at a root node of a tree/subtree are distdbevenly across all the processors to which
the leaf nodes of this tree/subtree are assigned. For egaiimg computation in node D in Figure 1(a) is
assigned to processors P1 and P2, with each processor H#vimgits of computational cost for processing
node D. Similarly, the computational load represented lyena is assigned to all the five processors, with
each of them having0 (= 200/5) units of computational cost. It should be noted that the@seors sharing
a node’s computations need to synchronize with each otHerdbthey start the computations at this node.
For example, although P2 could finish the computations a¢ fodefore P1 could finish its computations at
node E, P2 must wait until P1 finishes before both the processmld co-operate to start the computations at
node D. In such a weighted tree structure, the processortidthargest load (when considering all the nodes
it is involved with) determines the critical path. In Figuké), P1 has the largest load, and the critical path is
highlighted using bold lines. When there is no confusion,use the root node of a tree/subtree to represent
that tree/subtree. For example, ‘subtree B’ refers to tirea consisting of node B, node C, node D, node E,
and node F. Given a weighted tree, our approach tries to nizxiemergy savings during its execution.

4 CPU Voltage Scaling

4.1 Algorithms

Over the range of allowed supply voltages, the highest #aqu at which a CPU can run correctly drops
proportionally to the supply voltage (i.€f.,oc V). Since the main component of power consumption is propor-
tional to V2 f, it is easy to see that reducinghas a quadratic effect on energy consumption. Consequantly
CPU can save substantial energy by running with lower supgltage (hence, more slowly) [2]; e.g., by re-
ducing its supply voltage to half, it can reduce its energyscmnption tol /4th of the original. The important
point to note here is that, for correct operation, when gatis scaled, frequency needs also be scaled.



Table 1: Voltage/frequency/power levels used in our exasipl
[ Voltage | Frequency | Power |

1 1 1
0.8 0.8 0.512
0.6 0.6 0.216
0.4 0.4 0.064
\oltageScaling(node) AdjustTreeVoltage(node, lev)
if (node.hasChildren] node.level = lev;
AdjustTreeVoltage(node.left, node.level); node.nodeTime = NodeTimeAtLevel(node, lev);
AdjustTreeVoltage(node.right, node.level); node.treeTime = TreeTimeAtLevel(node, lev);
if (node.left.treeTime< node.right.treeTime] }
fastNode = node.left;
slowNode = node.right; AdjustNodeVoltage(node, lev)
{
else{ childrenTime = node.treeTime - node.nodeTime;
fastNode = node.right; node.level = lev;
slowNode = node.left; node.nodeTime = NodeTimeAtLevel(node, lev);
} node.treeTime = node.nodeTime + childrenTime]
for (newLevel = fastNode.level + 1; }
newlLevel< MAXLEVEL; newLevel++)
if (TreeTimeAtLevel(fastNode, newLevel) TreeTimeAtLevel(node, lev)
> slowNode.treeTime)
break; return (node.origTreeTime / FREQ][lev]);
newLevel = newLevel - 1, }
AdjustTreeVoltage(fastNode, newLevel);
\oltageScaling(node.left); NodeTimeAtLevel(node, lev)
\oltageScaling(node.right);
} return (node.origNodeTime / FREQ[lev]);
} }

Figure 2: VS1. VoltageScaling() is the main function, ane tither four routines are helper functions. The
complexity of this algorithm i€) (LN ), whereL is the number of available voltage levels, a¥ids the number
of nodes in the tree.

In this section, we first present the algorithms for dynathicarying (scaling) CPU speed and voltage to
save energy in tree-based parallel sparse computationen@itree, our main objective is to find a dynamic
voltage scaling scheme that can maximize energy savingiutigffecting the overall original execution time
(the execution time taken without any power management).oléerve that the load imbalance in the tree
can be utilized to reduce energy consumption. Specificldlythose nodes that are not in the critical path,
their execution speed (frequency) can be reduced withfettafg the overall execution time, and their energy
consumption can be reduced via voltage scaling.

For the examples presented in this section, we assume ther paunbers (levels) given in Table 1. All
the numbers in this table are normalized, and the originlihge/frequency/power numbers arél /1. We
use avVTE (Voltage-Time-Energytree to represent the voltage assignments for a weighted trepird-iL(b)
gives an example of VTE tree corresponding to the weightsslittustrated in Figure 1(a). The three numbers
inside each node of a VTE tree, from top to bottom, corresgorttie voltage level, time spent, and energy
used to compute that node (note that, these numbers are @is@lized). For example, the voltage level,
time, energy consumption used to compute node G] a5@, and100, respectively. In other words, for node
G, we assign voltage levél to processors P3 and P4, and the time spent and energy carsunmgurred
are 50 (each processor gets 50 units of computation, and they rwpaiallel) and100 (time * power *
number_of_processors), respectively.

A general rule that we follow in our algorithms is that it is radoeneficial to scale a given weighted tree



as a whole, rather than to scale the nodes one after anathethdr words, under the same performance loss
bound (i.e., allowable performance degradation), a velsgpling scheme that assigns similar voltage levels
to different nodes in the tree should result in better ensayyngs than a scheme that assigns different levels to
nodes in the tree. A simple example can help us explain wiyrtié makes sense. Suppose that we have two
nodes which we need to run sequentially. Let us assume @t thitage, Time, Energy) values of these two
nodes arel(, 27, 2F) and (/, T, E). Assume further that the maximum allowable execution tisr&". If we
scale only the first node to®.@4V, 57, 0.32F), the energy saving achieved would h68FE. On the other hand,

if we scale the two nodes to the same voltagd/, which means that theiMoltage, Time, Energy) values
become (.5V,47,0.5F) and 0.5V, 2T,0.25EF), the energy saving obtained would »@5F. Therefore, in
this example, the latter scheme, which scales the two nalasadnole, generates better energy saving result.
We can generalize this argument because, for the same hedesiformance penalty to save a certain amount
of energy is higher when the voltage level is lower (in falog performance penalty is a linear function of the
inverse of CPU frequency).

Our first algorithm, calle@/S1 is a recursive one that follows the above rule. For the roderof the tree
being considered, one of its children is in the critical patll cannot be scaled as a whole. For the other child
that is not in the critical path, we can scale it and its dedaats down together until we reach a point where
more aggressive scaling will increase the overall origexacution time of the tree. After that, we scale the
two children recursively using this algorithm; i.e., we Bpine same algorithm to the two children of the root,
and so on. Figure 2 gives this algorithm in the pseudo-coduadb VoltageScaling() is the main function and
the other four routines are helper functions. Note that,afliageScaling(), we try to scale the faster subtree
first, which is not in the critical path, as a whole (see thddoip). Then, we scale the two children recursively
by invoking VoltageScaling() for each of them. It can be otisd from VS1 that each node is visited only
once, and the for-loop is the only loop in the function. Asswugthat there ard. voltage levels available
and N nodes in the tree, the complexity of VS1G§ L N). Note that the proposed algorithm, VS1, makes a
“greedy” approach in a sense that, as it traverses eachade it tries to find an optimal voltage/frequency
level at each node, which gives the best energy savingsrd-gjllustrates how VS1 is applied to the weighted
tree shown in Figure 1. Figure 3(a) is the original VTE tree] the total energy consumptionli800. Subtree
G is scaled first since it is the faster child of node A (Figufe)B We find that0.8 is the lowest possible
voltage level that we can assign to subtree G without makisigwer than subtree B (see Table 1). After that,
we scale subtree B, and node C is the faster child, which igrees voltage level.6 (Figure 3(c)). Subtree
D cannot be scaled any further since both its children takesime amount of time to finish. Next, we scale
subtree G, and node | is its faster child (Figure 3(d)). \@#téevel0.6 is the lowest possible voltage for node |
without making it slower than node H. Figure 3(d) depictsfihal VTE tree after applying VS1, and the total
energy consumption when employing these voltage assigisne$b8.4, a 14.2% reduction compared to the
original energy consumption.

It should be noted that VS1 generates the optimum voltagppiency scaling scheme in terms of energy
savings only if we have continuous voltage levels. Howevergality, we have only a limited set of voltage
levels that can be used. Under such discrete voltage I&8lsjs no longer the optimum choice. For example,
in Figure 3(d), we can scale the voltage/frequency of nodedurther as shown in Figure 4(a), or scale the
voltage/frequency of node H as shown in Figure 4(b). We caesie here that, in some cases, even though it
is not possible to scale down a tree as a whole further, it neastib possible to scale some individual nodes
without hurting the performance (i.e., without exceedimg &allowable performance degradation). In Figure 5,
we give two possible option¥/S2andVS3 which exploit such opportunities. To obtain voltage assignts
for a tree rooted at node A, we call VoltageScaling(Q}\, Note that, in VS2 and VS3, under a given allowable
performance loss (which can Bemeaning that no performance loss is to be tolerated), wetfyrddb scale
the whole tree as much as possible (as in the case of VS1). Wheeach the point where scaling the whole



(b)

Figure 3: Example application of VS1. (a) The original VTEér (b)-(d) Different steps of applying VS1 to
the tree. The subtree or node in dashed circle is the one beaigd in the corresponding step.

(d)

tree further will exceed the allowable performance lossbegin to select some individual nodes in the tree as
candidates for further voltage/frequency scaling. We rexeeral choices in selecting such individual nodes.
We can scale the root node first, then scale the two childreweaan scale the children first, and then scale
the root node. We can even have an adaptive scheme that walkd s decisions based on the weight
distribution or other possible factors. In this work, we Iempent only the first two choicespot-first and
children-first Figure 5(a) gives an algorithm, call&E2 which is the root-first version. Figure 5(b) gives an
algorithm, calledvS3 which is the children-first version. A major differenceween these two algorithms is
in the order of scaling the root node (the for-loop) and scathe children (two recursive calls). In Figure 5(a),
the for-loop comes before the recursive calls, which meaaiswe try to scale the root node first to exploit the
slack available after scaling the whole tree. In comparigofigure 5(b), the two recursive calls are invoked
before the execution of the for-loop, which means that wedrgcale the children first to exploit the slack
available after scaling the whole tree. In both VS2 and V@&8henode in the tree is visited only once, and
there are two loops whose iteration counts are the numbevaifable voltage levels. Assuming that there
are L voltage levels available and nodes in the tree, the complexities of both VS2 and VS3(EN).
Figure 6 gives an example application of VS2 to the VTE tremghin Figure 3(b). The scenarios shown in
Figure 6(a) and Figure 6(b) are similar to those with VS1,heswvh in Figure 3(b) and Figure 3(c). After we
scale the subtree G as a whole, the execution time of subt{é&3@) is still smaller than the execution time
of subtree B 2Z00). In VS1, we are not able to exploit this slack because we aiastale subtree G as a whole
further. But, using VS2, we can exploit the slack of subtrelgyGcaling its root node, G, to voltage leveb.
After that, we scale its children, and find that node | can ladestdown further. It can be observed that, in this
example, VS2 performs better than VS1 since it saves mongeme computing node G. Figure 7 gives an
example application of VS3 to the VTE tree shown in Figure) 3{line first two steps in Figure 7 are the same
as those in Figure 6. The difference between VS2 and VS3 snetkmmple is in the order of exploiting the
slack due to subtree G. In VS3 (Figure 7(c)), we exploit tlaelslby scaling the voltages/frequencies of two
children first. After scaling the children, we cannot scaldenG any further since there is no enough slack left
for node G.

In the VoltageScaling() functions of both VS2 and VS3, theapzeterslackindicates the maximum ex-
ecution time increase (i.e., performance degradatics)/laowed to save energy. Consequently, both VS2
and VS3 can work under a given performance degradation bossliming that the original execution time
of a tree R isI” and the maximum percentage performance loss that can bateales P, we can invoke
VoltageScaling(RT * P) to obtain voltage assignments under such a performancgraont. Note that, when
we use VoltageScaling() with parametgrthis indicates that we are not tolerating any increasearotiginal
execution time. This is the strategy that we use in most okgperiments. VS1 can also be implemented in a



(b)
Figure 4: Two examples showing that the result achieved by M$-igure 3(d) is not optimum. The nodes in
dashed circles have been scaled further.

\oltageScaling(node, slack) \oltageScaling(node, slack)
maxTreeTime = node.treeTime + slack; maxTreeTime = node.treeTime + slack;
for (newLevel = node.level + 1; newLevel MAXLEVEL; for (newLevel = node.level + 1; newLevel MAXLEVEL;
newLevel++) newLevel++)
if (TreeTimeAtLevel(node, newLevel} maxTreeTime) if (TreeTimeAtLevel(node, newLevely maxTreeTime)
break; break;
newlLevel = newLevel - 1; newlLevel = newLevel - 1;
AdjustTreeVoltage(node, newLevel); AdjustTreeVoltage(node, newLevel);
slack = maxTreeTime - node.treeTime; slack = maxTreeTime - node.treeTime;
if (node.hasChildrenj if (node.hasChildren]
choose some individual nodes from the tree for scaling. choose some individual nodes from the tree for scaling.
} )
if (node.hasChildrenj if (node.hasChildren]
AdjustTreeVoltage(node.left, node.level); AdjustTreeVoltage(node.left, node.level);
AdjustTreeVoltage(node.right, node.level); AdjustTreeVoltage(node.right, node.level);
for (newLevel = node.level + 1; if (node.left.treeTime< node.right.treeTime]
newLevel< MAXLEVEL; newLevel++) fastNode = node.left;
if (NodeTimeAtLevel(node, newLevel) slowNode = node.right;
> node.nodeTime + slack)
break; else{
newlLevel = newLevel - 1; fastNode = node.right;
AdjustNodeVoltage(node, newLevel); slowNode = node.left;
slack = maxTreeTime - node.treeTime;
if (node.left.treeTime< node.right.treeTimej extraSlack = slowNode.treeTime - fastNode.treeTime;
fastNode = node.left; \oltageScaling(slowNode, slack);
slowNode = node.right; \oltageScaling(fastNode, slack+extraSlack);
if (slowNode.treeTime> fastNode.treeTime)
else{ node.treeTime = node.nodeTime + slowNode.treeTime;
fastNode = node.right; else
slowNode = node.left; node.treeTime = node.nodeTime + fastNode.treeTime;
slack = maxTreeTime - node.treeTime;
extraSlack = slowNode.treeTime - fastNode.treeTime; for (newLevel = node.level + 1;
\oltageScaling(slowNode, slack); newlLevel< MAXLEVEL; newLevel++)
\oltageScaling(fastNode, slack+extraSlack); if (NodeTimeAtLevel(node, newLevel)
if (slowNode.treeTime> fastNode.treeTime) > node.nodeTime + slack)
node.treeTime = node.nodeTime + slowNode.treeTime; break;
else newLevel = newLevel - 1;
node.treeTime = node.nodeTime + fastNode.treeTime; AdjustNodeVoltage(node, newLevel);
} }
} }
(a) VS2: Root-first version. (b) VS3: Children-first version

Figure 5: Two versions of voltage/frequency scaling alipon. The helper functions, including AdjustTree-
Voltage(), AdjustNodeVoltage(), and NodeTimeAtLevel)e defined in Figure 2. The complexity of both the
versions aré (LN ), whereL is the number of voltage levels, aidis the number of nodes in the tree.
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Figure 6: Example application of the VS2 algorithm (roosffiversion). The original VTE tree is given in
Figure 1(b). (a)-(d) Different steps. The subtree or nodeldshed circle is the one being scaled in the
corresponding step.

Figure 7: Example application of the VS3 algorithm (chiltif@st version). The original VTE tree is given
in Figure 1(b). (a)-(c) Different steps. The subtree or nomddashed circle is the one being scaled in the
corresponding step.

slack-based fashion, and thus can also be used in cases p@nmEmenance constraints are specified.

It is also to be mentioned that there is some cost for a procdsstransition between different volt-
age/frequency levels. However, this cost is usually verglsoompared to the application execution time. In
addition, the voltage/frequency transitions are not veegdent, and occur only across the levels in the tree.
Although it is not shown explicitly in the algorithm presedi we have taken this cost into account in our
implementations and experiments with all our schemes.

4.2 Experimental Results
4.2.1 Experimental Setup

To evaluate our approach, we implemented a simulationgstatéhown in Figure 8. We first obtain trace data,
which indicate the computation weight involved at each llefehe tree from parallel sparse matrix solver.
This trace data is then fed to the energy simulator along thighCPU power models. Based on the given
voltage scaling method, which was explained in the prevergion, the energy simulator generates energy
and performance statistics. Note that, the trace data fonumnication weight and link energy model will be
used when we present our integrated algorithm that scalésyes of both CPU and link later in this paper.
It should be emphasized that the voltage/frequency decksieeach voltage scaling scheme is made statically
based on the trace data we actually collected. Thereforesvaluation does not consider any dynamic change



ME"BT}ST" — o Trace Data ) Energy Model Table 2: Default simulation parameters for CPU.
arallel omputation an CPU and Link
Program Tracer Communication) ( ) | Parameter | Value |
L7 CPU clock frequency range 800MHz ~ 2400MHz
Number of voltage/frequency levels 5
Supply voltage range 11~ 1.5V

Energy Ener Voltage/Frequency

Statistics Simu,%, “~| Scaling Method Default clock frequency 2400 MHz
L~ \oltage/frequency transition latency 1ms

Figure 8: Our simulation platform.

Table 3: Our test-suite of sparse matrices from practicaliegtions.

Matrix P Rank | [A](10%) | |L|(10%) | Factorization | Ideal | Max Min Depth

Cost (10%) (10%) | (10%) | (108) | of Tree
bmw7stl | 64 | 141347 3741 81340 217764 3403 3831 2045 10
bcsstk31 | 28 35588 608 10605 7161 256 295 194 7
bcsstk35| 17 30237 740 11335 11996 706 834 637 7
crystk02 | 11 13965 491 5059 2890 263 406 158 5
finan512 | 28 | 74752 335 17905 13695 490 739 376 8
nasasrb | 22 | 54870 1366 13084 6193 282 444 196 7
tubel 7 21498 459 5731 3865 553 826 405 4

in the CPU’s load.

We use the power numbers from AMD Athlon processor [1], anldéld gives the default simulation pa-
rameters including power and performance values. All Bsoes operate at the highest frequency of 2400MHz
by default (i.e., without any voltage/frequency scaling)the rest of the paper, the energy consumption values
presented are normalized with respect to deéault (basg version whereno power saving scheme is em-
ployed. It should be noted that, all the experimental reguiesented in this paper already take into account
the extra cost of processors’ transitioning between differoltage/frequency levels.

Our test suite is derived from parallel sparse direct smutising a multifrontal scheme [24] on several
sparse matrices from practical applications describedalileT3. These sparse matrices tend to be irregular
and are representative of matrices for a broad range oftgmeztomputing applications. The second column
of Table 3 gives the number of processors available for tipdicgtions. The third column shows the ranks
of matrices. The fourth and the fifth columns give, respetyivthe number of nonzeros in matrik before
factorization, and the number of nonzeros in fadtasf matrix A after factorization. The sixth column shows
the number of arithmetic operations required to factor matrinto the form of LL”. The seventh column
gives the ideal workload per processor, which is obtaineditigling the total workload over the number of
processors. The next two columns list the maximum and mimimvworkloads assigned to different processors.
Finally, the last column presents the depth of tree when application is represented as a tree computation
model described in Section 3. In addition to those matribas dre extracted from real applications, we also
use somanodelsparse matrices that are automatically generated to testctiling of our approach as the
problem size is increased with the number of processordéwimaintaining the work per processor at a fixed
level). The two-dimensional model problem is associatat thie X' x K five-point finite difference grid, and
results in a sparse matrix of radk = K2 [11]. Table 4 gives the description of these problems. Thanimng
of the columns in this table is the same as those in Table 3.

4.2.2 Results

Figure 9 presents the normalized energy consumptions witthoee different CPU voltage scaling algorithms
(VS1, VS2, and VS3, explained in Section 4.1). All bars ofvaegisolver are normalized with respect to the
execution whemo voltage/frequency scaling scheme is employed. Note thdesa otherwise stated, all
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Table 4: Our test-suite of model sparse matrices.

Matrix P Rank | [A](10%) | |L|(10%) | Factorization | Ideal Max Min Depth

Cost (10%) (10%) | (108) | (10%) | of Tree
205x205| 3 42025 125 1143 103 35 50 25 3
256x256 | 7 65536 196 1913 204 30 46 22 4
320x320 | 15 | 102400 306 3139 398 27 37 21 5
400x400 | 31 | 160000 479 5191 799 26 34 19 7
500x500 | 63 | 250000 749 8607 1578 25 34 20 8
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(a) Practical problems. (b) Model problems.

Figure 9: Normalized energy consumptions with differerdtsigies.

our energy savings are achieved under no performance lossanlbe observed from this figure that our
strategies save significant amount of energy by using vetisguency scaling. The average energy savings
brought by VS1, VS2, and VS3 aité%, 21%, and21%, respectively, for the practical problems (see Table 3).
The corresponding energy savings brought by the three sshéwn model problems (see Table 4) ai@ab,
21%, and21% in the same order. Our schemes save less energy with bts$t8 as we will discuss in
Section 4.2.3, the main reason for this behavior is the atitdimited opportunity (more evenly distributed
workload) in these two cases.

We observe that VS2 and VS3 are both better than VS1 acrodsathses tested. Recall that, the differ-
ence between VS1 and the other two schemes is that VS1 alviey$at scale a subtree as a whole, while VS2
and VS3 also scale individual nodes when scaling a wholeeilfurther is not possible due to the limited
number of voltage levels available and the specified pedioaa bound. The improvements brought by VS2
and VS3 over VS1 indicate that it is important to take intocact the number of available voltage levels when
applying voltage/frequency scaling to these problems. l@nather hand, there is no clear winner between
VS2 and VS3, and the energy savings brought by these two sshara similar for all the cases tested. Unless
otherwise stated, we use VS3 as the default scheme for mdsé @xperiments presented in the rest of this
paper.

So far, we required that the total execution time should eaffected by voltage/frequency scaling. That
is, we try to achieve the maximum energy benefits that can beraal without increasing the original exe-
cution time. In some execution environments, however, oighinbe willing to tolerate some performance
penalty for larger energy savings. Figure 10 presents tha@ltseeunder such a scenario. The values on the
x-axis represent the allowable percentage execution ticreases. We observe that, energy savings achieved
by VS3 can be increased by allowing an increase in executioa. tFor example, by allowing 5% perfor-
mance penalty, three out of four cases shown in Figure 10afmnt5% more energy savings. This indicates
that allowing some performance penalty can be an attraofitien for energy-critical applications. We also
observe that this trend slows down as the allowable perfoceaenalty gets larger. This is due to the fact that
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Figure 10: Normalized energy consumptions with VS3 when Nesvasome performance penalty. The x-axis
represents the percentage execution time increase alléveedlarity purpose, we present the results for only
four cases. Similar trends are observed with other cases.

processor voltage has a lower limit due to technology, andammot scale a processor more if it has already
reached the lowest possible voltage under which it can tpeaarectly. As allowable performance penalty in-
creases, there are more and more cases where processady adr@ch the lowest voltage level. Consequently,
the energy savings brought by voltage/frequency scaliogease more slowly. It can be observed that all the
curves converge as the allowable performance penalty beswary large, and this indicates that all processors
reach their lowest voltage level in almost all executiogsta

4.2.3 Comparison with Optimum Results

It needs to be noted that, all our three schemes (VS1, VS2y&3) are heuristics in essence. Consequently,
one might wonder how good our results are as compared witloglimmum results. In this subsection, we
explain and evaluate two optimum schem@®,T1andOPT2 and compare them with our schemes. By such a
comparison, one can learn how good the proposed schemes&ikzing the inherent imbalance in the tree.
Furthermore, the results of the optimum schemes set an tyoperd for any voltage scaling scheme on such
trees, and can indicate whether it is possible to emplogbh#uristics in this regard.

Optimum Scheme 1 — OPTis based on the assumption of perfect workload distribuaioth continuous
voltage levels (both are unrealistic). Note that, in theyioal tree, the workload is not distributed evenly.
Consequently, the overall execution tinTe,is determined by the processor with the heaviest workl@esd.
sume now that we could somehow re-distribute the total veakiperfectly across the processors so that each
processor has an equal amount of work (this might not belfleaii reality). Under this perfect distribution,
the total execution time is reduced™ (7" < T'). Now, we can reduce the voltage level (and frequency) of
the tree as a whole, and the total execution time of the tnedeancreased. Since we also assume continuous
voltage levels in this optimum scheme, we can always find &agellevel such that the execution time of the
new tree reaches, i.e., the execution time of the original tree.

Optimum Scheme 2 — OPTJs also based on the assumption of continuous voltage ldveiise original
tree, the workloads of different processors are differant] the real execution time of each processor is
different. The execution timel, of the processor with the heaviest amount of work detersthe overall
execution time. We can scale each processor individuallyhat all processors’ execution becoffi€again,
this might not be feasible in reality due to synchronizatissues). While at the first glance two optimum
schemes that can generate different results (as will besisd shortly) seem counter-intuitive, note that their
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Figure 11: Comparison of VS3 with optimum results. OPT1 aRI®is explained in Section 4.2.3.

optimality are defined under different assumptions (i.etfgrt workload distribution versus synchronization-
free execution).

Figure 11 compares VS3 with these two optimum schemes. é&ifgjlifa) presents the results for the
practical problems, and Figure 11(b) presents the resoit¢he model problems. It can be observed that
OPTL1 is better than OPT2 in all the cases, which is what oneexpact. Knowing that OPT2 sets a tighter
upper bound for our schemes, we now focus on the comparisds8dfand OPT2. First, we notice that the
VS3 scheme performs very good because the difference betM®&8 and OPT2 is small. Specifically, on the
average, VS3 achievg®s less savings than OPT2. Furthermore, since the savinigsvadiby OPT2 may not
be feasible in reality, VS3 should be even closer to a réalgttimum scaling scheme (if one could be found).
It can also be observed from Figure 11 that there is a coioalétetween VS3 and OPT2. In general, when
OPT2 has good results, VS3 also has good results. This meaBss\able to catch the inherent opportunities
in these cases, and follow the OPT2 scheme very closely.

5 Integrated CPU and Link Voltage Scaling Algorithm

So far, we discussed voltage/frequency scaling schemetatigat only CPUs. We now present our integrated
algorithm that scales the voltage/frequencies of both C&tdscommunication links on top of the voltage
scaling algorithm explained so far. We first describe théesggnodel, and then explain our integrated voltage
scaling algorithm based on this system model. We then presgrexperimental results obtained using our
integrated voltage scaling scheme.

5.1 System Model

For illustrative purposes, we use a weighed tree computatiilar to that given in Section 4.1, but annotated
with slightly different notation in order to capture both @Bnd communication link weights instead of using
the VTE notation used in explaining our CPU voltage/freaquyescaling algorithms. An example weighted tree
is illustrated in Figure 12. We ug¥; to represent the nodes in the tree. Each leaf node, whichgepts a local
computation phase, is assigned to one procegsoas shown in Figure 12. The nodes, which represent the
distributed phase, are assigned to the processors thaisate to the leaf nodes of their subtree nodes. For
example N is assigned to 4 processors, frpgito ps, sinceN; makes use of all the processors in that subtree.
The pair of numbers inside a given node in this figure repteséie computation and communication weights
associated with that node, e.§/; node is assigned 50 unit of computation load and 25 unit ofnsomication
load. Similarly, N3 is assigned 90 and 10 units of computation and communicaisus, respectively. In the
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Figure 13: (a) Two-dimensional mesh topology (4 by 4). (b)od@ with a bidirectional network.

tree-based computation model for sparse applicationsydlight on each node is evenly distributed across all
the processors assigned to that tree node. Based on thisteigee notation, we can determine thigical
path, which is represented as thick solid line in Figure 12. Ireotivords,Ny, N1, N3 and Ng constitute the
critical path in this example tree, which determines theimimm execution time of the parallel application.
The goal of this study is to reduce energy consumption of dredtbased matrix computations by taking
advantage of the computation and communication exhibijeithdntree nodes not in the critical path.

We focus on ani/ x N two-dimensional mesh based interconnection network asrsio Figure 13(a),
though the analysis described in this work is applicablethemnnetwork topologies as well with proper mod-
ifications. Each pair of adjacent nodes in this 2D mesh tapole connected to each other using two uni-
directional links. A node in this architecture typicallyr=ists of one or more processors, some amount of
local memory, and a switch that routes messages throughottesr{Figure 13(b)). We ugg to denote the id
of the i’ node in this mesh network, which can be written as:

p; = row(i) X M + col(i), 1)

where M is the row size of the mesh andw(i) andcol(i) are the row and column positions, respectively,
of thei!" node. For examplas in Figure 13(a) can be represented usiihg?) since the size of this example
mesh topology id x 4.

Given the system architecture explained above, an apiplicgrogram considered in this study is par-
allelized using the message-passing interface, MPI [18]this model, the nodes communicate with each
other using explicit send/receive commands. We proposgiated voltage/frequency scaling on CPUs and
communication links. We apply our technique to these twommments due to following reasons. First, both
modern CPUs and communication links support voltage/aqy scaling circuits and we can make use of
these capabilities to reduce power. Another reason is Hedt ef these components are known to be a major
contributor to total energy consumption in large parallekimnes [23].
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Figure 14: Left: CPU power model. Right: Link power model.

To illustrate the idea behind our approach that scales b&b @xd communication link voltages in a
coordinated fashion, let us first take a look at their endaitgricy behavior. The dynamic power consumption,
P, can be represented as:

P=1/2-f-N-C-VZ, 2)

where f is clock frequency,N is switching activity,C' is effective capacitance, and,; is supply voltage.
Therefore, the power consumptioR, is quadratically proportional to the supply voltadgg,, and frequency,
fL. As shown by Equation 2, we can obtain quadratic drop in pamsesumption with a linear reduction in
the clock frequency () and the supply voltagé/{y).

The energy versus clock frequeRaurves for CPU and communication links are drawn in FigureThe
CPU curve is adapted from AMD’s Athlon-64 processor datasfig, whose clock frequency can range from
800MHz to 2400MHz and the corresponding supply voltage eage from 1.V to 1.5/3. The communi-
cation link curve on the other hand is generated using ddtacted from [22], which has a supply voltage
range of 0.9 to 2.5/. The corresponding bit-rate range is from 650Mb/s to 5Gl¥ge. can see from this
figure that frequency-power curves a@nvex which means that, as voltage and frequency are scaled down,
the additional energy savings gained drop quadraticallyerg&fore, it should be beneficial from the energy
perspective to scale voltages/frequencies of both CPUiakdh a balanced (coordinated) manner, instead of
scaling the voltage/frequency of one of them aggressively.

5.2 Integrated Approach

We now explain our algorithm for simultaneous voltage/fregcy scaling for CPUs and communication links
in tree-based parallel sparse computations using the d&agiven in Figure 12, which is actually extracted
from one of programs we tested in our experiments. The gaalioélgorithm is to find an appropriate voltage
levels and the corresponding frequency levels for CPUs mhk® that maximizes energy savings without
impacting the overall execution time. Since our compuiatitodel is based on a tree, we can apply one of
algorithms described in Section 4.1 where only CPU voltagealed down to save energy. Recall that, among
our three CPU voltage scaling algorithms, i.e., VS1, VS2| ¥683 given in Section 4.1, VS2 and VS3 are
better than VS1 while there is no clear winner between VS2488l Our algorithm starts with VS2, the root-
first approach, as given in that, but it needs to be applieefaily due to the conflicts between the different
voltage levels chosen for the communication links. To bettglain this, let us consider the communication
patterns exhibited by the example computation tree showigare 12. Note that, since the leaf nodes in our
tree-based sparse computation model perform only computdhe communication starts from the nodes just
above the leaf nodes, i.e., level 2 in the tree. One notaldeacteristic of communicating nodes is that they
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can be grouped using a neighborhood concept. We (%6 &Communication Groupto represent the nodes
that participate in communication at any point during exiecy and aC'G can be represented as follows:

[plowa phigh] ; (3)

wherep,,,, is the processor whose id is the smallest among the prosessargivenC'G, andpy;gp, is the
processor whose id is the largest among the processorstidddiy, we usesize(CG)to capture the number
of processors in th€'G. For example, in level 2 of the tree in Figure 12, there areglitGs (CGs, CGy,
andC'G’s), which can be represented as [0,1], [2,3], and [4,5], retspedy. The size of all thre€'Gs are 2

in this case. As we can see from this figure, the siz€' 6% becomes larger as we move to the lower levels,
i.e., towards the root of tree. To see how thé&&s are mapped onto the underlying mesh topology, let us
consider the mapping between one of detectéss, C'G, in the level 2 of Figure 12, and the mesh topology,
which is illustrated in Figure 15. Since we use an X-Y routaigorithm in communicating among nodes,
eachC'G can be mapped to a set of rectangularly-connected nodee iméish topology. Therefore, we need
to adjustp;,,, andpy;4n, Values of eacld’G' using the actual processor-to-mesh topology mapping,tasaan

be represented as follows:

Plow = (min(row(¥p;)), min(col (Vp;))),
p'm-gh = (maz(row(Vp;)), mazx(col (¥Vp;))), 4)

where min() and max() functions give the minimum and maxinuaaues of the column and row indices, re-
spectively, of all the processors in eacl’. Using this equation, we can obtaiiz, mapped to the underlying
mesh topology. InitiallyC'G4 can be represented as [2,3]. As illustrated in Figure(lG, needs additional

4 processorspg, p1, pa, andps) to communicate each other using the X-Y routing algoritt8imce the row

and column index fop, andps are (0,2) and (1,0) respectively, we can redefif@, as (0,0) and (1,2) using
Equation (4) given above. All other detectédrs are marked using dashed rectangles in Figure 16 for each
level of our example tree.

In the first step of our algorithm, we build@G-annotated tree of the given parallel sparse matrix compu-
tation. Recall that, when we are given a tree representafigarallel sparse matrix computation such as the
one in Figure 12, we already know the particular tree nodasrside on the critical path of the tree. After
obtaining allCGs, we then move to determirm®nflict group denoted a$ in this paper, to capture whether
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VoltageScalingMain (nodej
BuildCG (node);
\oltageScaling (node);

}

BuildCG (node){
if (node.isLeaf){
node.plow = node.phigh = node.processor;
CG = [node.plow, node.phigh];

else{
node.plow = ( min (row{p; € CG)), min(col{v p; € CG)));
node.phigh = ( max (rowfp; € CG)), max(colf p; € CQG)));
CG = [node.plow, node.phigh];
build_CG (node.left);
build_CG (node.right);

}
}

VoltageScaling (nodej
if (node.isLeaf){
/I assign the lowest link power level
node.linkLevel = MINLINK _LEVEL; return;

else{ // node is not leaf, i.e., node has children
/I determine critical node
if (node.left.treeTime< node.right.treeTime §
fastNode = node.left; slowNode = node.right;

else{
fastNode = node.right; slowNode = node.left;
}

D =CG; N CGg; Il CGy istheCG in critical path
/I select the slowest level for both CPU and link simultargipu
while ( (currCpuLevek MIN_CPULEVEL) &&
(currLinkLevel < MIN _LINK _LEVEL) &&
(node.time< node.treeTime))
currCpulLevel- -;
Vp; ¢ D currLinkLevel- -;
}
/I communication is dominant> reduce CPU voltage further
if (fastNode.origTotalCommTime- fastNode.origTotalCompTime)
while ((currCpuLevek MIN_CPU.LEVEL) &&
(node.time< node.treeTime))
currCpulLevel- -;

else{ // computation is dominant- reduce link voltage further
while ((currLinkLevel< MIN_LINK _LEVEL) &&
(node.time< node.treeTime))
currLinkLevel- -;

}
)

node.cpuLevel = currCpulLevel;

node.linkLevel = currLinkLevel;

/I recalculate total time based on newly determined voltage

I levels and update node with the scaled voltage/frequency
\oltageScaling (node.left); // perform VoltageScaling() left node.
\oltageScaling (node.right); // perform VoltageScaling( right node

}
}

Figure 17: Integrated CPU/link voltage/frequency scabigprithm.
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Figure 18: Example application of our integrated CPU/liokage scaling approach. The dashed circle is the
subtree nodes being scaled in the corresponding phase.

there is any conflict among th@G groups that sit in the same level. We say that there is cofiétieen
nodesCG, andCG; if the following condition holds true:

(D=CG;NCG) 0 A levellCG;) =level CG,), (5)

whereC'G,. is aCG in the critical path. In Figure 16(b}; G, andC'G,, are in conflict because three processors,
namelyps, p4, ps, are shared by bott'G; andCG5. Note that the root node is always in the critical path
so that all the nodes should operate under the maximum bl@ifeequency, i.e., maximum voltage level
supported by the architecture (see Figure 16(a)) when tleek @n the root node. For level 1, we are able to
reduce the voltage levels of processors that belorfgde, which is not in the critical path, and do not belong
to the set of conflicting processorsdiGs. In our example, we can reduce the voltage levels of procegsp

p7, andpg. It should be mentioned that the slack in a given node mustige lenough to scale both CPU and
link voltages. Once we assign determined voltage levelghee recalculate the slack at each node in the tree.
Our algorithm continues this way until all the nodes of tleetare processed. Note that, at the leaf nodes, we
scale down all link voltage to the lowest levels because mongonication is involved at leaf nodes.

The algorithm given in Figure 17 follows the approach expdi above. Basically, our algorithm scales
down a subtree from the root node, which is not in the critiedh, as a whole. The algorithm starts by generat-
ing the CG-annotated tree by invoking the BuildCG functimtipwed by calling the VoltageScaling function.
This function is invoked recursively, starting from the romde. If the node currently being processed is a
leaf, our algorithm assigns the lowest voltage levels tahedlcommunication links in the mesh. If the input
node has a child node and one of its subtrees has slack, wedmah both CPU and link voltages at the
same time until the point where the scaled execution timeres very close to the original execution time.
After scaling voltages simultaneously, if the remainingcklis large enough to scale down either CPU or link
voltages, we further apply voltage scaling on that node. ddwsion on whether to scale down CPU voltage
or link voltage is made based on their contribution to thaltexecution time of that node. More specifically, if
the total computation time is longer than the total commation time, we scale down the link voltage because
scaling down the component whose contribution is largedsg¢no consume the observed slack more quickly.
So, it is better to scale the link voltage from the energy pectve, while utilizing the slack efficiently. On
the other hand, in the case where communication is domimaet ¢consumer for the node being processed,
we scale down the CPU voltage. Our algorithm continues is fdehion until all the nodes of the tree are
processed.

Figure 18 shows how our approach works in practice. Fortititise purposes, we use the normalized
voltage and power numbers for both the CPU and link, whichgawen in Table 1. The initial voltage/power
numbers are 1/1, as shown inside each node in Figure 18. firshphase, we scale down the right subtree
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Table 5: Default simulation parameters for the commuracalink.

| Parameter | Value |
Link frequency range 130MHz~ 1GHz
Number of voltage/frequency levels 5
Number of multiplexing stage 5
Bitrates per link 650Mb/s~ 5Gb/s
Link supply voltage range 0.9~ 2.5V
Active link energy consumption 10.2 pJd/bit
Idle link energy consumption 8.5 pJicycle
Link frequency transition latency | 10us (100 link cycles)

because the left subtree is in the critical path. Therefegescale the both link and CPU voltage of all nodes
in the right subtree to one level lower, 0.8 in this exampleteNhat, the link voltage of all leaf nodes are set to
the lowest levels because this does not increase executien in the subsequent phase, our approach scales
down the voltage/frequency of the subtree whose rodf,igFigure 18(b)). Lastly, the subtree rooted/&f

can be scaled down further by using the slack present in titee (Figure 18(c)).

5.3 Experimental Evaluation
5.3.1 Experimental Setup

We use the same simulation platform described in Figure 8pxhat the trace data being fed to the energy
simulator indicate not only the computation involved athelavel of tree, but also the communication load
and patterns at each level of tree nodes. To obtain the energgumption of network links, we use an energy
model similar to that described in the literature [21, 2Bl d&able 5 gives the default simulation parameters for
network links. While the circuitry associated with the netlwlinks (e.g., buffers, cross bar, etc) also consumes
a certain amount of power, we do not account for this becamserr power consumption does not vary too
much with and without the network links that support dynawmltage scaling. This is because a flit remaining
longer in a router due to slower links does not increase teeggrconsumption of the buffer read/write power
nor the cross bar power [30]. Hence, when calculating theggreonsumption of each program, we consider
only the energy dissipated by CPU and network links. All otfienulation parameters are fixed as given in
Table 2.

We conduct experiments with same parallel sparse matrsesobiven in Table 3 and Table 4. Remember
that the seven solvers described in Table 3 are from prastibeers and the five additional solvers in Table 4
are model solvers to study the sensitivity of our approadhedncreased problem size. Table 6 presents the
communication characteristics of these parallel spardebnsolvers experimented in this section. The first
seven rows of Table 6 correspond to the practical solveengivTable 3. The remaining five rows correspond
to the model solvers given in Table 4. The number of computimges (i.e., processors) and the size of mesh
network used in each solver are given in the second and tbitdrms of Table 6, respectively. The fourth
and fifth columns of the table show the number of messages cmicated among processors during compu-
tation and the total data volume of the communicated messaggpectively. Note that, the numbers given in
these two columns are the average weight per processorh&mtal weight is dependent on the number of
processors involved in each tree node. The last column isdh&ibution of the communication time to the
total execution time. We can see from this table that the comication time (correspondingly communication
volume and the number of messages) increases when morsgoosare involved in parallel execution. Since
we use square mesh networks, our energy simulator takesadotmint the energy consumption of the CPUs
and links that are actually used.

To evaluate the effectiveness of our approach, we condesteeriments with the following three schemes:
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Table 6: Communication characteristics of parallel spacdeers evaluated given in Table 3 and Table 4.

Solver Number of | Mesh | Number of | Communication Percentage of

Name Processors | Size Messages | Volume (MB) Communication Time
bmw7stl 64 8x8 24,337 406.41 50.7%
besstk31 28 6x6 4,645 18.36 31.3%
bcsstk35 17 5x5 6,999 43.13 22.3%
crystk02 11 4x4 2,227 7.05 9.8%
finan512 28 6x6 7,364 39.59 44.7%
nasasrb 22 5x5 2,997 10.13 6.1%

tubel 7 3x3 2,557 12.16 8.7%
205x205 3 2x2 291 0.29 0.2%
256x256 7 3x3 648 0.82 3.8%
320x320 15 4x4 1,294 21 22.6%
400x400 31 6x6 2,318 4.5 38.1%
500x500 63 8x8 3,172 7.1 39.1%

e CPU-VS: This scheme scales down only CPU voltages, using/8 algorithm described in Sec-
tion 4.1. It simply takes advantage of available computasiiacks.

e LINK-VS: This scheme uses the same VS2 algorithm exceptithstapplied to scale down only link
voltages based on the communication slacks available. 8lket®on of link voltage level is made based
on the algorithm explained in Section 5.

e CPU-LINK-VS: This scheme, which is the main contributiontbis work, scales both CPU and link
voltages using the algorithm given in Figure 17. If therenswgh slack, this scheme tries to scale
down both CPU and link simultaneously. When a voltage letielsen for one”'GG is not the same as
those of the othe€'Gs that share processors for communication, CPU-LINK-VSoshs the largest
voltage level among the voltage levels of all thé/s, in an attempt to minimize potential performance
overheads.

5.3.2 Results

Figure 19 gives the normalized energy savings with the tdifferent schemes described in Section 5.3.1.
All bars of a given solver are normalized with respect to thecation whemo voltage/frequency scaling
is applied. We can see from this figure that the energy sawiggined from both CPU-VS and LINK-
VS are significant. Specifically, the average energy saving€PU-VS and LINK-VS are 27% and 23%,
respectively. This shows that scaling down either CPU d¢ Violtage can be very effective in reducing total
energy consumption. On the other hand, the CPU-LINK-VS shevhich scales down CPU and link in a
coordinated fashion, achieves 40% energy saving on avefdgeresult clearly shows that it is better to scale
voltages of both CPUs and links in an integrated manner rdktzen scaling only one of them aggressively,
due to the diminishing energy saving rates, already demaiest earlier by Figure 14. Note that, since all
three schemes try to scale down the voltages/frequencitee dfee nodes that are not in the critical path, no
schemes incurs any observable performance degradation.

In our next set of experiments, we perform a sensitivity ysialto see how the energy savings achieved
by our approach are affected with the increase in the numbeoltage/frequency levels supported by the
underlying architectures, and the number of processorstuly the effectiveness of our approach with finer
voltage levels in CPU and links, we experiment with 5 (ouradéifvalue), 9, 17, and 33 voltage levels. The
intermediate voltage levels are obtained by curve fittingeblaon the initial voltage/frequency points. All other
simulation parameters are fixed as in Table 2 and Table 5. dhmalized energy savings for all seven solvers
used in our experiment under the different number of voltagels are given in Figure 20. As one can observe
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Figure 19: Normalized energy consumptions with the difieszhemes.

from these graphs, the energy savings obtained saturate mengase the number of voltage/frequency levels.
This is an anticipated result since finer granular voltageltegive more opportunity to scale down voltage
levels, even when we have small slacks. However, we alsohsgechergy savings start to saturate when
the number of voltage levels reaches 17 or so. This showstivascheme makes use of slacks in the tree
successfully with reasonable number of voltage/frequéanasis.

In the next set of experiments, we vary the number of proecessod, correspondingly, the size of our
two-dimensional mesh topology. We used the two set of maalgéss in this experiment with five different
processor sizes: 3, 7, 15, 31, and 63. In the first set of matiedrs we try to keep the workload per processor
constant as the number of processors increases. In thedssebaf model solver, on the other hand, we keep
the total workload (when accumulated over all processargltant as the number of processors increases.
Figure 21(a) presents the results for the first set of modetsavhereas Figure 21(b) presents the results of the
second set of model solver. Recall that we do not consideertbegy consumption of the unused CPU nodes
and the communication links connected to them, and thetseptdsented in Figure 21 are the normalized
energy consumption with various processor sizes. We carregethese figures that, as we increase the
number of processors, the energy savings achieved by e## sthemes decrease. The reason why the energy
savings achieved by CPU-VS decrease is that, as the numipeoag#ssors increases, overall execution time
is dominated by communication, thereby decreasing the ropmities for scaling down the CPU voltages.
Similarly, the energy savings achieved by LINK-VS also dase due to the increased network contention
brought by the larger number of processors, and networkagggrevents the possibility to scale down the
link voltages. Lastly, the energy savings obtained throinghCPU-LINK-VS also decreases but this scheme
gives the best energy savings for the all fives cases testean be also observed that, in case of Figure 21(b)
where we keep the workload assigned to each processor obastdhe number of processor increases, the
decrease in energy savings is saturated when the numberagfgsor reaches 31. This is because the constant
workload per processor tends to generate less commumicatgrhead as the number of processor increases.

6 Conclusions

This paper makes two major contributions. First, it progoseveral CPU voltage/frequency scaling schemes
for parallel sparse computations. Second, it presentgganitdm that scales voltages/frequencies of CPUs and
communication links in a mesh-based parallel system in adooated (integrated) fashion such that energy
savings are maximized and performance is not affected. stote algorithm, we implemented it and applied
it to a set of tree-based sparse computations. The expdahresults collected are very promising and show
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that integrated CPU/communication link voltage scaling ganerate much better results than the CPU voltage
scaling alone and the link voltage scaling alone. Our reqlto show that the energy savings are consistent
with the different problem sizes and different sets of \geidrequency levels.
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Notes

!Since the clock frequency, can be represented in termsiof; and threshold voltagd;, as the frequency is reduced, the supply
voltage can be reduced proportionally.

2In case of a serial link, the frequency dictates the bitsate

3Since the AMD datasheet states only TDP (Thermal Design Bowaich is 89 W, we estimate the peak power consumption of
the CPU for our study to be approximately 50 W based on ourréepee.
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