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Abstract

Reducing power consumption is quickly becoming a first-class optimization metric for many high-performance
parallel computing platforms. One of the techniques employed by many prior proposals along this direction is voltage
scaling and past research used it on different components such as networks, CPUs, and memories. In contrast to most of
the existent efforts on voltage scaling that target a singlecomponent (CPU, network or memory components), this paper
proposes and experimentally evaluates a voltage/frequency scaling algorithm that considers CPU and communication
links in a mesh network at the same time. More specifically, itscales voltages/frequencies of CPUs in the nodes and
the communication links among them in a coordinated fashion(instead of one after another) such that energy savings
are maximized without impacting execution time. Our experiments with several tree-based sparse matrix computations
reveal that the proposed integrated voltage scaling approach is very effective in practice and brings 13% and 17%
energy savings over the pure CPU and pure communication linkvoltage scaling schemes, respectively. The results also
show that our savings are consistent with the different network sizes and different sets of voltage/frequency levels.

Keywords: Energy consumption, dynamic voltage scaling, parallel sparse matrix, computation, communication networks.

1 Introduction

Power consumption is becoming a critical issue for high-endcomputing platforms due to several factors in-
cluding cost, space, reliability, and maintenance. Consequently, recent research efforts from different groups
in both academia and industry have focused on techniques that help us accurately model and reduce power
consumption of different hardware components in a large computing infrastructure. These studies, details of
which are discussed in Section 2, include CPU power optimizations, memory banking and low-power operat-
ing mode management, network power minimization, and energy-oriented disk I/O optimizations.

Voltage and frequency scaling has been identified by past research as one of the most effective ways of
reducing CPU power [10, 34]. More recently, there have been proposals [30, 35] that apply voltage/frequency
scaling to network links to save communication power. However, to our knowledge, none of the prior efforts
in the domain of high-performance computing considered using voltage scaling on both CPUs and communi-
cation links of a given parallel architecture in a coordinated fashion to save power. The work described in this
paper is a step in this direction. More specifically, focusing on sparse matrix computations that can be repre-
sented as trees, this paper studies the potential benefits that can be accrued when using CPU and communica-
tion link voltage/frequency scaling in a coordinated fashion. To achieve this, we propose and experimentally
evaluate a voltage/frequency scaling algorithm.

In this paper, we propose avoltage scalingbased energy reduction scheme for tree-based parallel sparse
computations. Our first approach is based on extracting a representation of load imbalances across the pro-
cessors in the parallel system, and using this information in assigning the most suitable supply voltages and
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frequencies to processors in the system. This representation is extracted after applying the load-balancing
techniques available for the problem [12, 20, 26, 27]. We note that many state-of-the-art processors (e.g.,
[1, 33, 19]) employ circuit mechanisms that support voltage/frequency scaling; and in large parallel systems
built from such components, the voltage/frequency of each processor can be scaled independently of others.
Our goal is to reduce the energy consumption of processors through voltage/frequency scaling as much as
possible, without increasing the execution time of the application. Therefore, our approach exploits load im-
balance across parallel processors, and applies voltage scaling to only the processors that are not in the critical
path.

Based on our voltage/frequency scaling techniques targeting CPU power, we next propose and evaluate
our integrated technique that scales down the voltages of both CPUs and communication links. An important
characteristic of the proposed algorithm is that it scales the voltages of CPUs and links considering the impact
of doing so on each other; this is radically different from analternate approach that applies CPU voltage scaling
after communication link voltage scaling or vice versa. To test the effectiveness of our approach, we applied it
to a set of tree-based sparse matrix computations running ona two-dimensional mesh network and compared it
to two alternate schemes, one that applies voltage scaling only to CPUs and the other one that applies voltage
scaling to only communication links. Our experiments reveal that the proposed integrated voltage/frequency
scaling approach is very effective in practice and brings 13% and 17% energy savings over the pure CPU and
pure communication link voltage scaling schemes. The results also show that our savings are consistent with
the different network sizes and different sets of voltage/frequency levels.

The remainder of this paper is structured as follows. In the following section, we describe the related
work on voltage scaling in the context of the interconnection networks and processors. Section 3 explains
the tree based computation model for parallel sparse matrixsolvers. In Section 4, we propose several voltage
scaling techniques for tree based parallel matrix solvers,and present our evaluation methodology and results
with our algorithms given in the same section. Our integrated link/CPU voltage scaling algorithm is presented
and experimentally evaluated in Section 5. We conclude the paper in Section 6 with a summary of our major
contributions.

2 Related Work

Several studies in the past have proposed dynamic voltage scaling (DVS) techniques for reducing energy con-
sumption of communication links in the NoC (Network-on-Chip) based systems and high-end multiprocessor
systems [30, 31, 35]. The main idea behind these approaches is to scale down the voltage/frequency of commu-
nication links when there is enough communication slack (i.e., the amount of latency by which communication
can be delayed without affecting overall execution time) observed or predicted. In order for these DVS tech-
niques to be feasible, Kim et al [22] proposed serial links that can operate under various link voltage/frequency
levels. Employing links with variable voltage/frequency,Shang et al [30] presented and evaluated a history-
based DVS scheme for the communication links. Worm et al [35]proposed an adaptive low-power transmission
technique for on-chip networks, whereas Shin et al [31] discussed a task mapping technique based on genetic
algorithms to utilize voltage scalable links for saving energy in NoC based systems. Besides DVS techniques
for communication links, several techniques that shut downunused or underutilized links have been proposed.
Kim et al [21] proposed a dynamic link shutdown (DLS) technique for chip-to-chip networks. Soteriou et al
[32] explored the design space for communication links withturn on/off capability.

In addition to these efforts that target reducing power consumption in communication links, there are also
studies that target reducing power/energy consumption of large server and cluster systems. These efforts can
be broadly classified into three categories. The first category of the efforts considered CPU-centric techniques
that turn off unused CPUs [8] or scale down CPUs that execute non-critical execution [9, 10, 4]. Voltage

2



Figure 1: An example weighted tree and its VTE (Voltage-Time-Energy) tree. (a) Weighted tree. The numbers
written inside the nodes indicate the associated computational cost. Leaf nodes represent the local phase
computations, and each of them is assigned to a processor (P0-P4). The bold lines represent the critical path.
(b) VTE tree. The three numbers inside each node, from top to bottom, represent the voltage level, the time it
takes, and the energy consumption required to compute this node.

scaling on processors [34] has been extensively studied andseveral commercial processors (e.g., Transmeta’s
Crusoe [33] and AMD’s Athlon 64 [1]) already provide mechanisms to control the frequency and voltage of
processors. The second category of studies [3, 21, 5] proposed several techniques that focus on individual
components of the server based computing systems such as CPUs and main memory. Lastly, many studies
focused on reducing energy consumption on the disk subsystem, which is a huge energy consumer for large
data centers, by completely spinning down disks [7] or dynamically adjusting the rotational speed of disks [16].
As compared to these prior efforts, our approach combines CPU and communication link voltage scaling.

Lastly, in the domain of real-time distributed embedded systems, Luo et al [23] proposed a technique that
simultaneously scales voltages of processors and communication links. Our approach is different from Luo et
al’s work in that we focus exclusively on parallel sparse matrix applications and consider the underlying net-
work topology in selecting proper link voltages (and corresponding frequencies). Consequently, our integrated
voltage scaling algorithm is entirely different from theirs.

3 Tree-Based Computation Model

In this paper, we concentrate on parallel sparse linear systems to study the impact of CPU and link voltage
scaling without impacting performance. Such computationstypically dominate the execution time of many
large-scale parallel applications on multiprocessors andclusters of workstations. There are many classes of
parallel sparse linear solvers and important classes include parallel direct solvers based on sparse factorization
[6, 14, 20, 24], iterative solvers [18, 29], and direct-iterative hybrids through preconditioning [15, 25, 28].
While there is no single method that is always better than others across the different application domains and
the underlying parallel execution platforms, they share the same notion that a given sparse matrix can be rep-
resented as a graph, which can be partitioned across processors for parallel execution. This partitioning [20]
is usually performed using a recursive scheme for computingvertex or edge separators, and the associated
partitioning tree (and related trees) can serve as a useful model for the underlying parallelism and data depen-
dencies.

We focus on tree-based parallel sparse computations that are representative of parallel sparse solvers when
matrix is symmetric positive definite. Such solvers consistof a initial symbolic phase followed by a numeric
phase. In the symbolic phase, the matrix for parallel computation is partitioned to determine the actual structure
of the Cholesky factorL [17]. The numeric phase, which represents the dominant costin total solver time,
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involves computation of the sparse factor and solving the problem using the determined sparse factor. The
columns ofL can be clustered intosupernodes, each of which contains a set of consecutive columns with the
same zero/nonzero structure. The overall numeric phase canbe performed in parallel ontree of supernodes.
The tree structure represents the data dependencies, and each tree node denotes a supernode ofL and its
corresponding set of dense-matrix operations. The allocation of processors to subtrees is based on the weights
on the tree to represent the computation cost. While the allocation procedure can be done in several phases
to balance computational load on each processor, inherent irregularities in the sparse matrix often result in
workload imbalance across processors during parallel sparse matrix computation.

In general, for sparse systems from modeling and simulationapplications with coefficient matrices of
dimensionN , the number of levels in the tree is approximatelylog2N . For illustrative purposes, let us assume
that the tree has more leaves than the number of processorsP . More often, the top 5 to 10 highest levels of the
tree nodes account for more than 50% of the total communication and computation time [24]. Since process
execution roughly occurs atlog2P levels from the root and the subtrees rooted below these nodes are assigned
to theP different processors (as local computations at processors), hence the tree based sparse system with the
number ofP processors is scalable because it is applied in detail to thetop log2P levels.

In this paper, we use such weighted trees as the model of computation. Specifically, the weighted paths
in this tree can be used to compute loads at each processor, and to determine thecritical path (corresponding
to the largest load across all processors). An example weighted tree is depicted in Figure 1(a). In this figure,
the number inside each node represents the computational cost (load) at that node, and we use capital letters
(A-I, in this example) to identify different nodes. Leaf nodes represent the local phase computations, and each
of them is assigned to a single processor. For example, node Cis assigned to processor P0, and node E is
assigned to processor P1. Root nodes of different tree/subtrees represent the distributed phase computations.
The computations at a root node of a tree/subtree are distributed evenly across all the processors to which
the leaf nodes of this tree/subtree are assigned. For example, the computation in node D in Figure 1(a) is
assigned to processors P1 and P2, with each processor having50 units of computational cost for processing
node D. Similarly, the computational load represented by node A is assigned to all the five processors, with
each of them having40 (= 200/5) units of computational cost. It should be noted that the processors sharing
a node’s computations need to synchronize with each other before they start the computations at this node.
For example, although P2 could finish the computations at node F before P1 could finish its computations at
node E, P2 must wait until P1 finishes before both the processors could co-operate to start the computations at
node D. In such a weighted tree structure, the processor withthe largest load (when considering all the nodes
it is involved with) determines the critical path. In Figure1(a), P1 has the largest load, and the critical path is
highlighted using bold lines. When there is no confusion, weuse the root node of a tree/subtree to represent
that tree/subtree. For example, ‘subtree B’ refers to the subtree consisting of node B, node C, node D, node E,
and node F. Given a weighted tree, our approach tries to maximize energy savings during its execution.

4 CPU Voltage Scaling

4.1 Algorithms

Over the range of allowed supply voltages, the highest frequency at which a CPU can run correctly drops
proportionally to the supply voltage (i.e.,f ∝ V ). Since the main component of power consumption is propor-
tional toV 2f , it is easy to see that reducingV has a quadratic effect on energy consumption. Consequently, a
CPU can save substantial energy by running with lower supplyvoltage (hence, more slowly) [2]; e.g., by re-
ducing its supply voltage to half, it can reduce its energy consumption to1/4th of the original. The important
point to note here is that, for correct operation, when voltage is scaled, frequency needs also be scaled.
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Table 1: Voltage/frequency/power levels used in our examples.
Voltage Frequency Power

1 1 1
0.8 0.8 0.512
0.6 0.6 0.216
0.4 0.4 0.064

VoltageScaling(node)
{

if (node.hasChildren){
AdjustTreeVoltage(node.left, node.level);
AdjustTreeVoltage(node.right, node.level);
if (node.left.treeTime< node.right.treeTime){

fastNode = node.left;
slowNode = node.right;

}
else{

fastNode = node.right;
slowNode = node.left;

}
for (newLevel = fastNode.level + 1;

newLevel< MAXLEVEL; newLevel++)
if (TreeTimeAtLevel(fastNode, newLevel)

> slowNode.treeTime)
break;

newLevel = newLevel - 1;
AdjustTreeVoltage(fastNode, newLevel);
VoltageScaling(node.left);
VoltageScaling(node.right);

}
}

AdjustTreeVoltage(node, lev)
{

node.level = lev;
node.nodeTime = NodeTimeAtLevel(node, lev);
node.treeTime = TreeTimeAtLevel(node, lev);

}

AdjustNodeVoltage(node, lev)
{

childrenTime = node.treeTime - node.nodeTime;
node.level = lev;
node.nodeTime = NodeTimeAtLevel(node, lev);
node.treeTime = node.nodeTime + childrenTime;

}

TreeTimeAtLevel(node, lev)
{

return (node.origTreeTime / FREQ[lev]);
}

NodeTimeAtLevel(node, lev)
{

return (node.origNodeTime / FREQ[lev]);
}

Figure 2: VS1. VoltageScaling() is the main function, and the other four routines are helper functions. The
complexity of this algorithm isO(LN), whereL is the number of available voltage levels, andN is the number
of nodes in the tree.

In this section, we first present the algorithms for dynamically varying (scaling) CPU speed and voltage to
save energy in tree-based parallel sparse computations. Given a tree, our main objective is to find a dynamic
voltage scaling scheme that can maximize energy savings without affecting the overall original execution time
(the execution time taken without any power management). Weobserve that the load imbalance in the tree
can be utilized to reduce energy consumption. Specifically,for those nodes that are not in the critical path,
their execution speed (frequency) can be reduced without affecting the overall execution time, and their energy
consumption can be reduced via voltage scaling.

For the examples presented in this section, we assume the power numbers (levels) given in Table 1. All
the numbers in this table are normalized, and the original voltage/frequency/power numbers are1/1/1. We
use aVTE (Voltage-Time-Energy) tree to represent the voltage assignments for a weighted tree. Figure 1(b)
gives an example of VTE tree corresponding to the weighted tree illustrated in Figure 1(a). The three numbers
inside each node of a VTE tree, from top to bottom, correspondto the voltage level, time spent, and energy
used to compute that node (note that, these numbers are also normalized). For example, the voltage level,
time, energy consumption used to compute node G, are1, 50, and100, respectively. In other words, for node
G, we assign voltage level1 to processors P3 and P4, and the time spent and energy consumption incurred
are 50 (each processor gets 50 units of computation, and they run inparallel) and100 (time ∗ power ∗
number of processors), respectively.

A general rule that we follow in our algorithms is that it is more beneficial to scale a given weighted tree
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as a whole, rather than to scale the nodes one after another. In other words, under the same performance loss
bound (i.e., allowable performance degradation), a voltage scaling scheme that assigns similar voltage levels
to different nodes in the tree should result in better energysavings than a scheme that assigns different levels to
nodes in the tree. A simple example can help us explain why this rule makes sense. Suppose that we have two
nodes which we need to run sequentially. Let us assume that the (V oltage, T ime,Energy) values of these two
nodes are (V, 2T, 2E) and (V, T,E). Assume further that the maximum allowable execution timeis 6T . If we
scale only the first node to (0.4V, 5T, 0.32E), the energy saving achieved would be1.68E. On the other hand,
if we scale the two nodes to the same voltage0.5V , which means that their (V oltage, T ime,Energy) values
become (0.5V, 4T, 0.5E) and (0.5V, 2T, 0.25E), the energy saving obtained would be2.25E. Therefore, in
this example, the latter scheme, which scales the two nodes as a whole, generates better energy saving result.
We can generalize this argument because, for the same node, the performance penalty to save a certain amount
of energy is higher when the voltage level is lower (in fact, the performance penalty is a linear function of the
inverse of CPU frequency).

Our first algorithm, calledVS1, is a recursive one that follows the above rule. For the root node of the tree
being considered, one of its children is in the critical pathand cannot be scaled as a whole. For the other child
that is not in the critical path, we can scale it and its descendants down together until we reach a point where
more aggressive scaling will increase the overall originalexecution time of the tree. After that, we scale the
two children recursively using this algorithm; i.e., we apply the same algorithm to the two children of the root,
and so on. Figure 2 gives this algorithm in the pseudo-code format. VoltageScaling() is the main function and
the other four routines are helper functions. Note that, in VoltageScaling(), we try to scale the faster subtree
first, which is not in the critical path, as a whole (see the for-loop). Then, we scale the two children recursively
by invoking VoltageScaling() for each of them. It can be observed from VS1 that each node is visited only
once, and the for-loop is the only loop in the function. Assuming that there areL voltage levels available
andN nodes in the tree, the complexity of VS1 isO(LN). Note that the proposed algorithm, VS1, makes a
“greedy” approach in a sense that, as it traverses each tree node, it tries to find an optimal voltage/frequency
level at each node, which gives the best energy savings. Figure 3 illustrates how VS1 is applied to the weighted
tree shown in Figure 1. Figure 3(a) is the original VTE tree, and the total energy consumption is1000. Subtree
G is scaled first since it is the faster child of node A (Figure 3(b)). We find that0.8 is the lowest possible
voltage level that we can assign to subtree G without making it slower than subtree B (see Table 1). After that,
we scale subtree B, and node C is the faster child, which is assigned voltage level0.6 (Figure 3(c)). Subtree
D cannot be scaled any further since both its children take the same amount of time to finish. Next, we scale
subtree G, and node I is its faster child (Figure 3(d)). Voltage level0.6 is the lowest possible voltage for node I
without making it slower than node H. Figure 3(d) depicts thefinal VTE tree after applying VS1, and the total
energy consumption when employing these voltage assignments is858.4, a14.2% reduction compared to the
original energy consumption.

It should be noted that VS1 generates the optimum voltage/frequency scaling scheme in terms of energy
savings only if we have continuous voltage levels. However,in reality, we have only a limited set of voltage
levels that can be used. Under such discrete voltage levels,VS1 is no longer the optimum choice. For example,
in Figure 3(d), we can scale the voltage/frequency of node G down further as shown in Figure 4(a), or scale the
voltage/frequency of node H as shown in Figure 4(b). We can observe here that, in some cases, even though it
is not possible to scale down a tree as a whole further, it may be still possible to scale some individual nodes
without hurting the performance (i.e., without exceeding the allowable performance degradation). In Figure 5,
we give two possible options,VS2andVS3, which exploit such opportunities. To obtain voltage assignments
for a tree rooted at node A, we call VoltageScaling(A,0). Note that, in VS2 and VS3, under a given allowable
performance loss (which can be0 meaning that no performance loss is to be tolerated), we firsttry to scale
the whole tree as much as possible (as in the case of VS1). Whenwe reach the point where scaling the whole
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(a) (b) (c) (d)

Figure 3: Example application of VS1. (a) The original VTE tree. (b)-(d) Different steps of applying VS1 to
the tree. The subtree or node in dashed circle is the one beingscaled in the corresponding step.

tree further will exceed the allowable performance loss, webegin to select some individual nodes in the tree as
candidates for further voltage/frequency scaling. We haveseveral choices in selecting such individual nodes.
We can scale the root node first, then scale the two children, or we can scale the children first, and then scale
the root node. We can even have an adaptive scheme that would make its decisions based on the weight
distribution or other possible factors. In this work, we implement only the first two choices:root-first and
children-first. Figure 5(a) gives an algorithm, calledVS2, which is the root-first version. Figure 5(b) gives an
algorithm, calledVS3, which is the children-first version. A major difference between these two algorithms is
in the order of scaling the root node (the for-loop) and scaling the children (two recursive calls). In Figure 5(a),
the for-loop comes before the recursive calls, which means that we try to scale the root node first to exploit the
slack available after scaling the whole tree. In comparison, in Figure 5(b), the two recursive calls are invoked
before the execution of the for-loop, which means that we tryto scale the children first to exploit the slack
available after scaling the whole tree. In both VS2 and VS3, each node in the tree is visited only once, and
there are two loops whose iteration counts are the number of available voltage levels. Assuming that there
areL voltage levels available andN nodes in the tree, the complexities of both VS2 and VS3 areO(LN).
Figure 6 gives an example application of VS2 to the VTE tree shown in Figure 3(b). The scenarios shown in
Figure 6(a) and Figure 6(b) are similar to those with VS1, as shown in Figure 3(b) and Figure 3(c). After we
scale the subtree G as a whole, the execution time of subtree G(183.3) is still smaller than the execution time
of subtree B (200). In VS1, we are not able to exploit this slack because we cannot scale subtree G as a whole
further. But, using VS2, we can exploit the slack of subtree Gby scaling its root node, G, to voltage level0.6.
After that, we scale its children, and find that node I can be scaled down further. It can be observed that, in this
example, VS2 performs better than VS1 since it saves more energy in computing node G. Figure 7 gives an
example application of VS3 to the VTE tree shown in Figure 3(b). The first two steps in Figure 7 are the same
as those in Figure 6. The difference between VS2 and VS3 in this example is in the order of exploiting the
slack due to subtree G. In VS3 (Figure 7(c)), we exploit the slack by scaling the voltages/frequencies of two
children first. After scaling the children, we cannot scale node G any further since there is no enough slack left
for node G.

In the VoltageScaling() functions of both VS2 and VS3, the parameterslack indicates the maximum ex-
ecution time increase (i.e., performance degradation/loss) allowed to save energy. Consequently, both VS2
and VS3 can work under a given performance degradation bound. Assuming that the original execution time
of a tree R isT and the maximum percentage performance loss that can be tolerated isP , we can invoke
VoltageScaling(R,T ∗P ) to obtain voltage assignments under such a performance constraint. Note that, when
we use VoltageScaling() with parameter0, this indicates that we are not tolerating any increase in the original
execution time. This is the strategy that we use in most of ourexperiments. VS1 can also be implemented in a
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Figure 4: Two examples showing that the result achieved by VS1 in Figure 3(d) is not optimum. The nodes in
dashed circles have been scaled further.

VoltageScaling(node, slack)
{

maxTreeTime = node.treeTime + slack;
for (newLevel = node.level + 1; newLevel< MAXLEVEL;

newLevel++)
if (TreeTimeAtLevel(node, newLevel)> maxTreeTime)

break;
newLevel = newLevel - 1;
AdjustTreeVoltage(node, newLevel);
slack = maxTreeTime - node.treeTime;
if (node.hasChildren){

choose some individual nodes from the tree for scaling.
}
if (node.hasChildren){

AdjustTreeVoltage(node.left, node.level);
AdjustTreeVoltage(node.right, node.level);
for (newLevel = node.level + 1;

newLevel< MAXLEVEL; newLevel++)
if (NodeTimeAtLevel(node, newLevel)

> node.nodeTime + slack)
break;

newLevel = newLevel - 1;
AdjustNodeVoltage(node, newLevel);
slack = maxTreeTime - node.treeTime;
if (node.left.treeTime< node.right.treeTime){

fastNode = node.left;
slowNode = node.right;

}
else{

fastNode = node.right;
slowNode = node.left;

}
extraSlack = slowNode.treeTime - fastNode.treeTime;
VoltageScaling(slowNode, slack);
VoltageScaling(fastNode, slack+extraSlack);
if (slowNode.treeTime> fastNode.treeTime)

node.treeTime = node.nodeTime + slowNode.treeTime;
else

node.treeTime = node.nodeTime + fastNode.treeTime;
}

}

VoltageScaling(node, slack)
{

maxTreeTime = node.treeTime + slack;
for (newLevel = node.level + 1; newLevel< MAXLEVEL;

newLevel++)
if (TreeTimeAtLevel(node, newLevel)> maxTreeTime)

break;
newLevel = newLevel - 1;
AdjustTreeVoltage(node, newLevel);
slack = maxTreeTime - node.treeTime;
if (node.hasChildren){

choose some individual nodes from the tree for scaling.
}
if (node.hasChildren){

AdjustTreeVoltage(node.left, node.level);
AdjustTreeVoltage(node.right, node.level);
if (node.left.treeTime< node.right.treeTime){

fastNode = node.left;
slowNode = node.right;

}
else{

fastNode = node.right;
slowNode = node.left;

}
extraSlack = slowNode.treeTime - fastNode.treeTime;
VoltageScaling(slowNode, slack);
VoltageScaling(fastNode, slack+extraSlack);
if (slowNode.treeTime> fastNode.treeTime)

node.treeTime = node.nodeTime + slowNode.treeTime;
else

node.treeTime = node.nodeTime + fastNode.treeTime;
slack = maxTreeTime - node.treeTime;
for (newLevel = node.level + 1;

newLevel< MAXLEVEL; newLevel++)
if (NodeTimeAtLevel(node, newLevel)

> node.nodeTime + slack)
break;

newLevel = newLevel - 1;
AdjustNodeVoltage(node, newLevel);

}
}

(a) VS2: Root-first version. (b) VS3: Children-first version.

Figure 5: Two versions of voltage/frequency scaling algorithm. The helper functions, including AdjustTree-
Voltage(), AdjustNodeVoltage(), and NodeTimeAtLevel(),are defined in Figure 2. The complexity of both the
versions areO(LN), whereL is the number of voltage levels, andN is the number of nodes in the tree.
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(a) (b) (c) (d)

Figure 6: Example application of the VS2 algorithm (root-first version). The original VTE tree is given in
Figure 1(b). (a)-(d) Different steps. The subtree or node indashed circle is the one being scaled in the
corresponding step.

(a) (b) (c)

Figure 7: Example application of the VS3 algorithm (children-first version). The original VTE tree is given
in Figure 1(b). (a)-(c) Different steps. The subtree or nodein dashed circle is the one being scaled in the
corresponding step.

slack-based fashion, and thus can also be used in cases whereperformance constraints are specified.
It is also to be mentioned that there is some cost for a processor to transition between different volt-

age/frequency levels. However, this cost is usually very small compared to the application execution time. In
addition, the voltage/frequency transitions are not very frequent, and occur only across the levels in the tree.
Although it is not shown explicitly in the algorithm presented, we have taken this cost into account in our
implementations and experiments with all our schemes.

4.2 Experimental Results

4.2.1 Experimental Setup

To evaluate our approach, we implemented a simulation platform shown in Figure 8. We first obtain trace data,
which indicate the computation weight involved at each level of the tree from parallel sparse matrix solver.
This trace data is then fed to the energy simulator along withthe CPU power models. Based on the given
voltage scaling method, which was explained in the previoussection, the energy simulator generates energy
and performance statistics. Note that, the trace data for communication weight and link energy model will be
used when we present our integrated algorithm that scales voltages of both CPU and link later in this paper.
It should be emphasized that the voltage/frequency decision by each voltage scaling scheme is made statically
based on the trace data we actually collected. Therefore, our evaluation does not consider any dynamic change
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Figure 8: Our simulation platform.

Table 2: Default simulation parameters for CPU.
Parameter Value

CPU clock frequency range 800MHz∼ 2400MHz
Number of voltage/frequency levels 5

Supply voltage range 1.1∼ 1.5V
Default clock frequency 2400 MHz

Voltage/frequency transition latency 1 ms

Table 3: Our test-suite of sparse matrices from practical applications.
Matrix P Rank |A|(103) |L|(103) Factorization Ideal Max Min Depth

Cost (106) (106) (106) (106) of Tree

bmw7st1 64 141347 3741 81340 217764 3403 3831 2045 10
bcsstk31 28 35588 608 10605 7161 256 295 194 7
bcsstk35 17 30237 740 11335 11996 706 834 637 7
crystk02 11 13965 491 5059 2890 263 406 158 5
finan512 28 74752 335 17905 13695 490 739 376 8
nasasrb 22 54870 1366 13084 6193 282 444 196 7
tube1 7 21498 459 5731 3865 553 826 405 4

in the CPU’s load.
We use the power numbers from AMD Athlon processor [1], and Table 2 gives the default simulation pa-

rameters including power and performance values. All processors operate at the highest frequency of 2400MHz
by default (i.e., without any voltage/frequency scaling).In the rest of the paper, the energy consumption values
presented are normalized with respect to thedefault (base) version, whereno power saving scheme is em-
ployed. It should be noted that, all the experimental results presented in this paper already take into account
the extra cost of processors’ transitioning between different voltage/frequency levels.

Our test suite is derived from parallel sparse direct solution using a multifrontal scheme [24] on several
sparse matrices from practical applications described in Table 3. These sparse matrices tend to be irregular
and are representative of matrices for a broad range of scientific computing applications. The second column
of Table 3 gives the number of processors available for the applications. The third column shows the ranks
of matrices. The fourth and the fifth columns give, respectively, the number of nonzeros in matrixA before
factorization, and the number of nonzeros in factorL of matrix A after factorization. The sixth column shows
the number of arithmetic operations required to factor matrix A into the form ofLLT . The seventh column
gives the ideal workload per processor, which is obtained bydividing the total workload over the number of
processors. The next two columns list the maximum and minimum workloads assigned to different processors.
Finally, the last column presents the depth of tree when eachapplication is represented as a tree computation
model described in Section 3. In addition to those matrices that are extracted from real applications, we also
use somemodelsparse matrices that are automatically generated to test the scaling of our approach as the
problem size is increased with the number of processors (while maintaining the work per processor at a fixed
level). The two-dimensional model problem is associated with theK ×K five-point finite difference grid, and
results in a sparse matrix of rankN = K2 [11]. Table 4 gives the description of these problems. The meaning
of the columns in this table is the same as those in Table 3.

4.2.2 Results

Figure 9 presents the normalized energy consumptions with our three different CPU voltage scaling algorithms
(VS1, VS2, and VS3, explained in Section 4.1). All bars of a given solver are normalized with respect to the
execution whenno voltage/frequency scaling scheme is employed. Note that, unless otherwise stated, all
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Table 4: Our test-suite of model sparse matrices.
Matrix P Rank |A|(103) |L|(103) Factorization Ideal Max Min Depth

Cost (106) (106) (106) (106) of Tree

205x205 3 42025 125 1143 103 35 50 25 3
256x256 7 65536 196 1913 204 30 46 22 4
320x320 15 102400 306 3139 398 27 37 21 5
400x400 31 160000 479 5191 799 26 34 19 7
500x500 63 250000 749 8607 1578 25 34 20 8
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(a) Practical problems. (b) Model problems.

Figure 9: Normalized energy consumptions with different strategies.

our energy savings are achieved under no performance loss. It can be observed from this figure that our
strategies save significant amount of energy by using voltage/frequency scaling. The average energy savings
brought by VS1, VS2, and VS3 are16%, 21%, and21%, respectively, for the practical problems (see Table 3).
The corresponding energy savings brought by the three schemes for model problems (see Table 4) are17%,
21%, and21% in the same order. Our schemes save less energy with bcsstk31; but, as we will discuss in
Section 4.2.3, the main reason for this behavior is the inherent limited opportunity (more evenly distributed
workload) in these two cases.

We observe that VS2 and VS3 are both better than VS1 across allthe cases tested. Recall that, the differ-
ence between VS1 and the other two schemes is that VS1 always tries to scale a subtree as a whole, while VS2
and VS3 also scale individual nodes when scaling a whole subtree further is not possible due to the limited
number of voltage levels available and the specified performance bound. The improvements brought by VS2
and VS3 over VS1 indicate that it is important to take into account the number of available voltage levels when
applying voltage/frequency scaling to these problems. On the other hand, there is no clear winner between
VS2 and VS3, and the energy savings brought by these two schemes are similar for all the cases tested. Unless
otherwise stated, we use VS3 as the default scheme for most ofthe experiments presented in the rest of this
paper.

So far, we required that the total execution time should not be affected by voltage/frequency scaling. That
is, we try to achieve the maximum energy benefits that can be obtained without increasing the original exe-
cution time. In some execution environments, however, one might be willing to tolerate some performance
penalty for larger energy savings. Figure 10 presents the results under such a scenario. The values on the
x-axis represent the allowable percentage execution time increases. We observe that, energy savings achieved
by VS3 can be increased by allowing an increase in execution time. For example, by allowing a5% perfor-
mance penalty, three out of four cases shown in Figure 10 gainabout5% more energy savings. This indicates
that allowing some performance penalty can be an attractiveoption for energy-critical applications. We also
observe that this trend slows down as the allowable performance penalty gets larger. This is due to the fact that
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Figure 10: Normalized energy consumptions with VS3 when we allow some performance penalty. The x-axis
represents the percentage execution time increase allowed. For clarity purpose, we present the results for only
four cases. Similar trends are observed with other cases.

processor voltage has a lower limit due to technology, and wecannot scale a processor more if it has already
reached the lowest possible voltage under which it can operate correctly. As allowable performance penalty in-
creases, there are more and more cases where processors already reach the lowest voltage level. Consequently,
the energy savings brought by voltage/frequency scaling increase more slowly. It can be observed that all the
curves converge as the allowable performance penalty becomes very large, and this indicates that all processors
reach their lowest voltage level in almost all execution stages.

4.2.3 Comparison with Optimum Results

It needs to be noted that, all our three schemes (VS1, VS2, andVS3) are heuristics in essence. Consequently,
one might wonder how good our results are as compared with theoptimum results. In this subsection, we
explain and evaluate two optimum schemes,OPT1andOPT2, and compare them with our schemes. By such a
comparison, one can learn how good the proposed schemes are in utilizing the inherent imbalance in the tree.
Furthermore, the results of the optimum schemes set an upperbound for any voltage scaling scheme on such
trees, and can indicate whether it is possible to employ better heuristics in this regard.

Optimum Scheme 1 — OPT1is based on the assumption of perfect workload distributionand continuous
voltage levels (both are unrealistic). Note that, in the original tree, the workload is not distributed evenly.
Consequently, the overall execution time,T , is determined by the processor with the heaviest workload.As-
sume now that we could somehow re-distribute the total workload perfectly across the processors so that each
processor has an equal amount of work (this might not be feasible in reality). Under this perfect distribution,
the total execution time is reduced toT ′ (T ′ < T ). Now, we can reduce the voltage level (and frequency) of
the tree as a whole, and the total execution time of the tree can be increased. Since we also assume continuous
voltage levels in this optimum scheme, we can always find a voltage level such that the execution time of the
new tree reachesT , i.e., the execution time of the original tree.

Optimum Scheme 2 — OPT2is also based on the assumption of continuous voltage levels. In the original
tree, the workloads of different processors are different,and the real execution time of each processor is
different. The execution time,T , of the processor with the heaviest amount of work determines the overall
execution time. We can scale each processor individually, so that all processors’ execution becomeT (again,
this might not be feasible in reality due to synchronizationissues). While at the first glance two optimum
schemes that can generate different results (as will be discussed shortly) seem counter-intuitive, note that their
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Figure 11: Comparison of VS3 with optimum results. OPT1 and OPT2 is explained in Section 4.2.3.

optimality are defined under different assumptions (i.e., perfect workload distribution versus synchronization-
free execution).

Figure 11 compares VS3 with these two optimum schemes. Figure 11(a) presents the results for the
practical problems, and Figure 11(b) presents the results for the model problems. It can be observed that
OPT1 is better than OPT2 in all the cases, which is what one canexpect. Knowing that OPT2 sets a tighter
upper bound for our schemes, we now focus on the comparison ofVS3 and OPT2. First, we notice that the
VS3 scheme performs very good because the difference between VS3 and OPT2 is small. Specifically, on the
average, VS3 achieves7% less savings than OPT2. Furthermore, since the savings achieved by OPT2 may not
be feasible in reality, VS3 should be even closer to a realistic optimum scaling scheme (if one could be found).
It can also be observed from Figure 11 that there is a correlation between VS3 and OPT2. In general, when
OPT2 has good results, VS3 also has good results. This means VS3 is able to catch the inherent opportunities
in these cases, and follow the OPT2 scheme very closely.

5 Integrated CPU and Link Voltage Scaling Algorithm

So far, we discussed voltage/frequency scaling schemes that target only CPUs. We now present our integrated
algorithm that scales the voltage/frequencies of both CPUsand communication links on top of the voltage
scaling algorithm explained so far. We first describe the system model, and then explain our integrated voltage
scaling algorithm based on this system model. We then present our experimental results obtained using our
integrated voltage scaling scheme.

5.1 System Model

For illustrative purposes, we use a weighed tree computation similar to that given in Section 4.1, but annotated
with slightly different notation in order to capture both CPU and communication link weights instead of using
the VTE notation used in explaining our CPU voltage/frequency scaling algorithms. An example weighted tree
is illustrated in Figure 12. We useNi to represent the nodes in the tree. Each leaf node, which represents a local
computation phase, is assigned to one processor,pi, as shown in Figure 12. The nodes, which represent the
distributed phase, are assigned to the processors that alsooperate to the leaf nodes of their subtree nodes. For
example,N1 is assigned to 4 processors, fromp0 to p3, sinceN1 makes use of all the processors in that subtree.
The pair of numbers inside a given node in this figure represents the computation and communication weights
associated with that node, e.g.,N1 node is assigned 50 unit of computation load and 25 unit of communication
load. Similarly,N3 is assigned 90 and 10 units of computation and communicationloads, respectively. In the
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Figure 12: An example tree representing parallel sparse computations.

Figure 13: (a) Two-dimensional mesh topology (4 by 4). (b) A node with a bidirectional network.

tree-based computation model for sparse applications, theweight on each node is evenly distributed across all
the processors assigned to that tree node. Based on this weighted tree notation, we can determine thecritical
path, which is represented as thick solid line in Figure 12. In other words,N0, N1, N3 andN6 constitute the
critical path in this example tree, which determines the minimum execution time of the parallel application.
The goal of this study is to reduce energy consumption of suchtree-based matrix computations by taking
advantage of the computation and communication exhibited by the tree nodes not in the critical path.

We focus on anM × N two-dimensional mesh based interconnection network as shown in Figure 13(a),
though the analysis described in this work is applicable to other network topologies as well with proper mod-
ifications. Each pair of adjacent nodes in this 2D mesh topology is connected to each other using two uni-
directional links. A node in this architecture typically consists of one or more processors, some amount of
local memory, and a switch that routes messages through the nodes (Figure 13(b)). We usepi to denote the id
of theith node in this mesh network, which can be written as:

pi = row(i) × M + col(i), (1)

whereM is the row size of the mesh androw(i) andcol(i) are the row and column positions, respectively,
of theith node. For example,p5 in Figure 13(a) can be represented using(1, 2) since the size of this example
mesh topology is4 × 4.

Given the system architecture explained above, an application program considered in this study is par-
allelized using the message-passing interface, MPI [13]. In this model, the nodes communicate with each
other using explicit send/receive commands. We propose integrated voltage/frequency scaling on CPUs and
communication links. We apply our technique to these two components due to following reasons. First, both
modern CPUs and communication links support voltage/frequency scaling circuits and we can make use of
these capabilities to reduce power. Another reason is that each of these components are known to be a major
contributor to total energy consumption in large parallel machines [23].
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Figure 14: Left: CPU power model. Right: Link power model.

To illustrate the idea behind our approach that scales both CPU and communication link voltages in a
coordinated fashion, let us first take a look at their energy/latency behavior. The dynamic power consumption,
P , can be represented as:

P = 1/2 · f · N · C · V 2
dd, (2)

wheref is clock frequency,N is switching activity,C is effective capacitance, andVdd is supply voltage.
Therefore, the power consumption,P , is quadratically proportional to the supply voltage,Vdd, and frequency,
f1. As shown by Equation 2, we can obtain quadratic drop in powerconsumption with a linear reduction in
the clock frequency (f ) and the supply voltage (Vdd).

The energy versus clock frequency2 curves for CPU and communication links are drawn in Figure 14. The
CPU curve is adapted from AMD’s Athlon-64 processor datasheet [1], whose clock frequency can range from
800MHz to 2400MHz and the corresponding supply voltage can range from 1.1V to 1.5V 3. The communi-
cation link curve on the other hand is generated using data collected from [22], which has a supply voltage
range of 0.9V to 2.5V . The corresponding bit-rate range is from 650Mb/s to 5Gb/s.We can see from this
figure that frequency-power curves areconvex, which means that, as voltage and frequency are scaled down,
the additional energy savings gained drop quadratically. Therefore, it should be beneficial from the energy
perspective to scale voltages/frequencies of both CPU and link in a balanced (coordinated) manner, instead of
scaling the voltage/frequency of one of them aggressively.

5.2 Integrated Approach

We now explain our algorithm for simultaneous voltage/frequency scaling for CPUs and communication links
in tree-based parallel sparse computations using the example given in Figure 12, which is actually extracted
from one of programs we tested in our experiments. The goal ofour algorithm is to find an appropriate voltage
levels and the corresponding frequency levels for CPUs and links that maximizes energy savings without
impacting the overall execution time. Since our computation model is based on a tree, we can apply one of
algorithms described in Section 4.1 where only CPU voltage is scaled down to save energy. Recall that, among
our three CPU voltage scaling algorithms, i.e., VS1, VS2, and VS3 given in Section 4.1, VS2 and VS3 are
better than VS1 while there is no clear winner between VS2 andVS3. Our algorithm starts with VS2, the root-
first approach, as given in that, but it needs to be applied carefully due to the conflicts between the different
voltage levels chosen for the communication links. To better explain this, let us consider the communication
patterns exhibited by the example computation tree shown inFigure 12. Note that, since the leaf nodes in our
tree-based sparse computation model perform only computation, the communication starts from the nodes just
above the leaf nodes, i.e., level 2 in the tree. One notable characteristic of communicating nodes is that they
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Figure 15: MappingCG4 to mesh topology.

Figure 16:CGs mapped to the mesh topology.

can be grouped using a neighborhood concept. We use aCG (Communication Group) to represent the nodes
that participate in communication at any point during execution, and aCG can be represented as follows:

[plow, phigh], (3)

whereplow is the processor whose id is the smallest among the processors in a givenCG, andphigh is the
processor whose id is the largest among the processors. Additionally, we usesize(CG)to capture the number
of processors in theCG. For example, in level 2 of the tree in Figure 12, there are threeCGs (CG3, CG4,
andCG5), which can be represented as [0,1], [2,3], and [4,5], respectively. The size of all threeCGs are 2
in this case. As we can see from this figure, the size ofCGs becomes larger as we move to the lower levels,
i.e., towards the root of tree. To see how theseCGs are mapped onto the underlying mesh topology, let us
consider the mapping between one of detectedCGs,CG4 in the level 2 of Figure 12, and the mesh topology,
which is illustrated in Figure 15. Since we use an X-Y routingalgorithm in communicating among nodes,
eachCG can be mapped to a set of rectangularly-connected nodes in the mesh topology. Therefore, we need
to adjustplow andphigh values of eachCG using the actual processor-to-mesh topology mapping, and this can
be represented as follows:

p′low = (min(row(∀pi)),min(col(∀pi))),

p′high = (max(row(∀pi)),max(col(∀pi))), (4)

where min() and max() functions give the minimum and maximumvalues of the column and row indices, re-
spectively, of all the processors in eachCG. Using this equation, we can obtainCG4 mapped to the underlying
mesh topology. Initially,CG4 can be represented as [2,3]. As illustrated in Figure 15,CG4 needs additional
4 processors (p0, p1, p4, andp5) to communicate each other using the X-Y routing algorithm.Since the row
and column index forp2 andp3 are (0,2) and (1,0) respectively, we can redefineCG4 as (0,0) and (1,2) using
Equation (4) given above. All other detectedCGs are marked using dashed rectangles in Figure 16 for each
level of our example tree.

In the first step of our algorithm, we build aCG-annotated tree of the given parallel sparse matrix compu-
tation. Recall that, when we are given a tree representationof parallel sparse matrix computation such as the
one in Figure 12, we already know the particular tree nodes that reside on the critical path of the tree. After
obtaining allCGs, we then move to determineconflict group, denoted asD in this paper, to capture whether
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VoltageScalingMain (node){
BuildCG (node);
VoltageScaling (node);

}

BuildCG (node){
if (node.isLeaf){

node.plow = node.phigh = node.processor;
CG = [node.plow, node.phigh];

}
else{

node.plow = ( min (row(∀pi ∈ CG)), min(col(∀ pi ∈ CG)) );
node.phigh = ( max (row(∀pi ∈ CG)), max(col(∀ pi ∈ CG)) );
CG = [node.plow, node.phigh];
build CG (node.left);
build CG (node.right);

}
}

VoltageScaling (node){
if (node.isLeaf){

// assign the lowest link power level
node.linkLevel = MINLINK LEVEL; return;

}
else{ // node is not leaf, i.e., node has children

// determine critical node
if (node.left.treeTime< node.right.treeTime ){

fastNode = node.left; slowNode = node.right;
}
else{

fastNode = node.right; slowNode = node.left;
}
D = CGi ∩ CGx; // CGx is theCG in critical path
// select the slowest level for both CPU and link simultaneously.
while ( (currCpuLevel< MIN CPU LEVEL) &&

(currLinkLevel< MIN LINK LEVEL) &&
(node.time< node.treeTime)){

currCpuLevel- -;
∀pi /∈ D currLinkLevel- -;

}
// communication is dominant→ reduce CPU voltage further
if (fastNode.origTotalCommTime> fastNode.origTotalCompTime){

while ((currCpuLevel< MIN CPU LEVEL) &&
(node.time< node.treeTime)){
currCpuLevel- -;

}
else{ // computation is dominant→ reduce link voltage further

while ((currLinkLevel< MIN LINK LEVEL) &&
(node.time< node.treeTime)){
currLinkLevel- -;

}
}
node.cpuLevel = currCpuLevel;
node.linkLevel = currLinkLevel;
// recalculate total time based on newly determined voltage
// levels and update node with the scaled voltage/frequency
VoltageScaling (node.left); // perform VoltageScaling()on left node.
VoltageScaling (node.right); // perform VoltageScaling() on right node.

}
}

Figure 17: Integrated CPU/link voltage/frequency scalingalgorithm.
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(a) 1st phase. (b) 2nd phase. (c) 3rd phase.

Figure 18: Example application of our integrated CPU/link voltage scaling approach. The dashed circle is the
subtree nodes being scaled in the corresponding phase.

there is any conflict among theCG groups that sit in the same level. We say that there is conflictbetween
nodesCGx andCGi if the following condition holds true:

(D = CGi ∩ CGx) 6= ∅ ∧ level(CGi) = level (CGx), (5)

whereCGx is aCG in the critical path. In Figure 16(b),CG1 andCG2 are in conflict because three processors,
namelyp3, p4, p5, are shared by bothCG1 andCG2. Note that the root node is always in the critical path
so that all the nodes should operate under the maximum available frequency, i.e., maximum voltage level
supported by the architecture (see Figure 16(a)) when they work on the root node. For level 1, we are able to
reduce the voltage levels of processors that belong toCG2, which is not in the critical path, and do not belong
to the set of conflicting processors inCG2. In our example, we can reduce the voltage levels of processors p6,
p7, andp8. It should be mentioned that the slack in a given node must be large enough to scale both CPU and
link voltages. Once we assign determined voltage levels, wethen recalculate the slack at each node in the tree.
Our algorithm continues this way until all the nodes of the tree are processed. Note that, at the leaf nodes, we
scale down all link voltage to the lowest levels because no communication is involved at leaf nodes.

The algorithm given in Figure 17 follows the approach explained above. Basically, our algorithm scales
down a subtree from the root node, which is not in the criticalpath, as a whole. The algorithm starts by generat-
ing the CG-annotated tree by invoking the BuildCG function,followed by calling the VoltageScaling function.
This function is invoked recursively, starting from the root node. If the node currently being processed is a
leaf, our algorithm assigns the lowest voltage levels to allthe communication links in the mesh. If the input
node has a child node and one of its subtrees has slack, we scale down both CPU and link voltages at the
same time until the point where the scaled execution time becomes very close to the original execution time.
After scaling voltages simultaneously, if the remaining slack is large enough to scale down either CPU or link
voltages, we further apply voltage scaling on that node. Thedecision on whether to scale down CPU voltage
or link voltage is made based on their contribution to the total execution time of that node. More specifically, if
the total computation time is longer than the total communication time, we scale down the link voltage because
scaling down the component whose contribution is larger tends to consume the observed slack more quickly.
So, it is better to scale the link voltage from the energy perspective, while utilizing the slack efficiently. On
the other hand, in the case where communication is dominant time consumer for the node being processed,
we scale down the CPU voltage. Our algorithm continues in this fashion until all the nodes of the tree are
processed.

Figure 18 shows how our approach works in practice. For illustrative purposes, we use the normalized
voltage and power numbers for both the CPU and link, which aregiven in Table 1. The initial voltage/power
numbers are 1/1, as shown inside each node in Figure 18. In thefirst phase, we scale down the right subtree
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Table 5: Default simulation parameters for the communication link.
Parameter Value

Link frequency range 130MHz∼ 1GHz
Number of voltage/frequency levels 5

Number of multiplexing stage 5
Bitrates per link 650Mb/s∼ 5Gb/s

Link supply voltage range 0.9∼ 2.5V
Active link energy consumption 10.2 pJ/bit
Idle link energy consumption 8.5 pJ/cycle

Link frequency transition latency 10µs (100 link cycles)

because the left subtree is in the critical path. Therefore,we scale the both link and CPU voltage of all nodes
in the right subtree to one level lower, 0.8 in this example. Note that, the link voltage of all leaf nodes are set to
the lowest levels because this does not increase execution time. In the subsequent phase, our approach scales
down the voltage/frequency of the subtree whose root isN4 (Figure 18(b)). Lastly, the subtree rooted atN5

can be scaled down further by using the slack present in that subtree (Figure 18(c)).

5.3 Experimental Evaluation

5.3.1 Experimental Setup

We use the same simulation platform described in Figure 8 except that the trace data being fed to the energy
simulator indicate not only the computation involved at each level of tree, but also the communication load
and patterns at each level of tree nodes. To obtain the energyconsumption of network links, we use an energy
model similar to that described in the literature [21, 22], and Table 5 gives the default simulation parameters for
network links. While the circuitry associated with the network links (e.g., buffers, cross bar, etc) also consumes
a certain amount of power, we do not account for this because router power consumption does not vary too
much with and without the network links that support dynamicvoltage scaling. This is because a flit remaining
longer in a router due to slower links does not increase the energy consumption of the buffer read/write power
nor the cross bar power [30]. Hence, when calculating the energy consumption of each program, we consider
only the energy dissipated by CPU and network links. All other simulation parameters are fixed as given in
Table 2.

We conduct experiments with same parallel sparse matrix solvers given in Table 3 and Table 4. Remember
that the seven solvers described in Table 3 are from practical solvers and the five additional solvers in Table 4
are model solvers to study the sensitivity of our approach tothe increased problem size. Table 6 presents the
communication characteristics of these parallel sparse matrix solvers experimented in this section. The first
seven rows of Table 6 correspond to the practical solvers given in Table 3. The remaining five rows correspond
to the model solvers given in Table 4. The number of computingnodes (i.e., processors) and the size of mesh
network used in each solver are given in the second and third columns of Table 6, respectively. The fourth
and fifth columns of the table show the number of messages communicated among processors during compu-
tation and the total data volume of the communicated messages, respectively. Note that, the numbers given in
these two columns are the average weight per processor. So, the total weight is dependent on the number of
processors involved in each tree node. The last column is thecontribution of the communication time to the
total execution time. We can see from this table that the communication time (correspondingly communication
volume and the number of messages) increases when more processors are involved in parallel execution. Since
we use square mesh networks, our energy simulator takes intoaccount the energy consumption of the CPUs
and links that are actually used.

To evaluate the effectiveness of our approach, we conductedexperiments with the following three schemes:
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Table 6: Communication characteristics of parallel sparsesolvers evaluated given in Table 3 and Table 4.
Solver Number of Mesh Number of Communication Percentage of
Name Processors Size Messages Volume (MB) Communication Time

bmw7st1 64 8×8 24,337 406.41 50.7%
bcsstk31 28 6×6 4,645 18.36 31.3%
bcsstk35 17 5×5 6,999 43.13 22.3%
crystk02 11 4×4 2,227 7.05 9.8%
finan512 28 6×6 7,364 39.59 44.7%
nasasrb 22 5×5 2,997 10.13 6.1%
tube1 7 3×3 2,557 12.16 8.7%

205x205 3 2×2 291 0.29 0.2%
256x256 7 3×3 648 0.82 3.8%
320x320 15 4×4 1,294 2.1 22.6%
400x400 31 6×6 2,318 4.5 38.1%
500x500 63 8×8 3,172 7.1 39.1%

• CPU-VS: This scheme scales down only CPU voltages, using theVS2 algorithm described in Sec-
tion 4.1. It simply takes advantage of available computation slacks.

• LINK-VS: This scheme uses the same VS2 algorithm except thatit is applied to scale down only link
voltages based on the communication slacks available. The selection of link voltage level is made based
on the algorithm explained in Section 5.

• CPU-LINK-VS: This scheme, which is the main contribution ofthis work, scales both CPU and link
voltages using the algorithm given in Figure 17. If there is enough slack, this scheme tries to scale
down both CPU and link simultaneously. When a voltage level chosen for oneCG is not the same as
those of the otherCGs that share processors for communication, CPU-LINK-VS chooses the largest
voltage level among the voltage levels of all theCGs, in an attempt to minimize potential performance
overheads.

5.3.2 Results

Figure 19 gives the normalized energy savings with the threedifferent schemes described in Section 5.3.1.
All bars of a given solver are normalized with respect to the execution whenno voltage/frequency scaling
is applied. We can see from this figure that the energy savingsobtained from both CPU-VS and LINK-
VS are significant. Specifically, the average energy savingsby CPU-VS and LINK-VS are 27% and 23%,
respectively. This shows that scaling down either CPU or link voltage can be very effective in reducing total
energy consumption. On the other hand, the CPU-LINK-VS scheme, which scales down CPU and link in a
coordinated fashion, achieves 40% energy saving on average. This result clearly shows that it is better to scale
voltages of both CPUs and links in an integrated manner rather than scaling only one of them aggressively,
due to the diminishing energy saving rates, already demonstrated earlier by Figure 14. Note that, since all
three schemes try to scale down the voltages/frequencies ofthe tree nodes that are not in the critical path, no
schemes incurs any observable performance degradation.

In our next set of experiments, we perform a sensitivity analysis to see how the energy savings achieved
by our approach are affected with the increase in the number of voltage/frequency levels supported by the
underlying architectures, and the number of processors. Tostudy the effectiveness of our approach with finer
voltage levels in CPU and links, we experiment with 5 (our default value), 9, 17, and 33 voltage levels. The
intermediate voltage levels are obtained by curve fitting based on the initial voltage/frequency points. All other
simulation parameters are fixed as in Table 2 and Table 5. The normalized energy savings for all seven solvers
used in our experiment under the different number of voltagelevels are given in Figure 20. As one can observe
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Figure 19: Normalized energy consumptions with the different schemes.

from these graphs, the energy savings obtained saturate as we increase the number of voltage/frequency levels.
This is an anticipated result since finer granular voltage levels give more opportunity to scale down voltage
levels, even when we have small slacks. However, we also see that energy savings start to saturate when
the number of voltage levels reaches 17 or so. This shows thatour scheme makes use of slacks in the tree
successfully with reasonable number of voltage/frequencylevels.

In the next set of experiments, we vary the number of processors and, correspondingly, the size of our
two-dimensional mesh topology. We used the two set of model solvers in this experiment with five different
processor sizes: 3, 7, 15, 31, and 63. In the first set of model solver, we try to keep the workload per processor
constant as the number of processors increases. In the second set of model solver, on the other hand, we keep
the total workload (when accumulated over all processors) constant as the number of processors increases.
Figure 21(a) presents the results for the first set of model solver, whereas Figure 21(b) presents the results of the
second set of model solver. Recall that we do not consider theenergy consumption of the unused CPU nodes
and the communication links connected to them, and the results presented in Figure 21 are the normalized
energy consumption with various processor sizes. We can seefrom these figures that, as we increase the
number of processors, the energy savings achieved by all three schemes decrease. The reason why the energy
savings achieved by CPU-VS decrease is that, as the number ofprocessors increases, overall execution time
is dominated by communication, thereby decreasing the opportunities for scaling down the CPU voltages.
Similarly, the energy savings achieved by LINK-VS also decrease due to the increased network contention
brought by the larger number of processors, and network topology prevents the possibility to scale down the
link voltages. Lastly, the energy savings obtained throughthe CPU-LINK-VS also decreases but this scheme
gives the best energy savings for the all fives cases tested. It can be also observed that, in case of Figure 21(b)
where we keep the workload assigned to each processor constant as the number of processor increases, the
decrease in energy savings is saturated when the number of processor reaches 31. This is because the constant
workload per processor tends to generate less communication overhead as the number of processor increases.

6 Conclusions

This paper makes two major contributions. First, it proposes several CPU voltage/frequency scaling schemes
for parallel sparse computations. Second, it presents an algorithm that scales voltages/frequencies of CPUs and
communication links in a mesh-based parallel system in a coordinated (integrated) fashion such that energy
savings are maximized and performance is not affected. To test our algorithm, we implemented it and applied
it to a set of tree-based sparse computations. The experimental results collected are very promising and show
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Figure 20: Normalized energy consumptions with the different schemes as the number of voltage/frequency
levels vary.
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Figure 21: Normalized energy consumption with model problems as the number of processors increase. (a)
Workload per processor is kept constant as the number of processors increases. (b) Total workload is kept
constant as the number of processors increases.

that integrated CPU/communication link voltage scaling can generate much better results than the CPU voltage
scaling alone and the link voltage scaling alone. Our results also show that the energy savings are consistent
with the different problem sizes and different sets of voltage/frequency levels.
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Notes
1Since the clock frequency,f , can be represented in terms ofVdd and threshold voltage,Vt, as the frequency is reduced, the supply

voltage can be reduced proportionally.
2In case of a serial link, the frequency dictates the bit-rates.
3Since the AMD datasheet states only TDP (Thermal Design Power), which is 89 W, we estimate the peak power consumption of

the CPU for our study to be approximately 50 W based on our experience.
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