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We apply our quantum theory of nondegenerate multiwave mixing [Phys. Rev. A 37, 2017 (1988)] to squeezed-
state generation experiments with two-level atoms. Our main interest is to predict the amount of squeezing
achievable with a Doppler-broadened two-level medium. We are particularly interested in the single-beam con-
figuration, in which all four interacting beams are spatially degenerate. We analytically solve the coupled-
mode quantum Langevin equations for nondegenerate four-wave mixing. The solutions are used to compute
the amount of squeezing. In the computation the effects of pump-probe phase mismatch, collisions, Doppler
broadening, and Gaussian-intensity variation are comprehensively taken into account for the first time to our
knowledge. Simple rules of thumb as to where one can see squeezing in both degenerate- and nondegenerate-
frequency cases are derived by examining the limit of a short medium. We then present the case of an in-
finitely long medium, in which maximum squeezing is achieved when there is no pump-probe phase mismatch.
With the inclusion of pump-probe phase mismatch, however, the maximum amount of squeezing is obtained
with a finite-length medium instead. This prompts us to investigate in detail the finite-length medium case.
Our results show that the effects of Doppler broadening and Gaussian-intensity variation can be largely cir-
cumvented by detuning the pump frequency more than three Doppler half-widths from resonance and that good
broadband squeezing can be achieved even with a Doppler-broadened medium that has a moderate amount of
collision broadening. Under these circumstances it is found that the effect of pump self-focusing or defocusing
will be the major factor that limits the amount of achievable squeezing. In particular, the spatially varying
nonlinear refractive indices seen by the pump and the probe modes are quite different, which causes the former
to become spatially mismatched with the latter in the region in which strong squeezing is otherwise expected.
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In the first paper’ of this series on the quantum theory
of nondegenerate multiwave mixing, we solved for the
c-number atomic polarization variable V(¢) of the ith atom
in a system of stationary two-level atoms. We did so in the
limit wherein superradiance could be neglected; the ef-
fects of spontaneous emission and soft atomic collisions
were included in the model. The solution for V,(¢), in terms
of the multimode-field Fourier amplitudes {A.(7:)}, was
derived without the need for an adiabatic approximation.
In the second paper of this series? we used the slowly
varying amplitude approximation to express the polariza-
tion Vi(¢) in terms of the c-number field annihilation and
creation variables {«,,(¢), @,*(¥)}. This procedure is simi-
lar to the usual techniques of adiabatic approximation but
is more exact in the sense that the effects of dispersion
can be taken into account. The slowly varying amplitude
approximation allowed us to obtain a set of Langevin
. equations for the field creation and annihilation variables.
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The correlations of the c-number Langevin forces were
derived for the special case of nondegenerate four-wave
mixing under conditions that permitted nonnegligible
atomic collisions. In order to apply the formalism to a
traveling-wave geometry, we developed a slowly varying
envelope method to deal with quantum field propagation.

The main theme of this paper is the application of the
results of Ref. 2 to squeezed-state generation experiments
that use four-wave mixing, specifically to the case in
which all four waves are spatially degenerate. Physically,
in such a case, a single pump beam propagates through a
Doppler-broadened two-level medium; vacuum fluctua-
tions are the inputs for the two temporally nondegenerate
probe waves. Our interest in the single-beam scheme
arises from its simplicity: One does not need to worry
about the alignment of the four different beams. This
simplicity allows us to compare the experimental results®
with theory with much less uncertainty. In this applica-
tion the effects of atomic collisions, pump-probe phase
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mismatch, Doppler broadening, and Gaussian-beam
pump-intensity variation are comprehensively taken into
account for the first time to our knowledge. The effect of
pump-beam self-focusing and defocusing is also examined.

We begin in Section 2 of this paper by recapitulating
the pertinent results of Ref. 2. This is done to make this
paper self-contained and to reestablish the notation. The
remainder of this paper can be divided into four parts. In
the first part, Sections 3 and 4, we assume time stationar-
ity and solve the spatial coupled-mode equations for the
c-number mode-amplitude variables {a,,(z,¢)} by means
of the Caley-Hamilton theorem. We then apply the
solution to the single-beam geometry in Section 4 and
obtain an analytic expression for the quadrature noise
variance. The analytic solution, however, is rather com-
plicated, which prompts us to look at a few simple cases
in the second part of this paper in order to obtain some
physical insight.

In the second part of this paper, Sections 5 and 6, we
consider two extreme limits, namely, that of a short
medium and that of an infinitely long medium. The
short-medium limit, considered in Section 5, allows us to
derive some general rules of thumb as to where (i.e., for
what experimental parameters) one may or may never see
squeezing. This is because when there is no squeezing in
the short-medium limit there will never be any squeezing
with an increased medium length. The limit of an in-
finitely long medium, considered in Section 6, is also im-
portant. It demonstrates how an indefinite growth of
noise with the medium length can destroy squeezing at
most experimental parameters. We show that when the
pump-probe phase mismatch is not considered there are
only three separate regions where squeezing exists in this
limit. There are many more regions with squeezing,
however, when the pump-probe phase mismatch is consid-
ered. The effect of collisions is also discussed in this
limit of an infinitely long medium.

The third part of this paper consists of Sections 7 and 8,
where we study the case of a finite medium. In Section 7
we consider the temporally degenerate case and first ex-
amine the regions where optimum squeezing is usually
obtained, without inclusion of the pump-probe phase mis-
match. Then we discuss the effects of the pump-probe
phase mismatch, increased pump detuning, Doppler
broadening, and Gaussian-intensity variation. Itisshown
that the pump-probe phase mismatch does not seriously
affect the maximum amount of achievable squeezing.
Also, we find that Doppler broadening becomes impor-
tant only when the pump detuning is less than 3 Doppler
half-widths from resonance. Moreover, the effect of a
Gaussian pump beam can, in general, be summed up as
a change in the effective pump intensity except when
the intensity begins to saturate the atoms.

The temporally nondegenerate case is considered in
Section 8, where we once again discuss the effects of the
pump-probe phase mismatch, increased pump detuning,
increased pump intensity, and collisions. As in the de-
generate case, it is found that the pump-probe phase mis-
match does not seriously affect squeezing. Increasing
the pump intensity beyond saturation, in this case, may
actually help achieve squeezing at higher probe frequen-
cies. Moreover, the effect of collisions is shown to be much
less degrading at the nondegenerate frequencies. We also
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discuss the effects of Doppler broadening and Gaussian-
intensity variation. Below saturation these are similar to
the degenerate case. However, when the pump intensity
is above saturation the presence of either Doppler broad-
ening or Gaussian-intensity variation or both is shown to
have a disastrous effect on the generation of squeezing
beyond the generalized Rabi frequency. This occurs even
when the pump is detuned far from resonance except
when only Doppler broadening is present.

In the fourth part of this paper, Sections 9 and 10, we
first consider the problem of self-focusing and defocusing,
which turns out to be quite serious. It is shown that self-
focusing or defocusing of the pump beam always becomes
significant at the medium length at which good squeezing
just begins to occur, thus potentially limiting the amount
of generated squeezing. The loss of intensity because of
self-focusing or defocusing of the pump beam, however,
can be made negligible with proper choice of the medium
length. A potentially serious problem arises because the
focusing or defocusing that is experienced by the pump
and probe beams turns out to be quite different. As a
result, the squeezed probe modes become phase mis-
matched from the pump mode as the pump beam propa-
gates farther into the medium.

Finally, in Section 10 we present some general rules of
thumb that can be followed to recognize regions where
good squeezing can be expected.

2. RECAPITULATION OF
PERTINENT RESULTS

In this section we give a self-contained summary of those
results in Ref. 2 that are relevant to squeezed-state genera-
tion experiments that use forward four-photon mixing.

We are interested in four-photon interactions that in-
volve two strong pump beams at frequency ,, one weak
probe beam at frequency , and another weak probe-
conjugate beam (PCB) at frequency (. We denote the
wave vectors of the pump beams by k,,° and &,,” and those
of the probe beams by %,° and &;°, respectively. For four-
photon mixing to occur, the four beams must satisfy the
energy conservation relation 2Q, = Q,, + Q; and ap-
proximately satisfy the phase-matching condition Epf +
kpy = k' + ksi’. The magnitudes of the beam wave vec-
tors are related to their frequencies by |k,,°| = |&,,'| =
Qnpfe, |x'| = Quninfe, and |k:’) = Qangsfe, where np, i,
and n,; are the refractive indices seen by the pump, probe,
and probe-conjugate beams, respectively.

It is easy to see how the phase-matching condition can
in fact be met for the forward four-wave mixing geometry
depicted in Fig. 1. ¢, denotes the angle between the two
pump beams and, similarly, ¢, is the angle between the
two probe beams. The results in Ref. 2 show that in the
nearly degenerate frequency limit the refractive indices
seen by the two probe beams are smaller than those seen
by the pump beams. Thus for phase matching one must
have ¢, < ¢p. It is then apparent that, as ¢, approaches
zero, wave coupling without phase mismatch is no longer
possible. In particular, this is true when ¢, = 0, i.e,
when the two pump beams are spatially degenerate. The
results of Ref. 2 also imply that when the two pump beams
are spatially degenerate maximum coupling between the
two probe beams occurs for ¢, = 0, i.e., when the two
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Fig. 1. Geometry of four-wave mixing. In this example the
probe beams are depicted by the two solid lines, while the pump
beams are the two dashed lines lying in a plane perpendicular to
the plane defined by the probe beams. The angle between the
probe beams is denoted by ¢, and that between the pump beams
is denoted by ¢;.

probe beams are spatially degenerate with the pump
beams as well. We shall refer to the case in which all four
beams are spatially degenerate as the single-beam case.

Let us first consider the situation in which the wave
vectors of the four beams are nearly collinear. We define
the z axis to be along the line that bisects ¢, (see Fig. 1).
This enables us to write the c-number variables for the
probe beam and PCB electric fields as

Em(Zy t) = Re{l%m(z5 t)exp[i(kmsz - th)]}’ (2'1)
E5(Z,1) = Reli6:(Z, thexpli(kx'Z — Qs)]}, (2.2)

where Z is the axial coordinate of the wave fronts propa-
gating along the directions of the two probe beams, which
can be related to z (the axial coordinate along the z axis)
by Z = z cos(¢s/2). €. and € are related to the normal-
ized (c-number) mode amplitudes «,, and a;; by

bn(Z,t) = hgnan(Z, 1), (2.3)
8al(2,1) = hgran(Z,1), (2.4)

with g, = [(¢/vn)Qn /2heg AgeT]Y? and G5 =
[(c/vs) i /2hep AgeT 12, where v, and vy are the respec-
tive group velocities of the two probe beams. The quan-
tity AqcT is the volume of quantization, with c¢T' defining
quantization along Z and T chosen to be longer than any
time period of interest. We recall that the normalization
constants g, and &; are chosen in such a way that the
mode-amplitude operators &,(Z,¢) and &s(Z,¢) obey the
same commutation relations as the usual creation and an-
nihilation operators. The normalization constant g,
compared with that in the usual field-operator expres-
sions, has an extra ¢/v,, factor. This extra factor arises
because the mode amplitudes are defined in terms of the
evenly spaced frequencies {Q,,} instead of a set of evenly
spaced & vectors. The latter would be appropriate if one
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were to express the field operators in terms of the usual
creation and annihilation operators.

Since all the pertinent equations and the related coeffi-
cients are the same for both the probe beam and the PCB
except for an interchange of Q,, with Q, in the following
we will occasionally choose to write the expressions for
only one of the two beams.

In our theory the pump beams are treated classically.
Also, the z axis will approximately bisect the angle be-
tween the two pump beams if the difference between the
refractive indices of the two probe beams is small. In
such a case we can write the classical electric field of the
pump beams as

E,(Zy,t) = Epy(Zy, 1)
= Re{i€,(Z,, thexpli(k,"Z, — Q,0)]}, (2.5)

where Z, = z cos(¢,/2) = Z cos(¢p/2)/cos(¢s/2). ép(Zy, t),
in general, can decay as a function of Z,. For simplicity
we shall consider only the situation in which the pump
beams remain undepleted, so that €,(Z,, #) can be approxi-
mated by a complex constant ¢, = |%,|exp(—i6,).

In terms of the above definitions, and from the results
in Ref. 2, the two probe beams are governed by the follow-
ing coupled-mode equations:

a3 19 L.
(& + ; 5)0{,"(2, t) = n_m[')’Rmam(Z, £)

+ X, exp(—idkn'Z)ait(Z, )] + Tn(Z,t), (2.6)

N T VPO I
(3Z * U at)am (Z,t) = n,ﬁ[YR’ﬁ s (Z,t)

+ X% exp(idki'Z)an(Z, )] + Ta*(Z,8), (2.7)

where 6k%,°, the pump-probe phase mismatch per unit
length, is given by 8k,’ = k.’ + k:* — 2k,° cos(¢,/2)/
cos(¢s/2), and the refractive index n,, = [1 + (2¥1mc/Qm)],
with ¥, being the imaginary part of the coefficient ¥,
(i-e., ¥mu = Yrm + i¥m). In the general case of four-wave
mixing, a transverse intensity grating is formed by the
two pump beams. As a result, in order to obtain the coef-
ficients ¥,, and X,, one has to take a spatial average of the
atomic polarization over this transverse grating. Such an
averaging has been done by Reid and Walls* for the case
of degenerate four-wave mixing. The averaging is alge-
braically more difficult to carry out for the nondegenerate
case here. Fortunately, our experimental interest lies
mainly in the single-beam case, where no such averaging
is necessary. In the following we shall thus concern
ourselves with the single-beam case only. For this case
the coefficients ¥, and X, are given by

- _ aa(wa/ﬂm)

Yem + Vim =

(

V0,2 1/2(
Xn = (UQOQm)

_ B’ }
[1 - i, + am)]§{ 28, Fom(1 + iA)[1 — i(A, + 8m)]
|'7m|exp(l¢7m) ’ (28)

B? exp(~2i,) ]

)[§§,;,,,F,ﬁ,,(1 — A1 = i, + )] + i(A, — 8m)]

= X + 1%, = | Xolexp(ioy,), (2.9)
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with
- B2
S=1+ 2(1—+A-;—2-)'7 (2.10)
F =22, @.11)
2')’;
Spp =S¥ =1
B + i8,,)
2F,,,p[1 — (A, — S)I[L + i(A, + 8)[L + i8,/2]
= SRmp + lSImp = 'Smplexp(l‘bémp): (2-12)
1+ i(8,/2F)
—3 * e —
Fnp = Fon® =73 i(5m/2)
= FRmp + i-FImp = lFmplexp(id’Enp)’ (213)
16|%,|*|ped|® 2]
2= P = E__, 2.14
oDl T Qpfere} @149
I, = 8ec|%,|?, (2.15)
2
L, = ege 22 h—z (2.16)
2 |ud

o = po|pdl’AecTglfey. = polpd®we/2heccy,,  (2.17)
8s = (wa/zhEOAQCT)llzs (2.18)

where 8, (= —8,) is the frequency detuning of the higher-
frequency probe beam from that of the pump beam
expressed in terms of the normalized unit set by the
transverse relaxation rate vy, i.e., 8, = (Qn — Qp)/yL,
8n = (Qan — Qp)fy., With Q,, > Q,; A, is the normalized
detuning of the pump beam from the atomic resonance
frequency wg, i.e., A, = (Q, — w,)/y.; B is the normalized
Rabi frequency; and «, is the small-signal line-center
absorption coefficient. We note that, in arriving at the
expression for ¥,, we have neglected the contribution to
the refractive index from the A? term in the Hamiltonian.
Equation (2.10) gives the expression for the degenerate
saturation factor S, while Eq. (2.11) defines the collision
factor F, which takes a subunity value when there are col-
lisions. The latter expresses the collisional increase of
the atomic transverse relaxation rate y, with respect to
the longitudinal relaxation rate y;. The atomic collisions
are assumed to be soft, so that the longitudinal relaxation
rate is unperturbed. Equations (2.12) and (2.13) express
{S,,,p} and {F,,,}, which can be regarded as the generalized
saturation factors and the generalized collision factors, re-
spectively. Equation (2.14) relates g to the pump inten-
sity I, in terms of the line-center saturation intensity I,.
In the expression for a,, Eq. (2.17), p, and pg are the
atomic-number density and the dipole strength, respec-
tively. Finally, in this single-beam case we have taken
the combined amplitude of the pump beams to be 2i%,.
For 6,, > 1 and 8,, — |A,| > 1, 5, shows a resonance
as a function of the probe detuning. In this region, from
Eq. (2.12) we see that S,, is approximately zero when
8m = £VB’F + A? = £Ap. This gives rise to a reso-
nance in X, and ¥,, at 8, = *£Ag, which is well studied in
the literature, and Ap is known as the generalized Rabi
frequency. We note that our expressions for ¥, and X,,
coincide with those derived semiclassically in the litera-
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ture. For example, it is known that when F' < 1, ¥, and
X, display enhanced structure near the degenerate fre-
quency because of coherent population oscillations.® This
semiclassical behavior also gives rise to a small enhanced
structure in the quantum noise spectra that we studied
(see Subsection 8.E).

Note that ¥, can be written in terms of X, as

L (s
T T ia, + emis

[1+ i(A, — 8,)]exp(—2i6,) V. Qm)"* 3
[1- Z(Ap + 8m)] (Va2 m)1/2

X:* (2.19)

which helps us in simplifying the numerical computations.
Equations (2.6) and (2.7) tell us that the refractive indices
can alter the interaction strengths. In the atomic vapor
experiments® the refractive indices of interest were close
to unity. Therefore, in the following, for simplicity we
will assume unity refractive indices except when calculat-
ing the wave-vector mismatch 6k,°. Also, since the ex-
periments® are performed close to the atomic resonance,
we shall assume that (Q,/w;) = (Qs/w,) = 1. We shall
further assume that the experiments® concern a region
where the differences among vy, U, and ¢ are negligible.
These assumptions can be shown to be valid for the atomic-
vapor density of interest to us, even near the generalized
Rabi frequency, where the refractive indices are relatively
high.

The correlations of the Langevin forces {F (Z)} were ob-
tained in Ref. 2 as follows:

(T @2 = AndonesdZ — Z), (2.20)
FH@TAZ) = AadopondZ — Z'), @.21)
@2 = @) @)
= R exp(—2i0,)8,)(~s,)

X exp(—idk,’2)6(Z — Z'), (2.22)
(Fa*@)T2*(2)) = Ru* exp(2i8,)86,)(-s0
X exp(ibk,’Z)(Z — Z'), (2.23)
with

An = agy.Dyry(—8m), (2.24)
As = agy, Dyy(=82), (2.25)

R = R = aoy. Dyy(~8n)exp(2i0,)
= Rgn + iRp = |Ru|exp@drm), (2.26)
R.* = agy, Dy+y+(—6,)exp(—2i0),), 2.27)

where 84,5, is the Kronecker delta function, which is
unity when 6, = 8, and zero otherwise. In the above
equations, Dy+y(8,), Dy+v+(8x), and Dy,y(8,) are given by
B°F

2y, D)
X (4F% + 1 — B%F + A% — 8,4,

X (B°F — 8F* — 2B°F?) + 4F* + A}

X (4F? + 2B%F?)] + §,2B%F? + 4B2F>

+ B*F%/2}, (2.28)

Dy+y(8m) = {@ = F)[8,* + 2A,8,.° + 8.7
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ﬂ2
2y, D@r)

X (—=8,2B%F + 2A,2B%F%) + F5,* + 8,°

X [4F® + F — 3(A,2 + B*F)F] + 4F°

+ BiF?/2 — 12A,7F® + iA{(1 — F)(—2B%F?)

+ 8.'F + 8§, [AF3 + 3F — (A2 + BPF)F]

+ 12F% — 4A2F%), (2.29)
Dy, +v+(8m) = Dyw*(6m), (2.30)

D(3,) = (F + AZF + B2F/2) {8, + 8,42 + 4F?

— 2B%F - 2A,%) + 6,71 + 8F? + 2B%F

X (2F — 1) + B*F? + A, — A2

X (8F?% — 2B%F — 2)] + 4F? + 4B%F?

+ BF? + AA8F? + 4B%F?) + 4A,'F7.
(2.31)

Dyy(6n) = — [exp(—2i6,)]((1 — F)

Note that the definitions of Dyy;, and Dy+y, are a little dif-
ferent from those in Ref. 2 in that the spatial phase fac-
tors are not included in the definitions here. Instead,
these factors are accounted for by exp(6%,°Z) in Egs. (2.22)
and (2.23). We remind ourselves that although Dy+y;+(5,.)
and Dyy,(8,,) are even functions of their argument,
Dy+v(8,,) is not when F < 1 and A, # 0, which can give
rise to an asymmetric spontaneous-emission line shape.
Also, in Ref. 2 we used the fact that the delta function
6(3,,,)(-5,,) 1mp11es that kns = k,;,s.

The pump beam obeys the following equation of motion:

(aizp + uipait)%p(zp’ f) = nip'pr%p(Zp, t), (2.32)
where
o @,
Yo = _[]._—_Im
= Yrp + - (2.33)

The refractive index n, seen by the pump beam is given in
terms of the imaginary part of ¥, (i.e,, ¥,) by means of
n, = [1 + (2¥c/Q,)[*2. It is different from those seen by
the probe beams (n, and n;) even when the probe-beam
frequencies approach that of the pump. Because of this
difference in the nonlinear refractive indices seen by the
pump and the probe beams, there is a nonzero phase mis-
match 8%,°, which can be expressed as

8kn’ = (Qultm + Qans — 2Qpny)fe. (2.34)

The presence of such a phase mismatch has also been
pointed out by the authors of Ref. 6 for the simple case of
a Kerr nonlinearity in an optical fiber.

3. SOLUTION OF COUPLED-MODE
EQUATIONS

Consider the following set of coupled-mode equations:

5"’26,,,(2) = —Rbn(@) + Xubi*@) + Gu(Z), (B
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aizb,;ﬁ(m = —Ri*bi*(Z) + Xa*bn(Z) + Ga'(2), (3.2)

which can be obtained from Egs. (2.6) and (2.7) by making
the substitutions

R = —Vrm — i0kn’/2
= Rpm + i Rim = |Rulexpida,,), (3.3)
bu(Z) = om(Z, t)explidk. Z/2], (3.4)
Gn(Z) = T'n(Z)explidk.'Z/2] (3.5)

and looking for time-stationary solutions of {a,(Z,t)} by
setting the time derivatives of {a.(Z,t)} equal to zero.
Since we are interested in solving for ,,(Z) in terms of
b,,(0) and b;%(0), let us first write Egs. (3.1) and (3.2) in
matrix form as follows:

a

—5Bn8) = M, B(2) + N.(2), (3.6)

where
o=y o
v =5 o
elgr S e

Then, formally, the solution of Eq. (3.6) can be written as

L
B.(L) = exp(M—mL)Em(O) + f exp[ll?,,,(L - Z')]Z\_l'm(Z')dZ'.
0
(3.10)

In order to evaluate exp(M,, L), we make use of the Caley-
Hamilton theorem, a standard procedure in linear algebra,
giving the following solution for the coupled-mode equa-
tions (3.1) and (3.2):

bn(L) = To(L)bn(0) + Ua(L)b4"(0)
L
+ J [Tl — Z"\Gn(Z")
0

+ Ua(L - Z2)G*(2))dZ, (3.11)
ba(L) = Ta(L)ba(0) + Un(L)bn™(0)

+ [ mae - 2)6u2)
0

+ Un(L - Z2)G,*(Z'))dZ, 3.12)
where
T.(Z) = exp(—S»Z)[Q,sinh(W,, Z) + cosh(W,,Z)],
(3.13)
Ui(Z) = exp(—=8nZ)[(Xn/W,n)sinh(W,, Z)], (3.14)
with
Sn = (R, + Ra*)/2

= —(Yam + Yrn)/2
= Spm + iSm = |Sulexp(ids,), (3.15)
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@n = —Qs* = (Rm — Ra¥/2W,
= (—Vrm + Yri — i0ky")/2W,,
= Qrm + iQin = |@ulexp(idq,), (3.16)

% 2 )
W, = Wyt = [(—g-l’"—gﬁﬂ) " (X"-,*Xm)]

i6k,,,3)2

12

- (_';Rm + Vrm —
2

= Wan + iWin = [Wolexp(idw,). (8.17)

+ (Xn‘z* Xm)]

4. SINGLE-BEAM CASE

In squeezed-state generation experiments using four-wave
mixing, if the probe beam and the PCB at the input are in
their vacuum states, then a squeezed-vacuum state can be
obtained by combining the two at the output with a 50/50
beam splitter.” In the single-beam configuration consid-
ered here, the geometry has the probe beam and the PCB
combined already at the output, so no 50/50 beam splitter
is needed. Since the pump beam also comes out together
with the probe beam and the PCB, with its frequency be-
tween those of the probe beam and the PCB, the pump
beam can potentially be used as a local oscillator (LO) for
phase-sensitive heterodyne detection of the field fluctua-
tions in the generated squeezed vacuum. However, as ex-
plained below, the phase of the pump beam is in general
not of the correct value for the observation of nonclassical
reduction of the photocurrent noise.

One sees squeezing as a result of parametric deamplifi-
cation of the vacuum-field fluctuations through some non-
linear optical interaction that is caused by a strong pump
beam. Because of energy conservation, it is impossible
for the pump beam to reduce its own amplitude by de-
amplifying itself. In other words, near the degenerate
frequency the quadrature whose vacuum-field fluctua-
tions are reduced cannot possibly coincide with that of
the pump. Thus the transmitted pump beam is always
at the wrong phase for observation of nonclassical photo-
current fluctuations near the zero frequency. It also
turns out that the LO phase that is required for observa-
tion of sub-shot-noise photocurrent fluctuations varies
slowly with the photocurrent frequency. Therefore the
transmitted pump phase is not of the right value for obser-
vation of squeezing at nondegenerate probe frequencies
either. Thus, in general, if one wants to observe the
nonclassical photocurrent fluctuations, one must either
remove the pump beam and reintroduce a L.O beam with
the right phase or resort to some external means of shift-
ing the pump-beam phase.® This pump-phase problem
is also encountered in squeezed-state generation experi-
ments using optical fibers.

To obtain the quadrature noise that is picked up by a
homodyne detector, we take the LO field E1o(Z, £) to be

Eio(Z,t) = Re{il‘éLo|exp(—iGLo)exp[i(kp’Z - th]}, 4.1)

where 01 is the absolute phase of the LO and we have
taken its frequency to be equal to that of the pump.
The generated photocurrent operator I(t) is proportional
to AT(t)A(t), and A(t) is in turn proportlonal to the probe
field at the output of the medium; i.e. A(t) « 3. &n(L, ) X
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expli(k,’L — Q,t)], where L is the length of the medium.
Denoting the Fourier transform of I(t) at frequency O,

Q, by I», we can show the variance (I I,,,) to be propor-
tlonal to

8XN0) = Ya + Yl (L)an(L)) + (G'(L)as(L))
+ (@n(L)@n(L))exp(2i0L0)
+ (@' (L) (L))exp(—2i010)], 4.2)

where we have assumed time stationarity and thus omit-
ted the time variable. We shall refer to 6§ X(0) as the nor-
malized quadrature noise. 6X(0) can be shown to be
dependent only on the difference between the phases of the
pump and the LO, which we denote as 6; i.e., 6 = 610 — 6.
When the modes {&,(L)} are in their vacuum states,
the value of §X%(9) will be 1/4, giving the usual shot-noise
level. On the other hand, when the modes {&,(L)} are in
squeezed-vacuum states, the value of §X(§) can fall below
1/4 for some value of 6. Since the c-number variables
have been obtained by normal ordering, their correlations
directly give the normally ordered operator correlations in
Eq. (4.2).

For each set of experimental parameters the value of
8X%(0) can always be minimized for a particular value of
8 to yield the maximum amount of squeezing. This
particular value of 9 will be denoted as 6.;,. If we fur-
ther denote the percentage of maximum squeezing by
¥ x 100%, then

F=1- 46X Omin). 4.3)

Moreover, if 8 is changed to 8 + 7/2, the photocurrent
noise is maximized; i.e., the maximally desqueezed
quadrature is observed instead of the maximally squeezed
quadrature. This maximum noise is also a quantity that
can be observed experimentally. It can be expressed in
terms of the percentage of photocurrent-noise enhance-
ment over the shot-noise level. Denoting the percentage
of maximum noise enhancement by N X 100%, we get

N = 46X Omin + 7/2) — 1. (4.4)

To calculate 5X'(8), we need the various correlations of
an(L), which can be obtained by using Egs. (3.4), (3.5),
(3.11), and (3.12). To illustrate the method, consider the
correlation (@,,(L)&:(L)). From Egs. (3.4), (3.5), (3.11), and
(3.12), we see that it contains a term of the form

L L
< I dz' j dZ"TW(L = Z")Gn(ZYTi(L — Z”)G,;,(Z")>
0 0

X exp(—idk,’L) = J;L az’ LL dZ'"T,(L — Z"\Ta(L — Z")
X exp(idkn'Z/2 + idk:*Z/2) (Fu(Z)T'4(2")
X exp(—idk,°L)
= Rnexp(—2i,)exp(—idk,’L) J LdZ’T,,,(L - ZTs(L - 7)),
' (4.5)
which is easily evaluated because the integral f5dZ’ x

L.(Z — Z')Ls(Z — Z') involves only exponential functions
[see Eq. (8.13)]. The other terms in {(@,(L)as(L)) and the
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remaining correlations entering Eq. (4.2) can be calcu-
lated in a similar manner. We note that many correla-
tions, such as (G (Z')G(Z")), are zero, which simplifies
the calculations somewhat. The results can be summa-
rized as follows:
(an* (L)am(L)) = Ap*Irer, + Ry*exp(2i0,)Ir,:u,
+ ArﬁIU,;.‘U,;, + R,,,exp(—2i0p)IU,;,:Tm,
(4.6)
(an"(Das(L) = Azl r, + R,*exp(2i0,)Ir,v,
+ AmIU,,,‘U,,, + Rmexp(—2i0,,)IUm~ %
. 4.7)
{en(L)as(L) = exp(—idk,’L) R exp(—2i0,)Ir, 1,
+ AmITmUm + R,,.*exp(2i9p)IU,hUm
+ Anly,T,], (4.8)
{ent (L)az* (L)) = exp(iék,’L) [R..*exp(2i0,)Ir, 1.
+ AmITm”Um‘ + Rmexp(—2i6p)IUm.Um.

+ Anlyem], (4.9)
where
L
Inr, = J' dZT.(Z)T+(2), (4.10)
0
L
Inu, = J dZT.(2)U,.(Z), (4.11)
0

etc. From Egs. (2.8), (2.9), (3.13), and (3.14), we note that
U,, is proportional to exp(—2i6,), while T}, is independent
of 8,. Thus it is clear that {@,,(L)as(L)) « exp(—2i6,) and
{am*(L)an (L)) is independent of 6,. This shows that §X*
is indeed dependent only on 6, as was mentioned above.
By explicitly evaluating the integrals in Egs. (4.6)-(4.9),
we obtain
IT,,.*T,.,l = Qm*Qm(Um+ + Um— - Am+ - Am—)
+ Qm*(_Um+ + Um— + Am+ - Am—)
+ Qu(~Uns + Upe — Ay + Apo)
+ Ups + Up + A + An), (4.12)
IT,;,T,,, = Qrﬁ Qm(Um+ + Um— - Am+ - Am-)
+ Qrﬁ(_Um+ + Um—- + Am+ - Am—)
+ Qm(—Um+ + Um— - Am+ + Am-)

+ (Um+ + Um— + Am+ + Am—)5 (4'13)
It = Qu*(Xn/ W) Uns + Un- = Ans = An-)
+ %(-Um + Up- — Aps + Ano), (4.14)

X,
IT,;,U,,, = Qlﬁﬁ;—(Um+ + Um— - Am+ - Am-)

~

+ %%(—Um+ + Upe — Aps + Ano), (4.15)
X+ X

IU,,.‘Um = W(Um-l- + Um- - Am+ - Am—), (416)
Xn'w)v(m

IU,;.U,,l = Wme(Unﬁ + Um— - Am+ - Am—), (4'17)
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with
1- —pm+ L
Ui = M__), (4.18)
pm+
- —un,-L
U,.- = L_EM, (4.19)
. YT
1- —&n
A, = LoexpCand) 4.20)
4o
A, = 1 - exp(zan-L) (4.21)
4,
and
Mm+ = 2Spm + 2Wan, (4.22)
M- = 2Srm — 2Wan, (4.23)
tms = 2Spm + 2iW,, (4.24)
ap- = 28pm — 2iWp,, (4.25)

where Szn, Wem, and Wy, are defined in Egs. (3.15) and
(3.17). The remaining integrals can be obtained from
those given in Egs. (4.12)-(4.17) by complex conjugation.
For example, Iy, .« is just the complex conjugate of Ir,1,.
The final expression for §X'() turns out to be dependent
on the medium length by the dimensionless quantity «, L,
which is the length of the medium normalized by the line-
center absorption length 1/z,. For convenience, in the
following we shall denote a, L by L,.

5. SHORT-MEDIUM LIMIT

We have seen in Section 4 that the analytic solution for the
quadrature-noise variance is rather complicated. Never-
theless, important information as to where one may find
squeezing can be obtained by studying the simple case of a
short medium, i.e., the case with L, << 1. In this limit
the solution, as given through Egs. (3.11) and (3.12), of the
coupled-mode equations (3.1) and (3.2) is simplified a
great deal, yielding

(L t) = Vamem(0, )L + Xpnoa*(0,0)L + Tn(0,)L. (5.1)

When the input beams are all in their vacuum states, the
correlations among

{am(O’ t)’ arﬁ+(07 t)}

will all be zero. This is because we are working with
normally ordered c-number variables. The correla-
tions among {an(L, ¢), @s"(L,t)} will then depend only on
the correlations among the Langevin forces {fn(Z = 0),
I':*(Z = 0)}. In this case Egs. (5.1) and (4.2) give

2
8XY0) = % + %[Am + Ag + |Rn|exp(idrn)exp(i20)

+ |R,,,|exp(—id)Rm)exp(—iZG)]‘, (5.2)

which tells us that §X(8) can be minimized by choosing
0 = Opin, where

Omin = (—@rm + m)/2; (63)



44 dJ. Opt. Soc. Am. B/Vol. 8, No. 1/January 1991

this step leads to the following minimum quadrature
noise:

. 1 I
8X (Omin) = Z + —4—(Am + Ay — 2|Rm') (5.4)

The quadrature noise 8X(0,) will fall below the clas-
sical value of 1/4 only if the term (A, + Az — 2|R,)) is
negative. The condition for observing squeezing in a short
medium is thus

Am+ A — 2|R,| < 0. (5.5)
A. Degenerate Case
In the degenerate-frequency limit (i.e., m = 0), without

consideration of the atomic collisions (F' = 1), Egs. (2.24)-
(2.31) reduce to

_ B4 + (B/2)]

TN ©0)
_ _aaﬁz[4 + (34/2) - 12Ap2]
Bro = 8(1 + A,%)°5° 6D
_ 2 _ 3
Ry, = B2, — 4A.7] 59

8(1 + A,%°8°

Furthermore, when B >> 1and A, >> 1, the short-medium
squeezing condition A¢* < Rp? + Ry’ [inequality (5.5)
with m = 0] will be satisfied if

4A,° > 3B%A,% + B°. (5.9)

-Equality prevails in (5.9) when A, = %8, which implies
that inequality (5.9) can be reduced to

1A, > B. (5.10)

Defining 8. = |A,|, the above discussion tells us that if the
pump intensity exceeds a certain value so that g > B,,
then there will be no squeezing at the degenerate fre-
quency. Physically this is caused by the deteriorating
effect of spontaneous emission by the atoms when they
become highly excited.* Since at a detuning A, inten-
sity saturation of the absorption coefficient occurs for
B2 > 2A,% we conclude that for squeezing to be observed
at the degenerate frequency, intensity saturation of the
atomic absorption must be avoided. Such is not the case
at nondegenerate frequencies, as is shown in Subsec-
tion 8.D below.

Spontaneously emitted light has a frequency width that
is of the order of y;. Thus, although there is no squeez-
ing at 6, = 0 when 8 > B., one may still expect to see
squeezing if the photocurrent noise is observed at a fre-
quency far enough from zero. This brings us to consider
the nondegenerate-frequency case.

B. Nondegenerate Case
From Egs. (2.24)-(2.31), at nondegenerate frequencies
with F' = 1, one has

Am=A,,',

_ (_’aaB2) [4B2 + (34/2) + amzﬁz],
- 2D(8m)|r=1

(5.11)
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_ (CaaBA124, — 4A,° + 5,207 = QD) + 5,.°A,]

B 2D, |t
(5.12)
RRm =
(—a.,BZ) [4 + (B*/2) - 12A,,2 + 8,%(5 — 3Qzr?) + 8,
2D(6m) |1 ’
(5.13)

where D(8,,) is given by Eq. (2.31). Once again, by evalu-
ating inequality (5.5) in the limit where g > A, >> 1 and
O << B, we get

8n'APARY + 8,78, — 38YAR% — BY]

> 4A%(3B* — 4A,% + 485, (5.14)
which is the condition for observing squeezing in a short
medium at nondegenerate frequencies. The above in-
equality can be further simplified in the following two
cases. The first is when B is just above the critical value
Be; ie, B = |A,|. In this case inequality (5.5) can be met
with 8, < 1, enabling us to neglect the §,* term in
Eq. (5.14) to give
4A%(3B* — 4A,Y) + 4p°
(84," — 88%)AR" — B°

_ 4A,°(3B* — 44,%) + 4B°
9p°

8 >

(5.15)

Second, when B2 >> 3A,2 terms of order A,? in inequal-
ity (5.14) become negligible compared with terms of order
B2. In this case inequality (5.14) reduces to
4p® _ 4p*
Ot — Bl > ——- .1

AT Az (516)
Furthermore, by solving for §,,2 with the above inequality
replaced by an equality, we can show that under the condi-
tion that 8% = 34,7 inequality (5.16) becomes

5,2 > . (5.17)

We define 8.2 (5. > 0) to be equal to the right-hand side of
inequality (5.15) or (5.17), whichever is relevant. The
above derivation then tells us that with 8 > B, squeezing
can always be observed if one looks at a frequency far
enough from degeneracy that §,, > §..

The two quantities, B. and 8., tell everything that we
want to know about the possibility of observing squeezing
in a short medium. In order to achieve a large amount of
squeezing, however, it is still necessary to go to the limit
of a long medium. When there is no squeezing in the
short-medium limit, there will never be any squeezing in
a long medium either. Hence, despite some other compli-
cations that arise in the case of a long medium, the discus-
sion here provides some simple rules of thumb to follow in
order to find regions where one may or may never see
squeezing.

6. INFINITELY LONG MEDIUM LIMIT

Before considering the more realistic case of a long, but
finite, medium, let us first look at the simpler behavior of
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an infinitely long medium for which L — », Although
this case is physically unrealistic, important insights can
be obtained by analyzing this limit. We shall make com-
parisons with the results of the degenerate theory of Reid
and Walls,* which also assumes an infinitely long medium.
For simplicity, we shall neglect Doppler broadening and
Gaussian-intensity variation, deferring their discussion
until Section 7.

What happens when L —> »? In this limit the factors
Unsy Ay, and A,,_ in 8XY(0) achieve some finite values
[see Egs. (4.18)-(4.21)]. However, as noted by Reid and
Walls,* the factor U,,- of Eq. (4.19) can become unbounded.
Such would be the case if w,- were negative or, from
Eq. (4.23), if Sgn < Wen. In this situation squeezing
could occur only at those phase angles 8 at which all the
exponentially unbounded terms in §X(§) somehow cancel
one another.

To examine conditions under which such a cancellation
occurs, we decompose 6X'(8) of Eq. (4.2) into one part
SE(6) that depends on exp(~u,- L) and another part SN(9)
that does not. We can then write

8X'(8) = 8N(9) + SE(®0), 6.1)
with
SE(0) = [Erm + Ecnexp(2i0 — idk,°L)
+ Ecn*exp(—2i0 + i6k,’L)lexp(—pm-L), (6.2)

where Ep,, is real, Ec,, is complex, and both E,, and Eg,,
are independent of 6. In order for the potentially grow-
ing part 8E(6) to vanish, Eq. (6.2) tells us that 6 must be
chosen according to

0 = [cos™'(¢{m) — bEc, + OkwL1/2, (6.3)
where
Egm
n = —éﬁ (6.4)

and we have defined Ec, = |Ecn|exp(idr,,). The arc-
cosine term in Eq. (6.3), however, has a real value only if

|l = 1. (6.5)

In other words, 6E(0) can be zero only if inequality (6.5) is
satisfied. Thus, for stability in the growth of noise as
L — o, we have two conditions of concern. We call the
condition

e > 0 (6.6)

the stability-rate condition and that of Eq. (6.5) the
stability-phase condition. The above analysis tells us that
when the stability-rate condition is violated, there will be
an unstable growth of noise for all values of 6, with the
possible exception of one (two) particular value(s) that
would exist if the stability-phase condition were also satis-
fied with equality (inequality). Physically, the infinite
noise growth in some phase quadrature occurs because of
our assumption that the pump beam is not depleted. As a
result, if the loss Sz, is low, in the L — o limit the pump
beam can dump an infinite amount of energy into some
quadrature of the probe beams. This could occur through
either parametric amplification or spontaneous emission.
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A. Degenerate Case without Atomic Collisions
We first apply the above results to the degenerate-
frequency case with the assumption that there are no
atomic collisions (i.e., m = 0 and F = 1), for comparison
with the degenerate theory of Reid and Walls.* At the
end of this subsection we shall examine the ideal-noise
limit where the pump beam is detuned far from the
atomic resonance. We shall also discuss the effect of
pump-probe phase mismatch, which was not accounted
for in the theory given by Reid and Walls.*

In this simple degenerate-frequency case, the various
coefficients and correlations given by Egs. (2.8)-(2.18) and
(2.24)-(2.31) reduce to

L adl+iAy)

I , 6.7
L T RN 67
- aaﬂz

Xo = = ’ 6.8
°7 201 - iA,)5%1 + A2) (65)
S4B

S=1+37 2w (6.9)

with Ay, Rro, and Ry, as in Egs. (5.6)—(5.8). We note that
the above coefficients are slightly different from those
given by Reid and Walls.* This is because of some extra
terms that arise in the expressions for ¥, and X, in our
single-beam geometry, which are otherwise negligible in
the usual four-wave mixing geometry because of phase
mismatching (see Ref. 2).

It can be shown that in the degenerate-frequency limit,
where Yrn = Yrsn and X,, = Xz, @, of Eq. (3.16) becomes
purely imaginary. Furthermore, we have verified by an
explicit algebraic calculation that whenever @, becomes
imaginary the stability-phase condition (6.5) is satisfied
with equality. This implies that in the degenerate-
frequency limit there exists only one value of 6 for which
the exponentially growing part in Eq. (6.1) can be nulled.
However, as one detunes away from degeneracy, the loss
coefficients Yg, and ¥z become unequal, imparting a real
part to @,. Numerical evaluation then shows that the
stability-phase condition is violated as one detunes ever so
slightly from degeneracy. Therefore, near the degenerate
frequency, the region where the stability-phase condition
can be satisfied is a line of measure zero in the parameter
space. As we shall point out below, at nondegenerate fre-
quencies there is another line of measure zero where the
stability-phase condition can be satisfied.

In the degenerate-frequency limit we can show that
dEe, = d%,- Thus the stability-phase condition, Eq. (6.3),
becomes

26 = cos™{(—1) — ¢z, + Sk¢'L
= 7 — bz, + kL. (6.10)

This implies that, if the stability-rate condition is violated
so that Uy~ of Eqg. (4.19) becomes unbounded, then for
squeezing to be achieved the value of 6., must be given by

Omin = (T — %, + Sko'L)/2. (6.11)

Furthermore, to compare our results with those of Reid
and Walls,* where the pump—probe phase mismatch is not
considered, we arbitrarily set 6k = 0. The above ex-
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pression for 6, then agrees with the statement of Reid
and Walls that cos(20min) = —Xro/|Xo|- Moreover, the
stability-rate condition is violated only when 82 exceeds a
certain value, which from Egs. (3.15), (3.17), (4.23), and
(6.7)-(6.9) and inequality (6.6) is given by

B2 > 2(1 + A, (6.12)

When that happens, the following expression for the
minimum-phase quadrature noise (with 8%,° = 0) is easily
obtained:
XN Bsr) = 1, Ad Xyl —V(Riao)?}zo + Rzo}?m).
4 4| Xo| (Fro + | Xol)

(6.13)

On the other hand, when the stability-rate condition is
satisfied the minimum-phase quadrature noise is not nec-
essarily given by the above equation, because 0y, no
longer obeys the simple expression of Eg. (6.11). In this
case we resort to numerical methods to find the value of
8X 1(omin)~

We note that 6., of Eq. (6.11) is different from that
given by Eq. (5.3) for the short-medium limit. This is be-
cause X is generally different from R, close to the atomic
resonance. So, when the stability-rate condition is vio-
lated, the squeezing behavior as L — « can, in general, be
quite different from that exhibited in the short-medium
limit. In particular, the range of 8 values with squeezing
in the long-medium limit may be smaller than that in the
short-medium limit. However, X, can approach R, as it
does in the ideal-noise situation described below.

The ideal-noise situation occurs when the atom—field in-
teraction can be described by a simple quadratic Hamilto-
nian with the inclusion of an ideal-loss mechanism, as
discussed by Kumar and Shapiro.® In the c-number-
variable formulation here, one approaches the ideal-noise
situation when the following two conditions are satis-
fied: Ry = iRy = X, and |Ao| << |Ro|. If we consider
the region where |A,| > 3 and B > 3, then these two con-
ditions can be satisfied with 24,2 > g% and |A,°| > B*/8.
As correctly pointed out by Reid and Walls,? outside the
ideal-noise region the dominant noise that reduces squeez-
ing is that from spontaneous emission and not the back-
action noise caused by the presence of loss. In the
ideal-noise region, Eq. (6.13) simplifies to
1 | ol

85X Omin) = =

SN, N (6.14)
4 4(¥ro + | Xol)

The effect of loss on squeezing can be divided into a
relatively lossy region and a relatively lossless region.
In fact, the stability-rate condition provides a convenient
way to make this division because it is satisfied only when
the medium is relatively lossy (and vice versa). From
Eq. (6.12) we then find that the atomic medium is rela-
tively lossy when B% < 2|A,|. As pointed out by Kumar
and Shapiro,® in this region the amount of squeezing is
basically limited by the ratio | Xo|/¥ro, which can also be
seen from Eq. (6.14). Thus we can expect to achieve good
squeezing when both the ideal-noise condition and the
relatively lossless condition are satisfied.

We now illustrate the above discussion with some exam-
ples that plot the amount of squeezing ¥. A convenient
format is to plot 1 ~ ¥ as a function of B, which will be
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called the squeezing-intensity plot. Below, we shall often
compare and contrast two situations, one in which the
pump-probe phase mismatch is considered and another in
which the pump-probe phase mismatch is arbitrarily set
to zero. These two situations will be referred to as the
8ko # 0 and 6k, = 0 cases, respectively.

In Fig. 2 we show some squeezing-intensity plots with
A, = 100 and an infinite L. In curve A 6k, = 0, while in
curve B the pump-probe phase mismatch 8k, is taken into
account. Both are for the collisionless limit of F = 1.
Since the short-medium parameter g, = 100 for A, = 100,
squeezing will exist all the way up to 8 = 100 in the short-

- medium limit. Looking at the regions of squeezing for

curves A and B, however, we see that the range of 8
values for which squeezing occurs is greatly reduced when
L — ». Moreover, comparing curve A with B, we find that,
although the maximum amount of achievable squeezing is
larger for the 8k, = 0 case, the range of B values for which
squeezing occurs is actually larger for the 8%y # 0 case.
The reason for the above increase in range is that the
stability-rate condition is better satisfied for the 8ky #= 0
case because 8k # 0 makes Wyo smaller [see Eq. (3.17)].
To confirm this observation, in Fig. 3 we plot uo-/a, as a
function of B for the two cases being compared. We see
that the stability-rate condition is satisfied (i.e., po- > 0)
only for B < 14 in the 8ky = 0 case (curve A), whereas
it is satisfied over the entire range 0 < B8 < 100 for the
bko # 0 case (curve B). The crossover value of 14 for
curve A is as predicted by inequality (6.12). Since, when
the stability-rate condition is satisfied, 6§ X (min) is not
necessarily given by Eq. (6.13), the ordinate values for
curve A in the B < 14 region and those for the entire
curve B were computed numerically by varying 0 itera-
tively in order to minimize §X%(8). In this computation,
we made L, increasingly large to obtain the L — o limit.
It is interesting to note that for the parameters con-
sidered here the relatively lossless and the ideal-noise
conditions are satisfied for 14.1 < 8 < 53.2, which approxi-
mately covers the entire region where good squeezing
occurs in both the 6%y = 0 and 8%, # 0 cases (see curves A

and B in Fig. 2).
1.2
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Fig. 2. Squeezing-intensity plots for degenerate infinite-medium
case with and without 6%y = 0 (curves A versus B) and with and
without collisions (curves C versus A and D versus B). Curve A,
A, =100, 8kg = 0, and F = 1; curve B, A, = 100, 6ko # 0, and
F = 1; curve C, same as curve A but with F = 0.5; curve D, same
as B but with F = 0.5.
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Fig. 8. Stability-rate condition. Curves A and B are for the
parameters corresponding to curves A and B, respectively,
of Fig. 2.

B. Degenerate Case with Atomic Cellisions

What happens when we include atomic collisions, i.e.,
when the value of F is below unity? Since the dimension-
less quantities B2, L,, and A, are proportional to 1/y,,
they scale with F. In other words, with collisions, 82, L,,
and A, will achieve the same values as those without colli-
sions only if the physical values for the pump intensity, the
medium length, and the pump-frequency detuning, re-
spectively, are correspondingly increased. The higher
pump intensity and the longer medium required would
thus make the occurrence of squeezing more difficult in
general. Moreover, the noise correlations depend explic-
itly on F, even when they are expressed in terms of the
normalized parameters. This added dependence on F
gives additional effects that are due to collisions.

To see the effect of collisions on squeezing, we varied
the value of F' and kept the other normalized parameters
constant. For example, curves C and D in Fig. 2 are plot-
ted with the same parameters as are curves A and B, re-
spectively, but with F' = 0.5. Comparing the two sets of
curves, we see that the amount and the region of squeez-
ing are drastically reduced as F decreases from 1 to 0.5.
Thus atomic collisions can be detrimental to squeezing in
the degenerate-frequency limit.*®

C. Nondegenerate Case
Are there regions where the stability-phase condition can
be satisfied at nondegenerate frequencies? Because of the
algebraic complexity of the nondegenerate-frequency case,
we have resorted to numerical computations to locate such
regions. To illustrate the amount of squeezing at non-
degenerate frequencies, i.e., to obtain the squeezing spec-
trum, it is convenient to plot 1 — ¥ as a function of the
probe-frequency detuning §,,. In order to compute ¥,
we need to know 6., at each 5,,. There is, in general,
no simple analytic formula for 0,;,. Instead we obtain
the value of 6§ X(0.in) by varying 6 iteratively to minimize
8XY#). Below we shall compare the 8k, = 0 and the
8k, # 0 cases in order to see the effect of the pump-probe
phase mismatch. The effect of collisions will be consid-
ered in Section 8.

Figure 4 shows some squeezing spectra obtained with
A, = 100, B = 40, F = 1, and an infinite L. Curve A is
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with 8%, = 0, while curve B shows the result with %, = 0.
The former basically consists of three sharp dips, one at
zero frequency, another at a frequency between zero and
Ap (specifically, 6,, = 7.18), and the third at the general-
ized Rabi frequency Ap = 107.7. The first two dips are
really just points of measure zero. The third dip, how-
ever, has a finite width of ~0.25 as measured at the shot-
noise level. For clarity, in the inset we have shown a
magnified version of this third dip.

The reason for the first two dips is apparently different
from that for the third. Further numerical computation
shows that the stability-phase condition is satisfied with
equality at the first two dips in curve A. Satisfaction of
the stability-phase condition can be tied to @..’s becoming
purely imaginary at the first dip and zero at the second.
As mentioned in Subsection 6.A, when @, is zero or
purely imaginary the stability-phase condition can be ex-
plicitly shown to be satisfied with equality. The stability-
rate condition, however, is violated near the first two
dips, explaining why these dips are of measure zero. It
turns out that, although the stability-phase condition is
violated at the third dip, the stability-rate condition is sat-
isfied there. In fact, in curve A the only place where the
stability-rate condition is satisfied is a region of approxi-
mate width 0.35 near the third dip. This explains why
the third dip is of nonzero width. It is interesting to
note that the position of the second dip usually increases
with increasing 8. For example, the second dip shifts to
8., = 25 for B = 100. We have also seen the second dip
move toward 8, = 0 and ultimately disappear when S is
decreased. The position of the third dip, of course, also
shifts with B8 as the Rabi frequency is B dependent.

In Fig. 4, curve B, which shows the squeezing spectrum
with the pump—-probe phase mismatch included, is charac-
terized by an unbounded region between &, = 2.5 and
8, = 42.5. Outside this region we obtain a broad region
with squeezing. Once again, further numerical computa-
tion shows that the stability-phase condition for curve B is
violated everywhere except at the zero frequency. We
find that with nonzero pump-probe phase mismatch there
is no particular probe frequency where @,, becomes either
zero or purely imaginary. This may be the reason for the
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Fig. 4. Squeezing spectra for nondegenerate infinite-medium
case, with and without 8%,, = 0 (curve A versus B). For curve A,
A, =100, B = 40, 6kn = 0, and F = 1; curve B, same as curve A
except 8k, # 0; inset, the region around the third dip, i.e., around
8 = 107.7 of curve A, is enlarged.
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Fig. 5. Squeezing-intensity plots at the degenerate frequency for
a finite medium with and without 8y = 0 (curves A, B, and C
versus D, E, and F). Curve A, A, =100, 8k = 0, F = 1, and
L, = 50; curve B, same as curve A but L, = 4000; curve C, same
as curve A but L, = »; curve D, A, = 100, 8ko = 0, F = 1, and
L, = 4000; curve E, same as curve D but L, = 20,000; curve F,
same as curve D but L, = .,

impossibility of satisfying the stability-phase condition.
Despite the fact that the stability-phase condition is worse
in curve B than in curve A, it turns out that the stability-
rate condition is better. In fact, the latter is violated only
within the unbounded region of curve B. This explains
why in curve B there is a broad range of §,, values where
squeezing exists. Furthermore, the reason for the better
stability-rate condition for curve B is the same as that
quoted for the 8%, # 0 case in Subsection 6.A.

7. SQUEEZING IN A LONG
MEDIUM: DEGENERATE CASE

In this section we consider squeezing at the degenerate
frequency in a long but finite medium of length L,. We
shall not discuss the effect of collisions, which was treated
in Section 6. Instead we shall consider the effects of
Doppler broadening in the atomic medium and Gaussian-
intensity variation of the pump beam.

A. Simple Degenerate Case

We first explore the simplest case, in which the effects of
collisions, Doppler broadening, and Gaussian-intensity
variation are ignored. Figure 5 shows some squeezing-
intensity plots for different values of L, with A, = 100
and F' = 1. These plots with different L, values enable us
to see how the transition from a short to a long medium
takes place. ‘

Curves A, B, and C are plotted in Fig. 5 with 8ky = 0
and L, set equal to 0.005A,% 0.4A,% and «, respectively.
We see that the squeezing curves quickly approach the
infinite-medium curve C as L, becomes large compared
with A2 Such behavior is expected, since Egs. (3.15) and
(6.7) tell us that when L, > A,? (with |A,| > 1 and
B% < 2A,%), SgoL becomes large compared with unity,
causing U,,+, Up-, App+, and A, to approach their infinite-
medium values.

In curves D, E, and F of Fig. 5 we include the effect of
pump-probe phase mismatch, i.e., 82y # 0 and L, is set
equal to 0.4A.% 2A,% and o, respectively. L, = 0.4A,2
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happens to give the maximum amount of squeezing,
which is not obtained with an infinite L,, as is the case
when 8ko = 0. Thus we find that with the pump-probe
phase mismatch included, there is an L, value that opti-
mizes the maximum amount of squeezing. Below, we
shall refer to such L, value as Lo,. Moreover, comparing
curve D with C, we see that the maximum amount of
squeezing achievable with the inclusion of the pump-
probe phase mismatch is only slightly less than that for
the case when it is ignored.

We further note that curve A of Fig. 5 really illustrates
the case of a short medium, showing squeezing all the way
up to B = B, = 100, with B. as defined below inequality
(5.10). In this short-medium limit the squeezing-intensity
curve is insensitive to inclusion of the pump-probe phase
mismatch. Also, when L, is optimally chosen with
8ko # 0 (curve D), squeezing occurs all the way up to
B = 100, which is, surprisingly, as wide as the region of
squeezing in the short-medium limit.

B. Dependence on Pump Detuning

To see how the maximum amount of achievable squeezing
increases with the pump-frequency detuning, we show
some squeezing-intensity plots for different values of A,.
Curves A, B, C, and D of Fig. 6 are plotted with F =1,
8ko = 0, and L, = « and the pump detuning A, set equal
to 0, 10, 100, 1000, respectively. We find that in order to
achieve more than 70% squeezing at the degenerate fre-
quency, one must have A, larger than 100.

C. Effect of Doppler Broadening

Doppler broadening exists if one uses an atomic vapor in-
stead of an atomic beam as the interaction medium. Its
effect can be included by integrating X,, ¥, Ag, and R,
over different resonance frequencies of the moving atoms.
The procedure for doing the integrations is detailed in
Appendix A. The normalized Doppler half-width, defined
in Appendix A, will be denoted by Aay. It is related to
the Doppler FWHM AFWHM by Adhw = 06AFWHM The
pump detuning A, is to be replaced by A, which describes
the normalized detuning of the pump frequency from the
center of the Doppler-frequency distribution.

]
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Fig. 6. Squeezing-intensity plots at the degenerate frequency for
a finite medium with different values of A,, Curve A, A, = 0,
8ko=0,F =1, and L, = «; curve B, same as curve A but A, =
10; curve C, same as curve A but A, = 100; curve D, same as
curve A but A, = 1000.
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Fig. 7. Squeezing-intensity plots at the degenerate frequency for
a finite medium with varied Doppler width (curves A, B, and C).
The effect of Gaussian-intensity variation is illustrated by
curve D, which should be compared with curve A (the uniform-
intensity case). Curve A, Ay, = 100, 6ko = 0, F = 1, L, = 4000,
and Agw = 0; curve B, same as curve A but Agw = 0.334,;
curve C, same as curve A but Agw = 0.50A,; curve D, same as
curve A but with the Gaussian-intensity variation included so
that the horizontal axis should be interpreted as Bp:.

Figure 7 shows some squeezing-intensity plots with
A, = 100, L, = 4000 = 0.4A,2 F =1, and the pump-
probe phase mismatch included. Curves A, B, and C are
plotted with the Doppler widths Ag., set equal to 0,
0.33|A,,|, and 0.5|A |, respectively. We see that curve B is
close to the Doppler-free case illustrated by curve A. In
other words, the effect of Doppler broadening becomes
negligible when the pump is detuned by more than three
Doppler half-widths, i.e., |Az| > 3Aahw.

D. Effect of Gaussian-Intensity Variation
Gaussian-intensity variation of the laser beam gives rise to
a nonuniform excitation of the atoms across the pump
beam. Asdiscussed in Appendix B, the effect of Gaussian-
intensity variation can be taken into account similarly to
the effect of Doppler broadening by integrating the vari-
ous coefficients and noise correlations over the variation
in the pump-beam intensity seen by the different atoms.
In this treatment the probe beams are assumed to have
the same Gaussian intensity profile as the pump beam.
When the Gaussian-intensity variation is included, the
parameter S is replaced by B, which is defined in terms
of the peak intensity of the Gaussian-intensity profile (see
Appendix B). Furthermore, in this paper we assume that
8k’ does not depend upon the transverse position across
the beam. As is explained in Appendix B, this amounts to
neglecting the effect of self focusing or defocusing, a pre-
liminary account of which is presented in Section 9.

As an illustration of the effect of Gaussian-intensity
variation, curve D of Fig. 7 is plotted with the same
parameters as curve A but with the Gaussian-intensity
variation included. The horizontal axis of curve D is to
be taken as B,;. Comparing curve D with the uniform-
intensity case depicted by curve A, we see that in the ideal-
noise region where B, is small the amount of squeezing
for curve D at a particular B, value is the same as that
for curve A at B = 0.78,;. One can thus take the effec-
tive intensity of the Gaussian beam to be approximately
0.5 times its peak value and estimate the amount of
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squeezing from the uniform-intensity case. However, in
the region where B, is large (violating the ideal-noise con-
dition |A,|® > B,:*/8), so that the effect of spontaneous
emission dominates, such a simple effective-intensity for-
mula does not succeed. This is because when B, is large
the atoms that see a higher intensity may actually gener-
ate less squeezing than those that see a lower intensity.

8. SQUEEZING IN A LONG
MEDIUM: NONDEGENERATE CASE

In this section we consider squeezing at nondegenerate
frequencies in a long but finite medium of length L,. We
shall comprehensively discuss the effects of collisions,
pump-probe phase mismatch, Doppler broadening in the
atomic medium, and Gaussian-intensity variation of the
pump beam.

A. Simple Nondegenerate Case

We start by exploring the simplest case, in which the
effects of pump—probe phase mismatch, collisions, Doppler
broadening, and Gaussian-intensity variation are ne-
glected. Figure 8 shows some squeezing spectra for dif-
ferent values of L, with A, = 100, F = 1, and 8 = 40.
Plots of this kind with different values of L, allow us to
see how the transition from a short to a long medium
takes place.

Curves A, B, C, D, and E are plotted with L, equal to
0.00014,%, 0.001A,% 0.01A,% 0.3A,% and 0.6A,% respec-
tively. The L, = 0.0001A,2 case describes the squeezing
spectrum of a short medium; it agrees with the squeezing
spectrum of resonance fluorescence given in Ref. 10.
The short-medium squeezing spectrum is characterized
by a single dip at the generalized Rabi frequency Ar. As
L, increases, the amount of squeezing at the generalized
Rabi frequency stays at the same value while the amounts
between 8,, = 0 and §,, = Ag fall below it. When L, >
0.3A,%, the squeezing spectrum begins to approach that
for an infinitely long medium characterized by three dips.
The formation of these three dips is already apparent in
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Fig. 8. Squeezing spectra for a finite medium of various lengths
L. when the effects of collisions, pump-probe phase mismatch,
Doppler broadening, and Gaussian-intensity variation are ig-
nored. Curve A, A, =100, 8 = 40, 6k, = 0, F =1, and L, = 1;
curve B, same as curve A but L, = 10; curve C, same as curve A
but L, = 100; curve D, same as curve A but L, = 3000; curve E,
same as curve A but L, = 6000.
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Fig. 9. Squeezing spectra for a finite medium with different val-
ues of A, when the effects of collisions, pump-probe phase mis-
match, Doppler broadening, and Gaussian-intensity variation are
ignored. Curve A, A, =10, B8 = 15, L, = 100, 8k, = 0, and
F =1; curve B, same as curve A but A, = 100, 8 = 50, and
L, = 2000; curve C, same as curve A but A, = 1000, 8 = 500,
and L, = 50,000.
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curve E. The maximum amount of squeezing in curve E
is achieved at the second dip and the value is quite close to
that for an infinitely long medium. '

B. Dependence on Pump Detuning

To illustrate how the amount of squeezing at nondegen-
erate frequencies increases with the pump-frequency de-
tuning, in Fig. 9 we show some squeezing spectra for
different values of A, with F/ = 1 and 8k, = 0. Curves A,
B, and C are plotted with A, = 10, 8 = 15, L, = 100,
A, =100, g = 50, L, = 2000, and A, = 1000, 8 = 500,
L, = 50,000, respectively. The value of L, in each case is
chosen to obtain a broadband region of large squeezing.
The maximum amount of squeezing would increase fur-
ther with B; we picked a particular value in each case just
for the purpose of illustration. It is clear that greater
than 60% squeezing can be obtained with A, > 10. As
compared with squeezing at the degenerate frequency
(Figs. 5 and 6), we see that at nondegenerate frequencies
the same maximum squeezing can be achieved with a
smaller pump-frequency detuning.

C. Effect of Pump-Probe Phase Mismatch
What happens when we take into account the pump-probe
phase mismatch? To demonstrate the effect, in Fig. 10
we show some squeezing spectra with the same A, F, and
B values as those in Fig. 8 but including pump-probe
phase mismatch in their calculation. In Fig. 10 curves A,
B, C, and D are plotted with L, set equal to 0.00014,%
0.01A,% 0.3A,% and A% respectively. Comparing curve B
of Fig. 10 with curve C of Fig. 8, we see that the inclusion
of pump-probe phase mismatch leads to a series of wiggles
in the squeezing spectra near the generalized Rabi fre-
quency. In fact, further numerical computation shows
that the wiggle period corresponds to a change in the
value of 6k,°L by 2w The wiggles appear near the gener-
alized Rabi frequency because there the value of 8k,°L
changes extremely rapidly.

Parameters for curve C in Fig. 10 happen to give ap-
proximately the maximum amount of squeezing. Again,

Ho et al.

we find that the maximum is obtained at a finite medium
length when 6%,, # 0. Furthermore, comparing curve C
of Fig. 10 with curve E of Fig. 8, we see that the maxi-
mum amount of squeezing achievable with 8k, # 0 is not
greatly different from that with 8k, = 0. Curve C of
Fig. 10 also shows that the range of §,, values for which
squeezing occurs can be larger with 8%,, # 0 than with
8knm = 0. The reason for this larger range is the same as
that discussed in Subsection 6.C.

D. Effect of Increased Pump Intensity

What happens as we change the pump intensity? To illus-
trate the effect, Fig. 11 shows squeezing spectra for
different values of g with A, = 100, F = 1, and 8%, # 0.
Curves A, B, and C are plotted with g = 0.44,, A,, and
2A,, respectively, and L, = 3000, which approximately
maximizes the amount of squeezing in each case (i.e.,
Lo = Ly with Ly as defined in Subsection 7.A). We find
that as B becomes larger than A, the region of squeezing
suddenly broadens. This broadening is apparently due to
a sudden shift in the generalized Rabi frequency to a
higher value, as the pump intensity crosses the (detuned)
saturation threshold. Thus, unlike at the degenerate fre-
quency, squeezing at nondegenerate frequencies can actu-
ally be better with a pump intensity that is larger than the
saturation intensity for the atomic medium (but see Sub-
sections 8.F and 8.G below).

Besides the broadening, the minimum &, at which
squeezing occurs also increases with the pump intensity.
Such behavior is consistent with the prediction of 8, with
8. as defined after Eq. (5.17). For example, we see that
squeezing begins at §,, = 3.5 in curve C, while §, for the
parameters of curve C is approximately 4 [estimated by
using Eq. (5.17)].

One may also wonder what the squeezing-intensity
curve is like at a nondegenerate frequency, i.e., at §,, # 0.
Curve A in Fig. 12 shows a squeezing-intensity plot at
Om =20, A, =100, F = 1, L, = 3000, and &k, = 0. We
see that the region of squeezing goes from 8 = 0 all the
way up to 8 = 1000. The upper value of 8 = 1000 can be
predicted by using Eq. (5.17) [or when 8, << 1, by using
Eq. (5.15)], taking &, to be §,, and solving for B. In fact,
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Fig. 10. Squeezing spectra for a finite medium of length L, with
the effect of pump-probe phase mismatch included (contrast with
Fig.8). CurveA, A, =100, 8 = 40, 8k, # 0,F =1, and L, = 1;
curve B, same as curve A but L, = 100; curve C, same as curve A
but L, = 3000; curve D, same as curve A but L, = 10,000.
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Fig. 11. Squeezing spectra for a finite medium with various
values of B. Curve A, A, = 100, B = 40, 8k, # 0, F = 1, and
L, = 3000; curve B, same as curve A but 8 = 100; curve C, same
as curve A but 8 = 200.
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Fig. 12. Squeezing-intensity plot for a medium of finite length
at a nondegenerate frequency. Curve A, §, = 20, A, = 100,
F =1, L, = 3000, 8k, # 0, and Agw = 0; curve B, same as
curve A but with the inclusion of Gaussian-intensity variation of
the pump beam (the horizontal axis should be interpreted as B,).

applying Eq. (5.17) to the case illustrated by curve A in
Fig. 12 (i.e, by letting 8. = 20), we obtain 8 = 1000 as the
exact upper cutoff.

E. Effect of Collisions

As mentioned in Section 6, when there are collisions the
dimensionless quantities 82, L., A,, and §,, are scaled
with the collision factor F. As a result, the same values
of 8% L., A,, and §,, can be achieved by only physically
increasing the pump intensity, the medium length, the
pump-frequency detuning, and the probe-frequency de-
tuning, respectively, thus making it harder to achieve
squeezing.

To show the additional effects that are due to collisions,
we shall change the value for F while keeping the other
parameters fixed. Curves A and B of Fig. 13 are squeez-
ing spectra for F' = 1 and F = 0.5, respectively, with
B = 40, A, =100, 8%, # 0, and L, = 3000 = L.;. We
see that, although there is a drastic decrease in the
amount of squeezing near the degenerate frequency, the
change is much less serious at nondegenerate frequencies
that are only a few linewidths away.®
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Curves C, D, and E of ¥ig. 13 depict other examples,
which are squeezing spectra for F = 1, F = 0.2, and F' =
0.02, respectively, with A, = 100, 8 = 200, and L, = 800.
These curves illustrate the above-saturation case when
B > |A,|. Because Qg? = B%F + A% there is a pro-
nounced shift in the generalized Rabi frequency caused by
collisions. In order to show more clearly the associated
shift in the noise structure that is a signature of the region
around the generalized Rabi frequency, we chose L, < Ly
in this example.

When collisional broadening is large (i.e., F << 1), there
is an enhanced structure in the squeezing spectrum near
the zero frequency that can be attributed to coherent popu-
lation oscillations. To show this additional structure, we
have plotted curve F in Fig. 13, which is the same as
curve E but magnified 50 times horizontally and 5 times
vertically. The hump near the zero frequency is clearly
visible. Similar humps in the loss coefficient and the
coupling coefficient are responsible for the observed hump
in the squeezing spectrum.’

F.  Effect of Doppler Broadening

To study the effect of Doppler broadening, in Fig. 14 we
show some squeezing spectra with A, = 100, 8 = 40,
F =1, and 6k, # 0. Curves A, B, and C are for Ay, set
equal to 0.33A,,, 0.54,, and 2A,,, respectively, and
L, = 3000 = L. Theseare tobe compared with curve D
of Fig. 8, which shows a squeezing spectrum with the
same parameters but without Doppler broadening. It is
evident that the effect of Doppler broadening becomes
negligible only when A, is detuned by more than 3A g,
which agrees with the observation made in Subsection 7.C.
Moreover, we see that when Aaww > 0.5A,; (curves B and
C), there are some noise peaks in the squeezing spectra
near §,, = 40 = B. These noise peaks come from those
usually appearing near the generalized Rabi frequency.
In this case the generalized Rabi frequency is equal to B8
because, effectively, most of the atoms have A, = 0 when
the pump detuning is within a Doppler half-width. Thus
the location of these peaks is expected to shift if we vary
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Fig. 13. Effect of collisions on squeezing spectra for a medium
of finite length. Curve A, A, = 100, B = 40, 8k, # 0, F = 1,
and L, = 3000; curve B, same as curve A but F = 0.5; curve C,
Ap =100, B = 200, 8%k, # 0, F = 1, and L, = 800; curve D, same
as curve C but F = 0.2; curve E, same as curve C but F = 0.02;
curve F, same as curve E but magnified 50 times horizontally and
5 times vertically.
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Fig. 14. Effect of Doppler broadening on squeezing spectra for a
medium of finite length with different values of Ag and B.
Curve A, Ay, = 100, Agnyw = 38, B =40, 8k, # 0, F =1, and
L, = 3000; curve B, same as curve A but Ag, = 50; curve C,

same as curve A but Agw = 200; curve D, same as curve B but
B = 50.

the value of B. For example, in curve D of Fig. 14 we have
increased B to 50 while keeping the other parameters the
same as in curve B; the edge of the peak has clearly
shifted to §,, = 50.

One may ask, What determines the residual structure
in the squeezing spectrum of curve C when |A,| < Aghy?
The squeezing spectrum in this limit is basically an aver-
age of several Doppler-free squeezing spectra, with A,
taken within the Doppler width and L, set to a reduced
value. It is interesting to note that the remaining strue-
ture may, therefore, be quite different from that in the
Doppler-free squeezing spectrum with zero detuning
A, = 0).

G. Effect of Gaussian-Intensity Variation

To study the effect of Gaussian-intensity variation and to
compare it with the uniform-intensity case, in Fig. 12 we
showed a squeezing-intensity plot at the nondegenerate
frequency of 8,, = 20. Curve A is the uniform-intensity
case with A, = 100, Ay =0, F = 1, L, = 3000, and
8k, # 0. Curve B is plotted with the same parameters as
curve A but with the Gaussian-intensity variation of the
pump beam considered, so that the horizontal axis is to be
interpreted as B,:. Just as at the degenerate frequency
(compare Fig. 7), we see that for small 8 values the
Gaussian-intensity case can be well approximated by
the uniform-intensity case, provided that in the latter
the pump intensity is taken to be half the peak intensity
of the Gaussian beam in the former. Again, for large g
values such a simple formula breaks down for the same
reason discussed in Subsection 7.D.

What happens when we have Gaussian-intensity varia-
tion of the pump beam in addition to Doppler broadening
in the atomic medium? In Subsection 8.F we saw that,
when [A,| is less than twice the Doppler half-width A g,
the location of the peaks in the squeezing spectrum shifts
with the pump intensity. Thus we would expect the
squeezing spectrum to change dramatically if the pump
beam has Gaussian-intensity variation. This situation is
shown in curve A of Fig. 15, where a squeezing spec-
trum is plotted with the same parameters as curve B

Hoet al.

of Fig. 14 except that we have included the effect of
Gaussian-intensity variation by setting B, = 40. We see
that there is a series of peaks in the region where squeez-
ing would have been obtained were it not for the Gaussian
pump intensity. The combination of Doppler broaden-
ing and Gaussian-intensity variation, therefore, can
catastrophically alter the squeezing spectrum. This
problem can be remedied, however, by tuning the pump
frequency further than three Ag. This is shown in
curve B of Fig. 15, which is plotted with the same parame-
ters as curve A but with A gy = 0.33A,,.

Even if the pump frequency is detuned far outside the
region where Doppler broadening is important, the loca-
tion of the generalized Rabi frequency is still sensitive to
the pump intensity. One may thus wonder what effect
Gaussian intensity has on the noise structure near the
generalized Rabi frequency. In order to illustrate the ef-
fect, in Fig. 16 we show some squeezing spectra for dif-
ferent values of 8 and L, with Ag, = 0, 8k, # 0, and
Aps = 100. Curves A, B, and C are with g8 = 40, L, =
3000, 8 = 100, L, = 100, and B = 200, L, = 800, respec-
tively. Comparing these with the uniform-intensity
curves with the same parameters (curves A and C of
Fig. 13), we see that the Gaussian-intensity variation can
give rise to a series of peaks between the highest general-
ized Rabi frequency Qp = (A2 + 8?2 and the lowest
generalized Rabi frequency Qr = |A,| experienced by the
atoms. The peaks are especially pronounced in the
above-saturation case (curve C), which would exhibit good
squeezing over a wide range of &, values were it not for
the Gaussian-intensity variation.

9. EFFECT OF SELF-FOCUSING
AND DEFOCUSING

The initially Gaussian pump beam propagating through
the medium experiences a spatially varying nonlinear re-
fractive index that can cause it to self-focus or defocus.
The probe beams also see spatially varying nonlinear re-
fractive indices, which, moreover, are different from the
one seen by the pump beam. In our atomic-vapor experi-
ments that generated squeezed light,® self-focusing or de-
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Fig. 15, Effect of Gaussian-intensity variation and Doppler
broadening on squeezing spectra for a finite medium. Curve A,
Ape = 100, Aghw = 50, Bpr = 40, 8kn, # 0, F = 1, and L, = 3000;
curve B, same as curve A but Ag, = 33.
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Fig. 16. Effect of Gaussian-intensity variation on squeezing
spectra for a finite medium. Curve A, Ay = 100, Aghw = 0,
8ky # 0, F =1, By, = 40, and L, = 3000; curve B, same as
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focusing was a readily observed and pronounced effect.
This self-focusing or defocusing of the pump and probe
beams is a serious problem in the achievement of squeez-
ing and will be the subject of this section.

A. Degenerate Case

First we examine the self-focusing or defocusing behavior
of the pump and probe beams when their frequencies are
the same. Simple expressions for the pump-intensity-
dependent phase shifts can be obtained. When the pump
intensity is below saturation, the intensity-dependent part
of the pump phase shift 8¢, is approximately given by

a.Lp?,

o, = 24,7 91)

Note that the pump phase shift is only ¥, L [compare
Egs. (2.32) and (2.33)] when the refractive index n,, is close
to unity. Assuming that |A,| >> 1, using Eg. (2.10), and
expanding the denominator of ¥, to first order, we easily
obtain the above expression for d¢,. Equation (9.1) tells
us that, if the pump beam has Gaussian-intensity varia-
tion, then the center of the beam experiences a phase shift
that is different from that experienced by the wings of
the beam profile, thus causing the beam to focus or
defocus. Also, from the above expression it is clear that
self-focusing will occur when the pump frequency is blue
detuned from resonance (i.e., A, > 0) and self-defocusing
will occur when the pump frequency is red detuned.

The probe beams, on the other hand, experience a
pump-intensity-dependent phase shift

o, Lp*
A}

8o = ’ (9.2)

which is obtained by using Eq. (2.10) and expanding the
imaginary part of ¥, of Eq. (6.7) to first order in (8/A,)%
Thus we see that the pump and probe beams do not expe-
rience the same amount of spatially varying intensity-
dependent phase shift.

The different amount of focusing or defocusing experi-
enced by the pump and the probe beams implies that our
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assuming that the pump and the probe beams share a
common spatial-mode profile is not valid, particularly
when the focusing or defocusing effect becomes signifi-
cant. As a first approximation, we assume that there is a
probe beam-PCB mode combination that becomes maxi-
mally squeezed, with the remaining spatially orthogonal
modes experiencing little squeezing. Because of the dif-
ferent amount of focusing or defocusing experienced by
the pump and the probe beams, the spatial profile of the
maximally squeezed probe beam-PCB combination mode
at the output of the medium will be different from that of
the transmitted pump. Experimentally this means that
we would not know what spatial profile to use for the LO
in order to detect squeezing in the maximally squeezed
probe beam-PCB mode. Nevertheless, we would expect
that the maximally squeezed probe beam-PCB mode will
have an output spatial profile that is somewhat close to
that of the transmitted pump beam. Thus one may want
to use the transmitted pump as the LO.

We have thus raised two issues here: The first is the
breakdown of the simple theoretical model, which assumes
a common spatial profile for the pump and the probe
beams when they undergo self-focusing or defocusing in
the medium; the second is our inability to know the maxi-
mally squeezed probe beam-PCB mode at the output of
the medium. Although we may not know the maximally
squeezed mode, it is still possible to calculate the amount
of squeezing in the mode that is detected by the LO by
using some numerical methods to account for the effect of
self-focusing or defocusing.

Denoting the mismatch 8¢o — 8¢, by 8¢y, We see from
Egs. (91) and (9.2) that 6¢o, = 8¢p,. The mismatch 8¢,
may not be serious if it occurs in a region where maximum
squeezing is already achieved. Unfortunately, such is not
the case in a two-level system. To see this, we look at the
coupling coefficient X,, which is responsible for squeezing
in the ideal-noise limit. At the degenerate frequency,
from Eq. (6.8), X, is given by

- ia,B?
0= ’
2Ap3

(9.3)

where we have assumed operation below saturation and
A, >> 1. Clearly | X,|L is identical to |6¢o,). The short-
medium squeezing formula tells us that, in order to
achieve large squeezing in the ideal limit where Ay = 0
and Ry = | X,|, one must have | X,|L of the order of unity.
But then 8¢, will also be of the order of unity, indicating
potential trouble. Interestingly, it turns out that the
above-saturation case also has the same ratio between 8¢,
and 8¢y, and | Xo|L = |5¢pgp|.

To be more precise, it is necessary to see at what value
of 8¢, the intensity-dependent phase shift poses a serious
problem. Imagine that the pump- and the probe-beam
radii are the same but that the wave fronts are phase
shifted with respect to each other because of the different
refractive indices experienced by these beams. Also, we
assume that the phases of the pump and the probe beams
are matched in the high-intensity region of the beams
and mismatched elsewhere. We call this optimistic as-
sumption minimal mode mismatch. The amount of mode
matching M can then be calculated by the usual technique.
For the described situation, it is not hard to show that
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Fig. 17. Pump-probe mode mismatch M (curve A) and amount
of squeezing S (curve B) in the ideal lossless limit as a function
of Stf)op.

M= J:d’%’ (%frz))cos[«ﬁ(r) - 601, (09
where
é(r) = $(0)exp(—2r?), (9.5)
and
#(0) = 8o, (96)

with 8% in 8¢, replaced by B, [the r dependence has been
removed in Eq. (9.5)]. We expect the mode mismatch to
become significant when, let us say, M = 0.5. Thus we
want to know the value of 8¢, in Eq. (9.4) that yields
M = 0.5. One can solve for 8¢, graphically by plotting
M as a function of 8¢¢,. This is illustrated by curve A in
Fig. 17. We see that at M = 0.5, 6¢pop = 1.9. Together
with M, it is also interesting to plot the amount of squeez-
ing & at the degenerate frequency for the ideal lossless
case, which we illustrate by curve B in Fig. 17. It is clear
that a maximum squeezing of 0.75 occurs with M = 0.75.
Furthermore, M decreases rapidly with increasing 8¢y,
thus prompting us to conclude that a squeezing of 0.75 is
the best that one can hope for. This, of course, is only a
rough estimate. To obtain a more accurate estimate, one
must numerically integrate the equation of motion for
an(Z) over the medium length, as is discussed in Ap-
pendix B. Our initial numerical results indicate good
agreement with the rough estimate, giving a maximum
squeezing of about 80%. These further results will be
presented elsewhere.

B. Nondegenerate Case

We have discussed above the mode mismatch problem at
the degenerate frequency. The discussion is also usually
valid at nearly degenerate frequencies when 0 < §,, <<
[A,]. However, at large 8., the nonlinear phase shifts for
the probe beam and the PCB, denoted by 8¢,, and 8¢,
respectively, can have values quite different from each
other and from 8¢,. As an illustration, we compute 5¢,
8¢, and 8¢, numerically for the case where A, = 100,
B=40,F =1, Ags = 0, 8k, # 0, and L, = 3000 and plot
them in Fig. 18 as curves A, B, and C, respectively. We
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see that the values of 8¢, and 8¢, are drastically differ-
ent from each other when the frequency of one of the
probe beams (the one with detuning 6; in this case)
passes through the atomic resonance. The values get
closer to each other again when §,, > Ap.

C. Optimum Medium Length
Besides the above-mentioned problem of mode mismatch
between the pump and the probe beams, the self-focusing
or defocusing of the pump can itself be a problem, as it
changes the effective pump intensity within the medium.
However, this problem can always be circumvented by a
careful choice of the medium length and the pump-beam
waist. As we show below, this is possible because the
maximum squeezing almost always occurs when 8¢, = m
Let us estimate the radius of curvature R, that is ac-
quired by an input beam with a plane wave front as it
propagates through the medium. We are particularly in-
terested in the value of R; when operating near the region
of maximum squeezing. We further assume that the
input beam does not experience much diffraction in
the medium when the medium is inactive. Then when
the medium is active, given that the phase front at the
beam center is shifted by a small distance A; with respect
to the phase front at the beam waist, it is not hard to esti-
mate the radius of curvature acquired by the transmitted
beam. In fact, we can make a good estimate by using the
simple geometrical picture shown in Fig. 19, where W, is
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Fig. 18. Phase mismatch at nondegenerate frequencies for the
case with A, = 100, B = 40, F =1, Aanw = 0, 8kn # 0, and
L, = 3000. Curve A, 8¢n; curve B, 8¢; curve C, 8¢,.

Fig. 19. Geometrical picture for self-focusing or defocusing.
The radius of curvature of the beam phase front arising from
defocusing is related to the beam waist and the advancement of
the phase front Ay, at the beam center.
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the input beam waist and L is the medium length. The
wave fronts are represented by the double solid curve.
From the figure it is easily shown that for B, > A, R, =
W:2/2A1. The value of Az can be related to 8¢, by means
of Ay = M8¢,/217). Hence, if the nonlinear phase shift is
7, we have Ay = A/2. To minimize the intensity change
within the medium, the medium length must be made
short compared with R;. We then conclude that a good
design would require that L < R, = W,;2/A. In practice
this can be achieved by having a large input beam waist
W,. Of course, the trade-off is that one would have to
increase the pump power in order to obtain the same
pump intensity.

10. CONCLUSIONS

In summary, we have developed a quantum theory of non-
degenerate multiwave mixing and applied it to predict the
amount of squeezing generated in experiments that employ
forward four-wave mixing in a Doppler-broadened two-
level atomic vapor. In particular, we have focused on the
single-beam case in which all the four interacting beams
are spatially degenerate. This single-beam configuration
is simple to implement in practice because one does not
need to worry about proper alignment of the four beams.
Furthermore, this simplicity makes it easier for a compari-
son to be made between the theory and the experiment.

Our theory is comprehensive in that it includes all the
important physical effects such as loss, spontaneous emis-
sion, pump-probe phase mismatch, atomic collisions,
Doppler broadening, Gaussian-beam intensity variation,
and pump-intensity induced pump-probe focusing and
defocusing. Of these, the effects of loss, spontaneous
emission, and Gaussian-intensity variation were consid-
ered before by others interested in generating squeezed
light through the interaction of an intracavity field with
an atomic beam.™'? The effect of pump—probe phase
mismatch was considered by Levenson ef al. in their
squeezed-light generation experiment in an optical fiber.®
The effects of atomic collisions and Doppler broadening
are somewhat unique to our atomic-vapor experiments
and have not been considered before to our knowledge, ex-
cept that the effect of collisions was included but not
studied in detail by Reid and Walls.* The effect of pump-
intensity-induced pump-probe focusing and defocusing,
though important in both atomic-beam and atomic-vapor
experiments, has not been considered at all. Qur theory
and experiments indicate that this last effect can impose
an important limitation on the maximum amount of
achievable squeezing. This may explain why all earlier
experiments that employed four-wave mixing interaction
with atoms failed to agree with theories that do not take
such an effect into account.” This finding also has seri-
ous implications for squeezed-light generation using y®
media whose nonlinear behavior is quite similar to that of
the two-level atoms.

Our comprehensive theory has yielded a set of rules
of thumb for achieving substantial squeezing in atomic
media. These rules of thumb, described below, are not
a set of precise equations but are bounds that predict a
favorable region for the operation of experiments.

Rule A. 1t is usually good to work with the maximum
available laser intensity. Let the normalized value of the
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used laser intensity be 8% Then, for a given B2, in order
to operate in the region where the medium is relatively
lossless, one should choose the normalized pump detun-
ing A, such that |A,| < B?/2 [see the paragraph after
Eq. (6.14)]. This places an upper bound on |A,|.

Rule B. There is generally a maximum temperature
that the cell containing the atomic vapor can be heated to.
Suppose that this temperature gives a maximum value of
L, = Lyax. Then, in order to approach the long-medium
regime in which the amount of squeezing is optimum, one
should choose |A,| < (Lpax/0.3)2 (see Subsections 7.A and
8.A). This gives another upper bound for |A,| in addition
to the one given by Rule A.

Rule C. If the Doppler half-width is Agyy, then in order
to avoid the effect of Doppler broadening one should
choose |A,| > 3Agw (see Subsections 7.C and 8.F). This
places a lower bound on |A,|.

Rule D. If one wants to see squeezing near the degen-
erate frequency such that the normalized probe detuning
Om is less than 1, then one should have |A,| > g*3/2 in
order to avoid spontaneous emission [see the paragraph
before Eq. (6.14)]. The condition, however, can be relaxed
to require |A,| > 2B/5,, only if one is interested in squeez-
ing at the nondegenerate frequency (see Subsection 8.D).
This rule places a lower bound on both |A,| and §,,,.

Rule E. In order to avoid the noisy region near the
generalized Rabi frequency Az = (B%F + A,%)'2% one
should keep &, less than A (see Subsections 8.F and 8.G).
This gives an upper bound for §,,.

Rule F. The probe beam and the PCB see different
refractive indices that are induced by the Gaussian-
intensity pump beam. As a result probe modes become
spatially mismatched as they propagate in the medium.
In order to avoid this mode mismatching, one should keep
8m < |Ap|/2, thus preventing the probe beams from having
their frequencies too close to the atomic resonance (see
Subsection 9.B). This rule gives another upper bound for
8m, which is more stringent than that given by Rule E.

Rule G. In order to get a substantial amount of
squeezing (>60%), if permitted by the above rules, one
should have |A,| > 100 (see Subsection 8.B).

Rule H. In order to avoid the degrading effect of
atomic collisions, one should keep the buffer-gas pressure
low enough that the collision factor F is not less than ~0.5
(see Subsection 8.E).

Rule I. In order to avoid self-defocusing of the pump
beam, which would reduce the pump intensity, it is good to
keep the pump frequency blue detuned rather than red
detuned (see Subsection 9.A): This rule can be relaxed if
the pump intensity is high enough for substantial squeez-
ing to occur on the blue side. This is because the amount
of squeezing is not highly sensitive to the pump intensity
when, at a particular vapor temperature, we are operating
in a relatively lossless and noiseless regime where sub-
stantial squeezing occurs.

Rule J. The pump-beam intensity variation in the
medium caused by diffraction should be kept to a mini-
mum. This can be achieved by choosing the medium
length to be smaller than the Rayleigh length. This rule
is desirable in general and is not directly related to the
self-focusing or defocusing problem.

Rule K. Pump self-focusing or defocusing can change
the pump intensity in the medium, thus limiting the
amount of squeezing generated. If the LO is derived
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from the input pump beam, then the mode mismatch be-
tween the LO and the maximally squeezed probe mode
can also limit the amount of observed squeezing when
there is self-focusing or defocusing. The latter problem
can, however, be resolved by using the transmitted pump
as the LO, as discussed in Subsection 9.A. Moreover, it
turns out that, when the former problem is avoided, so is
the latter. In order to solve the former problem, one
should design the vapor cell in such a way that the vapor
length L obeys L < W,2/A, where W, is the effective beam
radius (see Subsection 9C). With this design the maxi-
mum amount of achievable squeezing will be ultimately
limited only by the pump-probe mode mismatch in the
medium, which is caused by pump-intensity-induced
pump and probe focusing or defocusing. The effect of
pump-probe mode mismatch cannot be circumvented as
long as a Gaussian-intensity pump beam is employed.

This completes the set of rules of thumb. In general,
the better one can simultaneously satisfy these rules, the
better will the observed squeezing be. What is then the
ultimate limit on achievable squeezing? Our simple
treatment of pump-intensity-induced pump and probe
focusing or defocusing seems to indicate that one may be
able to obtain only up to 75% squeezing in atomic-vapor
experiments that employ a Gaussian-beam pump.

APPENDIX A

In this appendix we describe the method used for includ-
ing the effect of Doppler broadening in our calculations.
The effect can be taken into account by first replacing the
frequency-independent atomic-number density p, in
Eq. (2.17) with a frequency-dependent atomic-number
density per unit normalized frequency p,(Ay), as given by

o1 YIS
Pa(Ad) = pa ey eXP[ (ku /n) ], (A1)

where p, is the total atomic-number density, 2 = Q,/c,
and u is the root-mean-square Doppler velocity given in
terms of the Boltzmann constant &z, the absolute tempera-
ture T, and the mass of the atom M by u = (2kz T/M )2
In Eq. (Al), Ay = (way — wes)/yL, Where w,, is the Doppler-
shifted resonance frequency for the group of atoms that
we are interested in and w,; is the resonance frequency for
a stationary atom. We then replace the atomic frequency
e in Ap by v,Aq + w4, so that A, now becomes A, — Ay,
where A, = (Qp — wg)fyL.  The integration [ dA4 is
then performed over the expressions for ¥,, X, %7, Xa

A, As, Ry, and Ry, yielding a new set of mode-coupling
coefficients and noise correlations. The effect of Doppler
broadening is properly included when this new set is used
to calculate a,(L) by Eq. (3.11). This procedure is equiva-
lent to performing the sum over atoms in Ref. 2, with each
atom taken to have a different Doppler-shifted resonance
frequency.

We shall use the exp(—1) half-width of the Doppler-
velocity distribution as a convenient parameter in our cal-
culations. This normalized half-width is given by ku/y,
and will be denoted as Agy. It is related to the normal-
ized FWHM (Afpwny) of the Doppler-velocity distribution
by Adhw = prnm/2 Vin 2.
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APPENDIX B

In this appendix we describe the method for taking into
account the Gaussian-intensity variation of the pump
beam. We denote the intensity variation of the pump
beam by I,(r) = I, exp(—2r?/W;?), where r is the radial
displacement and Wj is a parameter specifying the effec-
tive beam radius. I,(r) can also be expressed in terms of
the pump power P, through I,(r) = P, U*(r), where

Ur) = —o— ex —2(—r—)2 (BL)
W2 P A\W |

The relationship between I,, and P, is then given by
L = 2P,/W,*m. Let the electric field operator, expressed
in terms of the *z-propagating plane-wave modes, be
given by

Ey(%,%2,8) = 3 Coim(Dexp(iknz) + He., (B2)

where C,, is a mode-dependent constant and H.c. denotes
a Hermitian conjugate. The electric field operator
expressed in terms of the *z-propagating Gaussian-
intensity modes will then have the form

ﬁg(r, 2,t) = > Crln()Q(r)exp(ikn2) + He., (B3)

where the mode function @Q(r) is proportional to U(r). The
proportionality constant can be obtained by requiring that

[ ardztemriyr, 2 0 = [ axdydziBye, 32 0F

= IC,,,|2 &miém + d,,.,&,,,*]AQLQ, (B4)

where Ag = [ dxdy, Lg = [ dz, and AgLq is the volume
of quantization. Here Ag is assumed to be infinitely
large. The constraint Eq. (B4) yields Q(r) = Aq U(r).
Hence the treatment for including the effect of Gaussian-
intensity variation first calls for the replacement of I, in
Eq. (2.14) by I,(r) so that 82 becomes B,,2U%r) with
Bp? = 2I4/I,; and then having g, in Eq. (2.18) replaced
by g, U(r) so that «, becomes «, U(r), with a, now denot-
ing pa|pd|®w./2hecyL, po being the total atomic density.
After all these replacements the procedure ends with the
integration f¢ dr2mr performed on ¥, Xum, ¥s, Xm, Am,
As, R, and Ry, resulting in a new set of mode-coupling
coefficients and noise correlations for calculating a,(L).
We note that the use of the same mode function U(r) for
both I,(r) and {§,*, &+"} implies that the probe-beam
modes are the same as the pump-beam mode.

The above treatment is valid provided that we assume
that 6%,° in Egs. (2.6) and (2.7) is independent of the
transverse coordinates. However, in reality the value
of ok,’ depends on the transverse position within the
beam. Thus one really needs to integrate X,,exp(—i8%,°Z)
transversely in order to obtain an effective coefficient.
The resulting coefficient will be z dependent, and the
method of solution presented in Section 3 can no longer be
used. A proper treatment requires one to integrate the
equation of motion for @,(Z) numerically. In this paper
we simply let 8%,,° be given by Eq. (2.34) but with the inte-
grated values of Y, ¥, and ¥i,.
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