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We apply our quantum theory of nondegenerate multiwave mixing [Phys. Rev. A 37, 2017 (1988)] to squeezed-
state generation experiments with two-level atoms. Our main interest is to predict the amount of squeezing
achievable with a Doppler-broadened two-level medium. We are particularly interested in the single-beam con-
figuration, in which all four interacting beams are spatially degenerate. We analytically solve the coupled-
mode quantum Langevin equations for nondegenerate four-wave mixing. The solutions are used to compute
the amount of squeezing. In the computation the effects of pump-probe phase mismatch, collisions, Doppler
broadening, and Gaussian-intensity variation are comprehensively taken into account for the first time to our
knowledge. Simple rules of thumb as to where one can see squeezing in both degenerate- and nondegenerate-
frequency cases are derived by examining the limit of a short medium. We then present the case of an in-
finitely long medium, in which maximum squeezing is achieved when there is no pump-probe phase mismatch.
With the inclusion of pump-probe phase mismatch, however, the maximum amount of squeezing is obtained
with a finite-length medium instead. This prompts us to investigate in detail the finite-length medium case.
Our results show that the effects of Doppler broadening and Gaussian-intensity variation can be largely cir-
cumvented by detuning the pump frequency more than three Doppler half-widths from resonance and that good
broadband squeezing can be achieved even with a Doppler-broadened medium that has a moderate amount of
collision broadening. Under these circumstances it is found that the effect of pump self-focusing or defocusing
will be the major factor that limits the amount of achievable squeezing. In particular, the spatially varying
nonlinear refractive indices seen by the pump and the probe modes are quite different, which causes the former
to become spatially mismatched with the latter in the region in which strong squeezing is otherwise expected.

1. INTRODUCTION

In the first paper' of this series on the quantum theory
of nondegenerate multiwave mixing, we solved for the
c-number atomic polarization variable V1(t) of the ith atom
in a system of stationary two-level atoms. We did so in the
limit wherein superradiance could be neglected; the ef-
fects of spontaneous emission and soft atomic collisions
were included in the model. The solution for V(t), in terms
of the multimode-field Fourier amplitudes {Ak(fi)}, was
derived without the need for an adiabatic approximation.

In the second paper of this series2 we used the slowly
varying amplitude approximation to express the polariza-
tion V1(t) in terms of the c-number field annihilation and
creation variables {am(t), am+(t)}. This procedure is simi-
lar to the usual techniques of adiabatic approximation but
is more exact in the sense that the effects of dispersion
can be taken into account. The slowly varying amplitude
approximation allowed us to obtain a set of Langevin
equations for the field creation and annihilation variables.

The correlations of the c-number Langevin forces were
derived for the special case of nondegenerate four-wave
mixing under conditions that permitted nonnegligible
atomic collisions. In order to apply the formalism to a
traveling-wave geometry, we developed a slowly varying
envelope method to deal with quantum field propagation.

The main theme of this paper is the application of the
results of Ref. 2 to squeezed-state generation experiments
that use four-wave mixing, specifically to the case in
which all four waves are spatially degenerate. Physically,
in such a case, a single pump beam propagates through a
Doppler-broadened two-level medium; vacuum fluctua-
tions are the inputs for the two temporally nondegenerate
probe waves. Our interest in the single-beam scheme
arises from its simplicity: One does not need to worry
about the alignment of the four different beams. This
simplicity allows us to compare the experimental results3

with theory with much less uncertainty. In this applica-
tion the effects of atomic collisions, pump-probe phase
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mismatch, Doppler broadening, and Gaussian-beam
pump-intensity variation are comprehensively taken into
account for the first time to our knowledge. The effect of
pump-beam self-focusing and defocusing is also examined.

We begin in Section 2 of this paper by recapitulating
the pertinent results of Ref. 2. This is done to make this
paper self-contained and to reestablish the notation. The
remainder of this paper can be divided into four parts. In
the first part, Sections 3 and 4, we assume time stationar-
ity and solve the spatial coupled-mode equations for the
c-number mode-amplitude variables {am(z, t)} by means
of the Caley-Hamilton theorem. We then apply the
solution to the single-beam geometry in Section 4 and
obtain an analytic expression for the quadrature noise
variance. The analytic solution, however, is rather com-
plicated, which prompts us to look at a few simple cases
in the second part of this paper in order to obtain some
physical insight.

In the second part of this paper, Sections 5 and 6, we
consider two extreme limits, namely, that of a short
medium and that of an infinitely long medium. The
short-medium limit, considered in Section 5, allows us to
derive some general rules of thumb as to where (i.e., for
what experimental parameters) one may or may never see
squeezing. This is because when there is no squeezing in
the short-medium limit there will never be any squeezing
with an increased medium length. The limit of an in-
finitely long medium, considered in Section 6, is also im-
portant. It demonstrates how an indefinite growth of
noise with the medium length can destroy squeezing at
most experimental parameters. We show that when the
pump-probe phase mismatch is not considered there are
only three separate regions where squeezing exists in this
limit. There are many more regions with squeezing,
however, when the pump-probe phase mismatch is consid-
ered. The effect of collisions is also discussed in this
limit of an infinitely long medium.

The third part of this paper consists of Sections 7 and 8,
where we study the case of a finite medium. In Section 7
we consider the temporally degenerate case and first ex-
amine the regions where optimum squeezing is usually
obtained, without inclusion of the pump-probe phase mis-
match. Then we discuss the effects of the pump-probe
phase mismatch, increased pump detuning, Doppler
broadening, and Gaussian-intensity variation. It is shown
that the pump-probe phase mismatch does not seriously
affect the maximum amount of achievable squeezing.
Also, we find that Doppler broadening becomes impor-
tant only when the pump detuning is less than 3 Doppler
half-widths from resonance. Moreover, the effect of a
Gaussian pump beam can, in general, be summed up as
a change in the effective pump intensity except when
the intensity begins to saturate the atoms.

The temporally nondegenerate case is considered in
Section 8, where we once again discuss the effects of the
pump-probe phase mismatch, increased pump detuning,
increased pump intensity, and collisions. As in the de-
generate case, it is found that the pump-probe phase mis-
match does not seriously affect squeezing. Increasing
the pump intensity beyond saturation, in this case, may
actually help achieve squeezing at higher probe frequen-
cies. Moreover, the effect of collisions is shown to be much
less degrading at the nondegenerate frequencies. We also

discuss the effects of Doppler broadening and Gaussian-
intensity variation. Below saturation these are similar to
the degenerate case. However, when the pump intensity
is above saturation the presence of either Doppler broad-
ening or Gaussian-intensity variation or both is shown to
have a disastrous effect on the generation of squeezing
beyond the generalized Rabi frequency. This occurs even
when the pump is detuned far from resonance except
when only Doppler broadening is present.

In the fourth part of this paper, Sections 9 and 10, we
first consider the problem of self-focusing and defocusing,
which turns out to be quite serious. It is shown that self-
focusing or defocusing of the pump beam always becomes
significant at the medium length at which good squeezing
just begins to occur, thus potentially limiting the amount
of generated squeezing. The loss of intensity because of
self-focusing or defocusing of the pump beam, however,
can be made negligible with proper choice of the medium
length. A potentially serious problem arises because the
focusing or defocusing that is experienced by the pump
and probe beams turns out to be quite different. As a
result, the squeezed probe modes become phase mis-
matched from the pump mode as the pump beam propa-
gates farther into the medium.

Finally, in Section 10 we present some general rules of
thumb that can be followed to recognize regions where
good squeezing can be expected.

2. RECAPITULATION OF
PERTINENT RESULTS

In this section we give a self-contained summary of those
results in Ref. 2 that are relevant to squeezed-state genera-
tion experiments that use forward four-photon mixing.

We are interested in four-photon interactions that in-
volve two strong pump beams at frequency fp, one weak
probe beam at frequency flm and another weak probe-
conjugate beam (PCB) at frequency fl,. We denote the
wave vectors of the pump beams by k 1ps and kp2' and those
of the probe beams by kmS and km', respectively. For four-
photon mixing to occur, the four beams must satisfy the
energy conservation relation 2flp = m + fa and ap-
proximately satisfy the phase-matching condition kpl +

kp2 = kmS + kV. The magnitudes of the beam wave vec-
tors are related to their frequencies by IkpslI = kp2

2l =
lpnp/c, Ikm8I = Qmnm/c, and IkaSl = flmna/c, where n,, nm,

and nA are the refractive indices seen by the pump, probe,
and probe-conjugate beams, respectively.

It is easy to see how the phase-matching condition can
in fact be met for the forward four-wave mixing geometry
depicted in Fig. 1. p denotes the angle between the two
pump beams and, similarly, fib is the angle between the
two probe beams. The results in Ref. 2 show that in the
nearly degenerate frequency limit the refractive indices
seen by the two probe beams are smaller than those seen
by the pump beams. Thus for phase matching one must
have fib < Ap. It is then apparent that, as Up approaches
zero, wave coupling without phase mismatch is no longer
possible. In particular, this is true when Up = 0, i.e.,
when the two pump beams are spatially degenerate. The
results of Ref. 2 also imply that when the two pump beams
are spatially degenerate maximum coupling between the
two probe beams occurs for 'ib = 0, i.e., when the two
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Fig. 1. Geometry of four-wave mixing. In this example the
probe beams are depicted by the two solid lines, while the pump
beams are the two dashed lines lying in a plane perpendicular to
the plane defined by the probe beams. The angle between the
probe beams is denoted by fib, and that between the pump beams
is denoted by Op.

probe beams are spatially degenerate with the pump
beams as well. We shall refer to the case in which all four
beams are spatially degenerate as the single-beam case.

Let us first consider the situation in which the wave
vectors of the four beams are nearly collinear. We define
the z axis to be along the line that bisects 'Pb (see Fig. 1).
This enables us to write the c-number variables for the
probe beam and PCB electric fields as

Em(Z, t) = Re{i(Z, t)exp[i(km8Z - flmt)]}, (2.1)

Eh(Z, t) = Re{ia(Z, t)exp[i(kZ - ft)]}, (2.2)

where Z is the axial coordinate of the wave fronts propa-
gating along the directions of the two probe beams, which
can be related to z (the axial coordinate along the z axis)
by Z = Z cos('b/

2
). 'Em and %m are related to the normal-

ized (c-number) mode amplitudes am and aA by

%m(Z, t) = gmam(Z t), (2.3)

c&1 (Z, t) = hgmra(Z t), (2.4)

with m [(c/vm )m /2he 0 AQcT]"/ 2 and qh =
[(c/vn)Tm/2hEoAQcT]"12, where m and vh are the respec-
tive group velocities of the two probe beams. The quan-
tity AQcT is the volume of quantization, with cT defining
quantization along Z and T chosen to be longer than any
time period of interest. We recall that the normalization
constants gm and & are chosen in such a way that the
mode-amplitude operators &m(Z, t) and &A(Z, t) obey the
same commutation relations as the usual creation and an-
nihilation operators. The normalization constant #m,
compared with that in the usual field-operator expres-
sions, has an extra c/vn factor. This extra factor arises
because the mode amplitudes are defined in terms of the
evenly spaced frequencies {fm} instead of a set of evenly
spaced k vectors. The latter would be appropriate if one

were to express the field operators in terms of the usual
creation and annihilation operators.

Since all the pertinent equations and the related coeffi-
cients are the same for both the probe beam and the PCB
except for an interchange of fm with fQ, in the following
we will occasionally choose to write the expressions for
only one of the two beams.

In our theory the pump beams are treated classically.
Also, the z axis will approximately bisect the angle be-
tween the two pump beams if the difference between the
refractive indices of the two probe beams is small. In
such a case we can write the classical electric field of the
pump beams as

Ep(Z, t) = Ep2(Zp, t)

= Re{icp(Zp, t)exp[i(kpZp - fQpt)]}, (2.5)

where Zp _ z cos('p/2) = Z cos(0p/ 2 )/cos(Pb/ 2 ). p(Zp, t),
in general, can decay as a function of Zp. For simplicity
we shall consider only the situation in which the pump
beams remain undepleted, so that 'gp(Zp, t) can be approxi-
mated by a complex constant U6p = ItpIexp(-iOp).

In terms of the above definitions, and from the results
in Ref. 2, the two probe beams are governed by the follow-
ing coupled-mode equations:

(az " at =1+ -- am h(Zt) n [Yama(Zt)

GZ VUm t n
+ Xm exp(-ikmhZ)am(Z, t)] + Fm(Z, t), (2.6)

(dZ ~a &)tm(Zt) = n[~*t+zt

+ X,* exp(i, 7 1
3mZ)a~m(Z, t)] + F,71 (Z, t),m (2.7)

where km8 , the pump-probe phase mismatch per unit
length, is given by km = km + k - 2kp3 cos(4p,/2)/
cos(O7 /2), and the refractive index nm = [1 + (2iimc/lm)]1"2

,

with Im being the imaginary part of the coefficient m
(i.e., m Rm + im). In the general case of four-wave
mixing, a transverse intensity grating is formed by the
two pump beams. As a result, in order to obtain the coef-
ficients m and Xm one has to take a spatial average of the
atomic polarization over this transverse grating. Such an
averaging has been done by Reid and Walls4 for the case
of degenerate four-wave mixing. The averaging is alge-
braically more difficult to carry out for the nondegenerate
case here. Fortunately, our experimental interest lies
mainly in the single-beam case, where no such averaging
is necessary. In the following we shall thus concern
ourselves with the single-beam case only. For this case
the coefficients m and Xm are given by

P 2

2SpmFpm(l + iA,) [1 - i(A, + 8m)]

- YRm + idYm =5 1.mJexp(i'Pjm),

/. = Ai 2 1/2 (a. __ ' p2exp(-2iO,) 

m -vmh m j 2 / -spFp(l -iA)[-i(p + 5m)][1 + i(A -m)]

-XRm + ji m I IXmIexp(i Pm),

(2.8)

a,&oalfl.) - 1 -
[1 - i(AP + 5,,,)]S
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with

S 1 ( + P2 (2.10)
2(1 + AP 2 )

F= 1Y, (2.11)
2y_1

+ p32(1 + im)
2F i1 - i(Ap - 58m)][1 + i(Ap + 3im)][1 + im/2]

-SRmp + imp - ISmplexp(i0mp), (2.12)

-m Fp * _ 1 + i(6m/2F)
Emp pm -1 + i(Bm/2)

FRmp + iFimp FIplexp(i¢P), (2.13)

p82 = 161IcepI2IILdI2 - 2 Ip (2.14)
(y±Ly= /2)h2(fQp/a )2 Isa(flp/a )2

X

Ip = 8eocI%p2 , (2.15)

Isa= 1e0 7±711 h2 (2.16)

aa = PaLdI2AQcTg 3a/cy1 = PaId12 a/2heOcy7, (2.17)

ga= (coa/2hEoAQcT)" 2 , (2.18)

where S. (= -5,a) is the frequency detuning of the higher-
frequency probe beam from that of the pump beam
expressed in terms of the normalized unit set by the
transverse relaxation rate yl, i.e., m = (m - p)/,
a = (fM - £lp)/y±, with lm > fQp; Ap is the normalized

detuning of the pump beam from the atomic resonance
frequency Wa, i.e., Ap = (1, - (Oa)/Yl; is the normalized
Rabi frequency; and a is the small-signal line-center
absorption coefficient. We note that, in arriving at the
expression for jm, we have neglected the contribution to
the refractive index from the A2 term in the Hamiltonian.
Equation (2.10) gives the expression for the degenerate
saturation factor S, while Eq. (2.11) defines the collision
factor F which takes a subunity value when there are col-
lisions. The latter expresses the collisional increase of
the atomic transverse relaxation rate yL with respect to
the longitudinal relaxation rate y1ji The atomic collisions
are assumed to be soft, so that the longitudinal relaxation
rate is unperturbed. Equations (2.12) and (2.13) express
{Smp} and {Fmp}, which can be regarded as the generalized
saturation factors and the generalized collision factors, re-
spectively. Equation (2.14) relates /3 to the pump inten-
sity Ip in terms of the line-center saturation intensity Isa
In the expression for a, Eq. (2.17), Pa and Ad are the
atomic-number density and the dipole strength, respec-
tively. Finally, in this single-beam case we have taken
the combined amplitude of the pump beams to be MP.

For 8m >> 1 and Sm - IApI >> 1, 9pm shows a resonance

as a function of the probe detuning. In this region, from
Eq. (2.12) we see that Spm is approximately zero when
8 - += V 2F + A +-2 AR. This gives rise to a reso-
nance in X. and 5/m at am = -AR, which is well studied in
the literature, and AR is known as the generalized Rabi
frequency. We note that our expressions for m and X,
coincide with those derived semiclassically in the litera-

ture. For example, it is known that when F < 1, m and
X. display enhanced structure near the degenerate fre-
quency because of coherent population oscillations.' This
semiclassical behavior also gives rise to a small enhanced
structure in the quantum noise spectra that we studied
(see Subsection 8.E).

Note that ;m can be written in terms of X. as

aa(1 a/ m) 
[ - i(A + 5,m)]S

[1 + i(A, - 5.)]exp(-2iOp) (v.flm )/ 2 *
[1 - i(AP + bm)] (vmfm) 2

,
(2.19)

which helps us in simplifying the numerical computations.
Equations (2.6) and (2.7) tell us that the refractive indices
can alter the interaction strengths. In the atomic vapor
experiments3 the refractive indices of interest were close
to unity. Therefore, in the following, for simplicity we
will assume unity refractive indices except when calculat-
ing the wave-vector mismatch km'. Also, since the ex-
periments3 are performed close to the atomic resonance,
we shall assume that (m/w) (/ 3 ) = 1. We shall
further assume that the experiments3 concern a region
where the differences among vm, va, and c are negligible.
These assumptions can be shown to be valid for the atomic-
vapor density of interest to us, even near the generalized
Rabi frequency, where the refractive indices are relatively
high.

The correlations of the Langevin forces {Fm(Z)} were ob-
tained in Ref. 2 as follows:

(F,+(Z)F,(Z')) = Ain(m)( 8 3)8(Z - Z'), (2.20)

(T (Z)r'WZ )) = A,58(a^)(as)8(Z - Z'), (2.21)

(fM(Z)f3 (Z )) =(n(Z)fm(z ))

= RM exp(2iOp)8(am)(.n)

x exp(-ikmZ)3(Z - Z'), (2.22)

(FM+(Z)Pn+(Z)) = Rm* exp(2i0p)3cam)(c63 )

x exp(i~kmZ)8(Z - Z'), (2.23)

with

Am = aayLDV,+Vj(-im), (2.24)

Am = aaL±Dv,+v(-5r.), (2.25)

RM = R, = aayLDvjv(-min)exp( 2ip)

_ RRm + iRlm I jRmlexp(iRm), (2.26)

Rm*= aay± Dv+v+(-3)exp(-2iOp), (2.27)

where 8 (8m)(8n) is the Kronecker delta function, which is
unity when m = bin and zero otherwise. In the above
equations, Dvj+v(8m), Dvj+v+(8in), and Dviv,(8m) are given by

! ,(~~~32F
Di+vi(8m) = 2 { D(m j(1 -F) [8m + 2A,3m + Am2

x (4F2 + 1 -3 2F + A P2) _ amAP

( 2F - 8F2 - 2Pf2F2) + 4F2 + A P2

X (4F2 + 2f32F 2)] + 8m2f32F2 + 4f32F2
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Dvivi(s-) = - 2 D(8 [exp(-2i0,)]((1 - F)

x (-m 2f32F + 2Ap2
f3

2 F2 ) + F8m4 + 8"2

x [4F3 + F - 3(Ap2 + 8 2F)F] + 4F3

+ f34F 2/2 - 12Ap2F 3 + iAp{(l - F)(-2, f 2F 2)

+ a. 4F + a 2[4F3 + 3F - (AP2 + 132F)F]
+ 12F3 - 4Ap2 F3 }), (2.29)

(2.30)

a bA+(Z) = -R*bh+(Z) + Xk*b(Z) + Ghn+(Z), (3.2)
aZ i

which can be obtained from Eqs. (2.6) and (2.7) by making
the substitutions

R. = -Rin - ikm /2

_ RRm + i 1m JRinexp(i0am),j

b.(Z) = a(Z, t)exp[i~km'Z/2],

G.(Z) = rm(Z)exp[i8km'Z/2]

(3.3)

(3.4)

(3.5)

D(S,) = (F + AP2F + G32F/2) {86 + 8m4(2 + 4F 2

- 2 2F - 2A 2) + 3im2[1 + 8F2 + 2,B2F
x (2F - 1) + 34 F2 + A 4

- 2

X (8F2 - 2 2F - 2)] + 4F2 + 4 2F2

+ f34F2 + Ap2(8F2 + 4 2F2) + 4Ap4F 2}.

(2.31)

Note that the definitions of Dviv and Dv+V, are a little dif-
ferent from those in Ref. 2 in that the spatial phase fac-
tors are not included in the definitions here. Instead,
these factors are accounted for by exp(8km'Z) in Eqs. (2.22)
and (2.23). We remind ourselves that although Dvj+vi+(8m)
and Dvivi (8 ) are even functions of their argument,
Dv1+v(8m) is not when F < 1 and Ap • 0, which can give
rise to an asymmetric spontaneous-emission line shape.
Also, in Ref. 2 we used the fact that the delta function

(8m)(-8n) implies that kn8 = k.
The pump beam obeys the following equation of motion:

(a 1 a) \%(Z t) = f tY%'(Z, t),+Z , tn (2.32)

where

~ = - aa

[1 - iAp]S

- YRp + i /Ip. (2.33)

The refractive index np seen by the pump beam is given in
terms of the imaginary part of 5p (i.e., yjp) by means of
np = [1 + (251pc/fp)]"2 . It is different from those seen by
the probe beams (nn and n,) even when the probe-beam
frequencies approach that of the pump. Because of this
difference in the nonlinear refractive indices seen by the
pump and the probe beams, there is a nonzero phase mis-
match kms, which can be expressed as

Bkm = (mnm + flmn,-n - 2flpnp)/c.

and looking for time-stationary solutions of {a,(Z, t)} by
setting the time derivatives of {a(Z, t)} equal to zero.
Since we are interested in solving for b(Z) in terms of
b(0) and b,7+(0), let us first write Eqs. (3.1) and (3.2) in
matrix form as follows:

a-B.(Z) = MmB(Z) + N(Z),
az

(3.6)

where

ffm(Z) [bm(Z)]bA(Z)1

, (Z) 3=[Gm(Z) '
GNh(Z)

-am X.
H. = Xh* -'RA * 

(3.7)

(3.8)

(3.9)

Then, formally, the solution of Eq. (3.6) can be written as

L
Bm(L) = exp(MmL)Bm(O) + f exp[M.(L - Z')]N(Z')dZ'.

(3.10)

In order to evaluate exp(MHL), we make use of the Caley-
Hamilton theorem, a standard procedure in linear algebra,
giving the following solution for the coupled-mode equa-
tions (3.1) and (3.2):

b(L) = T.(L)b.(0) + Uhn(L)b,7+(0)
L

+ Jo [T(L -Z')Gm(Z')

+ Uh(L -Z')G+(Z')]dZ'

bmn(L) = T,(L)b,(0) + Um(L)bm+(0)
L

+ J [T-n(L - Z')Gh(Z')

+ U.(L -Z')G+(Z')]dZ,(2.34)

The presence of such a phase mismatch has also been
pointed out by the authors of Ref. 6 for the simple case of
a Kerr nonlinearity in an optical fiber.

(3.11)

(3.12)

where

Tm(Z) = exp(-S.Z) [Qmsinh(W Z) + cosh(WmZ)],
(3.13)

3. SOLUTION OF COUPLED-MODE
EQUATIONS

Consider the following set of coupled-mode equations:

a-bm(Z) = -Rmbm(Z) + Xmb,+(Z) + Gm(Z),
az

Uh(Z) = exp(-SmZ)[(X./W)sinh(W.Z)],

with

(3.14)

Sm = Rm + QR )/2

= - (^Rm + 5nRh)/2

9 SRm + iSim I jSmjexp(i0ksm), (3.15)
(3.1)

Dvi+vi+(8m) = Dvjvj*(5.),

Ho et al.
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Qm= Qm = (. - &m)/2W.
= ( Rm + YRm - ikm )/2Wm

- QRm + iQ 1m IQmlexp(ikQm) (3.16)

W= [(am. am) + (X 7*X.)]

=[(sm + m - i3m )2 (X *X )]1/2

- WR. + iW1, 3Wmlexp(i¢wm). (3.17)

4. SINGLE-BEAM CASE

In squeezed-state generation experiments using four-wave
mixing, if the probe beam and the PCB at the input are in
their vacuum states, then a squeezed-vacuum state can be
obtained by combining the two at the output with a 50/50
beam splitter.7 In the single-beam configuration consid-
ered here, the geometry has the probe beam and the PCB
combined already at the output, so no 50/50 beam splitter
is needed. Since the pump beam also comes out together
with the probe beam and the PCB, with its frequency be-
tween those of the probe beam and the PCB, the pump
beam can potentially be used as a local oscillator (LO) for
phase-sensitive heterodyne detection of the field fluctua-
tions in the generated squeezed vacuum. However, as ex-
plained below, the phase of the pump beam is in general
not of the correct value for the observation of nonclassical
reduction of the photocurrent noise.

One sees squeezing as a result of parametric deamplifi-
cation of the vacuum-field fluctuations through some non-
linear optical interaction that is caused by a strong pump
beam. Because of energy conservation, it is impossible
for the pump beam to reduce its own amplitude by de-
amplifying itself. In other words, near the degenerate
frequency the quadrature whose vacuum-field fluctua-
tions are reduced cannot possibly coincide with that of
the pump. Thus the transmitted pump beam is always
at the wrong phase for observation of nonclassical photo-
current fluctuations near the zero frequency. It also
turns out that the LO phase that is required for observa-
tion of sub-shot-noise photocurrent fluctuations varies
slowly with the photocurrent frequency. Therefore the
transmitted pump phase is not of the right value for obser-
vation of squeezing at nondegenerate probe frequencies
either. Thus, in general, if one wants to observe the
nonclassical photocurrent fluctuations, one must either
remove the pump beam and reintroduce a LO beam with
the right phase or resort to some external means of shift-
ing the pump-beam phase.' This pump-phase problem
is also encountered in squeezed-state generation experi-
ments using optical fibers.6

To obtain the quadrature noise that is picked up by a
homodyne detector, we take the LO field ELO(Z, t) to be

ELO(Z, t) = Re{ijLOIexp(-iLO)exp[i(kPZ - t]}, (4.1)

where OLO is the absolute phase of the LO and we have
taken its frequency to be equal to that of the pump.
The generated photocurrent operator I(t) is proportional
to At(t)A(t), and A(t) is in turn proportional to the probe
field at the output of the medium; i.e., A(t) X )2 &(L, t) X

exp[i(kmsL - fQt)], where L is the length of the medium.
Denoting the Fourier transform of I(t) at frequency fŽ," -
fQ, by I,, we can show the variance (ItI,) to be propor-
tional to

6X(O) = 1/4 + ¼[(&mt(L)&(L)) + (&1t(L)&7 (L))

+ (&(L)&47 (L))exp(2i6Lo)

+ (&it(L)&t(L))exp-2i0Lo)], (4.2)

where we have assumed time stationarity and thus omit-
ted the time variable. We shall refer to X'(0) as the nor-
malized quadrature noise. X(0) can be shown to be
dependent only on the difference between the phases of the
pump and the LO, which we denote as 0; i.e., _ OLO - O.
When the modes {&m(L)} are in their vacuum states,
the value of 8X'(0) will be 1/4, giving the usual shot-noise
level. On the other hand, when the modes {&m(L)} are in
squeezed-vacuum states, the value of 5X(0) can fall below
1/4 for some value of . Since the c-number variables
have been obtained by normal ordering, their correlations
directly give the normally ordered operator correlations in
Eq. (4.2);

For each set of experimental parameters the value of
3X'(0) can always be minimized for a particular value of
0 to yield the maximum amount of squeezing. This
particular value of 0 will be denoted as min. If we fur-
ther denote the percentage of maximum squeezing by
9' x 100%, then

9 _ 1 - 48X(Omin)- (4.3)

Moreover, if 0 is changed to 0 + r/2, the photocurrent
noise is maximized; i.e., the maximally desqueezed
quadrature is observed instead of the maximally squeezed
quadrature. This maximum noise is also a quantity that
can be observed experimentally. It can be expressed in
terms of the percentage of photocurrent-noise enhance-
ment over the shot-noise level. Denoting the percentage
of maximum noise enhancement by X x 100%1o, we get

X 4X 10(min + r/2) - 1. (4.4)

To calculate X(0), we need the various correlations of
at(L), which can be obtained by using Eqs. (3.4), (3.5),
(3.11), and (3.12). To illustrate the method, consider the
correlation (am(L)&A(L)). From Eqs. (3.4), (3.5), (3.11), and
(3.12), we see that it contains a term of the form

(J dZ'| dZ"T,,(L - Z')G (Z')Th(L -Z)Gm(Z

rL rL

x exp(-ik,,,L) = f dZ' f dZ"T,,(L - Z')Th(L - Z")

x exp(i8k,,,Z/2 + ik 1 Z/2)(lm(Z)(Z))
• exp(-i~k,,,L)

CL

= Rexp(-2iO)exp(-ikmsL) J dZ'T(L - Z')T(L -Z')

(4.5)

which is easily evaluated because the integral f dZ' X
L(Z - Z)Lw, (Z - Z') involves only exponential functions
[see Eq. (3.13)]. The other terms in (a(L)a,7 (L)) and the
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remaining correlations entering Eq. (4.2) can be calcu-
lated in a similar manner. We note that many correla-
tions, such as (Gm(Z')G (Z")), are zero, which simplifies
the calculations somewhat. The results can be summa-
rized as follows:

(ain+(L)ain(L)) = AIT.m*Tm + Rm*exp(2i0p)IT-ua

+ AFIua.ua + Riexp(-2iOp)Iufi*T.,
(4.6)

(aa+(L)ar.(L)) = AhITA-Th + R *exp(2i0p)ITmum

+ AiIU.*u. + Rinexp(-2ip)Ium*,T,
(4.7)

(a.(L)ar.(L)) = exp(-iknsL)[Rinexp(-2ip)ITmrT

+ AiITmUm + Rm*exp(2i0,)Iumum

+ A mIU'hTJX (4.8)

(a.+(L)ah+(L)) = exp(ik 8 L)[R *exp(2iO)IT.-TmF

+ AITm*um + Riexp(-2i0p)I',*um*

+ A&IU-*T*]X (4.9)

where

ITm T~j dZT(Z)Trh(Z)X (4.10)

ITm Ur-| dZTm(Z)Um(Z) (4.11)

etc. From Eqs. (2.8), (2.9), (3.13), and (3.14), we note that
U,, is proportional to exp(-2iOp), while Tm is independent
of Op. Thus it is clear that (ain(L)aAm(L)) oc exp(-2iOp) and
(a.+(L)a,,(L)) is independent of 0,. This shows that X'
is indeed dependent only on 0, as was mentioned above.

By explicitly evaluating the integrals in Eqs. (4.6)-(4.9),
we obtain

ITm*Tm = Qm*Qm(U+ + U- - A+-A-)
+ Qm*(-Um+ + Um- + A+ - Am-)
+ Q (-U,+ + Um -A+ + A,-)

+ (Um+ + U,, + A,,,+ + Am), (4.12)

TmT = QmQm(Um+ + U- - A.+ -Am)
+ Qh(-U.+ + Um- + A+ - Am-)
+ Q,(-U.+ + Um - Am+ + Am-)
+ (Um+ + Um_ + A+ + Am), (4.13)

with

U.= 1 - exp(-A.+L)
4A.+

1 - exp(-A.-L)
Uin- = I

1 - exp(-am+L)
1 - 4am+

A-=1 - exp - a- L)
=~~a.

(4.18)

(4.19)

(4.20)

(4.21)

and

,,+ = 2SRm + 2WRm, 

,Ci- = 2SR - 2WR- X

a.+ = 2 SR. + 2iW1.,

am = 2 SR. - 2iW1.,

(4.22)

(4.23)

(4.24)

(4.25)

where SR, WRm, and WI, are defined in Eqs. (3.15) and
(3.17). The remaining integrals can be obtained from
those given in Eqs. (4.12)-(4.17) by complex conjugation.
For example, ITm,*Tm* is just the complex conjugate of ITTm.

The final expression for aX'(0) turns out to be dependent
on the medium length by the dimensionless quantity aaL,
which is the length of the medium normalized by the line-
center absorption length 1/aa. For convenience, in the
following we shall denote aaL by La.

5. SHORT-MEDIUM LIMIT

We have seen in Section 4 that the analytic solution for the
quadrature-noise variance is rather complicated. Never-
theless, important information as to where one may find
squeezing can be obtained by studying the simple case of a
short medium, i.e., the case with La << 1. In this limit
the solution, as given through Eqs. (3.11) and (3.12), of the
coupled-mode equations (3.1) and (3.2) is simplified a
great deal, yielding

a.(L, t) = 5Rma.(O, t)L + -maa'(0, t)L + Fm(0, t)L. (5.1)

When the input beams are all in their vacuum states, the
correlations among

Tm*Um = Qm*(Xm/W) (U.+ + Um - A,+ -A-)

+ X.(-U. + U - A,+ + Am-),
W.

IThUm = Qh ±(U.+ + U.- -Am+ -Am)

+ X(U + + Um-Am+ + An),
W'.

IUm*Um = n (Ui+ + U - A,.- )
winW.

will all be zero. This is because we are working with
normally ordered c-number variables. The correla-

(4.14) tions among {a..(L, t), aa+(L, t)} will then depend only on
the correlations among the Langevin forces {f(Z = 0),
Frh+(Z = 0)}. In this case Eqs. (5.1) and (4.2) give

(4.15)
1 L 2

3X'(0) = -+ -[A,, + A + Ri..lexp(ickRi)exp(i20)
4 4

+ RIexp(-i4kRi)exp(-i20)],
(4.16)

(5.2)

which tells us that 5X'(0) can be minimized by choosing
0 = Omin, where

(4.17)
Omin = (-R + )/ 2 ; (5.3)
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this step leads to the following minimum quadrature
noise:

X'(0m,) = (1 L2
axlomi) =- + -(Am + A,7, - 2R,,I).

4 4
(5.4)

The quadrature noise 3X'(0min) will fall below the clas-
sical value of 1/4 only if the term (Am + A, - 2RI) is
negative. The condition for observing squeezing in a short
medium is thus

A + Am - 2Rm < 0. (5.5)

A. Degenerate Case
In the degenerate-frequency limit (i.e., m = 0), without
consideration of the atomic collisions (F = 1), Eqs. (2.24)-
(2.31) reduce to

A = a/3
2 [ 4/3

2
+ (34/2)] (5.6)

8(1 + AP,2)3S 3

RRO 8 a, 2 [4 + ( /2) -12AP2] (5.7)

R - a1, 2 [12A - 4Ap,3 ] (5.8)
8(1 + AP,2)3 S3

Furthermore, when , >> 1 and Ap >> 1, the short-medium
squeezing condition A,2 < RI0 + RRo2 [inequality (5.5)
with m = 0] will be satisfied if

4A,6 > 3 4 AP,2 + /36. (5.9)

Equality prevails in (5.9) when AP = +,, which implies
that inequality (5.9) can be reduced to

IAPI > ,B.

(-aa, 2) [12A, - 4p 3 + 3. 2A p(7 - QR ) + am AP]

2D(3m) F=1

(5.12)

RR. =

(-aa3 2)[4 + (4 /2) - 12Ap2 + 32(5 - 3 2) + 6in4]

2D(5.) IF=1

(5.13)

where D(3m) is given by Eq. (2.31). Once again, by evalu-
ating inequality (5.5) in the limit where /3 > AP >> 1 and
Sm << (3, we get

6. 4Am,2AR 4 + M2[(8Ap4 - 3 4 )AR2
- /6]

> 4AP,2(33 4
- 4AP4 ) + 4,36, (5.14)

which is the condition for observing squeezing in a short
medium at nondegenerate frequencies. The above in-
equality can be further simplified in the following two
cases. The first is when /3 is just above the critical value
f3,; i.e., /3 2 Apl. In this case inequality (5.5) can be met
with S. < 1, enabling us to neglect the 8m4 term in
Eq. (5.14) to give

4A, 2(334 - 4 4) + 46
(8Ap - 3 4)AR 2 - P36

4A 2(3/34 - 4P 4) + 46
9/36

(5.15)

Second, when /32 >> 3AP2, terms of order Ap2 in inequal-
ity (5.14) become negligible compared with terms of order
/32. In this case inequality (5.14) reduces to

- 3m2~ p > 4--
iAP 2 AP2

(5.10)

Defining /3, IApI, the above discussion tells us that if the
pump intensity exceeds a certain value so that /3 > 3,
then there will be no squeezing at the degenerate fre-
quency. Physically this is caused by the deteriorating
effect of spontaneous emission by the atoms when they
become highly excited.4 Since at a detuning AP inten-
sity saturation of the absorption coefficient occurs for
/32 > 2Ap,2, we conclude that for squeezing to be observed
at the degenerate frequency, intensity saturation of the
atomic absorption must be avoided. Such is not the case
at nondegenerate frequencies, as is shown in Subsec-
tion 8.D below.

Spontaneously emitted light has a frequency width that
is of the order of Yii. Thus, although there is no squeez-
ing at Sm = 0 when /3 > 3,, one may still expect to see
squeezing if the photocurrent noise is observed at a fre-
quency far enough from zero. This brings us to consider
the nondegenerate-frequency case.

B. Nondegenerate Case
From Eqs. (2.24)-(2.31), at nondegenerate frequencies
with F = 1, one has

(5.16)

Furthermore, by solving for a.2 with the above inequality
replaced by an equality, we can show that under the condi-
tion that ,l32 2 3Ap 2, inequality (5.16) becomes

3.2 > 4.
AP

(5.17)

We define 5,2 (3,,> 0) to be equal to the right-hand side of
inequality (5.15) or (5.17), whichever is relevant. The
above derivation then tells us that with 3 > 3C, squeezing
can always be observed if one looks at a frequency far
enough from degeneracy that 8m > 3,.

The two quantities, ,, and ,, tell everything that we
want to know about the possibility of observing squeezing
in a short medium. In order to achieve a large amount of
squeezing, however, it is still necessary to go to the limit
of a long medium. When there is no squeezing in the
short-medium limit, there will never be any squeezing in
a long medium either. Hence, despite some other compli-
cations that arise in the case of a long medium, the discus-
sion here provides some simple rules of thumb to follow in
order to find regions where one may or may never see
squeezing.

Am = Am

( a/3 2)[4/32 + (34/2) + am 232]

2D(53n) I F=1

6. INFINITELY LONG MEDIUM LIMIT

(5.11) Before considering the more realistic case of a long, but
(5.11) finite, medium, let us first look at the simpler behavior of
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an infinitely long medium for which L -- o. Although
this case is physically unrealistic, important insights can
be obtained by analyzing this limit. We shall make com-
parisons with the results of the degenerate theory of Reid
and Walls,4 which also assumes an infinitely long medium.
For simplicity, we shall neglect Doppler broadening and
Gaussian-intensity variation, deferring their discussion
until Section 7.

What happens when L -o? In this limit the factors
Um+, A,+, and Am_ in X1(0) achieve some finite values
[see Eqs. (4.18)-(4.21)]. However, as noted by Reid and
Walls,4 the factor U,- of Eq. (4.19) can become unbounded.
Such would be the case if pu- were negative or, from
Eq. (4.23), if SR < WR,. In this situation squeezing
could occur only at those phase angles 0 at which all the
exponentially unbounded terms in X1(0) somehow cancel
one another.

To examine conditions under which such a cancellation
occurs, we decompose X1(0) of Eq. (4.2) into one part
6E(0) that depends on exp(- mL) and another part AN(0)
that does not. We can then write

3X'(0) = AN(0) + E(O), (6.1)

with

8E(0) _ [ER, + Ecinexp(2i - iksL)

+ Ecn*exp(-2i0 + ikm'L)]exp(-Am-L), (6.2)

where ER, is real, Ec. is complex, and both ERm and Ecm
are independent of 0. In order for the potentially grow-
ing part E(0) to vanish, Eq. (6.2) tells us that 0 must be
chosen according to

0 = [cos'V(;) -O'ECm + k,'L]/2, (6.3)
where

= - ER.n (6.4)
2JEc.1

and we have defined Ec, - IEcinlexp(ikEcm). The arc-
cosine term in Eq. (6.3), however, has a real value only if

I~ml • 1. (6.5)

In other words, E(0) can be zero only if inequality (6.5) is
satisfied. Thus, for stability in the growth of noise as
L o, we have two conditions of concern. We call the
condition

Am- > (6.6)

the stability-rate condition and that of Eq. (6.5) the
stability-phase condition. The above analysis tells us that
when the stability-rate condition is violated, there will be
an unstable growth of noise for all values of 0, with the
possible exception of one (two) particular value(s) that
would exist if the stability-phase condition were also satis-
fied with equality (inequality). Physically, the infinite
noise growth in some phase quadrature occurs because of
our assumption that the pump beam is not depleted. As a
result, if the loss SR. is low, in the L cc limit the pump
beam can dump an infinite amount of energy into some
quadrature of the probe beams. This could occur through
either parametric amplification or spontaneous emission.

A. Degenerate Case without Atomic Collisions
We first apply the above results to the degenerate-
frequency case with the assumption that there are no
atomic collisions (i.e., m = 0 and F = 1), for comparison
with the degenerate theory of Reid and Walls.4 At the
end of this subsection we shall examine the ideal-noise
limit where the pump beam is detuned far from the
atomic resonance. We shall also discuss the effect of
pump-probe phase mismatch, which was not accounted
for in the theory given by Reid and Walls.4

In this simple degenerate-frequency case, the various
coefficients and correlations given by Eqs. (2.8)-(2.18) and
(2.24)-(2.31) reduce to

a(1 + iA,)

S (1 + AP 2
)

2(1 - iA p)S
2 (1 + AP,2)

/32

2(1 + AP2)

(6.7)

(6.8)

(6.9)

with AO, RRO, and RIO as in Eqs. (5.6)-(5.8). We note that
the above coefficients are slightly different from those
given by Reid and Walls.4 This is because of some extra
terms that arise in the expressions for ZO and XO in our
single-beam geometry, which are otherwise negligible in
the usual four-wave mixing geometry because of phase
mismatching (see Ref. 2).

It can be shown that in the degenerate-frequency limit,
where Ri = Rh and X, = Xa, Qm of Eq. (3.16) becomes
purely imaginary. Furthermore, we have verified by an
explicit algebraic calculation that whenever Q. becomes
imaginary the stability-phase condition (6.5) is satisfied
with equality. This implies that in the degenerate-
frequency limit there exists only one value of 0 for which
the exponentially growing part in Eq. (6.1) can be nulled.
However, as one detunes away from degeneracy, the loss
coefficients iRi and Ra become unequal, imparting a real
part to Q,. Numerical evaluation then shows that the
stability-phase condition is violated as one detunes ever so
slightly from degeneracy. Therefore, near the degenerate
frequency, the region where the stability-phase condition
can be satisfied is a line of measure zero in the parameter
space. As we shall point out below, at nondegenerate fre-
quencies there is another line of measure zero where the
stability-phase condition can be satisfied.

In the degenerate-frequency limit we can show that
OEco = kg. Thus the stability-phase condition, Eq. (6.3),
becomes

20 = cosN1(-1) - k0 + ko0 L

= v - k01 + kosL. (6.10)

This implies that, if the stability-rate condition is violated
so that U0 of Eq. (4.19) becomes unbounded, then for
squeezing to be achieved the value of Omin must be given by

Omin = ( - I, + kosL)/2. (6.11)

Furthermore, to compare our results with those of Reid
and Walls,4 where the pump-probe phase mismatch is not
considered, we arbitrarily set kos = 0. The above ex-
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pression for Omin then agrees with the statement of Reid
and Walls that cos(20min) = -XRo/IXo. Moreover, the
stability-rate condition is violated only when ,2 exceeds a
certain value, which from Eqs. (3.15), (3.17), (4.23), and
(6.7)-(6.9) and inequality (6.6) is given by

/32 > 2(1 + AP2)1/2. (6.12)

When that happens, the following expression for the
minimum-phase quadrature noise (with 5km' = 0) is easily
obtained:

AX(Omin) = + I I I _ IX * (6.13)4 + 41IolCRo + I oI)

On the other hand, when the stability-rate condition is
satisfied the minimum-phase quadrature noise is not nec-
essarily given by the above equation, because min no
longer obeys the simple expression of Eq. (6.11). In this
case we resort to numerical methods to find the value of
3X(Omin)-

We note that min of Eq. (6.11) is different from that
given by Eq. (5.3) for the short-medium limit. This is be-
cause Xo is generally different from Ro close to the atomic
resonance. So, when the stability-rate condition is vio-
lated, the squeezing behavior as L -X oo can, in general, be
quite different from that exhibited in the short-medium
limit. In particular, the range of ,3 values with squeezing
in the long-medium limit may be smaller than that in the
short-medium limit. However, Xo can approach R0, as it
does in the ideal-noise situation described below.

The ideal-noise situation occurs when the atom-field in-
teraction can be described by a simple quadratic Hamilto-
nian with the inclusion of an ideal-loss mechanism, as
discussed by Kumar and Shapiro.' In the c-number-
variable formulation here, one approaches the ideal-noise
situation when the following two conditions are satis-
fied: Ro = iRjo = X0 and Aol << IRol. If we consider
the region where IApI > 3 and > 3, then these two con-
ditions can be satisfied with 2Ap2 > 2 and IAP31 > /34/8.
As correctly pointed out by Reid and Walls,4 outside the
ideal-noise region the dominant noise that reduces squeez-
ing is that from spontaneous emission and not the back-
action noise caused by the presence of loss. In the
ideal-noise region, Eq. (6.13) simplifies to

4X1 (Omin) = 1 - o
4 4&~Ro + Iol)

called the squeezing-intensity plot. Below, we shall often
compare and contrast two situations, one in which the
pump-probe phase mismatch is considered and another in
which the pump-probe phase mismatch is arbitrarily set
to zero. These two situations will be referred to as the
3k o • 0 and ko = 0 cases, respectively.

In Fig. 2 we show some squeezing-intensity plots with
AP = 100 and an infinite L. In curve A 3ko = 0, while in
curve B the pump-probe phase mismatch ko is taken into
account. Both are for the collisionless limit of F = 1.
Since the short-medium parameter /3, = 100 for Ap = 100,
squeezing will exist all the way up to /3 = 100 in the short-
medium limit. Looking at the regions of squeezing for
curves A and B, however, we see that the range of 3
values for which squeezing occurs is greatly reduced when
L -> oo. Moreover, comparing curve A with B, we find that,
although the maximum amount of achievable squeezing is
larger for the 3ko = 0 case, the range of 3 values for which
squeezing occurs is actually larger for the ko • 0 case.

The rason for the above increase in range is that the
stability-rate condition is better satisfied for the ko 0
case because k o 0 makes WRO smaller [see Eq. (3.17)].
To confirm this observation, in Fig. 3 we plot uo-/laa as a
function of /3 for the two cases being compared. We see
that the stability-rate condition is satisfied (i.e., Au_ > 0)
only for /3 < 14 in the ko = 0 case (curve A), whereas
it is satisfied over the entire range 0 5 3 < 100 for the
3k o • 0 case (curve B). The crossover value of 14 for
curve A is as predicted by inequality (6.12). Since, when
the stability-rate condition is satisfied, X(Omin) is not
necessarily given by Eq. (6.13), the ordinate values for
curve A in the 3 < 14 region and those for the entire
curve B were computed numerically by varying 0 itera-
tively in order to minimize X1(0). In this computation,
we made La increasingly large to obtain the L -X oo limit.

It is interesting to note that for the parameters con-
sidered here the relatively lossless and the ideal-noise
conditions are satisfied for 14.1 < 3 < 53.2, which approxi-
mately covers the entire region where good squeezing
occurs in both the 3ko = 0 and 3k o • 0 cases (see curves A
and B in Fig. 2).

1.2

1.0

(6.14)

The effect of loss on squeezing can be divided into a
relatively lossy region and a relatively lossless region.
In fact, the stability-rate condition provides a convenient
way to make this division because it is satisfied only when
the medium is relatively lossy (and vice versa). From
Eq. (6.12) we then find that the atomic medium is rela-
tively lossy when /32 < 21Al. As pointed out by Kumar
and Shapiro,' in this region the amount of squeezing is
basically limited by the ratio IXI0/1Ro, which can also be
seen from Eq. (6.14). Thus we can expect to achieve good
squeezing when both the ideal-noise condition and the
relatively lossless condition are satisfied.

We now illustrate the above discussion with some exam-
ples that plot the amount of squeezing 9. A convenient
format is to plot 1 - 9 as a function of 3, which will be

0.8

Uc
0.6

0.4

0.2

o.oL
0 20 40 60 80 100

le

Fig. 2. Squeezing-intensity plots for degenerate infinite-medium
case with and without 8ko = 0 (curves A versus B) and with and
without collisions (curves C versus A and D versus B). Curve A,
AP = 100, ko = 0, and F = 1; curve B, Ap = 100, k o • 0, and
F = 1; curve C, same as curve A but with F = 0.5; curve D, same
as B but with F = 0.5.
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Fig. 3. Stability-rate condition. Curves A and B are for the
parameters corresponding to curves A and B, respectively,
of Fig. 2.

B. Degenerate Case with Atomic Collisions
What happens when we include atomic collisions, i.e.,
when the value of F is below unity? Since the dimension-
less quantities /32, La, and A, are proportional to l/-yj,
they scale with F In other words, with collisions, /32, La,
and AP will achieve the same values as those without colli-
sions only if the physical values for the pump intensity, the
medium length, and the pump-frequency detuning, re-
spectively, are correspondingly increased. The higher
pump intensity and the longer medium required would
thus make the occurrence of squeezing more difficult in
general. Moreover, the noise correlations depend explic-
itly on F, even when they are expressed in terms of the
normalized parameters. This added dependence on F
gives additional effects that are due to collisions.

To see the effect of collisions on squeezing, we varied
the value of F and kept the other normalized parameters
constant. For example, curves C and D in Fig. 2 are plot-
ted with the same parameters as are curves A and B, re-
spectively, but with F = 0.5. Comparing the two sets of
curves, we see that the amount and the region of squeez-
ing are drastically reduced as F decreases from 1 to 0.5.
Thus atomic collisions can be detrimental to squeezing in
the degenerate-frequency limit.4 '9

C. Nondegenerate Case
Are there regions where the stability-phase condition can
be satisfied at nondegenerate frequencies? Because of the
algebraic complexity of the nondegenerate-frequency case,
we have resorted to numerical computations to locate such
regions. To illustrate the amount of squeezing at non-
degenerate frequencies, i.e., to obtain the squeezing spec-
trum, it is convenient to plot 1 - $ as a function of the
probe-frequency detuning 3a. In order to compute 9,
we need to know O9min at each 3a. There is, in general,
no simple analytic formula for Omin. Instead we obtain
the value of 3X1(Omin) by varying 0 iteratively to minimize
3X'(0). Below we shall compare the 3k, = 0 and the
3km • 0 cases in order to see the effect of the pump-probe

phase mismatch. The effect of collisions will be consid-
ered in Section 8.

Figure 4 shows some squeezing spectra obtained with
AP = 100, /3 = 40, F = 1, and an infinite L. Curve A is

with 5km = 0, while curve B shows the result with 3km 0.
The former basically consists of three sharp dips, one at
zero frequency, another at a frequency between zero and
AR (specifically, 3m = 7.18), and the third at the general-
ized Rabi frequency AR = 107.7. The first two dips are
really just points of measure zero. The third dip, how-
ever, has a finite width of -0.25 as measured at the shot-
noise level. For clarity, in the inset we have shown a
magnified version of this third dip.

The reason for the first two dips is apparently different
from that for the third. Further numerical computation
shows that the stability-phase condition is satisfied with
equality at the first two dips in curve A. Satisfaction of
the stability-phase condition can be tied to Qm's becoming
purely imaginary at the first dip and zero at the second.
As mentioned in Subsection 6.A, when Qm is zero or
purely imaginary the stability-phase condition can be ex-
plicitly shown to be satisfied with equality. The stability-
rate condition, however, is violated near the first two
dips, explaining why these dips are of measure zero. It
turns out that, although the stability-phase condition is
violated at the third dip, the stability-rate condition is sat-
isfied there. In fact, in curve A the only place where the
stability-rate condition is satisfied is a region of approxi-
mate width 0.35 near the third dip. This explains why
the third dip is of nonzero width. It is interesting to
note that the position of the second dip usually increases
with increasing ,3. For example, the second dip shifts to

m = 25 for / = 100. We have also seen the second dip
move toward S. = 0 and ultimately disappear when /3 is
decreased. The position of the third dip, of course, also
shifts with / as the Rabi frequency is / dependent.

In Fig. 4, curve B, which shows the squeezing spectrum
with the pump-probe phase mismatch included, is charac-
terized by an unbounded region between 3im = 2.5 and
8 = 42.5. Outside this region we obtain a broad region
with squeezing. Once again, further numerical computa-
tion shows that the stability-phase condition for curve B is
violated everywhere except at the zero frequency. We
find that with nonzero pump-probe phase mismatch there
is no particular probe frequency where Q. becomes either
zero or purely imaginary. This may be the reason for the
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Fig. 4. Squeezing spectra for nondegenerate infinite-medium
case, with and without 8kr. = 0 (curve A versus B). For curve A,
AP = 100, 63 = 40, 3km = 0, and F = 1; curve B, same as curve A
except 8km • 0; inset, the region around the third dip, i.e., around
S. = 107.7 of curve A, is enlarged.
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Fig. 5. Squeezing-intensity plots at the degenerate frequency for
a finite medium with and without ko = 0 (curves A, B, and C
versus D, E, and F). Curve A, A, = 100, Sko = 0, F = 1, and
La = 50; curve B, same as curve A but La = 4000; curve C, same
as curve A but La = °°; curve D, A, = 100, k o X 0, F = 1, and
La = 4000; curve E, same as curve D but La = 20,000; curve F,
same as curve D but La = .

impossibility of satisfying the stability-phase condition.
Despite the fact that the stability-phase condition is worse
in curve B than in curve A, it turns out that the stability-
rate condition is better. In fact, the latter is violated only
within the unbounded region of curve B. This explains
why in curve B there is a broad range of 8 m values where
squeezing exists. Furthermore, the reason for the better
stability-rate condition for curve B is the same as that
quoted for the km • 0 case in Subsection 6.A.

7. SQUEEZING IN A LONG
MEDIUM: DEGENERATE CASE

In this section we consider squeezing at the degenerate
frequency in a long but finite medium of length La. We
shall not discuss the effect of collisions, which was treated
in Section 6. Instead we shall consider the effects of
Doppler broadening in the atomic medium and Gaussian-
intensity variation of the pump beam.

A. Simple Degenerate Case
We first explore the simplest case, in which the effects of
collisions, Doppler broadening, and Gaussian-intensity
variation are ignored. Figure 5 shows some squeezing-
intensity plots for different values of La with A = 100
and F = 1. These plots with different La values enable us
to see how the transition from a short to a long medium
takes place.

Curves A, B, and C are plotted in Fig. 5 with ko = 0
and La set equal to 0.OOAp2, 0.4Ap2, and Xo, respectively.
We see that the squeezing curves quickly approach the
infinite-medium curve C as La becomes large compared
with AP2. Such behavior is expected, since Eqs. (3.15) and
(6.7) tell us that when La > A 2 (with IApI > 1 and
,2 < 2Ap2), SROL becomes large compared with unity,
causing Um+, Ur-, Am+, and Am to approach their infinite-
medium values.

In curves D, E, and F of Fig. 5 we include the effect of
pump-probe phase mismatch, i.e., ko • 0 and La is set
equal to 0.4Ap2, 2Ap2, and Xo, respectively. La = 0.4Ap2

happens to give the maximum amount of squeezing,
which is not obtained with an infinite La, as is the case
when ko = 0. Thus we find that with the pump-probe
phase mismatch included, there is an La value that opti-
mizes the maximum amount of squeezing. Below, we
shall refer to such La value as Lopt. Moreover, comparing
curve D with C, we see that the maximum amount of
squeezing achievable with the inclusion of the pump-
probe phase mismatch is only slightly less than that for
the case when it is ignored.

We further note that curve A of Fig. 5 really illustrates
the case of a short medium, showing squeezing all the way
up to 3 = /3 = 100, with p3 as defined below inequality
(5.10). In this short-medium limit the squeezing-intensity
curve is insensitive to inclusion of the pump-probe phase
mismatch. Also, when La is optimally chosen with
8ko 0 (curve D), squeezing occurs all the way up to
/3 = 100, which is, surprisingly, as wide as the region of
squeezing in the short-medium limit.

B. Dependence on Pump Detuning
To see how the maximum amount of achievable squeezing
increases with the pump-frequency detuning, we show
some squeezing-intensity plots for different values of AP.
Curves A, B, C, and D of Fig. 6 are plotted with F = 1,
8ko = 0, and La = x and the pump detuning AP set equal
to 0, 10, 100, 1000, respectively. We find that in order to
achieve more than 70% squeezing at the degenerate fre-
quency, one must have A, larger than 100.

C. Effect of Doppler Broadening
Doppler broadening exists if one uses an atomic vapor in-
stead of an atomic beam as the interaction medium. Its
effect can be included by integrating XO, 70, A0 , and Ro
over different resonance frequencies of the moving atoms.
The procedure for doing the integrations is detailed in
Appendix A. The normalized Doppler half-width, defined
in Appendix A, will be denoted by Adh. It is related to
the Doppler FWHM AFWHM by Adhw = 0. 6 AFWHM. The
pump detuning AP is to be replaced by Ap,, which describes
the normalized detuning of the pump frequency from the
center of the Doppler-frequency distribution.
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Fig. 6. Squeezing-intensity plots at the degenerate frequency for
a finite medium with different values of A,. Curve A, A, = 0,
8ko = 0, F = 1, and La = xc; curve B, same as curve A but A =
10; curve C, same as curve A but A, = 100; curve D, same as
curve A but A = 1000.
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Fig. 7. Squeezing-intensity plots at the degenerate frequency for
a finite medium with varied Doppler width (curves A, B, and C).
The effect of Gaussian-intensity variation is illustrated by
curve D, which should be compared with curve A (the uniform-
intensity case). Curve A, A, = 100, 8ko = 0, F = 1, La = 4000,
and AdhW = 0; curve B, same as curve A but Adhw = 0.33A,;
curve C, same as curve A but Adhw = 0.SOA,; curve D, same as
curve A but with the Gaussian-intensity variation included so
that the horizontal axis should be interpreted as 1,k.

Figure 7 shows some squeezing-intensity plots with
A, = 100, La = 4000 = 0.4Aps2 , F = 1, and the pump-
probe phase mismatch included. Curves A, B, and C are
plotted with the Doppler widths AdhW set equal to 0,
0.331JApl, and 0.SIApj, respectively. We see that curve B is
close to the Doppler-free case illustrated by curve A. In
other words, the effect of Doppler broadening becomes
negligible when the pump is detuned by more than three
Doppler half-widths, i.e., Apj > 3Adhw.

D. Effect of Gaussian-Intensity Variation
Gaussian-intensity variation of the laser beam gives rise to
a nonuniform excitation of the atoms across the pump
beam. As discussed in Appendix B, the effect of Gaussian-
intensity variation can be taken into account similarly to
the effect of Doppler broadening by integrating the vari-
ous coefficients and noise correlations over the variation
in the pump-beam intensity seen by the different atoms.
In this treatment the probe beams are assumed to have
the same Gaussian intensity profile as the pump beam.
When the Gaussian-intensity variation is included, the
parameter 3 is replaced by /pk which is defined in terms
of the peak intensity of the Gaussian-intensity profile (see
Appendix B). Furthermore, in this paper we assume that
Bkm8 does not depend upon the transverse position across
the beam. As is explained in Appendix B, this amounts to
neglecting the effect of self focusing or defocusing, a pre-
liminary account of which is presented in Section 9.

As an illustration of the effect of Gaussian-intensity
variation, curve D of Fig. 7 is plotted with the same
parameters as curve A but with the Gaussian-intensity
variation included. The horizontal axis of curve D is to
be taken as pk. Comparing curve D with the uniform-
intensity case depicted by curve A, we see that in the ideal-
noise region where /pk is small the amount of squeezing
for curve D at a particular /pk value is the same as that
for curve A at 3 0.7 h. One can thus take the effec-
tive intensity of the Gaussian beam to be approximately
0.5 times its peak value and estimate the amount of

squeezing from the uniform-intensity case. However, in
the region where 3,,k is large (violating the ideal-noise con-
dition IA,13 > /,k 4/8), so that the effect of spontaneous
emission dominates, such a simple effective-intensity for-
mula does not succeed. This is because when /,k is large
the atoms that see a higher intensity may actually gener-
ate less squeezing than those that see a lower intensity.

8. SQUEEZING IN A LONG
MEDIUM: NONDEGENERATE CASE

In this section we consider squeezing at nondegenerate
frequencies in a long but finite medium of length La. We
shall comprehensively discuss the effects of collisions,
pump-probe phase mismatch, Doppler broadening in the
atomic medium, and Gaussian-intensity variation of the
pump beam.

A. Simple Nondegenerate Case
We start by exploring the simplest case, in which the
effects of pump-probe phase mismatch, collisions, Doppler
broadening, and Gaussian-intensity variation are ne-
glected. Figure 8 shows some squeezing spectra for dif-
ferent values of La with AP = 100, F =1, and = 40.
Plots of this kind with different values of La allow us to
see how the transition from a short to a long medium
takes place.

Curves A, B, C, D, and E are plotted with La equal to
2, .00A 2 0.1A2 0 3A 2

0.0001Ap2, 0.001Ap2, 0.O1Ap,, .3A, and 0.6Ap2, respec-
tively. The La = 0.0001Ap2 case describes the squeezing
spectrum of a short medium; it agrees with the squeezing
spectrum of resonance fluorescence given in Ref. 10.
The short-medium squeezing spectrum is characterized
by a single dip at the generalized Rabi frequency AR. As
La increases, the amount of squeezing at the generalized
Rabi frequency stays at the same value while the amounts
between m = 0 and 3m = AR fall below it. When La >
0.3Ap2, the squeezing spectrum begins to approach that
for an infinitely long medium characterized by three dips.
The formation of these three dips is already apparent in
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Fig. 8. Squeezing spectra for a finite medium of various lengths
La when the effects of collisions, pump-probe phase mismatch,
Doppler broadening, and Gaussian-intensity variation are ig-
nored. Curve A, A, = 100, 6 = 40, 8km = 0, F = 1, and La = 1;
curve B, same as curve A but La = 10; curve C, same as curve A
but La = 100; curve D, same as curve A but La = 3000; curve E,
same as curve A but La = 6000.
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Fig. 9. Squeezing spectra for a finite medium with different val-
ues of A, when the effects of collisions, pump-probe phase mis-
match, Doppler broadening, and Gaussian-intensity variation are
ignored. Curve A, A, = 10, = 15, La = 100, 8km = 0, and
F = 1; curve B, same as curve A but A, = 100, / = 50, and
La = 2000; curve C, same as curve A but A, = 1000, / = 500,
and La = 50,000.

curve E. The maximum amount of squeezing in curve E
is achieved at the second dip and the value is quite close to
that for an infinitely long medium.

B. Dependence on Pump Detuning
To illustrate how the amount of squeezing at nondegen-
erate frequencies increases with the pump-frequency de-
tuning, in Fig. 9 we show some squeezing spectra for
different values of AP with F = 1 and (3km = 0. Curves A,
B, and C are plotted with A = 10, / = 15, La = 100,
A = 100, / = 50, La = 2000, and A = 1000, / = 500,
La = 50,000, respectively. The value of La in each case is
chosen to obtain a broadband region of large squeezing.
The maximum amount of squeezing would increase fur-
ther with /; we picked a particular value in each case just
for the purpose of illustration. It is clear that greater
than 60% squeezing can be obtained with A > 10. As
compared with squeezing at the degenerate frequency
(Figs. 5 and 6), we see that at nondegenerate frequencies
the same maximum squeezing can be achieved with a
smaller pump-frequency detuning.

C. Effect of Pump-Probe Phase Mismatch
What happens when we take into account the pump-probe
phase mismatch? To demonstrate the effect, in Fig. 10
we show some squeezing spectra with the same Ap, F and
,/ values as those in Fig. 8 but including pump-probe
phase mismatch in their calculation. In Fig. 10 curves A,
B, C, and D are plotted with La set equal to .OOO1Ap2,
0.O1Ap2, 0.3Ap2, and A 2, respectively. Comparing curve B
of Fig. 10 with curve C of Fig. 8, we see that the inclusion
of pump-probe phase mismatch leads to a series of wiggles
in the squeezing spectra near the generalized Rabi fre-
quency. In fact, further numerical computation shows
that the wiggle period corresponds to a change in the
value of (km 8L by 2r. The wiggles appear near the gener-
alized Rabi frequency because there the value of (kmL
changes extremely rapidly.

Parameters for curve C in Fig. 10 happen to give ap-
proximately the maximum amount of squeezing. Again,

we find that the maximum is obtained at a finite medium
length when km 0. Furthermore, comparing curve C
of Fig. 10 with curve E of Fig. 8, we see that the maxi-
mum amount of squeezing achievable with km 0 is not
greatly different from that with (3km = 0. Curve C of
Fig. 10 also shows that the range of (3m values for which
squeezing occurs can be larger with 3km 0 than with
(km = 0. The reason for this larger range is the same as
that discussed in Subsection 6.C.

D. Effect of Increased Pump Intensity
What happens as we change the pump intensity? To ilus-
trate the effect, Fig. 11 shows squeezing spectra for
different values of 3 with AP = 100, F = 1, and km 0.
Curves A, B, and C are plotted with = 0.4Ap, A, and
2Ap, respectively, and La = 3000, which approximately
maximizes the amount of squeezing in each case (i.e.,
La Lpt with Lopt as defined in Subsection A). We find
that as 3 becomes larger than AP the region of squeezing
suddenly broadens. This broadening is apparently due to
a sudden shift in the generalized Rabi frequency to a
higher value, as the pump intensity crosses the (detuned)
saturation threshold. Thus, unlike at the degenerate fre-
quency, squeezing at nondegenerate frequencies can actu-
ally be better with a pump intensity that is larger than the
saturation intensity for the atomic medium (but see Sub-
sections 8.F and 8.G below).

Besides the broadening, the minimum (3m at which
squeezing occurs also increases with the pump intensity.
Such behavior is consistent with the prediction of (3, with
(3, as defined after Eq. (5.17). For example, we see that
squeezing begins at m = 3.5 in curve C, while (3 for the
parameters of curve C is approximately 4 [estimated by
using Eq. (5.17)].

One may also wonder what the squeezing-intensity
curve is like at a nondegenerate frequency, i.e., at 3m •7 0.
Curve A in Fig. 12 shows a squeezing-intensity plot at
Am = 20, Ap = 100, F = 1, La = 3000, and km i . We
see that the region of squeezing goes from = 0 all the
way up to /3 = 1000. The upper value of /3 = 1000 can be
predicted by using Eq. (5.17) [or when (3m << 1, by using
Eq. (5.15)], taking (3 to be m and solving for /3. In fact,
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Fig. 10. Squeezing spectra for a finite medium of length La with
the effect of pump-probe phase mismatch included (contrast with
Fig. 8). Curve A, Ap=100,3=40,kmXOxF= 1,andLa= 1;
curve B, same as curve A but La = 100; curve C, same as curve A
but La = 3000; curve D, same as curve A but La = 10,000.
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Fig. 11. Squeezing spectra for a finite medium with various
values of p. Curve A, A, = 100, p = 40, 8km • 0, F = 1, and
La = 3000; curve B, same as curve A but 6 = 100; curve C, same
as curve A but = 200.
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Fig. 12. Squeezing-intensity plot for a medium of finite length
at a nondegenerate frequency. Curve A, = 20, A, = 100,
F = 1, La = 3000, km • 0, and Adh, = 0; curve B, same as
curve A but with the inclusion of Gaussian-intensity variation of
the pump beam (the horizontal axis should be interpreted as Pk).

applying Eq. (5.17) to the case illustrated by curve A in
Fig. 12 (i.e., by letting (3 = 20), we obtain /3 = 1000 as the
exact upper cutoff.

E. Effect of Collisions
As mentioned in Section 6, when there are collisions the
dimensionless quantities /32, La, A, and (3m are scaled
with the collision factor F As a result, the same values
of /32, La, A, and (3m can be achieved by only physically
increasing the pump intensity, the medium length, the
pump-frequency detuning, and the probe-frequency de-
tuning, respectively, thus making it harder to achieve
squeezing.

To show the additional effects that are due to collisions,
we shall change the value for F while keeping the other
parameters fixed. Curves A and B of Fig. 13 are squeez-
ing spectra for F = 1 and F = 0.5, respectively, with
,/ = 40, A = 100, (km•w#0, and La = 3000 Lopt We
see that, although there is a drastic decrease in the
amount of squeezing near the degenerate frequency, the
change is much less serious at nondegenerate frequencies
that are only a few linewidths away.9

Curves C, D, and E of Fig. 13 depict other examples,
which are squeezing spectra for F = 1, F = 0.2, and F =
0.02, respectively, with AP = 100, = 200, and La = 800.
These curves illustrate the above-saturation case when
/ > Apl. Because fIR 2 = /32F + Ap2, there is a pro-
nounced shift in the generalized Rabi frequency caused by
collisions. In order to show more clearly the associated
shift in the noise structure that is a signature of the region
around the generalized Rabi frequency, we chose La < Lopt
in this example.

When collisional broadening is large (i.e., F << 1), there
is an enhanced structure in the squeezing spectrum near
the zero frequency that can be attributed to coherent popu-
lation oscillations. To show this additional structure, we
have plotted curve F in Fig. 13, which is the same as
curve E but magnified 50 times horizontally and 5 times
vertically. The hump near the zero frequency is clearly
visible. Similar humps in the loss coefficient and the
coupling coefficient are responsible for the observed hump
in the squeezing spectrum.5

F. Effect of Doppler Broadening
To study the effect of Doppler broadening, in Fig. 14 we
show some squeezing spectra with A = 100, = 40,
F = 1, and (3km • 0. Curves A, B, and C are for Adh, set
equal to 033ApS, 0.5ApS and 2Ap,, respectively, and
La = 3000 Lopt. These are to be compared with curve D
of Fig. 8, which shows a squeezing spectrum with the
same parameters but without Doppler broadening. It is
evident that the effect of Doppler broadening becomes
negligible only when AP. is detuned by more than 3Adhw,
which agrees with the observation made in Subsection 7.C.
Moreover, we see that when Adh > 0.5Aps (curves B and
C), there are some noise peaks in the squeezing spectra
near 8m 40 = /3. These noise peaks come from those
usually appearing near the generalized Rabi frequency.
In this case the generalized Rabi frequency is equal to 3
because, effectively, most of the atoms have Ap = 0 when
the pump detuning is within a Doppler half-width. Thus
the location of these peaks is expected to shift if we vary
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Fig. 13. Effect of collisions on squeezing spectra for a medium
of finite length. Curve A, A = 100, = 40, km 0, F = 1,
and La = 3000; curve B, same as curve A but F = 0.5; curve C,
Ap = 100, ,B = 200, km 0, F = 1, and La = 800; curve D, same
as curve C but F = 0.2; curve E, same as curve C but F = 0.02;
curve F, same as curve E but magnified 50 times horizontally and
5 times vertically.
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Fig. 14. Effect of Doppler broadening on squeezing spectra for a
medium of finite length with different values of A, 1 and /3.

Curve A, A, = 100, Adh = 33, p = 40, 8km • 0, F = 1, and
L.= 3000; curve B, same as curve A but A = 50; curve C,

same as curve A but A, = 200; curve D, same as curve B but
/ = 50.

the value of /3. For example, in curve D of Fig. 14 we have
increased /3 to 50 while keeping the other parameters the
same as in curve B; the edge of the peak has clearly
shifted to (3m = 50.

One may ask, What determines the residual structure
in the squeezing spectrum of curve C when IA,,1 < Adhw?

The squeezing spectrum in this limit is basically an aver-
age of several Doppler-free squeezing spectra, with A,
taken within the Doppler width and L,, set to a reduced
value. It is interesting to note that the remaining struc-
ture may, therefore, be quite different from that in the
Doppler-fre'e squeezing spectrum with zero detuning
(A, = 0).

G. Effect of Gaussian-Intensity Variation
To study the effect of Gaussian-intensity variation and to
compare it with the uniform-intensity case, in Fig. 12 we
showed a squeezing-intensity plot at the nondegenerate
frequency of 8 m 20. Curve A is the uniform-intensity
case with A 100, Adh = 0, F = 1, L = 3000, and
(3km, • 0. Curve B is plotted with the same parameters as
curve A but with the Gaussian-intensity variation of the
pump beam considered, so that the horizontal axis is to be
interpreted as /3pk. Just as at the degenerate frequency
(compare Fig. 7), we see that for small /3 values the
Gaussian-intensity case can be well approximated by
the uniform-intensity case, provided that in the latter
the pump intensity is taken to be half the peak intensity
of the Gaussian beam in the former. Again, for large /3
values such a simple formula breaks down for the same
reason discussed in Subsection 7.D.

What happens when we have Gaussian-intensity varia-
tion of the pump beam in addition to Doppler broadening
in the atomic medium? In Subsection 8.F we saw that,
when A,, is less than twice the Doppler half-width Adw

the location of the peaks in the squeezing spectrum shifts
with the pump intensity. Thus we would expect the
squeezing spectrum to change dramatically if the pump
beam has Gaussian-intensity variation. This situation is
shown in curve A of Fig. 15, where a squeezing spec-
trum is plotted with the same parameters as curve B

of Fig. 14 except that we have included the effect of
Gaussian-intensity variation by setting /3,,k = 40. We see
that there is a series of peaks in the region where squeez-
ing would have been obtained were it not for the Gaussian
pump intensity. The combination of Doppler broaden-
ing and Gaussian-intensity variation, therefore, can
catastrophically alter the squeezing spectrum. This
problem can be remedied, however, by tuning the pump
frequency further than three Adhw. This is shown in
curve B of Fig. 15, which is plotted with the same parame-
ters as curve A but with Adhw = 0.33A,, 8.

Even if the pump frequency is detuned far outside the
region where Doppler broadening is important, the loca-
tion of the generalized Rabi frequency is still sensitive to
the pump intensity. One may thus wonder what effect
Gaussian intensity has on the noise structure near the
generalized Rabi frequency. In order to illustrate the ef-
fect, in Fig. 16 we show some squeezing spectra for dif-
ferent values of /3 and La, with Adhw = 0, (3km • 0, and
A,, = 100. Curves A, B, and C are with / = 40, La, -

3000, /3 = 100, La, = 100, and / = 200, La, = 800, respec-
tively. Comparing these with the uniform-intensity
curves with the same parameters (curves A and C of
Fig. 13), we see that the Gaussian-intensity variation can
give rise to a series of peaks between the highest general-
ized Rabi frequency fIR = (A,,2 + /32)1/2 and the lowest
generalized Rabi frequency fIR = IA,,I experienced by the
atoms. The peaks are especially pronounced in the
above-saturation case (curve C), which would exhibit good
squeezing over a wide range of 8 m, values were it not for
the Gaussian-intensity variation.

9. EFFECT OF SELF-FOCUSING
AND DEFOCUSING
The initially Gaussian pump beam propagating through
the medium experiences a spatially varying nonlinear re-
fractive index that can cause it to self-focus or defocus.
The probe beams also see spatially varying nonlinear re-
fractive indices, which, moreover, are different from the
one seen by the pump beam. In our atomic-vapor experi-
ments that generated squeezed light,' self-focusing or de-
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Fig. 15. Effect of Gaussian-intensity variation and Doppler
broadening on squeezing spectra for a finite medium. Curve A,
AP8 = 100, Ahw = 50, 6pik= 40, 8km, • 0, F = 1, and L = 3000;
curve B, same as curve A but Ah = 33.
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Fig. 16. Effect of Gaussian-intensity variation on squeezing
spectra for a finite medium. Curve A, A,,8 = 100, Adhw = 0,
8km X 0, F = 1, P,,k = 40, and La = 3000; curve B, same as
curve A but Pk = 100 and La = 100; curve C, same as curve A
but Spk = 200 and La = 800.

focusing was a readily observed and pronounced effect.
This self-focusing or defocusing of the pump and probe
beams is a serious problem in the achievement of squeez-
ing and will be the subject of this section.

A. Degenerate Case
First we examine the self-focusing or defocusing behavior
of the pump and probe beams when their frequencies are
the same. Simple expressions for the pump-intensity-
dependent phase shifts can be obtained. When the pump
intensity is below saturation, the intensity-dependent part
of the pump phase shift 34), is approximately given by

(34 = a,,2L (9.1)
2A,,3

Note that the pump phase shift is only jIpL [compare
Eqs. (2.32) and (2.33)] when the refractive index np is close
to unity. Assuming that IApI >> 1, using Eq. (2.10), and
expanding the denominator of yp to first order, we easily
obtain the above expression for 83,. Equation (9.1) tells
us that, if the pump beam has Gaussian-intensity varia-
tion, then the center of the beam experiences a phase shift
that is different from that experienced by the wings of
the beam profile, thus causing the beam to focus or
defocus. Also, from the above expression it is clear that
self-focusing will occur when the pump frequency is blue
detuned from resonance (i.e., AP > 0) and self-defocusing
will occur when the pump frequency is red detuned.

The probe beams, on the other hand, experience a
pump-intensity-dependent phase shift

8'0° = aa L 2 (9.2)
A,,3

which is obtained by using Eq. (2.10) and expanding the
imaginary part of yo of Eq. (6.7) to first order in (/Ap) 2.
Thus we see that the pump and probe beams do not expe-
rience the same amount of spatially varying intensity-
dependent phase shift.

The different amount of focusing or defocusing experi-
enced by the pump and the probe beams implies that our

assuming that the pump and the probe beams share a
common spatial-mode profile is not valid, particularly
when the focusing or defocusing effect becomes signifi-
cant, As a first approximation, we assume that there is a
probe beam-PCB mode combination that becomes maxi-
mally squeezed, with the remaining spatially orthogonal
modes experiencing little squeezing. Because of the dif-
ferent amount of focusing or defocusing experienced by
the pump and the probe beams, the spatial profile of the
maximally squeezed probe beam-PCB combination mode
at the output of the medium will be different from that of
the transmitted pump. Experimentally this means that
we would not know what spatial profile to use for the LO
in order to detect squeezing in the maximally squeezed
probe beam-PCB mode. Nevertheless, we would expect
that the maximally squeezed probe beam-PCB mode will
have an output spatial profile that is somewhat close to
that of the transmitted pump beam. Thus one may want
to use the transmitted pump as the LO.

We have thus raised two issues here: The first is the
breakdown of the simple theoretical model, which assumes
a common spatial profile for the pump and the probe
beams when they undergo self-focusing or defocusing in
the medium; the second is our inability to know the maxi-
mally squeezed probe beam-PCB mode at the output of
the medium. Although we may not know the maximally
squeezed mode, it is still possible to calculate the amount
of squeezing in the mode that is detected by the LO by
using some numerical methods to account for the effect of
self-focusing or defocusing.

Denoting the mismatch 800 - 0,, by (34op, we see from
Eqs. (9.1) and (9.2) that (3o,, = 3,0,. The mismatch 0o,,
may not be serious if it occurs in a region where maximum
squeezing is already achieved. Unfortunately, such is not
the case in a two-level system. To see this, we look at the
coupling coefficient X0 , which is responsible for squeezing
in the ideal-noise limit. At the degenerate frequency,
from Eq. (6.8), l 0 is given by

ia a/3
XO = 2A, 3 ' (9.3)

where we have assumed operation below saturation and
AP >> 1. Clearly IxolL is identical to I8kopl. The short-
medium squeezing formula tells us that, in order to
achieve large squeezing in the ideal limit where A0 0
and Ro = Xo, one must have IXoIL of the order of unity.
But then Boo, will also be of the order of unity, indicating
potential trouble. Interestingly, it turns out that the
above-saturation case also has the same ratio between 6kp
and 83qo, and IXoIL = 1(3opi.

To be more precise, it is necessary to see at what value
of 3op the intensity-dependent phase shift poses a serious
problem. Imagine that the pump- and the probe-beam
radii are the same but that the wave fronts are phase
shifted with respect to each other because of the different
refractive indices experienced by these beams. Also, we
assume that the phases of the pump and the probe beams
are matched in the high-intensity region of the beams
and mismatched elsewhere. We call this optimistic as-
sumption minimal mode mismatch. The amount of mode
matchingM can then be calculated by the usual technique.
For the described situation, it is not hard to show that

- I I I IIC

I I II I I I I I I
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Fig. 17. Pump-probe mode mismatch M (curve A) and amount
of squeezing S (curve B) in the ideal lossless limit as a function
of 8.o,,.

M = Idr27r exp(-2r 2 ))[o() - (0)], (9.4)

where

0(r) = 0(0)exp(-2r2),

and

see that the values of Som and 8i¢gm are drastically differ-
ent from each other when the frequency of one of the
probe beams (the one with detuning a in this case)
passes through the atomic resonance. The values get
closer to each other again when Sm > AR-

C. Optimum Medium Length
Besides the above-mentioned problem of mode mismatch
between the pump and the probe beams, the self-focusing
or defocusing of the pump can itself be a problem, as it
changes the effective pump intensity within the medium.
However, this problem can always be circumvented by a
careful choice of the medium length and the pump-beam
waist. As we show below, this is possible because the
maximum squeezing almost always occurs when 8(3 , 7r

Let us estimate the radius of curvature Rb that is ac-
quired by an input beam with a plane wave front as it
propagates through the medium. We are particularly in-
terested in the value of Rb when operating near the region
of maximum squeezing. We further assume that the
input beam does not experience much diffraction in
the medium when the medium is inactive. Then when
the medium is active, given that the phase front at the
beam center is shifted by a small distance AL with respect
to the phase front at the beam waist, it is not hard to esti-
mate the radius of curvature acquired by the transmitted
beam. In fact, we can make a good estimate by using the
simple geometrical picture shown in Fig. 19, where Wb is

(9.6)

with ,2 in &0op replaced by ,pk
2 [the r dependence has been

removed in Eq. (9.5)]. We expect the mode mismatch to
become significant when, let us say, M = 0.5. Thus we
want to know the value of 0o, in Eq. (9.4) that yields
M = 0.5. One can solve for 0o, graphically by plotting
M as a function of 30op. This is illustrated by curve A in
Fig. 17. We see that at M = 0.5, 0 p = 1.9. Together
with M, it is also interesting to plot the amount of squeez-
ing $9 at the degenerate frequency for the ideal lossless
case, which we illustrate by curve B in Fig. 17. It is clear
that a maximum squeezing of 0.75 occurs with M = 0.75.
Furthermore, M decreases rapidly with increasing 8op,
thus prompting us to conclude that a squeezing of 0.75 is
the best that one can hope for. This, of course, is only a
rough estimate. To obtain a more accurate estimate, one
must numerically integrate the equation of motion for
am(Z) over the medium length, as is discussed in Ap-
pendix B. Our initial numerical results indicate good
agreement with the rough estimate, giving a maximum
squeezing of about 80%. These further results will be
presented elsewhere.

B. Nondegenerate Case
We have discussed above the mode mismatch problem at
the degenerate frequency. The discussion is also usually
valid at nearly degenerate frequencies when 0 < M <<
IAI. However, at large (3m the nonlinear phase shifts for
the probe beam and the PCB, denoted by &km and 30¢,h
respectively, can have values quite different from each
other and from r,0p. As an illustration, we compute (dm,

6(t0A, and 6,0p numerically for the case where A = 100,
, = 40, F = 1, Adhw = 0, Skm • 0, and La = 3000 and plot
them in Fig. 18 as curves A, B, and C, respectively. We

zE 4
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W 2

> -0-
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Fig. 18. Phase mismatch at nondegenerate frequencies for the
case with AP = 100, /3 = 40, F = 1, Adhw = 0, km • 0, and
L = 3000. Curve A, 86m; curve B, 8,a; curve C, 8O,.

LL

Fig. 19. Geometrical picture for self-focusing or defocusing.
The radius of curvature of the beam phase front arising from
defocusing is related to the beam waist and the advancement of
the phase front AL at the beam center.
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the input beam waist and L is the medium length. The
wave fronts are represented by the double solid curve.
From the figure it is easily shown that for Rb >> AL, Rb
Wb2/2AL. The value of AL can be related to 3b,, by means
of AL = A(3.,,/2in). Hence, if the nonlinear phase shift is
r, we have AL A/2. To minimize the intensity change

within the medium, the medium length must be made
short compared with Rb. We then conclude that a good
design would require that L < Rb = Wb2 /A. In practice
this can be achieved by having a large input beam waist
Wb. Of course, the trade-off is that one would have to
increase the pump power in order to obtain the same
pump intensity.

10. CONCLUSIONS

In summary, we have developed a quantum theory of non-
degenerate multiwave mixing and applied it to predict the
amount of squeezing generated in experiments that employ
forward four-wave mixing in a Doppler-broadened two-
level atomic vapor. In particular, we have focused on the
single-beam case in which all the four interacting beams
are spatially degenerate. This single-beam configuration
is simple to implement in practice because one does not
need to worry about proper alignment of the four beams.
Furthermore, this simplicity makes it easier for a compari-
son to be made between the theory and the experiment.

Our theory is comprehensive in that it includes all the
important physical effects such as loss, spontaneous emis-
sion, pump-probe phase mismatch, atomic collisions,
Doppler broadening, Gaussian-beam intensity variation,
and pump-intensity induced pump-probe focusing and
defocusing. Of these, the effects of loss, spontaneous
emission, and Gaussian-intensity variation were consid-
ered before by others interested in generating squeezed
light through the interaction of an intracavity field with
an atomic beam."" 12 The effect of pump-probe phase
mismatch was considered by Levenson et al. in their
squeezed-light generation experiment in an optical fiber.6

The effects of atomic collisions and Doppler broadening
are somewhat unique to our atomic-vapor experiments
and have not been considered before to our knowledge, ex-
cept that the effect of collisions was included but not
studied in detail by Reid and Walls.4 The effect of pump-
intensity-induced pump-probe focusing and defocusing,
though important in both atomic-beam and atomic-vapor
experiments, has not been considered at all. Our theory
and experiments indicate that this last effect can impose
an important limitation on the maximum amount of
achievable squeezing. This may explain why all earlier
experiments that employed four-wave mixing interaction
with atoms failed to agree with theories that do not take
such an effect into account.7 " This finding also has seri-
ous implications for squeezed-light generation using X(3)
media whose nonlinear behavior is quite similar to that of
the two-level atoms.

Our comprehensive theory has yielded a set of rules
of thumb for achieving substantial squeezing in atomic
media. These rules of thumb, described below, are not
a set of precise equations but are bounds that predict a
favorable region for the operation of experiments.

Rule A. It is usually good to work with the maximum
available laser intensity. Let the normalized value of the

used laser intensity be 6 2. Then, for a given 82, in order
to operate in the region where the medium is relatively
lossless, one should choose the normalized pump detun-
ing AP such that IApI < 2/2 [see the paragraph after
Eq. (6.14)]. This places an upper bound on IAI.

Rule B. There is generally a maximum temperature
that the cell containing the atomic vapor can be heated to.
Suppose that this temperature gives a maximum value of
La = Lmax. Then, in order to approach the long-medium
regime in which the amount of squeezing is optimum, one
should choose IApI < (Lmax/0.3)12 (see Subsections 7.A and
8.A). This gives another upper bound for IApI in addition
to the one given by Rule A.

Rule C. If the Doppler half-width is Adh, then in order
to avoid the effect of Doppler broadening one should
choose IAp > 3 dhW (see Subsections 7.C and 8.F). This
places a lower bound on IApl.

Rule D. If one wants to see squeezing near the degen-
erate frequency such that the normalized probe detuning
3m is less than 1, then one should have IAPI > /643/2 in
order to avoid spontaneous emission [see the paragraph
before Eq. (6.14)]. The condition, however, can be relaxed
to require IApI > 23/8m only if one is interested in squeez-
ing at the nondegenerate frequency (see Subsection 8.D).
This rule places a lower bound on both IApj and 3m.

Rule E. In order to avoid the noisy region near the
generalized Rabi frequency AR = (3 2F + A 2

)1/2, one
should keep (3m less than AR (see Subsections S.F and 8.G).
This gives an upper bound for a3m.

Rule F The probe beam and the PCB see different
refractive indices that are induced by the Gaussian-
intensity pump beam. As a result probe modes become
spatially mismatched as they propagate in the medium.
In order to avoid this mode mismatching, one should keep
(3m < Ap/2, thus preventing the probe beams from having
their frequencies too close to the atomic resonance (see
Subsection 9.B). This rule gives another upper bound for
8m, which is more stringent than that given by Rule E.

Rule G. In order to get a substantial amount of
squeezing (>60%1o), if permitted by the above rules, one
should have IApI > 100 (see Subsection 8.B).

Rule H. In order to avoid the degrading effect of
atomic collisions, one should keep the buffer-gas pressure
low enough that the collision factor F is not less than -0.5
(see Subsection 8.E).

Rule I. In order to avoid self-defocusing of the pump
beam, which would reduce the pump intensity, it is good to
keep the pump frequency blue detuned rather than red
detuned (see Subsection 9.A). This rule can be relaxed if
the pump intensity is high enough for substantial squeez-
ing to occur on the blue side. This is because the amount
of squeezing is not highly sensitive to the pump intensity
when, at a particular vapor temperature, we are operating
in a relatively lossless and noiseless regime where sub-
stantial squeezing occurs.

Rule J. The pump-beam intensity variation in the
medium caused by diffraction should be kept to a mini-
mum. This can be achieved by choosing the medium
length to be smaller than the Rayleigh length. This rule
is desirable in general and is not directly related to the
self-focusing or defocusing problem.

Rule K. Pump self-focusing or defocusing can change
the pump intensity in the medium, thus limiting the
amount of squeezing generated. If the LO is derived
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from the input pump beam, then the mode mismatch be-
tween the LO and the maximally squeezed probe mode
can also limit the amount of observed squeezing when
there is self-focusing or defocusing. The latter problem
can, however, be resolved by using the transmitted pump
as the LO, as discussed in Subsection 9.A. Moreover, it
turns out that, when the former problem is avoided, so is
the latter. In order to solve the former problem, one
should design the vapor cell in such a way that the vapor
length L obeys L < Wb2/A, where Wb is the effective beam
radius (see Subsection 9.C). With this design the maxi-
mum amount of achievable squeezing will be ultimately
limited only by the pump-probe mode mismatch in the
medium, which is caused by pump-intensity-induced
pump and probe focusing or defocusing. The effect of
pump-probe mode mismatch cannot be circumvented as
long as a Gaussian-intensity pump beam is employed.

This completes the set of rules of thumb. In general,
the better one can simultaneously satisfy these rules, the
better will the observed squeezing be. What is then the
ultimate limit on achievable squeezing? Our simple
treatment of pump-intensity-induced pump and probe
focusing or defocusing seems to indicate that one may be
able to obtain only up to 75% squeezing in atomic-vapor
experiments that employ a Gaussian-beam pump.

APPENDIX A

In this appendix we describe the method used for includ-
ing the effect of Doppler broadening in our calculations.
The effect can be taken into account by first replacing the
frequency-independent atomic-number density pa in
Eq. (2.17) with a frequency-dependent atomic-number
density per unit normalized frequency Pa(Ad), as given by

1 1 Ad \21
Pa(Ad) = Vv (k u/*y- ) xP -(ku/d ) ]' (Al)

where Pa is the total atomic-number density, k = Qp/e,
and u is the root-mean-square Doppler velocity given in
terms of the Boltzmann constant k1B, the absolute tempera-
ture T, and the mass of the atom M by u = (2kB TIM)"2 .
In Eq. (Al), Ad = (Wa, - Was)/Yl, where Wa, is the Doppler-
shifted resonance frequency for the group of atoms that
we are interested in and Was is the resonance frequency for
a stationary atom. We then replace the atomic frequency
(Oa in A, by Y.Ad + Wa, so that A, now becomes A, - Ad,

where A, = (, - as)/Y- . The integration f 0 dA is
then performed over the expressions for m, Xm, A, XA,
Am, AA, Rm, and R,, yielding a new set of mode-coupling
coefficients and noise correlations. The effect of Doppler
broadening is properly included when this new set is used
to calculate am(L) by Eq. (3.11). This procedure is equiva-
lent to performing the sum over atoms in Ref. 2, with each
atom taken to have a different Doppler-shifted resonance
frequency.

We shall use the exp(-l) half-width of the Doppler-
velocity distribution as a convenient parameter in our cal-
culations. This normalized half-width is given by kuly,
and will be denoted as A&I. It is related to the normal-
ized FWHM (FWHM) of the Doppler-velocity distribution
by Adhw = AFWHM/2ViHn.

APPENDIX B

In this appendix we describe the method for taking into
account the Gaussian-intensity variation of the pump
beam. We denote the intensity variation of the pump
beam by I(r) = Ipk exp(-2r2 /Wb 2 ) where r is the radial
displacement and Wb is a parameter specifying the effec-
tive beam radius. I(r) can also be expressed in terms of
the pump power Po through I,,(r) = P U2 (r), where

U2 (r) = W %/2 exp [-2 ( ) ]. (B1)

The relationship between k and Po is then given by
pk = 2PO/Wb'qr. Let the electric field operator, expressed

in terms of the ±z-propagating plane-wave modes, be
given by

E,(x, y, z, t) = >CmLm(t)exp(ikmz) + H.c., (B2)

where Cm is a mode-dependent constant and H.c. denotes
a Hermitian conjugate. The electric field operator
expressed in terms of the ±z-propagating Gaussian-
intensity modes will then have the form

Eg(r, z, t) Cmam(t)Q(r)exp(ikmz) + H.c., (B3)
m

where the mode function Q(r) is proportional to U(r). The
proportionality constant can be obtained by requiring that

f drdz[27rrEg(r, z, t)]2 = f dxdydz[Ep(x, y, z, t)]'

= Cm! 2[amt&m + &m&mt]AQLQ, (B4)

where AQ = f dxdy, LQ = f dz, and AQLQ is the volume
of quantization. Here AQ is assumed to be infinitely
large. The constraint Eq. (B4) yields Q(r) = AQ U(r).
Hence the treatment for including the effect of Gaussian-
intensity variation first calls for the replacement of Ip in
Eq. (2.14) by Ip(r) so that /32 becomes /,p 2U2(r) with
/3,p2 = 2 Ipk/Isa and then having ga in Eq. (2.18) replaced
by ga U(r) so that aa becomes aa U(r), with aa now denot-
ing PaILd,)wa/2heocy±, Pa being the total atomic density.
After all these replacements the procedure ends with the
integration fo' dr2,irr performed on 'pm, Xm, )/, Xm, Am,
A, Rm, and RA, resulting in a new set of mode-coupling
coefficients and noise correlations for calculating am(L).
We note that the use of the same mode function U(r) for
both Ip(r) and {gmA, mA} implies that the probe-beam
modes are the same as the pump-beam mode.

The above treatment is valid provided that we assume
that (3km8 in Eqs. (2.6) and (2.7) is independent of the
transverse coordinates. However, in reality the value
of (3km8 depends on the transverse position within the
beam. Thus one really needs to integrateXmexp(-i8kmZ)
transversely in order to obtain an effective coefficient.
The resulting coefficient will be z dependent, and the
method of solution presented in Section 3 can no longer be
used. A proper treatment requires one to integrate the
equation of motion for am(Z) numerically. In this paper
we simply let km8 be given by Eq. (2.34) but with the inte-
grated values of 51m, 7,A, and Asp.
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