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Abstract: We report a general computational model of complex material 
media for electrodynamics simulation using the Finite-Difference Time-
Domain (FDTD) method. It is based on a multi-level multi-electron 
quantum system with electron dynamics governed by Pauli Exclusion 
Principle, state filling, and dynamical Fermi-Dirac Thermalization, enabling 
it to treat various solid-state, molecular, or atomic media. The formulation is 
valid at near or far off resonance as well as at high intensity. We show its 
FDTD application to a semiconductor in which the carriers’ intraband and 
interband dynamics, energy band filling, and thermal processes were all 
incorporated for the first time. The FDTD model is sufficiently complex and 
yet computationally efficient, enabling it to simulate nanophotonic devices 
with complex electromagnetic structures requiring simultaneous solution of 
the mediumfield dynamics in space and time. Applications to direct-gap 
semiconductors, ultrafast optical phenomena, and multimode microdisk 
lasers are illustrated. 
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1. Introduction 

Numerical computation for electrodynamics capable of providing full spatial-temporal 
solution for the electromagnetic field interacting with material media using Finite Difference 
Time Domain (FDTD) [Refs. 1, 2] method has attracted much interest in photonic and 
optoelectronic device simulation, especially in situations where conventional device 
simulation methods are inadequate or cannot cope with the complex device geometry. An 
example is the case of photonic bandgap or micocavity structures with active semiconductor 
medium as part of the structure to provide gain or ultrafast optical nonlinearities. In this case, 
the spatial variations of the medium’s refractive index, gain, or absorption could be dependent 
transiently on the varying lightwave intensity while the mode profile that determines the 
intensity could in turn be affected by the medium’s refractive index, gain, absorption, and the 
optical nano-structure. Another example is the case of a laser cavity with multiple longitudinal 
or transverse modes in which multi-frequency lasing, instability, or laser pulsing behaviors 
could develop. These behaviors could be dependent on the carrier band-filling effect and the 
spatial or spectral hole burning of the carrier distribution, which in turn could be affected by 
the transient and local interaction of the electromagnetic field mode with the gain medium. 

In actual implementation, the dynamics of the active media in the devices must be 
modeled with reasonable physical realism in order for the potentials of the FDTD method to 
be fully realized. The medium involved typically has complicated internal electron dynamics. 
For example, the dynamics of multiple electrons could be involved and the quantum energy 
level structure for the electrons in the medium must be accounted for. Furthermore, these 
devices often operate at room temperature, and the thermal process of the electrons must be 
considered. It would be of substantial interest to develop a FDTD computational model for 

#8367 - $15.00 USD Received 2 August 2005; revised 31 March 2006; accepted 2 April 2006

(C) 2006 OSA 17 April 2006 / Vol. 14,  No. 8 / OPTICS EXPRESS  3570



complex dynamical media that is sophisticated enough to encompass the essential physics of 
such media and yet computationally efficient. We will show that with use of a multi-level 
multi-electron quantum system having the electron dynamics governed by Pauli Exclusion 
Principle, state filling, and dynamical Fermi-Dirac Thermalization, the essential physics of 
many complex media, including semiconductor, can be encompassed in FDTD simulation. 
We will refer to this FDTD computational model as dynamical-thermal-electron quantum-
medium FDTD (DTEQM-FDTD). The dynamical-thermal-electron nature of the model refers 
to the explicit inclusion of thermal processes dynamically for the electrons. The quantum 
nature of the model refers to the explicit inclusion of energy level structure and the Pauli 
Exclusion Principle. We will show how a simple thermal hopping model dictated by the Pauli 
Exclusion Principle automatically resulted in Fermi Dirac Statistics for the electron state 
filling in the steady state. The broad applicability of the model methodology relies on the fact 
that the interaction of electromagnetic field with material media is via a collection of 
oscillating electric dipoles governed by the electron dynamics and the DTEQM-FDTD model 
shows how the complex electron dynamics in multiple energy levels can be efficiently treated. 

The model methodology shall be generally applicable to a wide range of solid-state, 
molecular, or atomic media, by employing the treatment of electron dynamics described here 
with the appropriate medium-specific effective carrier rate equations and effective multi-
energy-level structure needed for obtaining the medium polarization density. One of the most 
complex material media for photonic devices is direct bandgap semiconductor. We will  
illustrate the powerful capability of the model methodology by specifically developing it for 
modeling semiconductor medium as an example to show how the effective carrier rate 
equations and multi-energy-level structures are formulated, making them computationally 
efficient. Its applications to other solid-state, molecular, or atomic media will involve similar 
approaches and in many cases will be simpler than the semiconductor example. 

In applying to semiconductor, we show that this model could take into account the 
transient intraband and interband electron dynamics, the semiconductor band structure, and 
the carrier thermal equilibrium process. The model automatically incorporates the required 
band filling effect. It also incorporates the typical nonlinear optical effects associated with 
carrier dynamics. Our approach enables the model to treat thermally activated carrier 
scattering process under transient excitation spatial-temporally. These capabilities enable the 
model to treat sophisticated semiconductor optoelectronic and nanophotonic devices having 
complex device geometries and medium dynamics with full spatial-temporal solutions at the 
microscopic level. We will show that although the model is complex enough to include all the 
essential physical effects, it is simple enough to achieve fast computational time.  

In this paper, we present the basic formulation of this powerful general model with 
applications to direct bandgap semiconductor, ultrafast optical phenomena, and multimode 
microdisk semiconductor laser as illustrations, which also validate the computational stability 
and efficiency of the model. 

2. General approach 

In the past, various methods have been proposed to model active medium in FDTD 
simulation. They can be grouped into two main categories: the macroscopic approach [Ref. 3] 
and the microscopic approach [Ref. 4]. The macroscopic approach models the medium gain 
by introducing a negative frequency-dependent conductivity term into Maxwell equations and 
solve for the imaginary part of the polarization, while the microscopic approach explores rate 
equations. The rate equation approach in [Ref. 4] employed a modified classical electron 
model to describe the gain and absorption dynamics of an atomic system with a single 
electron. Recently, we have introduced a quantum mechanical model of a 4-level 2-electron 
atomic system with the incorporation of the Pauli Exclusion Principle for FDTD simulation 
[Ref. 5-8]. The employment of two electrons enabled us to provide a simplified model for 
semiconductor, which took into account a simple picture of electron-hole pumping dynamics 
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from the lower valence band to the upper conduction band. Our quantum-medium model 
[Refs. 5-8] with four energy levels and two electrons governed by the Pauli Exclusion 
Principle is an advancement over the previous models. However, the model is still too simple 
to properly encompass the complex physical effects in the medium such as the semiconductor 
energy band structure, band-filling effect with Fermi Dirac statistics, carrier induced gain and 
refractive index change, and carrier relaxation to thermal equilibrium after excitation. As a 
result, much of the transient and nonlinear behaviors in the medium were not included. 

The typical approach to modeling carriers in semiconductor band structure involves 
solving Bloch equations at many energy states in the momentum space (k-states) [Ref. 9, 10]. 
In FDTD simulation, the structure to be simulated is first discretized spatially, and then the 
electromagnetic field at each spatial point is updated at each time step, making FDTD an 
intrinsically numerically intensive method. Now in addition to all that, if we use the typical 
approach of semiconductor modeling, then for each grid, we will have to update the carrier 
distribution function in many k-states at each time step [Ref. 11], making the computational 
time forbiddingly long. The original k-states are quantized states given by kx=2πnx/Lx, which 
is dependent on the size of the medium Lx. As these k-states are energy broadened by the 
spontaneous decay time, we may combine the original k-states into energy-broadened k-states 
that are interspaced by the spontaneous decay width. With a typical spontaneous decay time of 
~ 3ns for direct bandgap III-V semiconductors, there will be ~105 energy broadened k-states 
within a typical 50nm wavelength spectral width of interest at the optical communication 
wavelength of λ=1550nm. This is still a large number for FDTD simulation.     

In our 4-level 2-electron FDTD model treatment [Ref. 5-8], it is pointed out that due to the 
short dipole de-phasing time of excited dipoles in semiconductor (~100fsec), comparing to the 
spontaneous decay lifetime of 3nsec, one can further represent many energy-broadened k 
states by one effective k state, provided the electron-scattering process that affect the dipole 
phase is lumped into an effective dipole dephasing time. For, example, a dipole dephasing 
time (T2) of ~50fsec will result in a spectral broadening of Δλ~50nm (FWHM) at λ=1550nm. 
Thus, only a few such dipoles are needed to cover a wavelength range of 100-300nm, which is 
sufficient for various optoelectronic and photonic device applications. 

It turns out that the dipole dephasing is due mainly to the thermally activated carrier 
scattering. At room temperature, the thermal energy of kBT (kB is the Boltzman constant and T 
is the Kelvin temperature) corresponds to a FWHM energy broadening of ωΔ� =18meV 
(Δλ=35nm at λ=1550nm). For a solid-state medium with strong electron interaction, the 
dipole dephasing may correspond to the thermal energy, giving a thermally-induced dipole 
dephasing time of T2=2/Δω=75fsec at 300K. Thus, although the effective values for T2 in 
different media may depend on the actual dephasing mechanisms (the T2 value can be 
experimentally obtained from the homogeneously-broadened linewidth), they will be in the 
order of ~100fsec [Ref. 9, 10]. Hence, the fast dipole dephasing is generally applicable to all 
solid-state media with strong electron interactions. This means that most solid-state media can 
also be modeled with only a few dipoles to cover a wide wavelength range. While illustrated 
for the case of semiconductor, the DTEQM-FDTD modeling approach developed here can be 
adapted for modeling a wide range of solid-state, molecular, and atomic media. 
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Fig. 1. electron dynamics in our 4-level 2-electron model [Refs. 5-8]: (a) electron interband and 
intraband dynamics in semiconductor medium under excitation of photon with above-bandgap 
energy; (b) representation by four energy levels and two electrons. 

 
To set up the model, let us first consider a simple case for which a semiconductor medium 

is under optical excitation with above-bandgap energy, as shown in Fig. 1(a). The medium is 
at ground state initially. Under excitation of the photons, the electron at the corresponding 
energy (position 1) will undergo interband excitation to the conduction band (position 2), 
leaving a hole at the valence band. The electron at position 2 and the hole at position 1 in Fig. 
1(a) will then undergo intraband decay to the band edge positions 3 and 0, respectively, 
through phonon-assisted processes. The hole position moving from 1 to 0 in the valence band 
is equivalent to electron moving from position 0 to 1. Subsequently, the electron and hole will 
recombine via radiative or nonradiative decay and the medium will return to its original 
ground state. Current injection via p-i-n junction can likewise be modeled by pumping 
electrons electrically from the lowest valence-band level to the topmost conduction-band 
level. In this example, we can see that the broad dynamics for the electron transition can be 
described by having two electrons resting in four energy levels, as shown in Fig. 1(b). To 
ensure that the electron will not decay to the lower level unless there is an energy-state 
vacancy, Pauli Exclusion term was implemented. This forms the basis of our earlier 4-Level 
2-Electron Model with Pauli Exclusion Principle [Refs. 5-8]. 

 
Fig. 2. The multi-level multi-electron model for FDTD simulation of semiconductor material. 

 
To more accurately model semiconductor medium dynamics, additional energy levels and 

electron dynamics are needed. The main idea of our multi-level multi-electron model 
discussed recently [Ref. 12] is to divide the conduction and valence band states to several 
groups, and then represent each group by a single dipole with broadened width, as shown in 
Fig. 2.  

By doing so, the semiconductor medium dynamics included are: interband carrier radiative 
or nonradiative decays, intraband carrier relaxation, and interband transition (gain or 
absorption). The semiconductor density of states is accounted for in the multiple energy level 
structure. Implementation of Pauli Exclusion Principle for the transitions between any two 
levels will result in carrier band-filling effect but would not account for finite temperature. 

In our model, finite temperature is accounted for by a temperature-dependent intraband 
carrier-hopping dynamics that ensures Fermi-Dirac thermal distribution for the electron/hole 
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occupation in the steady state, which we refer to as dynamical Fermi-Dirac thermalization. As 
will be seen below, this multi-level multi-electron model gives the expected band-filling 
behavior for a direct bandgap semiconductor. In a more sophisticated situation not shown 
here, by using temperature as a spatial-temporally varying parameter, this approach will 
enable the FDTD model to treat thermally activated carrier scattering process and carrier 
heating or cooling under transient excitation in both space and time, while solving for the 
interaction of the electromagnetic field modes with the medium. The spatial movement of 
carriers is also not shown here but can be built on top of the FDTD model [Refs. 9, 10]. 

Thus, the basic DTEQM-FDTD model developed here, when combined with a lattice 
temperature diffusion model and/or a spatial carrier diffusion model, will result in a powerful 
device model with sophisticated spatial-temporal solutions for both the medium and 
electromagnetic field. When applied to semiconductor, we will simply refer to the DTEQM-
FDTD model as “dynamical-semiconductor-medium FDTD” (DSM-FDTD) model. 

3. The dynamical-semiconductor-medium (DSM) FDTD model 

The energy-level structure for the DSM-FDTD model considered below is shown in Fig. 3. 
The continuous semiconductor band structure is simplified to discrete levels. The conduction 
band levels are labeled as i_c and the valence band levels are labeled as i_v, where i=1,2, M 
and M is the total number of levels used in the model. Ei represents the transition energy 
between levels i_c and i_v and obeys 2 /i i iE cω π λ= =� � . Levels i_c and i_v are used to 
represent the conduction and valence band states, respectively, with optical transition energy 

between 1( ) / 2B
i i i iE E E E− −= − −  and 1( ) / 2B

i i i iE E E E+ += + − , so the densities of states per 

unit volume (volume densities of states) 0
CiN  and 0

ViN  in i_c and i_v, respectively, will be the 

sum of all the volume densities of states with energy in the bracketed interval [ B
iE − , B

iE + ] as 

0
( , ) , ( )

B
i
B
i

E
C V i c vE

N E dEρ+

−
= ∫ , where , ( )c v Eρ is the number of states per unit volume per unit 

energy at the optical transition energy E for conduction band (C) and valance band (V).  

 
Fig. 3. The multi-energy-level model for the FDTD simulation of semiconductor material 

 

If we take level i_c as example, the semiconductor carrier dynamics we considered in the 
model include: (1) interband radiative and nonradiative decays between conduction band 
levels i_c and i_v with decay time τi; (2) interband transition (stimulated decay or absorption) 
governed by dipole matrix element; (3) intraband down-transition (phonon-assisted decay) 
from i_c to i-1_c with transition time τ(i,i-1)C; (4) intraband up-transition (thermally activated) 
from i-1_c to i_c with transition time τ(i-1,i)C; (5) Intraband down-transition from i+1_c to i_c 
with transition time τ(i+1,i)C; (6) intraband up-transition (thermally activated) from i_c to i+1_c 
with transition time τ(i,i+1)C. Note that intraband transitions are between adjacent levels with 
times labeled by τ(i, f)C,V, where indices i and f label the initial and final levels, respectively.  
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4. Quantum derivation of basic set of equations with minimal approximation 

To obtain the basic set of equations governing the multi-level system quantum mechanically, 
let us first consider the optical interaction that occurred between interband levels. All the 
carrier dynamics below are described by electrons, including the hole carrier dynamics in the 
valence band. However, the electrons in the conduction and valence bands are characterized 
by different effective masses and intraband transition rates. The equations governing the 
transitions can be derived as follows.   

We first start with the following exact minimal-coupling non-relativistic Hamiltonian 
describing atom-field interactions for a collection of N0 single-electron atoms [Ref. 13]: 

0 02

1 1

1 ˆˆ ˆˆ ˆ[ ( ) ( ( ), )]
2

N N

ej ej Cj
j je

H t e t t H
m = =

= − +∑ ∑p A r  

3 2 2
0 ph

d( )1 1 ˆ ˆ ˆ[ ( , ) ( , )]
2 2 d

r E r H r
Q

m m
m mV

m m

d t t Hσ σ
σ

ε μΩ
+ + +

Ω
∑∫ ,            (1) 

where r̂ej  is the position operator of the electron in the jth atom, p̂ej is the canonical 

momentum operator of the electron in the jth atom, me is the electron mass, e = -|e| is the 

electron charge. The second term 
0

1

ˆ
N

Cj
j

H
=
∑  is the Coulomb interaction energy. The last term 

phĤ  is a dipole dephasing reservoir Hamiltonian similar to that given in [Ref. 13]. The 

dynamics of the heavy nucleus has been neglected.  Êmσ and Ĥmσ are the mode amplitudes of 
the electric and magnetic field operators and the field operators are given by: 

ˆ ˆ( ) ( )†ˆ ˆ ˆ ˆ( ( ), ) [ ( ) ( ) ]
k r k rA r e m ej m eji t i t

ej m m m m
m

t t g a t e a t eσ σ σ
σ

⋅ − ⋅= +∑ , 

ˆ ˆ( ) ( )†ˆ ˆˆ ˆˆ ˆ( ( ), ) [ ( ) ( ) ] ( ( ), )
k r k rE r e E rm ej m eji t i t

ej m m m m m m ej
m m

t t i g a t e a t e t tσ σ σ σ
σ σ

⋅ − ⋅= Ω − =∑ ∑ , 

ˆ ˆ( ) ( )†
0

ˆ ˆˆ ˆˆ ˆ( ( ), ) ( )[ ( ) ( ) ] ( ( ), )
k r k rH r k e H rm ej m eji t i t

ej m m m m m m ej
m m

t t ig a t e a t e t tσ σ σ σ σ
σ σ

μ ⋅ − ⋅= × + =∑ ∑ ,(2) 

where 1/ 2
0[ /(2 )]m m Q m mg v V n cε≡ Ω�  in which nm = 1/ 2

mε is the refractive index of the 

embedded medium at frequency mΩ , /m m mk c nσΩ =  is the angular frequency of mth field 

mode, and /m m mv k= ∂Ω ∂  is the group velocity.  VQ is the volume of quantization. The 
constant gm given is valid for quantized field operators in a dispersive dielectric medium [Ref. 

14]. The operator ˆ ( )ma tσ  and †ˆ ( )ma tσ are the annihilation and creation operators of the mth 

field mode with polarization σ (σ=1, 2), and emσ  is the unit vector representing the σ 
polarization of mode m. The mode number m = {mx, my, mz} can be indexed by its mx, my, mz 
components with k e e em mx x my y mz zk k k= + +  and |kmx| = 2πmx/Lx, |kmy| = 2πmy/Ly, |kmz| = 

2πmz/Lz, so that Lx, Ly, Lz are the x, y, and z dimensions for an arbitrarily large volume of 
quantization VQ (VQ = LxLyLz). The mode numbers take on positive and negative integer values 
as mx,y,z ∈ {0, ±1, ±2, ±3, …}. Using Heisenberg equation of motion, we obtain: 

ˆ ( )ˆ ( ) ˆˆ ˆˆ ˆ[ ( ), ( )] ( ) [ ( ) ( ( ), )]
k rp A r e m eji tm

m m m m ej ej m
j e

da t i e
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dt m
σ

σ σ σ
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�
, 
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ˆ ˆd ( ) d ( )ˆˆ ˆ ˆ[ ( ), ( )] [ ( ) ( ( ), )]
d d
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ej j
ej ej ej

e

e t ti e
H t e t t e t t

t m t
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�

μ
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where ˆˆ ( ) ( ( ) )r rj ej njt e t≡ −μ is the atomic dipole moment operator ( rnj is the nucleus position). 

This gives: 

ˆ ( )ˆ ( )ˆ ( )
ˆ ( )

k re m eji tjm
m m m m

j

ta t
i a t ig e

t t
σ

σ σ
− ⋅∂∂

= − Ω + ⋅
∂ ∂∑

μ
.                    (4) 

To show how to incorporate three-dimensional (3D) polarization vector, we consider a 
simple case where a two-level system has three upper levels |

suE 〉j with s∈{x, y, z} and one 

lower level |Eg〉j. ˆ ( )gjn t  and ˆ ( )
su jn t are the atomic number operators in ground (g) level and 

upper (us) levels, respectively [Ref. 15]. We have the atomic energy down transition operator 
ˆ

sgu jV  = |Eg〉jj〈
suE |, the atomic energy up transition operator †ˆ

sgu jV = |
suE 〉jj〈Eg|, and the dipole 

matrix element ˆ
sgu j j s ej j

u g≡μ μ . For simplicity, we will represent us by s and drop 

subscribes g in gus, so that ˆ ˆ
sgu j sjV V≡ , † †ˆ ˆ

s
sjgu jV V≡  and 

sgu j sj≡μ μ . Under electric dipole 

approximation, ˆ ˆ( ( ), )A rej t t  is replaced by ˆ ( , )A rnj t , where rnj is the classical position of the 

nucleus [Ref. 16]. 
The Hamiltonian can then be expressed in terms of these atomic and field operators 

(referred to as second quantization), which becomes ˆ ˆ ˆ ˆ
Atom Field AFH H H H= + +  with 

ˆ ˆ ˆ( ) ( )Atom g gj s sj
jg js
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2
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e
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m
ω= − − ⋅ +∑ ∑μ μ ,                    (6) 

† 1ˆ ˆ ˆ[ ( ) ( ) ]
2F m m m

m
H a t a tσ σ

σ
= Ω +∑ � ,                (7) 

where ωa=ωs-ωg. The 3D atomic dipole moment operator vector ˆ ( )j tμ can be expressed in 

ˆ
sjV and †ˆ

sjV as † *ˆ ˆˆ ˆ( ) [ ( ) ( )] ( )j sj sj sj sjsj
s s

t V t V t t= +∑ ∑μ μ μ = μ . From the second quantized 

Hamiltonian, we can derive the following equations for the atomic operators using the 
Heisenberg equation of motion: 

ˆd ( ) ˆˆ ˆ ˆ( ) ( ( ) ( )) ( , )
d

rsj a sj
a sj sj gj s nj

V t
i V t n t n t A t

t

ω μ
ω= − + −

�
, 

† *
†

ˆd ( ) ˆˆ ˆ ˆ( ) ( ( ) ( )) ( , )
d

rsj a sj
a sj gj s njsj

V t
i V t n t n t A t

t

ω μ
ω= + −

�
, 

†*
ˆd ( ) ˆ ˆˆ ˆ ˆ[ ( ) ( )] ( , ) ( ) ( , )
d
sj a a

sj sj sj s nj sj s njsj

n t
V t V t A t t A t

t

ω ωμ μ μ= − + = −r r
� �

, 

†*
ˆd ( ) ˆ ˆˆ ˆ ˆ[ ( ) ( )] ( , ) ( ) ( , )
d
gj a a

sj sj sj s nj sj s njsj
s s

n t
V t V t A t t A t

t

ω ωμ μ μ= + =∑ ∑r r
� �

,              (8) 

where 
{ , , }

ˆ ˆ( , ) ( , )r A r es nj nj s
s x y z

A t t
∈

= ⋅∑ . For a single electron system, we have the 

completeness relation ˆ ˆ( ) ( ) 1gj sj
s

n t n t+ =∑ . 

#8367 - $15.00 USD Received 2 August 2005; revised 31 March 2006; accepted 2 April 2006

(C) 2006 OSA 17 April 2006 / Vol. 14,  No. 8 / OPTICS EXPRESS  3576



5. Multi-electron treatment 

In the case of a system with multiple (2 or more) electrons, following the usual multi-electron 
treatment, the atomic number operators ˆgjn  and ˆsjn  shall be expressed in terms of the 

Fermionic electron creation operators ( †ˆgc , †ˆsc ) and annihilation operators ( ˆgc , ˆsc ) as 

†ˆ ˆ ˆ( ) ( ) ( )gj gjgjn t c t c t= and †ˆ ˆ ˆ( ) ( ) ( )sj sjsjn t c t c t=  [Refs. 9, 10], where these operators obey the 

equal-time Fermion anti-commutation relations: 

2 2 2 1 21 1 1

† † †
,ˆ ˆ ˆ ˆ ˆ ˆ{ ( ), ( )} ( ) ( ) ( ) ( )k j k j k j k kk j k j k jc t c t c t c t c t c t δ= + = , 

1 21 2

† †ˆ ˆ ˆ ˆ{ ( ), ( )} { ( ), ( )} 0k j k jk j k jc t c t c t c t= = , 

where k1, k2 ∈{g, s}. The atomic transition operators are then replaced by †ˆ ˆ ˆ( ) ( ) ( )sj sjgjV t c t c t=  

and † †ˆ ˆ ˆ( ) ( ) ( )gjsj sjV t c t c t= [Ref. 17]. This procedure is valid in the free carrier limit in which the 

many-body Coulomb interaction effects associated with multiple electrons and other many-
body effects are neglected [Ref. 9]. The many-body effects often manifested themselves as 
effective shift in bandgap energy, dipole relaxation behavior (e. g. Markovian vs. non-
Markovian) [Ref. 11], density-dependent broadening and saturation, excitation-induced 
dephasing, or scattering of carrier and polarization [Ref. 9]. These effects could be 
incorporated phenomenologically by effectively fitting the relevant parameters and in some 
cases by modifying the parameters in the DTEQM-FDTD model dynamically and using the 
time-dependent carrier density distributions as state parameters. The Hamiltonians in Eqs. (5) 
and (6) then become: 

† †ˆ ˆ ˆ ˆ ˆ( ) ( ) ( ) ( )Atom g gj s sjgj sj
jg js

H c t c t c t c tω ω= +∑ ∑� � ,                                    (9) 

2
† †* 2ˆ ˆˆ ˆ ˆ ˆ ˆ[ ( ) ( ) ( ) ( )] ( , ) ( , )

2
A r A rAF a sj gj sj sj nj njsj gj

js j e

e
H i c t c t c t c t t t

m
ω= − − ⋅ +∑ ∑μ μ .        (10) 

Using the usual derivation of quantum Langevin equations of motion from the 
Hamiltonian [Ref. 18] by tracing over the thermal field reservoir states, which is equivalent to 
solving (using Eqs. (8)) for the atom-field operator evolutions to the first order under 
Markov’s (memory-free) approximation, we will obtain the spontaneous decay terms. It turns 
out that with use of the Fermion anticommutation relations of the electron creation and 
annihilation operators, the decay terms for the electron upper-level population operator 
ˆ ( )sjn t will be in the form of ˆ ˆ( )(1 ( ))sj gjn t n t− , which gives the Pauli Exclusion Principle  

[Refs. 5-8]. This is because the electron transition rate term proportional to ˆ ˆ( )(1 ( ))sj gjn t n t−  

will reduce to zero when the lower level population ˆ ( )gjn t  becomes 1 or fully occupied. The 

equations of motion for the atomic operators then become the followings:  
ˆd ( ) ˆˆ ˆ ˆˆ ˆ( ) ( ) ( ( ) ( )) ( , ) ( )
d

r
sj

sj a sj
a sj Vs sj sj gj s nj V

V t
i V t V t n t n t A t t

t

ω μ
ω γ= − − + − + Γ

�
,  

† *
† † †

ˆd ( ) ˆˆ ˆ ˆˆ ˆ( ) ( ) ( ( ) ( )) ( , ) ( )
d

r
sj

sj a sj
a Vs sj gj s njsj sj V

V t
i V t V t n t n t A t t

t

ω μ
ω γ= − + − + Γ

�
, 

ˆd ( ) ˆ ˆˆ ˆ ˆ( )[1 ( )] ( ) ( , ) ( )
d sj

sj a
Ns sj gj sj s nj n

n t
n t n t t A t t

t

ωγ μ= − − − + Γr
�

, 

ˆd ( ) ˆ ˆˆ ˆ ˆ( )[1 ( )] ( ) ( , ) ( )
d sj

gj a
Ns sj gj sj s nj n

s s

n t
n t n t t A t t

t

ωγ μ= − + − Γ∑ ∑ r
�

,                 (11) 
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where Γ̂ ’s are the Langevin noise operators with zero mean [Ref. 18], γNs is the decay 
rate for upper-level population ˆ ( )sjn t , and γVs is the dipole dephasing rate for operators 

ˆ ( )sjV t and †ˆ ( )sjV t that constitute the atomic dipole moment operator vector ˆ ( )j tμ . Note that γVs 

= γNs/2 + γph where γph is the additional dephasing rate due to phĤ  [Ref. 13]. Taking the mean 

values of these equations will give us a set of mean-valued equations for the electron variables, 
which are used in the next section. The top two equations of Eqs. (11) can be used to derive a 
second-order differential equation for the dipole [Ref. 5-8]. If we specialize to only the two-
level transition between one of the ˆ ( )sjn t and ˆ ( )gjn t for simplicity, we will obtain the 

following equation: 
2 2 22 2

2 2

ˆ ˆ( ) ( ) (2 ) ˆ ˆ2 [ ( , )] ( )rsj sj a
Vs a sj s nj sj

t t
A t t

tt

μ μ ωγ ω μ μ
∂ ∂

+ + +
∂∂ �

                       

2 ˆˆ ˆ2 [ ( ) ( )] ( , )ra
sj sj gj s njn t n t E t

ω μ= − −
�

,                                    (12) 

where we have dropped small terms by assuming that Ωm >> γVs, γNs.  The 2ˆ
sA term in Eq. (12) 

will affect Rabi oscillation but can be neglected at low intensity. Eq. (12) and the bottom two 
equations of Eqs. (11) together forms the complete set of equations for the medium variables. 

6. Summary of medium-field equations for the multi-level multi-electron FDTD model 

Using the equations derived in sections 4 and 5 to describe the interband transitions, we 
further include the intraband transitions phenomenologically in the rate equations with the 
corresponding Pauli Exclusion decay terms [Refs. 5-8] and obtain the full set of mean-valued 
equations describing the multi-level multi-electron model below. For simplicity, we consider 
only one polarization direction (z) from now on and consider only s=z in all equations. 

To begin with, we start with the Maxwell equations in which the electromagnetic field is 
coupled to the macroscopic polarization density ( , )P r t .  

0

d ( , ) 1
( , )

d

H r
E r

t
t

t μ
= − ∇× ;

2 2
0 0

d ( , ) 1 1 d ( , )
( , )

d d

t t
t

t tn nε ε
= ∇× −E r P r

H r .          (13) 

Let the z-component of ( , )tP r  be given by ( , ) ( , )z zP t t= ⋅r e P r . The macroscopic 

polarization density ( , )zP tr  represents the total dipole moment per unit volume. In FDTD, 

the spatial region is subdivided into volume δV that is small compared to the wavelength of 
interest. The atomic dipole moment μz j (t) at njr  multiplied by the total number of dipoles N0 

(in volume δV) divided by δV will give ( , )zP tr . Let the spatial region centered at njr with 

volume δV be denoted as ( njr , δV), we can then express ( , )zP tr  as follows:  

 0
( , ) dip-

( )
( , ) | ( ) ( )

nj

zj
z V zj i

N t
P t t N

V

μ
μ∈ δ = =

δr rr r ,                     (14) 

where dip- ( )iN r is the dipole volume density given by the number of dipoles N0 divided by 

volume δV . We will assign one macroscopic polarization density variable ( , )zP tr for each of 
the transition energy Ei between the levels i_c and i_v. Thus N0 will include the dipoles 
describing transitions centered at transition energy Ei within energy width δE and volume δV, 
so dip- ( )iN r  will be the volume density of dipoles for level i within energy width δE. We may 

thus further label ( , )zP tr  with subscript i as ( , )izP tr . Let us denote the volume densities of 
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states for level i in the conduction band and valence band by 0 ( )CiN r  and 0 ( )ViN r , 

respectively. We can then express the carrier volume densities ( , )CiN tr and ( , )ViN tr  (within 

energy width δE) at levels i_c and i_v, respectively, in terms of ( )zjn t and ( )gjn t as 

0( , ) ( ) ( )Ci zj CiN t n t N= ⋅r r  and 0( , ) ( ) ( )Vi gj ViN t n t N= ⋅r r .  In general, 0 ( )CiN r and 0 ( )ViN r are 

not equal, but we will show below that they are equal for a simple parabolic band case. 
Furthermore, in a more complex semiconductor medium, not all the states are involved in the 

dipole transitions. Let ( )A
CiN r and ( )A

ViN r be the active states involving in the dipole 
transitions having similar dipole transition strengths, the volume density of dipoles 

dip ( )iN − r will be given by the larger one of ( )A
CiN r and ( )A

ViN r [Ref. 19]. 

Using these relations, the polarization equation can be obtained from Eq. (12) by 
multiplying both sides of the equation with dip ( )i njN − r so that the microscopic dipole moment 

variable μzj(t) is replaced by the macroscopic polarization ( , )z njP tr , labeled as ( , )iz njP tr (i=1, 

2, M is the level number). Generalizing it to any position ( , )nj Vδ∈r r  and we obtain: 

2 2
22 2

2 2

( , ) ( , ) (2 )
[ ( , )] ( , )iz iz ai

i ai zi z iz
d P t dP t

A t P t
dtdt

ωγ ω μ+ + +
r r

r r
�

 

2

0 0

( ) ( )2
[ ( , ) ( , )] ( , ) ,

( ) ( )

dip i dip iai
zi Vi Ci z

Vi Ci

N N
N t N t E t

N N

ω μ − −= −
r r

r r r
r r�

              (15) 

where μzi is the z-dipole moment matrix element _ _ˆj i c zj i v j
E Eμ between levels i_c and 

i_v and is given by 
2 3 3

0(3 ) /( )zi ai icμ π ε ω τ= � . The rate equations for ( , )CiN tr and 

( , )ViN tr in the conduction and valence bands are then given by:  

( , 1) ( 1, ) pump
d ( , )

( , ) ( , ) ( , ) ( , )
d

Ci
i i i C i i C

N t
N t N t N t W t

t − += −Δ − Δ + Δ +
r

r r r r , 

( 1, ) ( , 1) pump
d ( , )

( , ) ( , ) ( , ) ( , )
d

Vi
i i i V i i V

N t
N t N t N t W t

t + −= Δ + Δ − Δ −
r

r r r r ,          (16) 

where the ΔN terms on the right hand side describe:    
1. Intraband transition for conduction band in which ( , 1) ( , )i i CN t−Δ r  is the number of 

electrons per unit volume transferred from conduction band level i_c to i –1_c given by:  
0 0

( 1) ( 1) ( 1)
( , 1)

( , 1) ( 1, )

( , )[1 ( , ) / ( )] ( , )[1 ( , ) / ( )]
( , )

Ci C i C i C i Ci Ci
i i C

i i C i i C

N t N t N N t N t N
N t

τ τ
− − −

−
− −

− −
Δ = −

r r r r r r
r .  

  (17) 
2. Intraband transition for valence band in which ΔN (i,i-1)V is the number of electrons per 

unit volume transferred from valence band level i_v to i-1_v and is given by:  
0 0

( 1) ( 1) ( 1)
( , 1)

( , 1) ( 1, )

( , )[1 ( , ) / ( )] ( , )[1 ( , ) / ( )]
( , )

Vi V i V i V i Vi Vi
i i V

i i V i i V

N t N t N N t N t N
N t

τ τ
− − −

−
− −

− −
Δ = −

r r r r r r
r . 

(18) 
3. Interband driven transition (gain or absorption) and spontaneous decay in which ΔNi is 

the number of electrons per unit volume transferred from level i_c to i_v and is given by:  
0( , )[1 ( , ) / ( )]

( , ) ( , ) ( , )ai Ci Vi Vi
i z iz

i

N t N t N
N t A t P t

ω
τ

−
Δ = ⋅ +

r r r
r r r

�
.         (19) 
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In Eq. (16) we have a pumping term Wpump on the right hand side, which allows us to 
describe electrical pumping. If the current density going into an active material of thickness d 
is ( , )J tr (A/m2), then Wpump is given by pumpW ( , ) ( , ) /( )t J t ed=r r , where e=1.6×10-19C is the 

electron charge. The pumping terms are applied to only the largest Ei level to simulate current 
injection in semiconductor. Optical pumping can be simulated by introducing an optical 
pumping beam, which will excite carriers from ( , )ViN tr to ( , )CiN tr via the first term in Eq. 
(19). 

Note that Eqs. (16)-(19) conserve the total number of electrons in the conduction band 
plus the valence band so that the “total density” ( , ) ( , ) ( , ) ( ,0)T CT VT TN t N t N t N≡ + =r r r r  

for electrons is time-independent, where ( , ) ( , )CT Ci
i

N t N t=∑r r and ( , ) ( , )VT Vi
i

N t N t=∑r r . 

The field driven transition term in Eq. (19) is in the A⋅P form (instead of the ( / )E dP dt−  form) 

valid at far off resonance  [Ref. 5-8].  The 2
zA term in Eq. (15) is important for high field 

intensity case. 

7. Discussion on number density   

In this section, we discuss the procedure to obtain the corresponding volume density of states 
in each of the discrete energy levels. To obtain the correct volume density of states, we sum 
up all the available states within an energy width δE at the particular energy level in the 
original band structure. In the multi-level model, energy level i will encompass all the optical 

transitions between energy levels 1( ) / 2B
i i i iE E E E− −= − − and 1( ) / 2B

i i i iE E E E+ += + − as 

shown in Fig. 3. For a parabolic band structure, the volume density of states at each energy 
level is calculated from the number of states per unit energy per unit volume ρ (E): 

*
3 / 2 1/ 2

2 2

1 2
( )d [ ]

2

m
E E E dEρ

π
= Δ

�

,                                (20) 

where ΔE is the energy measured from the band edges and are denoted as ΔECi and ΔEVi for 
the conduction band and valence band, respectively. In a standard parabolic band structure, 
ΔECi and ΔEVi are given by: 

( )B V
Ci i G

V C

m
E E E

m m+Δ = −
+

, ( )B C
Vi i G

V C

m
E E E

m m+Δ = −
+

,                   (21) 

where mC and mV are the electron and hole effective masses, respectively, and EG is the 
bandgap energy. Hence, the volume density of states for energy level i, which is the number 

of states per unit volume with interband transition energy between B
iE − and B

iE + , will be  

,

, ( 1)

3 / 2 3 / 2 3 / 2 3/ 2
0

dip , 2 3 3 / 2

16 2 [( ) ( ) ]
( ) ( ) ( )d

3 ( )
C V i

C V i

B B
E C V i G i G

i C Vi E
C V

m m E E E E
N N E E

m m
ρ

π−

Δ + −
− Δ

− − −
= = Δ =

+
∫r r

�

.  

    (22) 

In this case, we have 0 0( ) ( ) ( ) ( )A A
Ci Vi Ci ViN N N N= = =r r r r and hence can set the volume 

density of dipoles 0
dip ( ) ( )i ViN N− =r r . It is interesting to see that in this case the volume 

density of states for level i_c is equal to the volume density of states for level i_v. However, 
because of the difference in the intraband relaxation rates for the electrons in the conduction 
band and valence band due to their different effective masses [Ref. 20], the number of 
electrons and holes in the corresponding levels i_c and i-v may not be equal.   
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8. Modeling the Fermi-Dirac Thermalization Dynamics 

At finite temperature, non-equilibrium electrons will transfer between intraband states through 
phonon-assisted processes to achieve a quasi-equilibrium distribution, which is referred to as 
the conduction band or valence band Fermi-Dirac thermalization. This effect is often modeled 
by calculating the quasi-equilibrium Fermi energy levels for both electrons and holes. In a 
time-domain numerical method, the Fermi energy levels will need to be updated temporally, 
resulting in complicated calculations. In our model, we will show that the Fermi-Dirac 
thermalization can be accurately achieved by assigning the right ratio between the upward and 
downward intraband transition rates between two neighboring levels. The upward transition 
mimics thermally excited carrier hopping. It turns out that the ratios between the upward and 
downward intraband transition rates are independent on the Fermi energy levels, which 
greatly simplify the simulation. To show that, let us illustrate using the intraband transition 
rate equation between the conduction band levels i_c and i-1_c given by Eq. (17) as follows:  

0 0
( 1) ( 1) ( 1)

( , 1)
( , 1) ( 1, )

( , )[1 ( , ) / ( )] ( , )[1 ( , ) / ( )]
( , )

Ci C i C i C i Ci Ci
i i C

i i C i i C

N t N t N N t N t N
N t

τ τ
− − −

−
− −

− −
Δ = −

r r r r r r
r . 

(23) 
When the intraband transition between those two levels reaches steady state, we can 

set ( , 1) 0i i CN −Δ = . The ratio for the upward transition rate ( 1, )i i Cτ −  and downward transition 

rate ( , 1)i i Cτ −  between levels i_c and i-1_c is then given by: 

0
( 1, ) ( 1) _ _

0
( , 1) _ ( 1) _ ( 1)

( )[1 ( ) / ( )]

( )[1 ( ) / ( )]

i i C C i S Ci S Ci

i i C Ci S C i S C i

N N N

N N N

τ
τ

− −

− − −

−
=

−

r r r

r r r
,                     (24) 

where _Ci SN and ( 1) _C i SN − are the steady-state carrier densities in levels i_c and i-1_c that 

shall obey the Fermi-Dirac thermal distribution function as follows: 

0 0
_ [( ) / ]

1
( ) ( ) ( )

1Ci F BC
Ci S Ci Ci CiE E k T

N f E N N
e

−= Δ ⋅ = ⋅
+

r r ,                (25) 

where ECi is the energy of level i_c and 
CFE  is the Fermi energy for the conduction band, 

both measured with respect to conduction band edge. This gives: 

( 1)
( 1)

( 1)

( 1)

(( ) / )
0

0( 1)(( ) / ) (( ) / )
( ) /( 1, ) ( 1)

(( ) / ) 0
( , 1) 0

(( ) / ) (( ) / )

1
( )

( )1 1
( )1

( )
1 1

Ci F BC

C i F B Ci F BC C
Ci C i B

C i F BC

Ci F B C i F BC C

E E k T

C iE E k T E E k T
E E k Ti i C C i

E E k T
i i C Ci

CiE E k T E E k T

e
N

Ne e e
Ne

N
e e

τ
τ

−
−

−

−

−

−− − −− −
−

−
− −

⋅
+ += =

⋅
+ +

r
r

r
r

.   (26)  

Similar relations can be obtained for the valence band case. Thus, we see that the ratio 
between any adjacent pair of the up and down intraband transition times is only dependent on 
the energy difference between the two levels involved, the temperature, and the ratio between 
the volume densities of states for the two levels. It is independent on the Fermi energy levels 

CFE and 
VFE . This leads to a significant simplification of the simulation as there will be no 

need to update the Fermi energy level at each spatial grid point. The temperature T describes 
the local crystal lattice temperature of the medium and, if necessary, can be treated as a 
spatial-temporal parameter ( , )T tr  determined separately by thermal diffusion equation. This 

thermalization also applies to interband but large energy gap makes its contribution negligible.  
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9. FDTD implementation 

In order to implement FDTD simulation, we divide the spatial region of interest into discrete 
spatial grid points [Ref. 1]. We assume the dipole to be all in the z-direction. In this case only 
Ez will be interacting with the medium. We use v, u, w to label the spatial grid points in the x, 
y, z coordinate directions, respectively. The set of discrete difference equations for the 
carrier’s volume-density variables are then given by: 

1 1
1/ 2, 1/ 2, 1/ 2, 1/ 2,

1/ 2, 1/ 2, ( , 1) 1/ 2, 1/ 2, ( 1, ) 1/ 2, 1/ 2, pump

| |

2 ( | | | ) ,

n n
Ci u v w Ci u v w

n n n
i u v w i i C u v w i i C u v w

N N

t N N N W

+ −
− + − +

− + − − + + − +

=

+ Δ −Δ −Δ +Δ +
 

1 1
1/ 2, 1/ 2, 1/ 2, 1/ 2,

1/ 2, 1/ 2, ( , 1) 1/ 2, 1/ 2, ( 1, ) 1/ 2, 1/ 2, pump

| |

2 ( | | | ) ,

n n
Vi u v w Vi u v w

n n n
i u v w i i V u v w i i V u v w

N N

t N N N W

+ −
− + − +

− + − − + + − +

=

+ Δ Δ −Δ +Δ −
 

1/ 2, 1/ 2, 1/ 2, 1/ 2, 1/ 2, 1/ 2,

0
1/ 2, 1/ 2, 1/ 2, 1/ 2, 1/ 2, 1/ 2,

| | |

| (1 | / | )
 ,

n n nai
i u v w z u v w iz u v w

n n
Ci u v w Vi u v w iV u v w

i

N A P

N N N

ω

τ

− + − + − +

− + − + − +

Δ = ⋅

−
+

�
 

0
1/ 2, 1/ 2, ( 1) 1/ 2, 1/ 2, ( 1) 1/ 2, 1/ 2,

( , 1) 1/ 2, 1/ 2,
( , 1)

0
( 1) 1/ 2, 1/ 2, 1/ 2, 1/ 2, 1/ 2, 1/ 2,

( 1, )

| [1 | / | ]
|

| [1 | / | ]
 ,

n n
Ci u v w C i u v w i C u v wn

i i C u v w
i i C

n n
C i u v w Ci u v w iC u v w

i i C

N N N
N

N N N

τ

τ

− + − − + − − +
− − +

−
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For the macroscopic polarization, we have: 
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The update of the electrical field components in z direction will be: 
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All other electric and magnetic field components (Ex, Ey, Hx, Hy, Hz) follow the usual updating 
scheme in Yee’s algorithm [Ref. 1].  

10. FDTD simulation examples 

In order to validate the DTEQM approach for FDTD computation of complex media, we will 
give several simulation examples using the model discussed above. We assume a 
semiconductor bulk medium with bandgap wavelength of 1550nm and model it with the 
simple parabolic band case. The effective masses for the conduction and valence bands are 
0.046me and 0.36me, respectively, with me being the free electron mass. The energy levels Ei’s 
are spaced by constant wavelength spacing Δλ. If we use 5 energy levels for conduction and 
valence band and let Δλ=50nm, then the optical transition wavelengths for the discrete levels 
will be 1525nm, 1475nm, 1425nm, 1375nm, and 1325nm. The interband decay rate τi for 
typical direct-gap semiconductor bulk medium and quantum well of interest ranges from 
hundreds of picoseconds to nanoseconds [Ref. 21]. In the simulation below we use τi=1nsec. 

For illustration purpose, we set the downward intraband transition time τ(i,i-1)C for 
conduction band electrons to be about one picosecond and set the downward intraband 
transition time τ(i-1, i)V  for valence band electrons to be about 100fs, which are within the range 
of values given in the literature [Ref. 20]. The upward intraband transitions for conduction 
and valence bands are then set to follow the ratio given in Eq. (26). The initial random 
distribution of carriers will relax to the quasi-steady-state Fermi-Dirac distribution within the 
time scale given by the intraband transition rates. The dipole dephasing time is set to be 
~50fsec.  As those medium time-constants are several orders of magnitude larger than the 
optical period, it will not affect the choice of the FDTD time step (typically 1-2 orders of 
magnitude smaller than the optical period). 

10.1 Application to stead- state absorption spectrum – band filling effect 

To show the band-filling effect, we used the semiconductor medium parameters discussed 
above and studied its steady-state absorption spectrum. We simulated the same medium using 
both 5 energy levels and 10 energy levels. The total valence band volume density of states 

0
VTN  obtained by summing over all levels in the valence band are kept to be the same at 0

VTN  

~7×1023 m-3 to give reasonable bulk absorption coefficient. We electrically pumped a 2 μm 
long semiconductor medium along a 1 μm wide waveguide to different carrier densities. After 
a time period of constant pumping, the carrier density in the medium will reach steady state. A 
weak and short optical pulse (300fs FWHM) is then launched into the semiconductor 
waveguide and propagated through the medium as a probing signal to obtain medium 
information such as the absorption spectrum. 

 The absorption spectrum is calculated from the Fourier Transform of the output pulse 
comparing to the input pulse. The result is plotted in Fig. 4, where Fig. 4(a) shows the 
spectrum when 5 energy levels are used for the conduction and valence bands and Fig. 4(b) 
shows the spectrum when 10 energy levels are used with Δλ=25nm. Comparing the result of 
Fig. 4 with the typical semiconductor gain/absorption spectrum [Ref. 22], we see the expected 
gain spectrum broadening and the shift in the peak wavelength of the gain spectrum with 
increasing carrier density. The gain spectrum broadening is a result of band filling and is the 
main reason why it is it difficult to get high inversion in semiconductor amplifiers. Although 
the 10-level case gives much smoother spectrum, the 5-level case can already show the 
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essential effect covering a broad wavelength range from 1300nm to 1600nm. In many device 
applications, the spectral coverage does not have to be that broad and fewer levels covering ~ 
100 nm can be used.    

1350 1400 1450 1500 1550 1600 1650
-1.0

-0.5

0.0

0.5

1.0

carrier density:
 0
 2*1023/m3

 4*1023/m3

 5.3*1023/m3

 6*1023/m3

 6.9*1023/m3

G
ai

n 
co

ef
fic

ie
nt

 (
/u

m
)

wavelength (nm)
1350 1400 1450 1500 1550 1600 1650

-1.0

-0.5

0.0

0.5

1.0
carrier density:

 0
 1.1*1023/m3

 2.2*1023/m3

 3.1*1023/m3

 4*1023/m3

 5.3*1023/m3

 6*1023/m3

 6.8*1023/m3

G
ai

n/
ab

so
rp

tio
n 

co
ef

fic
ie

n
t (

/u
m

)

wavelength (nm)

(a) (b)

 
Fig. 4. Absorption spectra at different carrier densities obtained by using different number of 
energy level pairs: (a) 5 level pairs, (b) 10 level pairs. 

10.2 Application to ultrafast transient response   

The absorption of a short laser pulse with an optical frequency above the bandgap in a 
semiconductor creates free electrons and holes with an initial energy distribution that is 
essentially determined by the optical spectrum of the laser pulse. Within a very short time 
scale, this non-thermal energy distribution is transformed by carrier-carrier scattering into a 
quasi-equilibrium Fermi-Dirac distribution [Refs. 9, 10]. This process of spectral hole burning 
and subsequent thermalization is a representative example of ultrafast phenomena in 
semiconductor [Ref. 23]. Figure 5 shows the normalized number density in the discrete energy 
levels as a function of time when the semiconductor waveguide is pumped by a 300fs 
Gaussian pulse with a peak intensity of 200MW/cm2 and a center wavelength of 1425nm. We 
see that the electrons in the valence band relax to quasi equilibrium much faster than the 
electrons in the conduction band, exemplified by the steeper slope of the valence band 
electron relaxation curves. The transient evolution of the entire absorption spectrum can also 
be obtained [Ref. 12]. 

(a) (b)

Conduction band electron

Steeper slope for valence 
band electron

 
Fig. 5. Medium’s transient response under strong optical pumping: (a) input optical pulse; (b) 
normalized volume density of states at each of the 5 energy levels in the conduction and 
valence band as a function of time. 

10.3 Application to simulation of multimode microdisk laser 

Next we apply the DSM-FDTD model to simulate the lasing behavior of a microdisk 
semiconductor laser [Refs. 24-26] using 2-dimensional FDTD with the 5-level model on a 
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2GHz cpu Pentium PC. The laser gain medium is a semiconductor bulk medium given by the 
example above in Fig. 4(a). Let us consider a 2-μm diameter [Fig. 6(a)] microdisk for which 
the effective waveguiding refractive index of the disk is n=2.7 and the disk is held in air (n=1) 
by a pillar at the center of the disk. Here we assume the optical mode has 40% overlapping 
with the active medium in the vertical direction.  
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Fig. 6. Simulation of microdisk laser: (a) dimension and refractive index of the microdisk laser; 
(b) simulated electrical field pattern when lasing; (c) optical intensity inside the microdisk laser 
at different injection current densities. 

We pumped the disk with different electrical current densities and plotted the optical 
intensity inside the disk as a function of the injection current density (Figs. 6(b) and 6(c)). As 
spontaneous emission noise is not yet included in the theory, the medium is hit with an optical 
pulse to initiate lasing. After that, self-sustained lasing behavior can be achieved at above 
threshold. In our simulation, we ran for ~2000 cavity round trips to achieve the steady state 
and used a FDTD spatial grid resolution of ~λ/30. The laser simulated showed a threshold 
current density of ~400A/cm2, which corresponded to a carrier density of 2.5×1023 m-3. This 
carrier density is above the transparent carrier density of 2×1023 m-3 shown in Fig. 4. The 
lasing spectrum inside the cavity is plotted at four different current levels above threshold as 
shown in Fig. 7(a). At current just above threshold, only one lasing mode is present. At 
pumping current density 48kA/cm2, the second mode starts to appear. The two modes are the 
TM08, 1 and TM09, 1 whispering gallery modes of the microdisk cavity. Note that the lasing 
spectral width shown here is not the real laser linewidth as noise is not included in the current 
model. The “linewidth” here is actually transform-limited linewidth and is resulted from the 
limited time period in which we performed Fourier transform on the laser cavity field. 

Another interesting effect is that as the pumping level increases, the carrier level increases 
inside the microdisk due to band filing. This leads to a change in the refractive index 
(Δn~0.003) of the microdisk cavity, which then leads to a change in the lasing wavelength. 
Fig. 7(b) shows the slight shift in the lasing wavelength as the injection current level 
increases. The intensity-induced lasing wavelength change as well as the multi-mode lasing 
effect would be difficult to simulate without the sophisticated semiconductor model 
introduced here. 
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Fig. 7. (a) Lasing spectra of the 2μm diameter microdisk laser at different injection current 
densities showing multimode lasing at high current of 43kA/cm2 (b) zoom in to show the 
wavelength shift in the first lasing mode. 

11. Computational overhead and FDTD medium model extension 

Perhaps the most important criteria in evaluating the feasibility of a FDTD semiconductor 
model are its computational complexity, which resulted in long computational time. The 
DSM-FDTD model illustrated in this paper gives a semiconductor model with minimal 
computational complexity that can still take into account the essential semiconductor carrier 
dynamics such as band filling, carrier transient effects, and carrier induced refractive index 
change. When using five energy-level pairs for the conduction band and valence band, the 
total computational time for a simulation where the entire geometry is filled with the 
semiconductor medium is 8 times of the same code without the medium. In a typical 
geometry, the active medium may occupy only a small fraction of the entire area of 
simulation, which can be on the order of 10%. In that case, the computational overhead is only 
~ 1x. This makes the model useful for a wide range of FDTD simulations. 

Although the current model has taken into account most of the essential semiconductor 
carrier dynamics, there are other effects that could potentially be included in the model 
depending on the particular device simulation requirements. For example, carrier diffusion 
could be included into the FDTD equation straight-forwardly by adding a spatial carrier 
transportation term in Eq. (27). Noise term can be included to give the spontaneous emission 
linewidth and the lasing linewidth. Carrier heating and cooling can be more accurately 
described by allowing the carrier temperature to evolve in time. Also, non-radiative and 
higher-order Auger recombination effects can be included [Ref. 9, 10]. Furthermore, quantum 
well and dot and their carrier capture dynamics can be modeled. However, one should only 
include the most essential effects sufficient for simulating the device behaviors of interest to 
reduce the computational burden.     

12. Discussion and summary 

In summary, we report a new computational model of material media capable of modeling the 
nanostructure and electronic dynamics of sophisticated active materials often needed in 
photonic device simulations. The media that can be modeled include solid-state and 
semiconductor type media, as well as molecular and atomic type media. This model is 
computationally efficient for incorporating into the FDTD electrodynamics simulation. 

The model is based on a multi-energy-level multi-electron quantum system in which the 
electron dynamics is governed by the Pauli Exclusion Principle and the dynamical Fermi-
Dirac Thermalization. The medium is described by a set of rate equations derived quantum 
mechanically. The formulation is based on the basic minimal-coupling Hamiltonian extended 
to incorporate multiple electrons via second quantization using Fermion creation and 
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annihilation operators. The set of rate equations and dipole equation describing the model are 
obtained without the usual rotating-wave approximations and can be applied to the regimes at 
near or far off-resonance as well as high field intensity. 

We refer to this model as the Dynamical-Thermal-Electron Quantum-Medium FDTD 
(DTEQM-FDTD) model. It is built on top of our earlier 4-level 2-electron model with Pauli 
Exclusion Principle [Ref. 5-8] but extended to multiple levels and multiple electrons with the 
important inclusion of dynamical Fermi Dirac thermalization. We show that the Fermi-Dirac 
thermalization can be incorporated via a temperature-dependent carrier hopping process, 
which mimics thermal carrier excitations. This dynamical process enables the simulation of 
carrier decay from non-thermal equilibrium after excitation to a quasi equilibrium carrier 
distribution governed by the quasi Fermi-Dirac distribution.   

In application to semiconductor, this DTEQM-FDTD model takes into account the 
transient intraband and interband electron dynamics, the semiconductor band structure, and 
carrier thermal equilibrium process for the first time in FDTD simulation, and is referred to as 
the Dynamical-Semiconductor-Medium FDTD (DSM-FDTD) model. The DSM-FDTD model 
automatically incorporates energy-state filling effect. It also incorporates the typical nonlinear 
optical effects associated with carrier dynamics and thermally activated carrier scattering 
process under transient excitation spatial-temporally. The model also allows separate electron 
dynamics in the conduction and valence bands. These capabilities empower the model to treat 
sophisticated optoelectronic and nanophotonic devices having complex geometries with full 
spatial-temporal solutions at the microscopic level under electrical or optical excitation. A 
further extension of the FDTD model to include spatial diffusion of carriers, lattice 
temperature heating or cooling, and carrier dependent medium parameter shifts due to many-
body effects will make it a highly powerful optoelectronic and photonic device simulator. 

Most importantly, we show that the FDTD model is sophisticated enough to incorporate 
the essential multi-physical effects in complex media and yet is simple enough to achieve fast 
computational time. We illustrated the application of this powerful new model to FDTD 
computation with the simulation of the entire gain and absorption spectra of a direct-bandgap 
semiconductor medium, showing the carrier band filling effects with Fermi-Dirac statistics. 
We then illustrated the application of the FDTD model to simulating spectral hole burning of 
carriers under a strong optical pulse with subsequent decay to thermal equilibrium 
representative of ultrafast phenomena in semiconductor. To illustrate its applications to 
photonic devices, we simulated a microdisk laser in which a second lasing mode is excited 
due to gain bandwidth broadening at high medium excitation. We also show the shift in the 
lasing frequency with increased excitation due to carrier-induced refractive index change.  
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