
Dynamically Adapting File Domain Partitioning
Methods for Collective I/O Based on Underlying

Parallel File System Locking Protocols
Wei-keng Liao and Alok Choudhary

Electrical Engineering and Computer Science Department
Northwestern University

Evanston, Illinois 60208-3118
Email: {wkliao,choudhar}@ece.northwestern.edu

Abstract—Collective I/O, such as that provided in MPI-IO,
enables process collaboration among a group of processes for
greater I/O parallelism. Its implementation involves file domain
partitioning, and having the right partitioning is a key to
achieving high-performance I/O. As modern parallel file systems
maintain data consistency by adopting a distributed file locking
mechanism to avoid centralized lock management, different
locking protocols can have significant impact to the degree of
parallelism of a given file domain partitioning method. In this
paper, we propose dynamic file partitioning methods that adapt
according to the underlying locking protocols in the parallel
file systems and evaluate the performance of four partitioning
methods under two locking protocols. By running multiple
I/O benchmarks, our experiments demonstrate that no single
partitioning guarantees the best performance. Using MPI-IO as
an implementation platform, we provide guidelines to select the
most appropriate partitioning methods for various I/O patt erns
and file systems.

I. I NTRODUCTION

A majority of scientific parallel applications nowadays are
programmed to access files in a one-file-per-process style [1].
This programming style is simple and often gives satisfactory
performance when applications run on a small number of
processes. One immediate drawback is that the application
restart must use the same number of processes as the run
that produced the checkpoint files. A more serious problem is
that this method can create a management nightmare for file
systems when applications run on a large number of processes.
A single production run using thousands of processes can
produce hundreds of thousands or millions of files. Simul-
taneous file creation in such a scale can cause the network
traffic congestion at the metadata servers, as modern parallel
file systems employ only one or a small number of metadata
servers. Furthermore, accessing millions of newly createdfiles
becomes a daunting task for post-run data analysis. In order
to reduce such file management workload, one solution is to
adopt the shared-file I/O programming style.

Shared-file I/O provides a way to preserve the canonical
order of structured data. Parallel programs often use global
data structures, such as multi-dimensional arrays, to present
the problem domain and partition them so that processes can
concurrently operate on the assigned sub-domains. During a

checkpoint, maintaining arrays’ canonical order in files can
ease up the task of post-run data analysis and visualization.
However, shared-file I/O often performs poorly when the
requests are not well coordinated. To address this concern,
the message passing interface (MPI) standard defines a set
of programming interfaces for parallel file access, commonly
referred as MPI-IO [2]. There are two types of functions in
MPI-IO: collective and independent. The collective functions
require process synchronization which provides an MPI-IO
implementation an opportunity to collaborate processes and
rearrange the requests for better performance. Well-knownex-
amples of using such a collaboration are two-phase I/O [3] and
disk directed I/O [4]. Process collaboration has demonstrated
significant performance improvements over uncoordinated I/O.
However, even with these improvements, the shared-file I/O
performance is still far from the single-file-per-process ap-
proach. Part of the reason is that shared-file I/O incurs higher
file system locking overhead from data consistency control,
which can never happen if a file is only accessed by a unique
process.

ROMIO is a popular MPI-IO implementation developed at
Argonne National Laboratory [5]. It has been incorporated
as part of several MPI implementations, including MPICH,
LAM [6], HP MPI, SGI MPI, IBM MPI, and NEC MPI. To
achieve the portability, ROMIO implements a layer of abstract-
device interface named ADIO that contains a set of I/O
drivers, one for a different file system [7]. This design allows
ADIO to utilize the system dependent features for higher
I/O performance. ROMIO’s collective I/O implementation is
based on the two-phase I/O strategy proposed in [3], which
includes a data redistribution phase and an I/O phase. The two-
phase strategy first calculates the aggregate access file region
and then evenly partitioned it among the I/O aggregators
into file domains. The I/O aggregators are a subset of the
processes that act as I/O proxies for the rest of the processes.
In the data redistribution phase, all processes exchange data
with the aggregators based on the calculated file domains. In
the I/O phase, aggregators access the shared file within the
assigned file domains. Two-phase I/O can combine multiple
small non-contiguous requests into large contiguous ones and

wkliao
Typewritten Text
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation on the first page. To copy otherwise, to republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee.
SC2008 November 2008, Austin, Texas, USA 978-1-4244-2835-9/08 $25.00 ©2008 IEEE

has demonstrated to be very successful, as modern file systems
handle large contiguous requests more efficiently. However,
the even partitioning method does not necessarily produce the
best I/O performance on all file systems.

Modern parallel file systems employ multiple I/O servers,
each managing a set of disks, in order to meet the requirement
of high data throughput. Files stored on these systems can
be striped across the I/O servers so that large requests can
be concurrently served. For parallel I/O on striped files, it
is not easy to enforce data consistency and provide high
performance I/O at the same time. Two most important data
consistency issues that file systems must enforce are I/O
atomicity and cache coherence. Most file systems rely on a
locking mechanism to provides a client an exclusive access
to a file region and hence to implement the data consistency
control. Due to the nature of file striping, lock granularityis
usually the file block size or stripe size, instead of a byte.
If two I/O requests simultaneously access the same file block
and at least one of them is a write, they must be carried out
serially, even if they do not overlap in bytes. On file systems
that perform client-side file caching, this situation can also
cause false sharing in which a block is cached by a process
but flushed immediately, so the block can be accessed by the
other process. Both I/O serialization and false sharing could
happen in a collective I/O, if the partitioned file domains are
not aligned with the lock boundaries.

In this paper, we investigate three file domain partitioning
methods in addition to the even partitioning method used by
ROMIO. The first method aligns the partitioning with the
file system’s lock boundaries. The second method, named
static-cyclic method, partitions a file into fixed-size blocks
based on the lock granularity and statically assigns the blocks
in a round-robin fashion among the I/O aggregators. The
third method, named group-cyclic method, divides the I/O
aggregators into groups, each being of size equal to the number
of I/O servers. Within each group, the static-cyclic partitioning
method is used. This method is particularly designed for the
situation that the number of I/O aggregators is much larger
than the I/O servers. We evaluate these methods using four
I/O benchmarks on two parallel file systems, Lustre and
GPFS. Due to the different file locking protocols adopted
in Lustre and GPFS, these partitioning methods result in
significant performance differences on the two file systems.
Our experiments conclude that the group-static and lock-
boundary aligned methods give the best write performance on
Lustre and GPFS, respectively. We analyze these behaviors and
propose a strategy that dynamically chooses the partitioning
method best fit to the underlying file system locking protocol.

The rest of the paper is organized as follows. Section II
discusses background information and related work. Design
and implementation of the file domain partitioning methods
are described in Section III. Performance results are presented
and analyzed in Section IV and the paper is concluded in
Section V.

II. BACKGROUND AND RELATED WORK

MPI-IO inherits two important MPI features: MPI commu-
nicators defining a set of processes for group operations and
MPI derived data types describing complex memory layouts.
A communicator specifies the processes that can participate
in a collective operation for both inter-process communication
and file I/O. When opening a file, the MPI communicator is a
required argument to indicate the group of processes accessing
the file. MPI collective I/O functions also require all processes
in the communicator to participate. Such an explicit synchro-
nization allows a collective I/O implementation to exchange
access information among all processes and reorganize I/O
requests for better performance. Independent I/O functions, in
contrast, requiring no synchronization make any collaborative
optimization very difficult. While the MPI-IO design goals
are mainly for parallel I/O operations on shared files, one
can still program in the one-file-per-process style using the
MPI_COMM_SELF communicator, but it provides no benefit
over using POSIX I/O directly.

A. Two-phase I/O Implementation in ROMIO

Two-phase I/O is a representative collaborative I/O tech-
nique that runs at user space. It assumes that file systems
handle large contiguous requests much better than small non-
contiguous ones. ROMIO implements the two-phase I/O for all
the collective functions. It first calculates the aggregateaccess
region, a contiguous file region starting from the minimal
access offset among the requesting processes and ending at
the maximal offset among the processes. The aggregate access
region is then divided into non-overlapping, contiguous sub-
regions denoted as file domains, and each file domain is
assigned to a unique process. A process makes read/write calls
on behalf of all processes for the requests located in its file
domain. In ROMIO’s current implementation, the file domain
partitioning is done evenly at the byte range granularity in
consideration of balancing the workload.

The two-phase method is generalized in ROMIO by tak-
ing two user-controllable parameters: the I/O aggregators
and the collective buffer size [8]. Both parameters can be
set through MPI info objects using hintscb_nodes and
cb_buffer_size. The I/O aggregators are a subset of
the processes that act as I/O proxies for the rest of the
processes. On the parallel machines where each compute nodes
contains a multi-core CPU or multiple processors, the ROMIO
default picks one of the core/processor as the aggregator each
node. Only aggregators make system calls, such asopen(),
read(), write() andclose(). The collective buffer size
indicates the space of temporary buffers that can be used for
data redistribution. It is useful for memory-bound applications
where spare memory space is limited. When a file domain is
bigger than the collective buffer size, the collective I/O will be
carried out in multiple steps of two-phase I/O and each two-
phase I/O operates on a file sub-domain of size no larger than
the collective buffer size. Figure 1 shows a two-dimensional
array of size10 × 15 partitioned among six processes in a
block-block fashion and the array is written in the array’s

2

P3 P4 P5

5

5 5 5

5

X

Y

(a)

aggregate access region = 150

64 102 14026

42 80 118 156

4810 86 124 160

1st two−phase I/O

2nd two−phase I/O

3rd two−phase I/O

P ’s3P ’s21P ’s0P ’s
file domain

38 38 38 36

file domainfile domain file domain

file

offsets
file

P

(b)

0 1P P

Fig. 1. (a) A 10× 15 array stored in a file in a row major is partitioned
among six processes. Each subarray is of size 5× 5. (b) The aggregate access
region is calculated and partitioned evenly among the I/O aggregators. Each
aggregator is assigned a contiguous region as its file domain. In this example,
the first four processes are picked as the I/O aggregators. Given the collective
buffer size of 16 bytes, a collective I/O operation is carried out in 3 steps of
two-phase I/O. Each step covers a file region equal or less than 16 bytes.

canonical order to a shared file starting from file offset 10.
In this example, the I/O aggregators are set to be the first four
processes. Under the even partitioning policy, file domainsare
non-overlapping contiguous file regions of size 38 bytes for
processesP0, P1, andP2 and 36 bytes for processP3. If a
collective buffer size of less than the file domain size, say 16
bytes, the collective I/O will be completed by running two-
phase I/O three times. In each two-phase I/O, an aggregator
only handles data redistribution for a file region equal or less
than 16 bytes.

Nitzberg and Lo studied three file domain-partitioning meth-
ods for two-phase I/O, namely block, file layout, and cyclic
target distributions [9]. The block method uses all processes as
I/O aggregators and chooses an unlimited collective buffersize
so that the two-phase I/O can be completed in a single step.
The file layout method uses the number of I/O aggregators
equal to the number of system I/O servers and the data redis-
tribution matches the file striping layout. The two-phase I/O
is carried out in rounds, each round processing the aggregate
access region of size equal to the collective buffer size times
the number of aggregators. In each round, an aggregator will
make n read/write calls to the file system, wheren is the
number of stripe units in a collective buffer. The cyclic method
is generalized from the file layout method, which allows file
domain size to be set by the users to a multiple of file stripe
size. Their experiments showed all three methods perform

competitively and with selected collective buffer sizes the
cyclic method can outperform others in some cases. They
concluded that no single partitioning method provides the best
performance and the performance varies depending on the I/O
patterns. However, there is no analysis from the file system
perspective on why these methods behave differently, but
merely a performance observation. The file-layout and cyclic
methods are similar to our static-cyclic partitioning method
presented in this paper. The difference is that we consider the
file system’s lock granularity and our motivation came from
the idea of how to minimize the lock contentions.

B. File Locking in Parallel File Systems

Many modern parallel file systems are POSIX compliant,
which abide by the data consistency rules that were de-
signed under the traditional non-parallel environment. Ithas
been known that POSIX requirements on I/O consistency
and atomicity are the two main factors causing significant
performance degradation for parallel shared-file I/O [10],[11].
Data consistency requires the outcomes of concurrent I/O
operations as if they were carried out in a certain linear
order. It is relatively easy for a file system with one server
to guarantee the sequential consistency, but much difficultfor
parallel file systems where files are striped across multiple
servers. The atomicity requires that the results of an individual
write call are either entirely visible or completely invisible to
any read call [12]. Implementation for both requirements can
become further sophisticate when client-side file caching is
performed. Two well-known parallel file systems support file
caching are the IBM’s GPFS [13], [14] and Lustre [15].

Currently a popular solution for I/O atomicity and cache
coherency uses a locking mechanism to provide a process
the exclusive access privilege to the requested file region.
However, exclusive access can potentially serialize concurrent
operations. Especially, as the number of processors goes into
the scale of thousands or millions, guaranteeing such consis-
tency without degrading the parallel I/O performance is a great
challenge. To avoid the obvious bottleneck from a centralized
lock manager, various distributed file locking protocols have
been proposed. For example, GPFS employs a distributed
token-based locking mechanism to maintain coherent caches
across compute nodes [16]. This protocol makes a token holder
a local lock authority for granting further lock requests toits
corresponding byte range. A token allows a node to cache data
that cannot be modified elsewhere without first revoking the
token. GPFS’s file stripe size is set at the system boot time
and not changeable by users. The Lustre file system uses a
different distributed server-based locking protocol where each
I/O server manages locks for the stripes of file data it stores.
Unlike GPFS, users can customize striping parameters for a
file on Lustre, such as stripe count, stripe size, and the starting
I/O server. If a client requests a lock held by another client,
a message is sent to the lock holder asking it to release the
lock. Before a lock can be released, dirty cache data must be
flushed to the servers. To guarantee atomicity, file locking is
used in each read/write call to guarantee exclusive access to

the requested file region.
Both GPFS and Lustre adopt an extent-based locking pro-

tocol in which a lock manager tends to grant a request as the
largest file region as possible. For example, the first requesting
process to a file will be granted the lock for entire file. When
the second write from a different process arrives, the first
process will relinquish part of the file to the requesting process.
If the starting offset of the second request is bigger then the
first request’s ending offset, the relinquished region willstart
from the first request’s ending offset toward the end of file.
Otherwise, the relinquished region will contain a region from
file offset 0 to the first request’s staring offset. The advantage
of this protocol is if a process’s successive requests are within
the already granted region, then no lock request is needed.
The extent-based protocol is carried out by the lock manager
on both GPFS and Lustre. On GPFS, the lock token holder is
the lock manager and hence the extent of a lock can virtually
cover the entire file. On Lustre, since an I/O server is the lock
manager for the file stripes stored in that server, the extentof
a lock can only cover those file stripes.

III. D ESIGN AND IMPLEMENTATION

There is no doubt that process collaboration is a key for
high-performance I/O. In addition to the two-phase I/O and
disk-directed I/O, many collaboration strategies have been
proposed and demonstrated their success, including server-
directed I/O [17], persistent file domain [18], [19], active
buffering [20], collaborative caching [21], [11], etc. In this
paper, we focus on the two-phase I/O method implementation
in ROMIO. The primary idea of two-phase I/O assumes
that file access cost is much higher than the inter-process
communication. This assumption is still reasonable for the
configuration of today’s parallel machines where the I/O
servers are much less than the compute nodes. In addition
to the potential network congestion on the servers, the disk’s
slow latency and file system’s overhead on data consistency
and cache coherence controls also attribute to the higher I/O
cost.

The significance of such file system control costs will be-
come clear as we examine how a file system reacts differently
to the one-file-per-process and shared-file I/O styles. Both
styles deal with concurrent I/O requests to the file system,
but only the shared-file method bears the consistency control
cost. The one-file-per-process style does not introduce anylock
conflicts and hence causes no I/O serialization. Its cost for
acquiring locks is even smaller when the extent-based locking
protocol is used. On the other end, multiple locks to the same
file must be resolved by the file system in the shared-file I/O
style and the more concurrent I/O requests, the higher cost
of the lock acquisition. If two I/O requests overlap and at
least one is a write request, the I/O will be serialized, which
further worsens the I/O performance. Therefore, avoiding lock
conflicts is very important and the first step for a two-phase
I/O implementation to achieve better performance.

0

3

P2

0P 1P P2 P

P 1P P3

lock boundaries
granularity

lock

align align

aggregate access region

even
partitioning

boundaries

aligned
with lock

file

Fig. 2. File domains produced by the even and lock-boundary aligned
partitioning methods.

A. Partitioning Aligned with Lock Boundaries

The lock granularity of a file system is the smallest size of
file region a lock can protect. For single-disk file systems, it is
the disk sector size. For file systems using a single RAID disk,
it is the sector size times the number of redundant disks. For
most of the parallel file systems, such as GPFS and Lustre,
it is set to the file stripe size. Reasonably good parallel I/O
performance has been seen from many parallel I/O bench-
marks that used the I/O sizes being multiples of stripe sizesto
avoid conflicts at lock granularity level. However, this perfect
alignment does not always happen in real applications. In the
two-phase I/O implementation, although the even partitioning
method generates non-overlapping file domains at the byte
level, it can still cause lock contentions at the lock granularity
level. To avoid such contentions, the simplest method is to
align each partitioning to a lock boundary. As depicted in
Figure 2, our implementation aligns the partitioned boundary
of two file domains to the nearest lock boundary. Similar
approaches have been proposed and demonstrated performance
enhancement on several benchmarks for both Lustre and GPFS
file systems [22], [11].

B. Static-cyclic Partitioning

The static-cyclic partitioning method divides the entire file
into equal-size blocks and assigns the blocks to the I/O
aggregators in a round-robin fashion. The block size is set
to the file system’s lock granularity. The association of a
block to an aggregator does not change from one collective
I/O to another. For instance, givenn I/O aggregators, blocks
i, i + n, i + 2n, · · · are assigned to aggregator ranki. We
refer these blocks as processi’s partitioning fileview, which
is similar to the MPI fileview concept that defines the file
regions visible to a process. Note that in the even and aligned
partitioning methods, file domains only exist in the current
collective I/O call and must be redefined in every collective
I/O. In the static-cyclic method, the partitioning fileviewof an
aggregator does not change from one collective I/O to another.
If the lock granularity is the same size as the file stripe and
there is a common divisor between the number of I/O servers

I/O servers

aggregate access regionfile

lock
granularity

P3 0P 1P P2 P3 0P 1P P2

S0 S1

from P1
from P3
from P1

from P3
from P0

from P2

from P2
from P0

file stripe

Fig. 3. Static-cyclic partitioning method. When the lock granularity is equal
to the file stripe size, process P0 and P2 always communicate with I/O server
S0, and P1 and P3 always communicate with S1.

and aggregators, each aggregator will always communicate
with the same set of servers. Figure 3 depicts an example of
the partitioning fileviews and file domains partitioned by the
static-cyclic method. If persistent communication channels can
be established between compute processor and I/O servers, this
method can further reduce the network cost across multiple
collective I/Os.

Compared with the even and aligned methods where each
file domain is a contiguous region, the implementation of
static-cyclic method is more complicate, especially when the
collective buffer size is small. Given a collective I/O, what
an aggregator will access is the intersection of its partitioning
fileview and the collective I/O’s aggregate access region. Al-
though an aggregator’s file domain still does not overlap with
another aggregator like the other two partitioning methods,
it is no longer a single contiguous file region. The size of
a file domain is the sum of the coalesced strided blocks an
aggregator is responsible within the aggregate access region.
If the file domain size is larger than the collective buffer
size, the collective I/O is decomposed into multiple steps of
two-phase I/O. In each step, a file sub-domain is covering
a subset of blocks whose coalesced size is equal or less than
the collective buffer size. Figure 4 illustrates an exampleof an
aggregator’s file domain and sub-domains. For instance, after
the redistribution phase of a collective write, the collective
buffer contains non-contiguous data blocks spanning across the
aggregate access region. There will be one write call for each
of the blocks. Thus, the number of read/write calls made by
each aggregator is more than the even and aligned partitioning
methods. Apparently a performance trade-off exists, depending
on how well a file system can handle such a request pattern.

C. Group-cyclic Partitioning

When the number of I/O aggregators is much larger than
the number of I/O servers, the static-cyclic method may cause

(c)

granularity
lock

(b)

P0 1P

P3P2

(a)

X

Y

buffer size
collective

file sub−domain of 1st two−phase I/O

file sub−domain of 2nd two−phase I/O

file sub−domain of 3rd two−phase I/O

file sub−domain of 4th two−phase I/O

Fig. 4. (a) Data partitioning of a 2D array among four processes. It also
represents the processes’ MPI fileviews. The 2D array is stored the file in
a row major. (b) The gray area is process 0’s file domain generated by the
static-cyclic partitioning method. (c) Process 0’s file domain is further divided
into four sub-domains, given the collective buffer size is one-forth of the file
domain size. The collective I/O is carried out in four steps of two-phase I/O,
each using a sub-domain.

higher lock acquisition cost if the underlying file system uses
the server-based locking protocol. In the example shown in
Figure 3, there are four I/O aggregators and two I/O servers.
In the static-cyclic method, although server S0 only receives
requests from processes P0 and P2, the file stripes accessed
by the two processes are interleaved. Similarly, the file stripes
accessed by processes P1 and P3 are also interleaved at
server S1. In this case, if the extent-based locking protocol
is used, lock requests to each of the interleaved stripes must
be resolved by remote processes. Such lock acquisition pattern
can be harmful to the performance.

To avoid the interleaved access, the group-cyclic partitioned
method divides the I/O aggregators into groups, each of size
equal to the number of I/O servers. The aggregate access
region of a collective I/O is then divided among the groups
with the boundaries aligned to the file stripe size. Within each
group, the static-cyclic method is used. Figure 5 illustrates
an example of the group-cyclic partitioning method using
eight I/O aggregators and four I/O servers. The first group,
group 0, contains aggregators 7, 0, 1, and 2. Group 1 includes
aggregators 3, 4, 5, and 6. The aggregator rank alignment is
based on the starting file offset of the aggregate access region.
The starting aggregator rank, 7 in this example, is calculated
by the formula

⌊
starting offset

stripe size
⌋ mod np (1)

where np is the number of aggregators. The grouping is made

file

group 1group 0

aggregate access region

P2P7 0P 1P P7 P2 P3 P4 P5 P6 P3 P4 P5 P60P 1P

S1 S2 S3S0

from P7
from P3
from P3

from P7

from P4

from P0
from P4

from P0
from P2
from P6
from P6

from P2
from P1
from P5
from P5

from P1

file stripe

I/O servers

lock
granularity

Fig. 5. Group-cyclic partitioning method. The I/O aggregators are divided into 2 groups, each of size equal to the numberof servers. In this example, the
file stripes accessed by P0 have file offsets prior to the ones by P4 at server S0. Similarly, the stripes accessed by P1 have offsets prior to the stripes by P5

at server S1, and so on.

in the continuous, round-robin aggregator rank order. Within
each group, an aggregator will only make requests to one I/O
server. Since group 0 covers the file region prior to group 1
and no aggregator is assigned to two groups, the interleaved
access is eliminated. Under the server-based locking protocol,
file stripes requested by a process are considered contiguous by
the I/O server. Unlike the static-cyclic method, the association
of file stripes to the I/O aggregators is no longer static across
multiple collective I/O operations. However, the association of
I/O servers to the aggregators is still static, if the numbers of
the servers is a factor or multiple of the the aggregators. In
other words, the group-cyclic method is static at the I/O server
level while the static-cyclic method is static at the file stripe
level. Note that the group-cyclic method only takes effective
when the number of I/O aggregators is greater than the number
of I/O servers. Otherwise, it operates exactly the same as the
static-cyclic method.

IV. EXPERIMENTAL RESULTS

Our performance evaluation was conducted on two parallel
machines: Jaguar at the National Center for Computational
Sciences and Mercury at the National Center for Supercom-
puting Applications. Jaguar is a 7832-node Cray XT4 cluster
running Compute Node Linux operating system. Each of the
compute nodes contains a quad-core 2.1 GHz AMD Opteron
processor and 8 GB of memory. The communication network
is a Cray SeaStar router through a bidirectional HyperTrans-
port interface. The parallel file system is Lustre with a total of
144 object storage targets (I/O servers). Lustre allows users to
customize the striping configuration of a directory and all new
files created in that directory inherit the striping configuration.
In our experiment, we configure a directory to store all output
files with 512 KB stripe size, 64 stripe count (number of I/O
servers), and the start server to be randomly picked by the file
system. On Lustre, the lock granularity is the stripe size, 512

KB in our experiments. Mercury, a TeraGrid Cluster, is an 887-
node IBM Linux cluster where each node contains two Intel
1.3/1.5 GHz Itanium II processors sharing 4 GB of memory.
Running a SuSE Linux operating system, the compute nodes
are inter-connected by both Myrinet and Gigabit Ethernet.
Mercury runs an IBM GPFS parallel file system version 3.1.0
configured in the Network Shared Disk (NSD) server model
with 54 I/O servers and 512 KB file block (stripe) size. Unlike
Lustre, users cannot change the file striping parameters on
GPFS. The lock granularity on GPFS is also the stripe size,
512 KB in our case. The MPI library installed on Mercury is
MPICH version 1.2.7p1 configured with Myrinet.

We developed the proposed I/O methods in the ROMIO
source codes from the MPICH package developed at Argonne
National Laboratory. On Jaguar, we extracted the ROMIO
package from the MPICH2 release of version 1.0.7 and on
Mercury we used the ROMIO from MPICH version 1.2.7p1.
We configured the ROMIO by enabling the ADIO Unix file
system driver for both Lustre and GPFS and built the ROMIO
as a stand-alone library separately from the MPICH. The
library is then linked with the native MPI library on the
two machines when generating application executable binaries.
For performance evaluation, we use two artificial benchmarks,
ROMIO collective I/O test and BTIO, and two I/O kernels
from production applications, FLASH and S3D. The band-
width numbers were obtained by dividing the aggregate I/O
amount by the time measured from the beginning of file open
until after file close.

A. ROMIO Collective I/O Test

ROMIO software package includes a set of test programs in
which the collective I/O test, namedcoll_perf, writes and
reads a three-dimensional integer array that is block partitioned
along all three dimensions among processes. An example
of its partitioning pattern on 64 processes is illustrated in

32 256 512 1024

Number of processes
16 64

100%

 0

20%

40%

60%

80%

12816 32 64 256 512 1024

I/O
 p

ha
se

 p
er

ce
nt

ag
e

Number of processes Number of processesNumber of processes

100%

 0

20%

40%

60%

80%

128

Lustre − writeLustre − write

 3000

32 64 128 256 512 1024

 14000

 12000

 10000

 8000

 6000

 4000

 2000

 0

128x128x128 subarray size

Number of processes

Lustre − write

B
an

dw
id

th
 in

 M
B

/s

16 32 64 128 256 512 1024

100x100x100 subarray size

Number of processes

Lustre − write

16 32 64 128 256

B
an

dw
id

th
 in

 M
B

/s

 0

 2000

 4000

 6000

 8000

 10000

Number of processes

Lustre − read

16 32 64 128 256

Number of processes

Lustre − read

32 64 128 25616

 500

 1000

 1500

 2000

 2500

16

 3500

 4000

Number of processes

GPFS − read

32 64 128 25616

Number of processes

GPFS − read

8 16 32 64 128 256 512

GPFS − write

8 16 32 64 128 256 512

GPFS − write

8 16 32 64 128 256 512

128x128x128 subarray size

Number of processes

GPFS − write

 0

 500

 1000

 1500

 2000

8 16 32 64 128 256 512

100x100x100 subarray size

Number of processes

GPFS − write

static−cyclicaligned with lock boundarieseven partitioning group−cyclic

Fig. 6. Performance results of ROMIO collective I/O test.

Figure 11(a). In order to get stable performance numbers,
we measured ten iterations of the collective operations. The
subarray size in each process is kept constant, independent
from the number of processes used, and hence the total I/O
amount is proportional to the number of processes. We choose
two sets of subarray size:128×128×128 and100×100×100.
The128×128×128 size allows the even partitioning method
to generate some file domains aligned with the file lock
boundaries. The100 × 100 × 100 subarray size is chosen to
make the unaligned case. The experimental results are shown
in Figure 6.

On Lustre, the write bandwidths for both even and aligned
partitioning methods are similar, but significantly lower than
the cyclic methods. On GPFS, for128 × 128 × 128 subarray
size, the even and aligned methods are close to each other
and both are much better than the static-cyclic method. For
the 100 × 100 × 100 subarray size, bandwidths of the even
method drop close to the static-cyclic method. This drop of
the even method is because the file domains are no longer
aligned with the lock boundaries like the128 × 128 × 128

case. The performance difference between Lustre and GPFS
implies the important role of the system locking protocol
to the I/O performance. On Lustre, every I/O server is the

lock manager for the file stripes stored locally. If a process
makes a write request of amount larger than a file stripe,
it must acquire locks from those I/O servers responsible for
the stripes that are part of the request. Lustre enforces I/O
atomicity by having the process obtain all the locks to these
stripes and hold the locks until the entire write data have
been received by the servers. The cyclic methods best fit for
this protocol, because they make the I/O aggregators access
to the same set of I/O severs and hence minimize the cost
of lock acquisition. An advantage of the static-cyclic method
is that the client-side file system caches are always coherent
across multiple collective I/O operations, since file stripes are
statically assigned and no file stripe will be accessed by more
than one aggregator. In other words, the file system’s cache
coherence control will ever be triggered and cached data are
evicted only when the operating system is under memory
space pressure or the cache pages are explicitly flushed. This
property is not presented in the other methods, because their
file domains may change from one collective I/O to another.
However, the interleaved file stripe access starts to occur
for the static-cyclic method when the number of processes
is larger than 512. Since each compute node on Jaguar is
a quad-core processor, the number of I/O aggregators in a

collective I/O is a quarter of the number of MPI processes.
In the 512-process case, the number of aggregators is 128,
twice the number of the I/O servers used in our experiments.
Similarly for the 1024-process case, there are 4 aggregators
requesting file stripes that are interleaved in each I/O server.
Initially, the group-cyclic method behaves the same as the
static-cyclic method till the 256-process case. It keeps scaling
up beyond 256 processes. The scalable results are attributed
to the goal of the group-cyclic method that is to rearrange the
file domains by removing any possible interleaved file stripe
access and hence minimizing the number of lock requests for
each process. This phenomena demonstrates the importance of
avoiding any conflicted lock acquisition to the parallel shared-
file I/O performance.

On GPFS, the cyclic methods do not perform as well as on
Lustre. We only show the results of the static-cyclic method
as they are very similar to the group-cyclic method. Under
GPFS’s token-based locking protocol, any client process can
become a lock manager for future lock requests to its already
granted file range. Both even and align partitioning methods
produce file domains as single contiguous file regions, one for
each I/O aggregator. Since file domains are not overlapping,
all write locks can be immediately granted if the align method
is used. On the other hand, the cyclic methods produce file
domains containing many non-contiguous file stripes. An I/O
aggregator must make a write call for each stripe and thus
there is a lock request for each write. Since the file stripes
from one aggregator are interleaved with all other aggregators,
multiple lock requests must be made and most likely will be
served by remote token holders. From our experiments, it is
the cost of waiting for lock requests to be served that slows
down the write speed, not because of the conflicted locks,
as file domains are not overlapping for all four partitioning
methods. The aligned method is more suitable for the token-
based locking protocol, because it results in each aggregator
making only one large contiguous write request and thus there
is only a lock request from a process in a collective I/O.

To understand the detailed impact of these file domain
partitioning methods to the two-phase I/O, we measure the two
phases separately. The percentage of the I/O phase to the total
execution time, also shown in Figure 6, is a key indicator to
the effectiveness of a partitioning method. The cyclic methods’
I/O phase percentages are significantly lower than the other
two methods on Lustre. In some cases, the I/O phase even
takes less time than the data redistribution phase. Note that
the aggregate access regions and hence the total write amounts
are equal for all partitioning methods. On GPFS, although the
difference in the I/O phase percentages is not as dramatic as
on Lustre, we can see the aligned method has the lowest I/O
phase percentage and hence the highest write bandwidth.

The read performance tells a different story, because read
locks are sharable. The fact that collective read operations
do not cause any lock conflict suppresses the significance
of file domain partitioning methods. Although there is no
dramatic difference among the three partitioning methods,
the static-cyclic method performs slightly worse than the

X

slice 1

combined view

local−to−global
mapping

4D subarray in
each process

ghost cells

slice 2

Z

Y

slice 0

0
P

P P P

P

P

P

P

0

3

6 7

4

1 2

5

8
P

P

P P

P

P P

P

P5

8

2 0

6

3 4

7

1
P

P

P P P

P P

P P

7

1

4 5

2

8 6

P
3

P6

P6

P6

Fig. 7. BTIO data partitioning pattern. The 4D subarray in each process is
mapped to the global array in a block-tridiagonal fashion. This example uses
9 processes and highlights the mapping for process P6.

other two methods on both Lustre and GPFS. This is owing
to the read-ahead operations performed by the underlying
file system. File systems prefetch a certain amount of data
immediately following the read request. In the static-cyclic
method, the prefetched data by an aggregator in fact belong
to the file domains statically assigned to different aggregators.
All prefetched data will never be used and the more read
requests, the more cost of prefetching. Compared to the even
and aligned methods that make only one read request, the
static-cyclic method makes many read requests, one per file
stripe. Therefore, it is not recommended for collective read
operations to use the cyclic methods.

B. BTIO Benchmark

Developed by NASA Advanced Supercomputing Division,
the parallel benchmark suite NPB-MPI version 2.4 I/O is
formerly known as the BTIO benchmark [23]. BTIO presents
a block-tridiagonal partitioning pattern on a three-dimensional
array across a square number of processes. Each process is
responsible for multiple Cartesian subsets of the entire data
set, whose number increases with the square root of the
number of processors participating in the computation. Figure
7 illustrates the BTIO partitioning pattern with an example
of nine processes. In BTIO, forty arrays are consecutively
written to a shared file by appending one after another. Each
array must be written in a canonical, row-major format in the
file. The forty arrays are then read back for verification using
the same data partitioning. We evaluate the Class C data size
which sets the global array size to162 × 162 × 162 and the
total write amount for forty arrays is 6.34 GB. The global
array size is fixed disregarding the number of MPI processes
used. Hence, the I/O amount of individual processes decreases
as the number of processes increases.

We measured BTIO write and read operations separately.

Number of processes

60%

100%

80%

40%

20%
Lustre − write

0

GPFS − write

Number of processes

60%

100%

80%

40%

20%

0

Lustre − read

Lustre − write GPFS − write

GPFS − read

I/O
 p

ha
se

 p
er

ce
nt

ag
e

 500

16 36 49 64 100 144 256 576

Number of processes

 1000

 1500

 2000

 2500

 3000

 3500

 4000

static−cyclic with default I/O aggregators

14410016

16

 400

 200

36 49 64 100 144 256

16 36
 0

 100

 200

 300

 400

 500

 600

 700

Number of processes
16 36 49 64 100 576256144

aligned with lock boundaries

49 64 100 144 256 5761024

Number of processes

even partitioning

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500
B

an
dw

id
th

 in
 M

B
/s

16 36 49 64 100 144 256 576

B
an

dw
id

th
 in

 M
B

/s

 1400

 1200

 1000

 800

 600

5761024

644936
 0

Number of processes
576256

 0

static−cyclic with adjusted I/O aggregators

Fig. 8. Performance results for BTIO benchmark.

Figure 8 shows the write bandwidths, I/O phase percentages,
and the read bandwidths. We use the static-cyclic method
to represent both cyclic methods as their results are about
the same on both Lustre and GPFS. On Lustre, the static-
cyclic method outperforms the even and aligned methods
for the write operation. The write bandwidth curve shows
a few spikes in the cases of 16, 64, and 256 processes. In
these cases, the number of default I/O aggregators are 4, 16,
and 64, respectively. Since these numbers are factors of the
number of I/O servers 64, the cyclic methods produce the
file domains such that each aggregator is served by the same
servers and no server receives write requests from more than
one aggregator. Since BTIO runs only on square numbers
of processes, other cases have no such advantage and their
bandwidths are significantly lower.

To overcome this advantage, we also ran additional experi-
ments for the cyclic methods by changing the default numbers
of aggregators. The number of I/O aggregators can be set
by the ROMIO collective buffering node hint,cb_nodes,
and passed to ROMIO library as an MPI info object when
opening the file. We set the number of aggregators to 8, 8,
16, 32, and 128 for the cases of 36, 49, 100, 144, and 576
processes, respectively. These numbers are the largest numbers
that are factors of 64 and smaller than the default number of
I/O aggregators. Adjusting the I/O aggregator numbers clearly
further improves the write performance.

file

1
P2
P3

P0

variable 1

variable 2

variable 24

Checkpoint write

1. for ecah of 24 variables

2. call HD5write()

Plot file with centered data

1. for ecah of 4 plot variables

2. call HD5write()

Plot file with corner data

1. for ecah of 4 plot variables

2. call HD5write()

P1
P2
P3

P0

P1
P2
P3

P0

P

Fig. 9. I/O pattern of FLASH I/O benchmark.

As the number of processes reaches beyond 256, the write
bandwidth of the static-cyclic method with 64 aggregators
starts going down. This behavior is attributed to the smaller
subarray size partitioned in each process, because the subar-
ray size decreases as the number processes increases. When
using 576 processes, each process only holds subarray size
of 288.3 KB. When redistributing data from 576 processes
to 64 aggregators, there are nine processes completing one
aggregator during the data redistribution phase. With small
write requests and large number of processes, the cost of data
redistribution phase starts to grow and interfere the overall
write performance. This can be observed from the Lustre’s I/O
phase percentage chart for those cases using adjusted numbers
of I/O aggregators.

On GPFS, the aligned partitioning method outperforms the
even and static-cyclic methods. The even method is never close
to the aligned method because the162× 162× 162 array size
only generates unaligned file domains for the even partitioning
method. The even method is also slower than the static-cyclic
method and the gap increases as the number of processes goes
up. This implies that the cost of lock boundary conflict for a
large number of small write requests is worse than the cost
of communication contention at the lock token holders caused
by the static-cyclic method.

Similar to the results of the ROMIO collective I/O test,
the read bandwidths of the static-cyclic method are the worst.
The same reason of data prefetching overhead slows down
the static-cyclic method on Lustre. On GPFS, as the number
of processes increase, both aligned and static-cyclic methods
become worse. This behavior is caused by the smaller I/O
amount from each process resulting uneven workload among
the I/O aggregators. Of all three methods, the lock-boundary
aligned partitioning generates the worst unbalanced workload.

C. FLASH I/O Benchmark

The FLASH I/O benchmark suite [24] is the I/O kernel
of a block-structured adaptive mesh hydrodynamics code that
solves fully compressible, reactive hydrodynamic equations,
developed mainly for the study of nuclear flashes on neutron

Lustre

Number of processes

 0

20%

100%

80%

40%

60%

80%

100%

20%

 0

60%

40%

GPFS

Number of processes

I/O
 p

ha
se

 p
er

ce
nt

ag
e

Lustre

256128

8 16 32 64 128 256 512

 800

 1000

 1200

 1400

 1600

3216

W
rit

e
ba

nd
w

id
th

 in
 M

B
/s

 10000

 8000

 6000

8 16 32 64 128 256 512

2561286432

group−static

GPFS

 4000

 2000

 0

even partitioning

Number of processes
16

static−cyclic

1024512

aligned with lock boundaries

Number of processes

64

 0

 200

 400

 600

512 1024

Fig. 10. Performance results for FLASH I/O benchmark.

stars and white dwarfs [25]. The computational domain is
divided into blocks that are distributed across a number of
MPI processes. A block is a three-dimensional array with an
additional 4 elements as guard cells in each dimension on
both sides to hold information from its neighbors. There are
24 variables per array element, and about 80 blocks on each
MPI process. A variation in block numbers per MPI process
is used to generate a slightly unbalanced I/O load. Since the
number of blocks is fixed for each process, increase in the
number of MPI processes linearly increases the aggregate I/O
amount as well. FLASH I/O produces a checkpoint file and
two visualization files containing centered and corner data. The
largest file is the checkpoint, the I/O time of which dominates
the entire benchmark. Figure 9 depicts the I/O pattern and
extracts the program loops for the write operations. FLASH
I/O uses the HDF5 I/O interface to save data along with
metadata in the HDF5 file format. Since the implementation
of HDF5 parallel I/O is built on top of MPI-IO [26], FLASH
I/O performance reflects the use of different file domain
partitioning methods. There are 24 collective write calls,one
for each of the 24 variables. In each collective write, every
MPI process writes a contiguous chunk of data, appended
to the data written by the previous ranked MPI process.
Therefore, a write request from one process does not overlapor
interleave with the request from another. In ROMIO, this non-
interleaved access pattern actually triggers the independent
I/O subroutines, instead of collective subroutines, even if MPI
collective writes are explicitly called. This behavior canbe
overridden by enabling theromio_cb_write hint. We use
this hint so the four file domain partitioning methods can
take effect in our experiments. In our experiments, we used a
32 × 32 × 32 block size that produces about 20 MB of data
per process in each collective write operation.

The performance results are shown in Figure 10. The
write bandwidth curve on Lustre looks similar to the ROMIO
collective write test. The even and aligned methods perform
poorly and are much slower than the two cyclic methods. The
static-cyclic method starts to slow down in the cases of 512
and 1024 process due to the interleaved file stripe access at
the I/O servers. The group-cyclic method performs similar to
the static-cyclic method for the cases of using 256 processes
and less, but keeps scaling up beyond 256 processes. This
difference is also reflected in the chart of I/O phase percentage,
where the static-cyclic method increases significantly at 512
and 1024 cases. On GPFS, the aligned method has the best
write bandwidth followed by the even method. The bandwidth
curve of even method is closer to the aligned method than the
static-cyclic method because we uses array size of32×32×32

which produces many evenly partitioned file domains aligned
to the file stripe boundaries. In order to artificially generate a
slightly unbalanced I/O load, FLASH I/O benchmark assigns
process ranki with 80 + (i mod 3) data blocks and a process’s
write amount is either 20, 20.25, or 20.5 MB. With these
amounts, the even partitioning method can create many file
domains that are aligned with the 512 KB lock boundaries.
The I/O phase percentage results also show the align method
having the lowest percentages and the static-cyclic methodthe
highest.

D. S3D I/O Benchmark

The S3D I/O benchmark is the I/O kernel of a parallel
turbulent combustion application, named S3D, developed at
Sandia National Laboratories [27]. S3D uses a direct numerical
simulation solver to solve fully compressible Navier-Stokes,
total energy, species and mass continuity equations coupled
with detailed chemistry. The governing equations are solved on
a conventional three-dimensional structured Cartesian mesh.
A checkpoint is performed at regular intervals, and its data
consists primarily of the solved variables in 8-byte three-
dimensional arrays, corresponding to the values at the three-
dimensional Cartesian mesh points. During the analysis phase
the checkpoint data can be used to obtain several more
derived physical quantities of interest; therefore, a majority
of the checkpoint data is retained for later analysis. At each
checkpoint, four global arrays, representing the variables of
mass, velocity, pressure, and temperature, respectively,are
written to files in their canonical order.

There are four collective writes in each checkpoint, one
for a variable. Mass and velocity are four-dimensional arrays
while pressure and temperature are three-dimensional arrays.
All four arrays share the same size for the lowest three spatial
dimensions X, Y, and Z, and they are all partitioned among
MPI processes along X-Y-Z dimensions in the same block-
block-block fashion. For the mass and velocity arrays, the
length of the fourth dimension is 11 and 3, respectively. The
fourth dimension, the most significant one, is not partitioned.
Figure 11 shows the data partitioning pattern on a 3D array
and the mapping of a 4D sub-array to the global array in
file. In our evaluation, we keep the size of partitioned X-Y-Z

P41

41P

mapping

process P

4D subarray in

X

Y

Z

local−to−global

m: length of the 4th dimension

0 P1 P2 P3

P4 P5 P6 P7

P8 P9 P10 P11

P12 P13 P14 15P

39

43

47
63

59

55

23

27

31

16
32

48 49
33

17 18
34

50 51
35

19

41

P41

(a) (b)

n = 0

n = 1

n = m−1

n = 0

n = 1

n = m−1

n: index of the 4th dimension

P

Fig. 11. S3D I/O data partitioning pattern. (a) For 3D arrays, the sub-array of each process is mapped to the global array in a fashion of block partitioning in
all X-Y-Z dimensions.(b) For 4D arrays, the lowest X-Y-Z dimensions are partitioned the same as the 3D arrays while the fourth dimension is not partitioned.
This example uses 64 processes and highlights the mapping ofprocess P41 ’s sub-array to the global array.

dimensions constant,50 × 50 × 50 in each process. These
numbers were in fact used in real production runs. Each
run produces about 15.26 MB of write data per process per
checkpoint. As we increase the number of MPI processes, the
aggregate I/O amount proportionally increases as well. We
report the performance numbers by measuring ten checkpoints.

The performance results are given in Figure 12. The write
bandwidth curve on Lustre is similar to the ROMIO collective
write test and Flash I/O. For the static-cyclic method, the
similar performance dips occur in the cases of 512 and 1024
processes. The group-cyclic method scales well beyond 512
processes. The I/O phase percentage also favors the cyclic
methods over the even and aligned method. On GPFS, the
aligned partitioning method performs the best, like all other
benchmarks. With the array size used in the experiment, the
even partitioning method does not generate any file domain
that aligns to the lock boundaries and hence performs no closer
to the aligned method. The I/O phase percentage charts are
also similar to the previous I/O benchmarks. From all the I/O
benchmark results presented in this paper, the impacts of the
four partitioning methods to collective I/O performance are
very consistent on both Lustre and GPFS.

V. CONCLUSIONS

Through reorganizing file access regions among the I/O
requesting processes, the two-phase I/O strategy can signif-
icantly improve the parallel I/O performance. However, it
is rare to see a collective I/O performance near the system
peak data bandwidth. The major obstacle lies on the file

GPFS

80%

100%

GPFS

I/O
 p

ha
se

 p
er

ce
nt

ag
e

Number of processes

60%

Number of processes

100%

80%

60%

40%

 0

20%

40%

20%

 0

Lustre

Lustre

 200

W
rit

e
ba

nd
w

id
th

 in
 M

B
/s

Number of processes
512 8 16 32 64 128 256 512

 300

 400

 500

 600

 700

 800

 900

256128

even partitioning

6432

aligned with lock boundaries

16

Number of processes

static−cyclic

 10000

 8000

 6000

 4000

group−cyclic

8 16 32 64 128 256 51232

 2000

 0

102451216 25612864

 0

 100

 1024

Fig. 12. Performance results for S3D I/O benchmark.

locking protocols used by the file systems and the parallel I/O
libraries do not dynamically adjust their I/O methods for these
protocols. The naive even partitioning method used by ROMIO
in its two-phase I/O implementation produces well-balanced
and large contiguous I/O requests, but may not best fit to the

underlying file system locking protocols. In fact, a collective
I/O’s performance depends on many factors, including the
application access patterns, process collaboration strategies
used in the MPI-IO library, and file system configurations.
From our experiments, the way file domains are partitioned
directly determines the I/O parallelism the underlying parallel
file system’s locking protocol can support. Among the four
partitioning methods discussed in this paper, there is no single
method that can outperform others on all file systems. A
portable MPI-IO implementation must dynamically adapt a
method that works best on the target file system.

The lessons learned from this work can be helpful for the
MPI-IO implementation as well as application users to set
the file hints. On file systems that implement server-based
locking protocols, such as the Lustre, the group-cyclic file
domain partitioning method is the best choice for collective
write operations. Choosing the same number of aggregators
as the number of I/O servers can avoid the interleaved file
stripe access for static-cyclic method, as presented in theBTIO
benchmark results. However, when the number of application
processes become much larger than the servers, communica-
tion contention can easily formed at the aggregators during
the data redistribution phase. Our future work will study the
performance impact by varying the number of aggregators for
large-scale runs. For token-based locking protocols, suchas
the one used by GPFS, the method that aligns the partitioning
to the lock boundaries provides the best collective write
performance. As for collective read operations, either even or
aligned partitioning method is best to use. As new file systems
with novel locking protocols are continuing to be developedin
the future, it is important that a parallel I/O library dynamically
adapts I/O strategies based on the file system configuration that
can bring out the best performance.

ACKNOWLEDGMENTS

This work was supported in part by DOE SCIDAC-2:
Scientific Data Management Center for Enabling Technolo-
gies (CET) grant DE-FC02-07ER25808, DOE SCiDAC award
number DE-FC02-01ER25485, NSF HECURA CCF-0621443,
NSF SDCI OCI-0724599, and NSF ST-HEC CCF-0444405.
We acknowledge the use of the IBM IA-64 Linux Cluster at the
National Center for Supercomputing Applications under Ter-
aGrid Projects TG-CCR060017T, TG-CCR080019T, and TG-
ASC080050N. This research used resources of the National
Center for Computational Sciences at Oak Ridge National
Laboratory, which is supported by the Office of Science of
the U.S. Department of Energy under Contract No. DE-AC05-
00OR22725.

REFERENCES

[1] H. Shan and J. Shalf, “Using IOR to Analyze the I/O Performance of
XT3,” in the Cray User Group Conference, May 2007.

[2] Message Passing Interface Forum,MPI-2: Extensions to the Message
Passing Interface, Jul. 1997, http://www.mpi-forum.org/docs/docs.html.

[3] J. del Rosario, R. Brodawekar, and A. Choudhary, “Improved Parallel
I/O via a Two-Phase Run-time Access Strategy,” inthe Workshop on
I/O in Parallel Computer Systems at IPPS ’93, Apr. 1993, pp. 56–70.

[4] D. Kotz, “Disk-directed I/O for MIMD Multiprocessors,”ACM Trans-
actions on Computer Systems, vol. 15, no. 1, pp. 41–74, Feb. 1997.

[5] R. Thakur, W. Gropp, and E. Lusk,Users Guide for ROMIO: A
High-Performance, Portable MPI-IO Implementation, Technical Report
ANL/MCS-TM-234, Mathematics and Computer Science Division, Ar-
gonne National Laboratory, Oct. 1997.

[6] J. Squyres, A. Lumsdaine, W. George, J. Hagedorn, and J. Devaney,
“The interoperable message passing interface (IMPI) extensions to
LAM/MPI,” in Proceedings, MPI Developers Conference (MPIDC),
March 2000.

[7] R. Thakur, W. Gropp, and E. Lusk, “An Abstract-Device Interface for
Implementing Portable Parallel-I/O Interfaces,” inthe 6th Symposium on
the Frontiers of Massively Parallel Computation, Oct. 1996.

[8] ——, “Data Sieving and Collective I/O in ROMIO,” inthe 7th Sympo-
sium on the Frontiers of Massively Parallel Computation, Feb. 1999.

[9] B. Nitzberg and V. Lo, “Collective Buffering: ImprovingParallel I/O
Performance,” inthe Sixth IEEE International Symposium on High
Performance Distributed Computing, August 1997, pp. 148–157.

[10] R. Ross, R. Latham, W. Gropp, R. Thakur, and B. Toonen, “Imple-
menting MPI-IO Atomic Mode Without File System Support,” inthe
5th IEEE/ACM International Symposium on Cluster Computing and the
Grid, May 2005.

[11] W. Liao, A. Ching, K. Coloma, A. Choudhary, and L. Ward, “An
Implementation and Evaluation of Client-Side File Cachingfor MPI-IO,”
in the International Parallel and Distributed Processing Symposium,
Mar. 2007.

[12] IEEE/ANSI Std. 1003.1,Portable Operating System Interface (POSIX)-
Part 1: System Application Program Interface (API) [C Language],
1996.

[13] J. Prost, R. Treumann, R. Hedges, B. Jia, and A. Koniges,“MPI-
IO/GPFS, an Optimized Implementation of MPI-IO on top of GPFS,”
in Supercomputing, Nov. 2001.

[14] F. Schmuck and R. Haskin, “GPFS: A Shared-Disk File System for
Large Computing Clusters,” inthe Conference on File and Storage
Technologies (FAST’02), Jan. 2002, pp. 231–244.

[15] Lustre: A Scalable, High-Performance File System,Whitepaper, Cluster
File Systems, Inc., 2003.

[16] J. Prost, R. Treumann, R. Hedges, A. Koniges, and A. White, “Towards
a High-Performance Implementation of MPI-IO on top of GPFS,” in the
Sixth International Euro-Par Conference on Parallel Processing, Aug.
2000.

[17] K. Seamons, Y. Chen, P. Jones, J. Jozwiak, and M. Winslett, “Server-
directed Collective I/O in Panda,” inSupercomputing, Nov. 1995.

[18] K. Coloma, A. Choudhary, W. Liao, W. Lee, E. Russell, andN. Pundit,
“Scalable High-level Caching for Parallel I/O,” inthe International
Parallel and Distributed Processing Symposium, Apr. 2004.

[19] K. Coloma, A. Ching, A. Choudhary, W. Liao, R. Ross, R. Thakur, and
L. Ward, “A new flexible MPI collective I/O implementation,”in the
IEEE Conference on Cluster Computing, Sep. 2006.

[20] X. Ma, M. Winslett, J. Lee, and S. Yu, “Improving MPI-IO Output
Performance with Active Buffering Plus Threads,” inthe International
Parallel and Distributed Processing Symposium, Apr. 2003.

[21] K. Coloma, A. Choudhary, W. Liao, W. Lee, and S. Tideman,“DAChe:
Direct Access Cache System for Parallel I/O,” inthe 20th International
Supercomputer Conference, Jun. 2005.

[22] H. Yu, R. Sahoo, C. Howson, G. Almasi, J. Castanos, M. Gupta, J. Mor-
eira, J. Parker, T. Engelsiepen, R. Ross, R. Thakur, R. Latham, and W. D.
Gropp, “High Performance File I/O for the BlueGene/L Supercomputer,”
in the 12th International Symposium on High-Performance Computer
Architecture (HPCA-12), Feb. 2006.

[23] P. Wong and R. der Wijngaart, “NAS Parallel Benchmarks I/O Version
2.4,” NASA Ames Research Center, Moffet Field, CA, Tech. Rep. NAS-
03-002, Jan. 2003.

[24] M. Zingale, “FLASH I/O Benchmark Routine – Parallel HDF5,” Mar.
2001, http://flash.uchicago.edu/∼zingale/ flashbenchmarkio.

[25] B. Fryxell, K. Olson, P. Ricker, F. X. Timmes, M. Zingale, D. Q.
Lamb, P. MacNeice, R. Rosner, and H. Tufo, “FLASH: An Adaptive
Mesh Hydrodynamics Code for Modelling Astrophysical Thermonuclear
Flashes,”Astrophysical Journal Suppliment, pp. 131–273, 2000.

[26] HDF Group,Hierarchical Data Format, Version 5, The National Center
for Supercomputing Applications, http://hdf.ncsa.uiuc.edu/HDF5.

[27] R. Sankaran, E. Hawkes, J. Chen, T. Lu, and C. Law, “Direct Numer-
ical Simulations of Turbulent Lean Premixed Combustion,”Journal of
Physics: conference series, vol. 46, pp. 38–42, 2006.

