Dynamically Adapting File Domain Partitioning
Methods for Collective I/O Based on Underlying
Parallel File System Locking Protocols

Wei-keng Liao and Alok Choudhary
Electrical Engineering and Computer Science Department
Northwestern University
Evanston, lllinois 60208-3118
Email: {wkliao,choudhay@ece.northwestern.edu

Abstract—Collective 1/0, such as that provided in MPI-IO, checkpoint, maintaining arrays’ canonical order in file ca
enables process collaboration among a group of processes' fo ease up the task of post-run data analysis and visualization
greater 1/O parallelism. Its implementation involves file domain However, shared-file /O often performs poorly when the

partitioning, and having the right partitioning is a key to . .
achieving high-performance /0. As modem parallel file sytems requests are not well coordinated. To address this concern,

maintain data consistency by adopting a distributed file loking the message passing interface (MPI) standard defines a set
mechanism to avoid centralized lock management, different of programming interfaces for parallel file access, commonl

locking protocols can have significant impact to the degreefo referred as MPI-IO [2]. There are two types of functions in
parallelism of a given file domain partitioning method. In this MPI-10: collective and independent. The collective funas

paper, we propose dynamic file partitioning methods that adpt
according to the underlying locking protocols in the parallel require process synchronization which provides an MPI-I0

file systems and evaluate the performance of four partitiomg Implementation an opportunity to collaborate processes an
methods under two locking protocols. By running multiple rearrange the requests for better performance. Well-kreown

I/0 benchmarks, our experiments demonstrate that no single amples of using such a collaboration are two-phase 1/O [8] an
partitioning guarantees the best performance. Using MPI-D as gisk directed I/0 [4]. Process collaboration has demotestra
an implementation platform, we provide guidelines to selecthe I . .
most appropriate partitioning methods for various I/O patterns significant performance |mp_rovements over uncoordma@d I
and file systems. However, even with these improvements, the shared-file 1/0
performance is still far from the single-file-per-process a
. INTRODUCTION proach. Part of the reason is that shared-file 1/0 incursdrigh
A majority of scientific parallel applications nowadays aréle system locking overhead from data consistency control,
programmed to access files in a one-file-per-process stjle jhich can never happen if a file is only accessed by a unique
This programming style is simple and often gives satisfgctoprocess.
performance when applications run on a small nhumber ofROMIO is a popular MPI-IO implementation developed at
processes. One immediate drawback is that the applicatidrgonne National Laboratory [5]. It has been incorporated
restart must use the same number of processes as the asirpart of several MPI implementations, including MPICH,
that produced the checkpoint files. A more serious probleml#&M [6], HP MPI, SGI MPI, IBM MPI, and NEC MPI. To
that this method can create a management nightmare for fighieve the portability, ROMIO implements a layer of abstra
systems when applications run on a large number of processiice interface named ADIO that contains a set of I/O
A single production run using thousands of processes cdrivers, one for a different file system [7]. This design waio
produce hundreds of thousands or millions of files. SimukDIO to utilize the system dependent features for higher
taneous file creation in such a scale can cause the netwhitk performance. ROMIO’s collective 1/0 implementation is
traffic congestion at the metadata servers, as modern g@lardilased on the two-phase 1/O strategy proposed in [3], which
file systems employ only one or a small number of metadatecludes a data redistribution phase and an I/O phase. Tt tw
servers. Furthermore, accessing millions of newly crefitesi phase strategy first calculates the aggregate access fitereg
becomes a daunting task for post-run data analysis. In oréed then evenly partitioned it among the 1/0O aggregators
to reduce such file management workload, one solution isitdo file domains The 1/O aggregators are a subset of the
adopt the shared-file I/O programming style. processes that act as 1/0O proxies for the rest of the progesse
Shared-file 1/0 provides a way to preserve the canonidal the data redistribution phase, all processes exchange da
order of structured data. Parallel programs often use ¢loleth the aggregators based on the calculated file domains. In
data structures, such as multi-dimensional arrays, toeptesthe I/O phase, aggregators access the shared file within the
the problem domain and partition them so that processes @amsigned file domains. Two-phase I/O can combine multiple
concurrently operate on the assigned sub-domains. Duringraall non-contiguous requests into large contiguous onds a

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation on the first page. To copy otherwise, to republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee.

SC2008 November 2008, Austin, Texas, USA 978-1-4244-2835-9/08 $25.00 ©2008 IEEE

wkliao
Typewritten Text
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation on the first page. To copy otherwise, to republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee.
SC2008 November 2008, Austin, Texas, USA 978-1-4244-2835-9/08 $25.00 ©2008 IEEE

has demonstrated to be very successful, as modern file system Il. BACKGROUND AND RELATED WORK

handle large contiguous requests more efficiently. However \jp|-|0 inherits two important MPI features: MPI commu-
the even partitioning method does not necessarily proce hicators defining a set of processes for group operations and
best 1/0 performance on all file systems. MPI derived data types describing complex memory layouts.
communicator specifies the processes that can participate
i collective operation for both inter-process commutiice

file 1/0. When opening a file, the MPI communicator is a
%%uired argument to indicate the group of processes dngess

e file. MPI collective 1/O functions also require all prases

the communicator to participate. Such an explicit synehr

Modern parallel file systems employ multiple 1/0 serveréA,
each managing a set of disks, in order to meet the requiremgh
of high data throughput. Files stored on these systems
be striped across the 1/0O servers so that large requests
be concurrently served. For parallel 1/0O on striped files, 5

is not easy to enforce data consistency and provide hi .) . .

performance I/O at the same time. Two most important d élza'uon_allows a collective 1/G implementation to exch_ang
consistency issues that file systems must enforce are ess information among all processes and reorganize Vo
atomicity and cache coherence. Most file systems rely on Guests for better performance. Independent I/O funstion

locking mechanism to provides a client an exclusive acce(‘s%r!tras'[’ requinng n_o_synchror_uzanon make any c_ollah)ma
imization very difficult. While the MPI-IO design goals

to a file region and hence to implement the data consisten(bS/t v f lel 1/0 i hared fil
control. Due to the nature of file striping, lock granularisy are mainly for parafle operations on shared files, one
n still program in the one-file-per-process style using th

usually the file block size or stripe size, instead of a bytglz> _ . . X
If two 1/O requests simultaneously access the same file blo ! —quNl—SELF commumcator, but it provides no benefit
er using POSIX I/O directly.

and at least one of them is a write, they must be carried AUt
serially, even if they do not overlap in bytes. On file systems. Two-phase I/0 Implementation in ROMIO

that perform client-side file caching, this situation casoal 5_phase 1/0 is a representative collaborative 1/0 tech-
cause false sharing in which a block is cached by a process e that runs at user space. It assumes that file systems
but flushed immediately, so the block can be accessed by i e |arge contiguous requests much better than smadl non
other process. Both 1/O serialization and false shanngct:OLbOmiQUOUS ones. ROMIO implements the two-phase 1/O for all
happen in a collective I/O, if the partitioned file domaing arye colective functions. It first calculates the aggregateess

not aligned with the lock boundaries. region, a contiguous file region starting from the minimal
l%c/:ecess offset among the requesting processes and ending at

In this paper, we investigate three file domain partitionin _
methods in addition to the even partitioning method used maximal offset among the processes. The aggregatesacces

ROMIO. The first method aligns the partitioning with th&€9ion is then divided into non-overlapping, contiguoub-su

file system’s lock boundaries. The second method, nami&@ions denoted as file domains, and each file domain is
static-cyclic method, partitions a file into fixed-size tec 2SSigned to a unique process. A process makes read/wige cal

based on the lock granularity and statically assigns thekislo N behalf of all processes for the requests located in its file

in a round-robin fashion among the /O aggregators. Tr(,ié)ma_lin._ln ROMIO’S current implementation, the file dor_nai_n
third method, named group-cyclic method, divides the |/@art|t_|on|ng is done evgnly at the byte range granularity in
aggregators into groups, each being of size equal to the eumgPnSideration of balancing the workload.

of 1/0 servers. Within each group, the static-cyclic piotiing 1 ne two-phase method is generalized in ROMIO by tak-
method is used. This method is particularly designed for tiféd two user-controliable parameters: the I/O aggregators
situation that the number of /O aggregators is much larg8Pd the collective buffer size [8]. Both parameters can be
than the I/O servers. We evaluate these methods using f§GF through MPI info objects using hintsb_nodes and

I/0 benchmarks on two parallel file systems, Lustre arfP_buffer_size. The I/O aggregators are a subset of
GPFS. Due to the different file locking protocols adoptell€ Processes that act as 1/O proxies for the rest of the
in Lustre and GPFS, these partitioning methods result RiOCESSES. On the parallel machines where each compute node

significant performance differences on the two file systerfcoNt@ins a multi-core CPU or multiple processors, the ROMIO
gefault picks one of the core/processor as the aggregatbr ea

Our experiments conclude that the group-static and loc
boundary aligned methods give the best write performance Bpde: Only aggregators make system calls, sucopes(),

Lustre and GPFS, respectively. We analyze these behavidrs 3€2d() , Wi te() andcl ose() . The collective buffer size
propose a strategy that dynamically chooses the pam@nimdmates the space of temporary buffers that can be used for

method best fit to the underlying file system locking protocofiata redistribution. Itis useful for memory-bound appiias
where spare memory space is limited. When a file domain is

The rest of the paper is organized as follows. Section bigger than the collective buffer size, the collective I/0l e
discusses background information and related work. Desigarried out in multiple steps of two-phase 1/0 and each two-
and implementation of the file domain partitioning methodshase 1/0 operates on a file sub-domain of size no larger than
are described in Section Ill. Performance results are ptede the collective buffer size. Figure 1 shows a two-dimendiona
and analyzed in Section IV and the paper is concluded amray of sizel0 x 15 partitioned among six processes in a
Section V. block-block fashion and the array is written in the array’s

X

competitively and with selected collective buffer size® th
cyclic method can outperform others in some cases. They

Y

f concluded that no single partitioning method provides thst b

5/ R R R : :

| performance and the performance varies depending on the 1/0

' patterns. However, there is no analysis from the file system
perspective on why these methods behave differently, but

5 R P, R .) :

| merely a performance observation. The file-layout and cycli

methods are similar to our static-cyclic partitioning nuth
@ presented in this paper. The difference is that we conskder t
file system’s lock granularity and our motivation came from

«——— aggregate access region = 150 —— =
the idea of how to minimize the lock contentions.

Po's Pl’s Pz’s P3’s
file domain | file domain | file domain | file domain B. File Locking in Parallel File Systems
file |=— 38 38 38 36— ‘ Many modern parallel file systems are POSIX compliant,
‘ which abide by the data consistency rules that were de-

[[N N Y Y 1
b o o ¥ signed under the traditional non-parallel environmentds
1 1 1 been known that POSIX requirements on I/O consistency
| and atomicity are the two main factors causing significant
performance degradation for parallel shared-file /O [101].
Data consistency requires the outcomes of concurrent 1/O

1st two-phase 1/0

1 I [. I | 2nd two-phase I/O

|
|
I I I I I I | [
! 26 O] 64 (. 102 o 140 il 3rd two-phase I/0
! 42 80 ! 118 ! 156/

10 48 86 124 160
file operations as if they were carried out in a certain linear
offsets (b) order. It is relatively easy for a file system with one server

Fio 1 A 10x 15 wored in a file i o it dto guarantee the sequential consistency, but much diffioult
L 0 a0 L5 oy stored 1 & e o mokr i parionelparalel fle systems where files are striped across multple
region is calculated and partitioned evenly among the I/@regptors. Each Servers. The atomicity requires that the results of an iddal
ageg;ﬁgﬁgij ris fra\sslegsr;eei grgonité?(:gussrggéolr;oaz itsrglea?;grﬁg:: Séﬁlenlﬂz write call are either entirely visible or completely inb to
buffer size ofp16 bytes, a ccﬁlective 110 operatigg isgcatrtmt in 3 steps of any read call [12]. Im_plgmentatlon for_ both_requ_lremenn_s Ca_
two-phase 1/0. Each step covers a file region equal or less 16abytes. become further sophisticate when client-side file cachig i
performed. Two well-known parallel file systems support file
caching are the IBM's GPFS [13], [14] and Lustre [15].
canonical order to a shared file starting from file offset 10. Currently a popular solution for I/O atomicity and cache
In this example, the 1/O aggregators are set to be the first fatoherency uses a locking mechanism to provide a process
processes. Under the even partitioning policy, file domanes the exclusive access privilege to the requested file region.
non-overlapping contiguous file regions of size 38 bytes fétowever, exclusive access can potentially serialize coeati
processed’, P, and P, and 36 bytes for procesBs. If a operations. Especially, as the number of processors goes in
collective buffer size of less than the file domain size, sy the scale of thousands or millions, guaranteeing such sonsi
bytes, the collective I/O will be completed by running twotency without degrading the parallel I/O performance iseagr
phase I/O three times. In each two-phase I/O, an aggregathallenge. To avoid the obvious bottleneck from a centedliz
only handles data redistribution for a file region equal @slelock manager, various distributed file locking protocolsédna
than 16 bytes. been proposed. For example, GPFS employs a distributed
Nitzberg and Lo studied three file domain-partitioning methoken-based locking mechanism to maintain coherent caches
ods for two-phase I/O, namely block, file layout, and cycliacross compute nodes [16]. This protocol makes a token holde
target distributions [9]. The block method uses all proessss a local lock authority for granting further lock requestsit®
I/O aggregators and chooses an unlimited collective bsffer corresponding byte range. A token allows a node to cache data
so that the two-phase I/0 can be completed in a single stépat cannot be modified elsewhere without first revoking the
The file layout method uses the number of 1/0O aggregatdoken. GPFS’s file stripe size is set at the system boot time
equal to the number of system 1/O servers and the data redisd not changeable by users. The Lustre file system uses a
tribution matches the file striping layout. The two-phag@ I/ different distributed server-based locking protocol véheach
is carried out in rounds, each round processing the aggregé® server manages locks for the stripes of file data it stores
access region of size equal to the collective buffer sizesimUnlike GPFS, users can customize striping parameters for a
the number of aggregators. In each round, an aggregator ‘il on Lustre, such as stripe count, stripe size, and thérsgar
make n read/write calls to the file system, whereis the 1/O server. If a client requests a lock held by another client
number of stripe units in a collective buffer. The cyclic med a message is sent to the lock holder asking it to release the
is generalized from the file layout method, which allows filéock. Before a lock can be released, dirty cache data must be
domain size to be set by the users to a multiple of file striglushed to the servers. To guarantee atomicity, file locksg i
size. Their experiments showed all three methods performed in each read/write call to guarantee exclusive access t

the requested file region. ﬁ',e_ aggr?gate aceess r‘egion
Both GPFS and Lustre adopt an extent-based locking pro- |
tocol in which a lock manager tends to grant a request as the
largest file region as possible. For example, the first remeges even |
process to a file will be granted the lock for entire file. Whenpartitioning ' |
the second write from a different process arrives, the first
process will relinquish part of the file to the requestinggmss.
If the starting offset of the second request is bigger then th aligned
first request’'s ending offset, the relinquished region wirt with lock
. . ., boundaries |
from the first request’s ending offset toward the end of file. ! ! ! !
Otherwise, the relinquished region will contain a regioonfir /‘/’/’/’ _
file offset O to the first request’s staring offset. The adaget lock boundaries granularity
of this protocol is if a process’s successive requests atdrwi
the already granted region, then no lock request is needgd. 2. File domains produced by the even and lock-boundéignex
The extent-based protocol is carried out by the lock manad@ftitioning methods.
on both GPFS and Lustre. On GPFS, the lock token holder is
the lock manager and hence the extent of a lock can virtua'l&y
cover the entire file. On Lustre, since an 1/O server is th& loC™
manager for the file stripes stored in that server, the extent The lock granularity of a file system is the smallest size of
a lock can only cover those file stripes. file region a lock can protect. For single-disk file systerhi i
the disk sector size. For file systems using a single RAID,disk
it is the sector size times the number of redundant disks. For
[1l. DESIGN AND IMPLEMENTATION most of the parallel file systems, such as GPFS and Lustre,
it is set to the file stripe size. Reasonably good parallel 1/O
There is no doubt that process collaboration is a key fperformance has been seen from many parallel /O bench-
high-performance I/0. In addition to the two-phase /O angharks that used the 1/O sizes being multiples of stripe dizes
disk-directed 1/0, many collaboration strategies havenbeavoid conflicts at lock granularity level. However, this feet
proposed and demonstrated their success, including seregignment does not always happen in real applications. én th
directed 1/0 [17], persistent file domain [18], [19], activawo-phase I/O implementation, although the even pariitign
buffering [20], collaborative caching [21], [11], etc. Ihi$ method generates non-overlapping file domains at the byte
paper, we focus on the two-phase /O method implementati@ivel, it can still cause lock contentions at the lock granity
in ROMIO. The primary idea of two-phase I/O assumegvel. To avoid such contentions, the simplest method is to
that file access cost is much higher than the inter-procegigyn each partitioning to a lock boundary. As depicted in
communication. This assumption is still reasonable for thfagure 2, our implementation aligns the partitioned boumda
configuration of today's parallel machines where the I/@f two file domains to the nearest lock boundary. Similar
servers are much less than the compute nodes. In additigsproaches have been proposed and demonstrated perfermanc

to the potential network congestion on the servers, thesdisknhancement on several benchmarks for both Lustre and GPFS
slow latency and file system’s overhead on data consisterig systems [22], [11].

and cache coherence controls also attribute to the higer 1/
cost. B. Static-cyclic Partitioning

The significance of such file system control costs will be- The static-cyclic partitioning method divides the entife fi
come clear as we examine how a file system reacts differentiyo equal-size blocks and assigns the blocks to the 1/O
to the one-file-per-process and shared-file I/O styles. Batlggregators in a round-robin fashion. The block size is set
styles deal with concurrent I/O requests to the file systertm, the file system’s lock granularity. The association of a
but only the shared-file method bears the consistency dontbtock to an aggregator does not change from one collective
cost. The one-file-per-process style does not introducdoshy 1/0O to another. For instance, givenl/O aggregators, blocks
conflicts and hence causes no I/O serialization. Its cost for + n,i + 2n,--- are assigned to aggregator rankWe
acquiring locks is even smaller when the extent-based mackirefer these blocks as process partitioning fileview, which
protocol is used. On the other end, multiple locks to the sarizesimilar to the MPI fileview concept that defines the file
file must be resolved by the file system in the shared-file I/@gions visible to a process. Note that in the even and aligne
style and the more concurrent I/O requests, the higher cgsirtitioning methods, file domains only exist in the current
of the lock acquisition. If two 1/O requests overlap and atollective I/O call and must be redefined in every collective
least one is a write request, the 1/O will be serialized, Whid/O. In the static-cyclic method, the partitioning fileviesf an
further worsens the 1/0O performance. Therefore, avoiding| aggregator does not change from one collective 1/O to anothe
conflicts is very important and the first step for a two-phadéthe lock granularity is the same size as the file stripe and
I/0O implementation to achieve better performance. there is a common divisor between the number of I/O servers

R

0

Partitioning Aligned with Lock Boundaries

fle -——— aggregate access region ——» lock
_ L | | | | | | | 1 X . granularity |
O O E— " T
| | | | | | | | | Y,
e) O T e
| | | | | | | | | PO Pl 777777777
I I I I I I I I I
| | | | | | | | | 1]
B R R R R R PR TR
e e N I
N N I R w— 2R —
g ‘
lock
S S : @ (b)
0 1 granularity
1/0O servers N from P collective
- 3 buffer size
[from kR, [N from P, : !
I from P, I from P,) :
I from P I from P ! [file sub—domain of 1st two—-phase 1/0
. 0 1 I
B : from) = O file sub—domain of 2nd two-phase 1/O
- .
file stripe M file sub—domain of 3rd two—phase 1/O
Fig. 3. Static-cyclic partitioning method. When the loclagularity is equal B file sub—-domain of 4th two—phase I/0O
to the file stripe size, process Rnd B always communicate with I/O server

So, and R and B always communicate with;S

(©

. . Fig. 4. (a) Data partitioning of a 2D array among four proessdt also
and aggregators, each aggregator will always communicagresents the processes’ MPI fileviews. The 2D array isedtdne file in

with the same set of servers. Figure 3 depicts an exampleagpw major. (b) The gray area is process 0's file domain géeray the
the partitioning fileviews and file domains partiioned b thi EIEo 6 P2t et O e e e esorth of the fie
static-cyclic method. If persistent communication chdsiean domain size. The collective 1/0 is carried out in four stepswo-phase 1/0,
be established between compute processor and I/O semisrs,gach using a sub-domain.

method can further reduce the network cost across multiple

collective 1/Os.

Compared with the even and aligned methods where ed#her lock acquisition cost if the underlying file systenesis
file domain is a contiguous region, the implementation ¢he server-based locking protocol. In the example shown in
static-cyclic method is more complicate, especially whea t Figure 3, there are four I/O aggregators and two I/O servers.
collective buffer size is small. Given a collective 1/0, whaln the static-cyclic method, although servey &nly receives
an aggregator will access is the intersection of its partitig requests from processes Bnd B, the file stripes accessed
fileview and the collective I/O’s aggregate access regidn. AY the two processes are interleaved. Similarly, the filpesr
though an aggregator’s file domain still does not overlapnwificcessed by processes Bnd B are also interleaved at
another aggregator like the other two partitioning methodgerver $. In this case, if the extent-based locking protocol
it is no longer a single contiguous file region. The size d% used, lock requests to each of the interleaved stripes mus
a file domain is the sum of the coalesced strided blocks AR resolved by remote processes. Such lock acquisitioerpatt
aggregator is responsible within the aggregate accessmegfFan be harmful to the performance.

If the file domain size is larger than the collective buffer To avoid the interleaved access, the group-cyclic pantgb
size, the collective 1/0 is decomposed into multiple steps 81ethod divides the I/O aggregators into groups, each of size
two-phase 1/0. In each step, a file sub-domain is coveri@§ual to the number of I/O servers. The aggregate access
a subset of blocks whose coalesced size is equal or less tFgion of a collective I/O is then divided among the groups
the collective buffer size. Figure 4 illustrates an exanglan With the boundaries aligned to the file stripe size. Withinrea
aggregator’s file domain and sub-domains. For instancer afgroup, the static-cyclic method is used. Figure 5 illustsat
the redistribution phase of a collective write, the collext @n example of the group-cyclic partitioning method using
buffer contains non-contiguous data blocks spanning a¢hes €ight /O aggregators and four I/O servers. The first group,
aggregate access region. There will be one write call foh ea@roup 0, contains aggregators 7, 0, 1, and 2. Group 1 includes
of the blocks. Thus, the number of read/write calls made @ggregators 3, 4, 5, and 6. The aggregator rank alignment is
each aggregator is more than the even and aligned pamijonPased on the starting file offset of the aggregate accessegi
methods. Apparently a performance trade-off exists, deipgn 1he starting aggregator rank, 7 in this example, is caledlat
on how well a file system can handle such a request pattefY. the formula

C. Group-cyclic Partitioning starting offset

When the number of I/O aggregators is much larger than
the number of I/O servers, the static-cyclic method may eaushere np is the number of aggregators. The grouping is made

| mod np Q)

stripe size

file aggregate access region -

B

| | |
| T ;
,] N			
PR, R P, P, P, R P 'R ! R PR R, Py P, P, 3 P!			
B B EEmmaeas -			
‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ .
S s s S s
granularity
I/0 servers 0 ! 2 o
. I from P,
[from Ry N from Py I from P, I from P,
[from Ry [from Py I from P, I from P,
I from P, I from R I from R I from P,
I from P, I from R I : from F
-
file stripe

Fig. 5. Group-cyclic partitioning method. The I/O aggregatare divided into 2 groups, each of size equal to the nurobservers. In this example, the
file stripes accessed by, have file offsets prior to the ones by, Rt server §. Similarly, the stripes accessed by Rave offsets prior to the stripes by P
at server 3, and so on.

in the continuous, round-robin aggregator rank order. WithKB in our experiments. Mercury, a TeraGrid Cluster, is an-887
each group, an aggregator will only make requests to one If@de IBM Linux cluster where each node contains two Intel
server. Since group 0 covers the file region prior to group113/1.5 GHz Itanium Il processors sharing 4 GB of memory.
and no aggregator is assigned to two groups, the interlealahnning a SUSE Linux operating system, the compute nodes
access is eliminated. Under the server-based locking ohto are inter-connected by both Myrinet and Gigabit Ethernet.
file stripes requested by a process are considered consdnyouMercury runs an IBM GPFS parallel file system version 3.1.0
the 1/O server. Unlike the static-cyclic method, the asstian configured in the Network Shared Disk (NSD) server model
of file stripes to the 1/0 aggregators is no longer static serowith 54 1/O servers and 512 KB file block (stripe) size. Unlike
multiple collective I/O operations. However, the assacrabf Lustre, users cannot change the file striping parameters on
I/O servers to the aggregators is still static, if the numelr GPFS. The lock granularity on GPFS is also the stripe size,
the servers is a factor or multiple of the the aggregators. 512 KB in our case. The MPI library installed on Mercury is
other words, the group-cyclic method is static at the I/Qraser MPICH version 1.2.7p1 configured with Myrinet.

level while the static-cyclic method is static at the filépgr ~ We developed the proposed I/O methods in the ROMIO
level. Note that the group-cyclic method only takes effexti source codes from the MPICH package developed at Argonne
when the number of I/O aggregators is greater than the numbltional Laboratory. On Jaguar, we extracted the ROMIO
of 1/0O servers. Otherwise, it operates exactly the same s ffackage from the MPICH2 release of version 1.0.7 and on

static-cyclic method. Mercury we used the ROMIO from MPICH version 1.2.7p1.
We configured the ROMIO by enabling the ADIO Unix file
IV. EXPERIMENTAL RESULTS system driver for both Lustre and GPFS and built the ROMIO

g a stand-alone library separately from the MPICH. The

iprary is then linked with the native MPI library on the
/0 machines when generating application executable iesar
or performance evaluation, we use two artificial benchimark

Our performance evaluation was conducted on two paral
machines: Jaguar at the National Center for Computatio
Sciences and Mercury at the National Center for Superco
puting Applications. Jaguar is a 7832-node Cray XT4 clust .
running Compute Node Linux operating system. Each of t OMIO colle_ctlve I/O_ te§t and BTIO, and two IfO kernels
compute nodes contains a quad-core 2.1 GHz AMD Opter qm produciion appllcathns, FLAS.H gnd S3D. The band-
processor and 8 GB of memory. The communication netwo dih numbers were obtained by dividing the .aggregate Vo
is a Cray SeaStar router through a bidirectional HyperFra punt by.the time measured from the beginning of file open
port interface. The parallel file system is Lustre with a ltofa until after file close.

144 object storage targets (I/O servers). Lustre allowssuse .
customize the striping configuration of a directory and allvn A. ROMIO Collective 1/O Test

files created in that directory inherit the striping confifion. ROMIO software package includes a set of test programs in
In our experiment, we configure a directory to store all otitpwhich the collective I/O test, namexbl | _per f , writes and
files with 512 KB stripe size, 64 stripe count (number of I/Q@eads a three-dimensional integer array that is blocktjzar&d
servers), and the start server to be randomly picked by the fillong all three dimensions among processes. An example
system. On Lustre, the lock granularity is the stripe siZ&, 5of its partitioning pattern on 64 processes is illustratad i

14000

128x128x128 subarray size

100x100x100 subarray size

128x128x128 subarray size

100x100x100 subarray size

2000

T T
_ K ,/EL ~ .
012000 |- Lustre — write ¥ Lustre — write GPFS - write PN GPFS - write
/ L Z B
gloooo F / A 1500 y
S 8000 - -l A
< 1000 - / B
S 6000 -
S 4000 500 - i
& 2000 - g g e
D == - W - -1 m f—1f 0 L L L L L L Il
16 32 64 128 256 512 1024 16 32 64 128 256 512 1024 8 16 32 64 128 256 512 8 16 32 64 128 256 512
Number of processes Number of processes Number of processes Number of processes
100% T T T T T T T T T T 100% T T T T T T T T T T
) o
> . Jr!
QS 80%F o =e 7 & 80% B
-— AN = 5 /
cc) e B O <
© 60% (- g 60% -
[}
%
[} L L |
D 40% 40%
©
s 20% - 20% - B
o ° Lustre — write Lustre — write ’ GPFS - write GPFS - write
= 0 L L L L L L L L L L L L L L 0 L L L L L L L L L L L L L L
16 32 64 128 256 512 1024 16 32 64 128 256 512 1024 8 16 32 64 128 256 512 8 16 32 64 128 256 512
Number of processes Number of processes Number of processes Number of processes
10000 T T T T T T T T T 4000 T T T T T T T T T T
& 0o Lustre - read Lustre - read 3500 GPFS - read po GPFS - read)
g] 3000 - 4
S 6000 |- . 2500 - N
s e 2000 |- J
o /
s 4000 - 1500 il
°
1000 B
S 2000 F
m 500 - B
L L L L L L L L L L

16 32 64 128 256
Number of processes

—+— even partitioning

16 32 64 128 256
Number of processes

Fig. 6.

aligned with lock boundaries

16 32 64 128 256
Number of processes

—&— static—cyclic

Performance results of ROMIO collective 1/O test.

16 32 64 128 256
Number of processes

—XK— group-cyclic

Figure 11(a). In order to get stable performance numbelsck manager for the file stripes stored locally. If a process
we measured ten iterations of the collective operationg® Thakes a write request of amount larger than a file stripe,
subarray size in each process is kept constant, independemust acquire locks from those 1/O servers responsible for
from the number of processes used, and hence the total tH@ stripes that are part of the request. Lustre enforces 1/O
amount is proportional to the number of processes. We cho@demicity by having the process obtain all the locks to these
two sets of subarray sizé28 x 128 x 128 and100 x 100 x 100. stripes and hold the locks until the entire write data have
The 128 x 128 x 128 size allows the even partitioning methodoeen received by the servers. The cyclic methods best fit for
to generate some file domains aligned with the file lodkis protocol, because they make the 1/0 aggregators access
boundaries. Tha00 x 100 x 100 subarray size is chosen toto the same set of I/O severs and hence minimize the cost
make the unaligned case. The experimental results are shahock acquisition. An advantage of the static-cyclic nuath

in Figure 6. is that the client-side file system caches are always coheren

On Lustre, the write bandwidths for both even and alignettross multiple collective 1/O operations, since file sisi@are

partitioning methods are similar, but significantly lowaan Statically assigned and no file stripe will be accessed byemor
the cyclic methods. On GPFS, faB8 x 128 x 128 subarray than one aggregator. In other words, the file system’s cache
size, the even and aligned methods are close to each otiterence control will ever be triggered and cached data are
and both are much better than the static-cyclic method. Fe¥icted only when the operating system is under memory
the 100 x 100 x 100 subarray size, bandwidths of the evespace pressure or the cache pages are explicitly flushesl. Thi
method drop close to the static-cyclic method. This drop @foperty is not presented in the other methods, because thei
the even method is because the file domains are no lonfj& domains may change from one collective 1/O to another.
aligned with the lock boundaries like thi28 x 128 x 128 However, the interleaved file stripe access starts to occur
case. The performance difference between Lustre and GAPGthe static-cyclic method when the number of processes
implies the important role of the system locking protocdf larger than 512. Since each compute node on Jaguar is
to the 1/0 performance. On Lustre, every 1/O server is the quad-core processor, the number of I/O aggregators in a

collective 1/0 is a quarter of the number of MPI processes, ik e A

In the 512-process case, the number of aggregators is 1 P5"' P3%" ANRE Bt

twice the number of the 1/O servers used in our experimen 1
Similarly for the 1024-process case, there are 4 aggregat PP | R Fs
requesting file stripes that are interleaved in each I/Oeserv B
Initially, the group-cyclic method behaves the same as t{ Bs | P, | B
static-cyclic method till the 256-process case. It keeadirsg : :
up beyond 256 processes. The scalable results are atttibute S'ice 0 slice 1 slice 2

to the goal of the group-cyclic method that is to rearrange th 7 @ combined view
file domains by removing any possible interleaved file strip X

access and hence minimizing the number of lock requests for ghost cells =
each process. This phenomena demonstrates the imporn’anc\é o o

5i--Ho

Ny
i

avoiding any conflicted lock acquisition to the parallel rgth e i

file 1/0 performance. ggcf‘}“g%rcrggs'”ﬁ —>
On GPFS, the cyclic methods do not perform as well as on 7 local-to-global

Lustre. We only show the results of the static-cyclic method ? ? mapping

o e Fs

as they are very similar to the group-cyclic method. Under
GPFS'’s token-based locking protocol, any client process ca
become a lock manager for future lock requests to its alreatlg: 7. BTIO data partitioning patiern. The 4D subarray feprocess is
. . L pped to the global array in a block-tridiagonal fashiohisTexample uses
granted file range. Both even and align partitioning metho@‘sl;,mceSses and highlights the mapping for process P
produce file domains as single contiguous file regions, one fo
each 1/O aggregator. Since file domains are not overlapping,
all write locks can be immediately granted if the align methoother two methods on both Lustre and GPFS. This is owing
is used. On the other hand, the cyclic methods produce fitg the read-ahead operations performed by the underlying
domains containing many non-contiguous file stripes. An I/fle system. File systems prefetch a certain amount of data
aggregator must make a write call for each stripe and thiwmediately following the read request. In the static-ycl
there is a lock request for each write. Since the file strip@sethod, the prefetched data by an aggregator in fact belong
from one aggregator are interleaved with all other aggaegat to the file domains statically assigned to different aggiega
multiple lock requests must be made and most likely will ball prefetched data will never be used and the more read
served by remote token holders. From our experiments, itrisquests, the more cost of prefetching. Compared to the even
the cost of waiting for lock requests to be served that slowdid aligned methods that make only one read request, the
down the write speed, not because of the conflicted locksatic-cyclic method makes many read requests, one per file
as file domains are not overlapping for all four partitioningtripe. Therefore, it is not recommended for collectivedrea
methods. The aligned method is more suitable for the tokesperations to use the cyclic methods.
based locking protocol, because it results in each aggregat
making only one large contiguous write request and thusthds- BTIO Benchmark
is only a lock request from a process in a collective 1/O. Developed by NASA Advanced Supercomputing Division,
To understand the detailed impact of these file domaihe parallel benchmark suite NPB-MPI version 2.4 1/O is
partitioning methods to the two-phase 1/0, we measure tie tformerly known as the BTIO benchmark [23]. BTIO presents
phases separately. The percentage of the 1/0 phase to #he @thlock-tridiagonal partitioning pattern on a three-disienal
execution time, also shown in Figure 6, is a key indicator trray across a square number of processes. Each process is
the effectiveness of a partitioning method. The cyclic md#i responsible for multiple Cartesian subsets of the entita da
I/O phase percentages are significantly lower than the ottset, whose number increases with the square root of the
two methods on Lustre. In some cases, the I/O phase evemmber of processors participating in the computationuiféig
takes less time than the data redistribution phase. Note tfaillustrates the BTIO partitioning pattern with an example
the aggregate access regions and hence the total write &noah nine processes. In BTIO, forty arrays are consecutively
are equal for all partitioning methods. On GPFS, although thwritten to a shared file by appending one after another. Each
difference in the 1/O phase percentages is not as dramaticaasay must be written in a canonical, row-major format in the
on Lustre, we can see the aligned method has the lowest fif®. The forty arrays are then read back for verification gsin
phase percentage and hence the highest write bandwidth. the same data partitioning. We evaluate the Class C data size
The read performance tells a different story, because reatich sets the global array size 162 x 162 x 162 and the
locks are sharable. The fact that collective read opersticiotal write amount for forty arrays is 6.34 GB. The global
do not cause any lock conflict suppresses the significarareay size is fixed disregarding the number of MPI processes
of file domain partitioning methods. Although there is naised. Hence, the I/O amount of individual processes degseas
dramatic difference among the three partitioning methodss the number of processes increases.
the static-cyclic method performs slightly worse than the We measured BTIO write and read operations separately.

4500

4000
w

53500
=3000
£ 2500
% 2000
S 1500
B1000

& 500

i

R -}

700
600
500
400
300
200
100

GPFS - write

0

100%

80%

60%

40%

1/0 phase percentage

0

1400 -

1200
1000
800
600
400

Bandwidth in MB/s

200

—3— even partitioning
aligned with lock boundaries

Figure 8 shows the write bandwidths, 1/O phase percentag

20% -

16 36 49 64 100 144 256 5761024
Number of processes

16 36 49 64 100 144 256 576
Number of processes

Lustre — write

100%

80%

60%

40%

20% -

GPFS - write

16 36 49 64 100 144 256 5761024
Number of processes

0

16 36 49 64 100 144 256 576
Number of processes

4000
3500
3000

| 2500
7| 2000
7 1500
7 1000

500

GPFS - read

16 36 49 64 100 144 256 576
Number of processes

16 36 49 64 100 144 256 576
Number of processes

—&— static—cyclic with default /O aggregators
—A— static—cyclic with adjusted I/0 aggregators

Fig. 8. Performance results for BTIO benchmark.

Checkpoint write
1. for ecah of 24 variables
variable 1 5 ca)l HD5write()

variable 2

Plot file with centered data
1. for ecah of 4 plot variables
2. call HD5write()

R
i
B
I
R
i
B
2

R Plot file with corner data

5 variable 24 1 for ecah of 4 plot variables

R _ 2. call HD5write()

Fig. 9.

I/O pattern of FLASH 1/0O benchmark.

As the number of processes reaches beyond 256, the write
bandwidth of the static-cyclic method with 64 aggregators
starts going down. This behavior is attributed to the smalle
subarray size partitioned in each process, because the- suba
ray size decreases as the number processes increases. When
using 576 processes, each process only holds subarray size
of 288.3 KB. When redistributing data from 576 processes
to 64 aggregators, there are nine processes completing one
aggregator during the data redistribution phase. With ksmal
write requests and large number of processes, the costaf dat
redistribution phase starts to grow and interfere the divera
write performance. This can be observed from the Lustr&s I/
phase percentage chart for those cases using adjusted reumbe
gtSI/O aggregators.

and the read bandwidths. We use the static-cyclic methoobn GPFS, _the ali_gned partitioning method outperforms the
to represent both cyclic methods as their results are ab&YEN @nd static-cyclic methods. The even method is neveeclo
the same on both Lustre and GPFS. On Lustre, the stafie-the aligned method because # x 162 x 162 array size
cyclic method outperforms the even and aligned methof8!Y 9enerates unaligned file domains for the even partfign

for the write operation. The write bandwidth curve sho

wadethod. The even method is also slower than the staticecycli

a few spikes in the cases of 16, 64, and 256 processes.”]ﬁthOd and the gap increases as the number of processes goes

these cases, the number of default /0O aggregators are 4,
and 64, respectively. Since these numbers are factors of
number of 1/O servers 64, the cyclic methods produce t

Yy This implies that the cost of lock boundary conflict for a
mréje number of small write requests is worse than the cost

ﬁé communication contention at the lock token holders cduse

file domains such that each aggregator is served by the sanjgne static-cyclic method. ,

servers and no server receives write requests from more tharpimilar to the results of the ROMIO collective 1/O test,
one aggregator. Since BTIO runs only on square numbdig read bandwidths of the static-cyclic method are the twors
of processes, other cases have no such advantage and {H& Same reason of data prefetching overhead slows down

bandwidths are significantly lower.

the static-cyclic method on Lustre. On GPFS, as the number

To overcome this advantage, we also ran additional expe?f-Processes increase, both aligned and static-cyclic odsth

ments for the cyclic methods by changing the default numb
of aggregators. The number of I/O aggregators can be &8¢
by the ROMIO collective buffering node hintb_nodes,

decome worse. This behavior is caused by the smaller 1/O

ount from each process resulting uneven workload among
the 1/0 aggregators. Of all three methods, the lock-boundar

and passed to ROMIO library as an MPI info object whefligned partitioning generates the worst unbalanced warkl

opening the file. We set the number of aggregators to 8,

16, 32, and 128 for the cases of 36, 49, 100, 144, and 5 g FLASH /O Benchmark

processes, respectively. These numbers are the largebensim The FLASH 1/O benchmark suite [24] is the I/O kernel
that are factors of 64 and smaller than the default number affa block-structured adaptive mesh hydrodynamics code tha
I/O aggregators. Adjusting the I/O aggregator numbergigleasolves fully compressible, reactive hydrodynamic equmesjo
further improves the write performance.

developed mainly for the study of nuclear flashes on neutron

8000 -

Write bandwidth in MB/s
B
3

Lustre al

=

P s N s,

1600
1400
1200
1000
800
600
400
200

GPFS

16 32 64 128 256 512 1024
Number of processes

8 16 32 64 128 256 512
Number of processes

100%

@
S
X

60%

40%

20%

1/0 phase percentage

=)

Lustre

100%

80%

60%

40%

20%

16 32 64 128 256 512 1024
Number of processes

0

8 16 32 64 128 256 512
Number of processes

The performance results are shown in Figure 10. The
write bandwidth curve on Lustre looks similar to the ROMIO
collective write test. The even and aligned methods perform
poorly and are much slower than the two cyclic methods. The
static-cyclic method starts to slow down in the cases of 512
and 1024 process due to the interleaved file stripe access at
the 1/0O servers. The group-cyclic method performs simitar t
the static-cyclic method for the cases of using 256 prosesse
and less, but keeps scaling up beyond 256 processes. This
difference is also reflected in the chart of /O phase peeggnt
where the static-cyclic method increases significantly # 5
and 1024 cases. On GPFS, the aligned method has the best
write bandwidth followed by the even method. The bandwidth
curve of even method is closer to the aligned method than the
static-cyclic method because we uses array SizZ2 6f32 x 32
which produces many evenly partitioned file domains aligned
to the file stripe boundaries. In order to artificially geriera

slightly unbalanced 1/O load, FLASH 1/O benchmark assigns

—E£+ even partitioning aligned with lock boundaries

—o— static-cyclic —%— group-static process rank with 80 + (i mod 3) data blocks and a process’s
write amount is either 20, 20.25, or 20.5 MB. With these
Fig. 10. Performance results for FLASH 1/O benchmark.

amounts, the even partitioning method can create many file
domains that are aligned with the 512 KB lock boundaries.
The 1/O phase percentage results also show the align method
stars and white dwarfs [25]. The computational domain Having the lowest percentages and the static-cyclic metinod
divided into blocks that are distributed across a number bighest.

MPI processes. A block is a three-dimensional array with an

additional 4 elements as guard cells in each dimension Bn S3D /O Benchmark

both sides to hold information from its neighbors. There are The S3D 1/O benchmark is the 1/O kernel of a parallel
24 variables per array element, and about 80 blocks on eaatbulent combustion application, named S3D, developed at
MPI process. A variation in block numbers per MPI procesSandia National Laboratories [27]. S3D uses a direct nuwrakri

is used to generate a slightly unbalanced 1/O load. Since thienulation solver to solve fully compressible Navier-Stek
number of blocks is fixed for each process, increase in thaal energy, species and mass continuity equations cduple
number of MPI processes linearly increases the aggredate With detailed chemistry. The governing equations are sbbre
amount as well. FLASH I/O produces a checkpoint file anal conventional three-dimensional structured Cartesiashme
two visualization files containing centered and corner dette A checkpoint is performed at regular intervals, and its data
largest file is the checkpoint, the 1/O time of which domimsateconsists primarily of the solved variables in 8-byte three-
the entire benchmark. Figure 9 depicts the 1/O pattern addnensional arrays, corresponding to the values at thethre
extracts the program loops for the write operations. FLASHimensional Cartesian mesh points. During the analysisgha
I/O uses the HDF5 I/O interface to save data along witlhe checkpoint data can be used to obtain several more
metadata in the HDF5 file format. Since the implementatiaterived physical quantities of interest; therefore, a migjo

of HDF5 parallel I/O is built on top of MPI-IO [26], FLASH of the checkpoint data is retained for later analysis. Atheac
I/O performance reflects the use of different file domaicheckpoint, four global arrays, representing the vargmfdé
partitioning methods. There are 24 collective write cabise mass, velocity, pressure, and temperature, respectiaety,
for each of the 24 variables. In each collective write, evemyritten to files in their canonical order.

MPI process writes a contiguous chunk of data, appendedThere are four collective writes in each checkpoint, one
to the data written by the previous ranked MPI procesfr a variable. Mass and velocity are four-dimensional ysra
Therefore, a write request from one process does not overlapvhile pressure and temperature are three-dimensionglsarra
interleave with the request from another. In ROMIO, this-norAll four arrays share the same size for the lowest three a&lpati
interleaved access pattern actually triggers the indegr@nddimensions X, Y, and Z, and they are all partitioned among
I/O subroutines, instead of collective subroutines, e¥éRl MPI processes along X-Y-Z dimensions in the same block-
collective writes are explicitly called. This behavior cae block-block fashion. For the mass and velocity arrays, the
overridden by enabling theom o_cb_wri t e hint. We use length of the fourth dimension is 11 and 3, respectively. The
this hint so the four file domain partitioning methods cafourth dimension, the most significant one, is not partigidn
take effect in our experiments. In our experiments, we used-gure 11 shows the data partitioning pattern on a 3D array
32 x 32 x 32 block size that produces about 20 MB of datand the mapping of a 4D sub-array to the global array in
per process in each collective write operation. file. In our evaluation, we keep the size of partitioned X-Y-Z

4D subarray in
process B, n=m-1

local-to—global

mapping
n=1

/16 /11 /18 J
PRI P|PR| P o5
23
P4 P5 P6 P7 4359 n=1
27
Bs| Fo| Ro| R1| /153
31
12| H3| Ra| As]]
m: length of the 4th dimension
n=0 n: index of the 4th dimension
@ (b)

Fig. 11. S3D I/O data partitioning pattern. (a) For 3D arraize sub-array of each process is mapped to the global arrayashion of block partitioning in
all X-Y-Z dimensions.(b) For 4D arrays, the lowest X-Y-Z dinsions are partitioned the same as the 3D arrays while ththfdimension is not partitioned.
This example uses 64 processes and highlights the mappipgoéss P;’s sub-array to the global array.

10000 T 900 T

dimensions constanf0 x 50 x 50 in each process. These | ool N
. . . o Lustre GPFS

numbers were in fact used in real production runs. Eagh®®| /o 100 .]

run produces about 15.26 MB of write data per process p&feoo -

checkpoint. As we increase the number of MPI processes, "E%oof

aggregate 1/0 amount proportionally increases as well. V%

report the performance numbers by measuring ten checlgoirg *°®

The performance results are given in Figure 12. The wrife ol s+ —s—o—a—a_ ob—
bandwidth curve on Lustre is similar to the ROMIO collective N Number of provessss % Number of processee
write test and Flash 1/O. For the static-cyclic method, the oo — 100% ———————————
similar performance dips occur in the cases of 512 and 10%480% | X 1 sl |
processes. The group-cyclic method scales well beyond 5%2 o g et
processes. The /O phase percentage also favors the cy@i&"%’ 191 i

-+ 20%

methods over the even and aligned method. On GPFS, theo -

. . . . :u
aligned partitioning method performs the best, like allesth 5 ., |

94 20% - 4

benchmarks. With the array size used in the experiment, tRe Lustre GPFS

even partitioning method does not generate any file domain ° 16 3 o4 128 256 512 1024 O e 16 w2 o1 120 2 o1z

that aligns to the lock boundaries and hence performs nerclos Number of processes Number of processes

to the aligned method. The I/O phase percentage charts are

also similar to the previous I/0 benchmarks. From all the /0O ~5- evenppartioning -+ aligned with lock boundaries
—&— static—cyclic —X— group—-cyclic

benchmark results presented in this paper, the impactseof th
four partitioning methods to collective 1/0 performance ar

’ Fig. 12. Performance results for S3D 1/0O benchmark.
very consistent on both Lustre and GPFS.

V. CONCLUSIONS

Through reorganizing file access regions among the Il@cking protocols used by the file systems and the paraltl I/
requesting processes, the two-phase 1/O strategy carf-sighibraries do not dynamically adjust their I/O methods foegh
icantly improve the parallel 1/0O performance. However, iprotocols. The naive even partitioning method used by ROMIO
is rare to see a collective 1/0 performance near the systémits two-phase 1/0 implementation produces well-balahce
peak data bandwidth. The major obstacle lies on the fiéd large contiguous I/O requests, but may not best fit to the

underlying file system locking protocols. In fact, a colleet [4]
I/O’s performance depends on many factors, including th%
application access patterns, process collaborationegiest]
used in the MPI-IO library, and file system configurations.
From our experiments, the way file domains are partitione%]
directly determines the 1/O parallelism the underlyingghiat
file system’s locking protocol can support. Among the four
partitioning methods discussed in this paper, there is mglesi
method that can outperform others on all file systems. Aﬂ
portable MPI-IO implementation must dynamically adapt a
method that works best on the target file system. (8]
The lessons learned from this work can be helpful for they,
MPI-IO implementation as well as application users to set
the file hints. On file systems that implement server-bas
locking protocols, such as the Lustre, the group-cyclic fil
domain partitioning method is the best choice for collestiv
write operations. Choosing the same number of aggregat[.)r1
as the number of I/O servers can avoid the interleaved flle
stripe access for static-cyclic method, as presented iBTh®
benchmark results. However, when the number of applicat:‘fl)lr%
processes become much larger than the servers, commu CA-
tion contention can easily formed at the aggregators during
the data redistribution phase. Our future work will studg th(13l
performance impact by varying the number of aggregators for
large-scale runs. For token-based locking protocols, sasch[14]
the one used by GPFS, the method that aligns the partitioning
to the lock boundaries provides the best collective writgs
performance. As for collective read operations, eithemewe
aligned partitioning method is best to use. As new file systeri®!
with novel locking protocols are continuing to be developed
the future, it is important that a parallel I/O library dynizaily
adapts 1/O strategies based on the file system configurétén #17)
can bring out the best performance. 18]

19

ACKNOWLEDGMENTS

This work was supported in part by DOE SCIDAC—2:[1
Scientific Data Management Center for Enabling Technolr%-0
gies (CET) grant DE-FC02-07ER25808, DOE SCIiDAC awa
number DE-FC02-01ER25485, NSF HECURA CCF-0621443,
NSF SDCI OCI-0724599, and NSF ST-HEC CCF-04444081]
We acknowledge the use of the IBM IA-64 Linux Cluster at the
National Center for Supercomputing Applications under- Tep2]
aGrid Projects TG-CCR060017T, TG-CCR080019T, and TG-
ASCO080050N. This research used resources of the National
Center for Computational Sciences at Oak Ridge National
Laboratory, which is supported by the Office of Science &l
the U.S. Department of Energy under Contract No. DE-ACO05-
000R22725. [24]

9]

REFERENCES (25]

[1] H. Shan and J. Shalf, “Using IOR to Analyze the I/O Perfarmmoe of
XT3,” in the Cray User Group Conference, May 2007.

[2] Message Passing Interface ForuMPI-2: Extensions to the Message
Passing Interface, Jul. 1997, http://www.mpi-forum.org/docs/docs.html.

[3] J. del Rosario, R. Brodawekar, and A. Choudhary, “ImpParallel
1/0 via a Two-Phase Run-time Access Strategy,'thie Workshop on
1/0 in Parallel Computer Systems at IPPS 93, Apr. 1993, pp. 56—70.

[26]

[27]

D. Kotz, “Disk-directed 1/O for MIMD Multiprocessors,ACM Trans-
actions on Computer Systems, vol. 15, no. 1, pp. 41-74, Feb. 1997.
R. Thakur, W. Gropp, and E. LuskJsers Guide for ROMIO: A
High-Performance, Portable MPI-1O Implementation, Technical Report
ANL/MCS-TM-234, Mathematics and Computer Science Diwvisiér-
gonne National Laboratory, Oct. 1997.

J. Squyres, A. Lumsdaine, W. George, J. Hagedorn, andevariey,
“The interoperable message passing interface (IMPI) sides to
LAM/MPI,” in Proceedings, MPI Developers Conference (MPIDC),
March 2000.

R. Thakur, W. Gropp, and E. Lusk, “An Abstract-Device drfaice for
Implementing Portable Parallel-I/O Interfaces,tie 6th Symposium on
the Frontiers of Massively Parallel Computation, Oct. 1996.

——, “Data Sieving and Collective 1/0 in ROMIO,” ithe 7th Sympo-
sium on the Frontiers of Massively Parallel Computation, Feb. 1999.
B. Nitzberg and V. Lo, “Collective Buffering: ImprovindParallel 1/0
Performance,” inthe Sxth |EEE International Symposium on High
Performance Distributed Computing, August 1997, pp. 148-157.

R. Ross, R. Latham, W. Gropp, R. Thakur, and B. Toonempte-
menting MPI-IO Atomic Mode Without File System Support,” the
5th IEEE/ACM International Symposium on Cluster Computing and the
Grid, May 2005.

W. Liao, A. Ching, K. Coloma, A. Choudhary, and L. WardAr
Implementation and Evaluation of Client-Side File CacHimgMPI-10,”
in the International Parallel and Distributed Processing Symposium,
Mar. 2007.

IEEE/ANSI Std. 1003.1Portable Operating System Interface (POS X)-
Part 1. System Application Program Interface (API) [C Language],
1996.

J. Prost, R. Treumann, R. Hedges, B. Jia, and A. Konige®I-
IO/GPFS, an Optimized Implementation of MPI-IO on top of GPF
in Supercomputing, Nov. 2001.

F. Schmuck and R. Haskin, “GPFS: A Shared-Disk File &ystfor
Large Computing Clusters,” ithe Conference on File and Storage
Technologies (FAST’02), Jan. 2002, pp. 231-244.

Lustre: A Scalable, High-Performance File Systéfmjtepaper, Cluster
File Systems, Inc., 2003.

J. Prost, R. Treumann, R. Hedges, A. Koniges, and A. gyHowards
a High-Performance Implementation of MPI-1O on top of GPR$ the
Sxth International Euro-Par Conference on Parallel Processing, Aug.
2000.

K. Seamons, Y. Chen, P. Jones, J. Jozwiak, and M. Winsteerver-
directed Collective 1/0O in Panda,” iBupercomputing, Nov. 1995.

K. Coloma, A. Choudhary, W. Liao, W. Lee, E. Russell, ahdPundit,
“Scalable High-level Caching for Parallel 1/0,” ithe International
Parallel and Distributed Processing Symposium, Apr. 2004.

K. Coloma, A. Ching, A. Choudhary, W. Liao, R. Ross, R.akbr, and
L. Ward, “A new flexible MPI collective I/O implementationjh the
IEEE Conference on Cluster Computing, Sep. 2006.

X. Ma, M. Winslett, J. Lee, and S. Yu, “Improving MPI-1O u@put
Performance with Active Buffering Plus Threads,” tire International
Parallel and Distributed Processing Symposium, Apr. 2003.

K. Coloma, A. Choudhary, W. Liao, W. Lee, and S. Tidemd»\Che:
Direct Access Cache System for Parallel I/O,"the 20th International
Supercomputer Conference, Jun. 2005.

H. Yu, R. Sahoo, C. Howson, G. Almasi, J. Castanos, M.t&up Mor-
eira, J. Parker, T. Engelsiepen, R. Ross, R. Thakur, R. bathad W. D.
Gropp, “High Performance File I/O for the BlueGene/L Supenputer,”
in the 12th International Symposium on High-Performance Computer
Architecture (HPCA-12), Feb. 2006.

P. Wong and R. der Wijngaart, “NAS Parallel Benchmark3 Yersion
2.4 NASA Ames Research Center, Moffet Field, CA, Tech. ReAS-
03-002, Jan. 2003.

M. Zingale, “FLASH I/O Benchmark Routine — Parallel HIF' Mar.
2001, http://flash.uchicago.eduzingale/ flashbenchmarkio.

B. Fryxell, K. Olson, P. Ricker, F. X. Timmes, M. Zingal®. Q.
Lamb, P. MacNeice, R. Rosner, and H. Tufo, “FLASH: An Adaptiv
Mesh Hydrodynamics Code for Modelling Astrophysical Thermclear
Flashes,"Astrophysical Journal Suppliment, pp. 131-273, 2000.

HDF Group,Hierarchical Data Format, Version 5, The National Center
for Supercomputing Applications, http://hdf.ncsa.uédu/HDF5.

R. Sankaran, E. Hawkes, J. Chen, T. Lu, and C. Law, “Diigmer-
ical Simulations of Turbulent Lean Premixed Combustiaintrnal of
Physics: conference series, vol. 46, pp. 38-42, 2006.

