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Recent Progress in Exact and Reduced-Order
Modeling of Light-Scattering Properties

of Complex Structures
Xu Li, Member, IEEE, Allen Taflove, Fellow, IEEE, and Vadim Backman

Abstract—An emerging research area in biophotonics with po-
tentially near-term clinical applications in early stage cancer de-
tection involves the investigation of possible correlations of the
elastic light scattering properties of tissues with alterations in their
cellular composition and nanostructure. Until recently, exploring
these correlations has been impeded by a lack of robust and ac-
curate mathematical models of the light scattering properties of
complex structures. In this paper, we review recent progress in this
area. Topics include: 1) development of accurate reduced-order
expressions for the total scattering cross section spectra of a wide
range of nonspherical and inhomogeneous particles; 2) rigorous
finite-difference time-domain modeling results showing how the
backscattering of light can be sensitive to nanometer scale features
embedded within micrometer-scale particles; and 3) development
of accurate reduced-order expressions for the backscattering depo-
larization properties of a wide range of inhomogeneous particles.
These advances provide an improved science base for cellular level
biophotonics, and have promise to accelerate the development of
novel corresponding clinical technologies.

Index Terms—Cancer diagnosis, finite difference time domain
(FDTD), light-scattering spectroscopy, scattering.

I. INTRODUCTION

DURING the past decade, it has become apparent that the
analysis of the elastic light scattering characteristics of liv-

ing tissue can provide valuable diagnostic information. Prelim-
inary data has suggested that alteration in these light scattering
signatures may be used as a sensitive marker to detect neoplasia
at an earlier stage than possible by histological analysis, where
some crucial information may be lost due to tissue fixing, stain-
ing, and the limited resolution of microscopes [1]. A number of
techniques, such as elastic light-scattering spectroscopy [1]–[5],
angle-resolved low coherence interferometry [6], [7], and the re-
cently proposed coherent backscattering spectroscopy [8], have
been developed to exploit the elastic light scattering properties
of tissue for disease diagnosis. In general, these techniques do
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not focus on providing a spatial map of the macroscopic op-
tical properties of the tissue under test. Instead, they seek to
detect minute cellular physiological differences, such as those
between normal and cancerous/preinvasive cells, by examining
the changes in spectral, angular, and polarization characteristics
of light scattered from tissue. By providing information about
tissue and cellular structures on the micro/nano scales, light
scattering based techniques may offer improved diagnostic sen-
sitivity in living tissue. This realization has motivated increased
interest in utilizing elastic light scattering as a diagnostic mech-
anism, and incorporating the scattering features into traditional
imaging based approaches to enhance their accuracy and sen-
sitivity. Representative recent developments include optical co-
herence tomography enhanced by spectroscopic analysis [9] and
static light scattering microscopy [10].

For any technique relying on elastic light scattering as a di-
agnostic mechanism, data analysis and correlation of the light
scattering properties of tissues with alterations in their cellular
composition and nanostructure plays an essential role in the di-
agnostic process. Conventionally, the interpretation of measured
data involves extracting the size, refractive index, and density
of tissue structures such as cell nuclei and other organelles by
comparing the observed scattering features with Mie theory,
which is an analytical solution of light scattering by homoge-
neous spherical particles. This approach has been demonstrated
to be a powerful tool to provide quantitative information on cel-
lular structures [2], [11]. However, this approach clearly relies
upon the approximation of the cellular scattering particles as ho-
mogeneous spheres. This approximation cannot account for the
complexity of the structures of biological tissue. Furthermore,
it cannot account for the subtle and complex cellular changes
during the initial onset of the malignancy, including changes in
the morphology and internal texture characteristics of the nuclei
and organelles.

In order to fully utilize the potential of elastic light scattering
for disease diagnosis, it is important to understand the mecha-
nism by which changes in shape and internal structure of nuclei
and cell organelles affect light scattering. This understanding
will provide researchers with fundamental insights regarding
the means to improve techniques and data analysis methods to
maximize diagnostic sensitivity and accuracy. For example, it
is important to know which tissue properties can or cannot be
determined by use of light scattering. From a clinical standpoint,
if certain measures of the light scattering signal from tissues can
be unambiguously and reliably associated with disease-specific
cellular changes, this knowledge will facilitate the development
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and acceptance of optical methods for screening and diagnosis
of patients and for preclinical/basic biological studies.

Recent advancements in numerical methods of solving
Maxwell’s equations have made it possible to calculate light
scattering by inhomogeneous objects of arbitrary shape and
internal organization. In particular, the application of the finite-
difference time-domain (FDTD) method [12] has yielded fruit-
ful results in modeling light scattering by individual cells
[13]–[15]. However, significant computational resources re-
quired by the FDTD method, or other exact numerical solutions
of Maxwell equations for arbitrary geometries, do not allow for
the calculation of light scattering by macroscopic tissue struc-
tures. The large computational requirement also poses a signifi-
cant challenge in utilizing exact modeling to address the inverse
problem, wherein multiple solutions of the forward problem
are often required. A more feasible approach to calculate light
scattering by complex tissue structure is to combine numerical
modeling with reduced-order analytical models.

In this paper, we review recent progress in both exact numer-
ical modeling and reduced-order analytical approximations for
light scattering by particles with complex shapes and internal
structure. Our objective here is to provide an overview of rele-
vant principles, techniques, and current research by coherently
integrating the body of published work with new results. In Sec-
tion II, we introduce two stochastic models, the Gaussian ran-
dom sphere (GRS) model and the Gaussian random field (GRF)
model, for describing and synthesizing irregular shapes and
internal structures. These geometric models provide test beds
for the subsequent theoretical development. Section III presents
the development of an accurate reduced-order expression, the
equiphase-sphere (EPS) approximation, for the total scattering
cross section (TSCS) spectra of a variety of nonspherical and
inhomogeneous particles. We demonstrate that a wide range
of particles with subwavelength perturbations in their shapes
or internal inhomogeneities have TSCS spectra similar to their
equiphase-sphere counterparts. In Section IV, we present FDTD
modeling results demonstrating that the backscattering of light
can be sensitive to nanometer-scale features within the particles.
Finally, Section V presents the development of a reduced-order
expression for the backscattering depolarization properties of
inhomogeneous particles.

II. STOCHASTIC METHODS FOR MODELING THE GEOMETRY OF

NONSPHERICAL AND INHOMOGENEOUS PARTICLES

In order to investigate light scattering by particles with a wide
variety of shapes and interior structures, statistical approaches
are very useful for modeling the particle geometry [16]. This is
especially the case for investigating light scattering by biolog-
ical tissues, wherein shape irregularities and internal inhomo-
geneities exist at a wide range of length scales. In this section, we
introduce two stochastic models, the Gaussian random sphere
(GRS) model to synthesize nonspherical shapes, and Gaussian
random field (GRF) model to synthesize inhomogeneous inter-
nal textures.

The GRS model [16] is defined in spherical coordinates as
having angle-dependent radius r(ϑ, ϕ) with mean radius r0 =

Fig. 1. Examples of Gaussian random spheres with fixed r0 = 1.75 µm.
(a)–(c) Gaussian spheres with increasing δr (Γ is fixed at 70◦). (d)–(f)
Gaussian spheres with decreasing Γ (δr is fixed at 0.1). (a) δr = 0.1, Γ =
70◦, (b) δr = 0.5, Γ = 70◦, (c) δr = 0.9, Γ = 70◦, (d) δr = 0.1, Γ = 90◦,
(e) δr = 0.1, Γ = 30◦, (f) δr = 0.1, Γ = 10◦.

〈r(ϑ, ϕ)〉 and normalized standard deviation of the radius δr =√
〈(r(ϑ, ϕ) − R)2〉/r0. Using a modified Gaussian correlation

function, the correlation between two radii over solid angle Ω is

Cr (Ω) = exp
(
− sin2(Ω/2)

2 sin2(Γ/2)

)
(1)

where Γ is the correlation angle of the Gaussian sphere, defined
as the angular displacement over which the correlation drops to
1/
√

e. The shape characteristics of a Gaussian random sphere
are uniquely determined by the statistical parameters r0, δr ,
and Γ.

We generate the three-dimensional (3-D) geometry of Gaus-
sian spheres using a computer program based on the code
developed by Muinonen and Nousiainen [17]. As shown in
Fig. 1(a)–(c), increasing δr results in an increased deforma-
tion of the particle shape from a sphere. On the other hand,
as illustrated in Fig. 1(d)–(f), reducing Γ leads to increased
short-distance fluctuations (increased numbers of “valleys” and
“hills”) on the particle surface.

Similarly, the GRF model [18] mathematically describes a
random process having a Gaussian probability density function.
Here, we consider the refractive index n (r) as a function of
spatial location r = (x, y, z). Each value of n (r) is a Gaussian
random variable with mean n0 = 〈n (r)〉 and normalized stan-
dard deviation δn =

√
〈(n (r) − n0)2〉/(n0 − 1). For a GRF

distribution with Gaussian function as the correlation model,
the two-point correlation function Cn (r) is given by

Cn (r) = e−r2/ (Lc /2)2 (2)

where Lc is the characteristic correlation length representing
the length scale over which the correlation drops to a negligible
level. For such choice of correlation function, the characteristics
of the spatial distribution of n (r) are determined by n0, δn , and
Lc .

Using the turning-band method [19], we create geometrical
models of spherical particles with refractive index having GRF
distributions. Fig. 2 shows graphs of six representative parti-
cles with refractive index distributions synthesized by the GRF
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Fig. 2. Examples of inhomogeneous spherical particles having GRF refractive-
index distributions with fixed n0 = 1.1 and r0 = 2 µm. The x̂− ẑ cross sec-
tional cuts of the particles’ interior refractive-index distribution are mapped
in grayscale. (a)–(c) Inhomogeneous particles with increasing δn (Lc is fixed
at 0.4 µm). (d)–(f) Inhomogeneous particles with decreasing Lc (δn is fixed
at 0.2). (a) δn = 0.12, Lc − 0.4 µm, (b) δn = 0.24, Lc − 0.4 µm, (c) δn =
0.32, Lc − 0.4 µm, (d) δn = 0.2, Lc − 1.2 µm, (e) δn = 0.2, Lc − 0.6 µm,
(f) δn = 0.2, Lc − 0.1 µm.

model. In each example, we map the x̂ − ẑ cross sectional cut of
the particle’s interior refractive index distribution in grayscale.
In Fig. 2(a)–(c), Lc is fixed at 0.4 µm while δn increases from
0.12 [Fig. 2(a)] to 0.32 [Fig. 2(c)]. In Fig. 2(d)–(e), δn is fixed
at 0.2 while Lc decreases from 1.2 µm [Fig. 2(d)] to 0.1 µm
[Fig. 2(f)]. These examples demonstrate the capability of the
GRF model to mimic refractive index fluctuations occurring
over a variety of geometrical scales. It is evident that δn de-
scribes the magnitude of refractive index variability, while Lc

characterizes the size of the internal features of the particle.
Figs. 1 and 2 demonstrate that stochastic models such as

GRS and GRF are capable of representing complex shapes and
internal structures spanning a wide range of length scales which
are characteristic to cellular structures. These geometries are
also mathematically well parameterized, and thus are suitable
to serve as test beds for generalized theoretical development.
In our subsequent analyses and numerical experiments, we use
these geometries as generic representation of a wide range of
nonspherical and inhomogeneous geometries.

III. DEVELOPMENT OF ACCURATE REDUCED-ORDER

EXPRESSIONS FOR THE TOTAL SCATTERING CROSS SECTION

SPECTRA OF NONSPHERICAL AND INHOMOGENEOUS

PARTICLES—THE EPS APPROXIMATION

The total scattering cross section (TSCS) is one of most im-
portant parameters describing the light scattering properties of
particles. For a homogeneous sphere, the TSCS can be read-
ily calculated with Mie theory for any wavelength. For parti-
cles with irregular shapes and internal structures, however, no
exact analytical solution is available to characterize the wave-
length dependence of their TSCS. For such particles, approxi-
mation methods are desirable for providing practical solutions
to light-scattering problems. Our investigation has been focused
on particles with sizes in the resonance range (on the order of a

few wavelengths). Light scattering by particles within this size
range exhibits complicated dependencies on wavelength and
scattering angles, and cannot be characterized by Rayleigh or
Rayleigh–Gans approximations. Such particles are also of great
relevance to tissue optics, since many structures such as cell
nuclei are in this size range.

We have recently introduced the equiphase-sphere (EPS) ap-
proximation for calculating the TSCS spectra of nonspheri-
cal [20], [21] and inhomogeneous particles [22]. In the EPS
approximation, the wavelength dependent TSCS spectrum of a
particle is given by the sum of the “edge effect” term σ

(s)
s (λ)

and “volume diffraction effect” term σ
(v)
s (λ) [23], [24]

σ(
sλ) = σ(s)

s (λ) + σ(v)
s (λ). (3)

Here, σ
(s)
s (λ) can be approximated as [23]

σ(s)
s (λ) ≈ 2S[2π(3V /4π1/3/λ ]−2/3 (4)

where S is the particle’s maximum cross section area transverse
to the direction of the incident light, and V is the volume of the
particle.

Based on the Wentzel–Kramers–Brillouin (WKB) technique,
we approximate the volume term σ

(v)
s (λ) as [20], [22]

σ(v)
s (γ) = 2S[1 − 2n0 sin ρ/ρ + 4n0 sin2(ρ/2)/ρ2] (5)

where n0 is the volume averaged refractive index and ρ =
2πd(n0 − 1)/λ is the maximum phase-shift produced by the
“equiphase sphere” of the particle. For a nonspherical particle,
the equiphase sphere is defined as the “best-fitting” ellipsoid of
the particle. We note that finding the best-fitting ellipsoid for an
arbitrary 3-D shape is generally a multiparameter optimization
problem with eight free parameters: three semiaxes (a, b, and
c); three coordinates of the center (x0, y0, and z0); and two rota-
tional angles (θ0 and φ0). Here, we fix some of these parameters
to simplify the optimization procedure. First, we specify semi-
axis c to be aligned with the incident wave vector ẑ. Thus we
have θ0 = 0. The second constraint is to match the cross section
area of the ellipsoid with the projected area of the particle in the
x̂ − ŷ plane (Sp = π a b). Furthermore, the location of the geo-
metric center (x0, y0, z0) is assigned to the center of mass of the
irregular particle. Therefore, we need to determine only three
free parameters: the longitudinal semiaxis c, the aspect ratio of
the cross section ηT = a/b, and the transverse rotational angle
φ0 (the angle between cross section major semiaxis a and x̂).
The objective of the optimization procedure is to minimize the
mean squared difference of the ẑ-directed light ray pathlength
between the irregular particle and the corresponding ellipsoid.
Parameters ηT , c, and φ0 are chosen such that

arg(c, ηT , φ0)|min{〈‖δLr ‖2 〉}. (6)

After finding its best fitting ellipsoid and volume averaged
refractive index, the TSCS spectrum of the irregularly shaped
particle is then approximated by (3)–(5), where d = 2c.

In order to apply the EPS method in practice, it is important
to determine the range of validity of this approximation. Also,
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based on the WKB technique, we have derived the validity con-
ditions of the EPS approximation as functions of the statistical
parameters of the particle geometry and internal structures. For
an inhomogeneous spherical particle with diameter 2r0, nor-
malized refractive index standard deviation δn , and correlation
length Lc , the validity condition of the EPS approximation is
given by

βn ≡ 4
√

2r0 (n0 − 1)
√

Lcδn/λ < 1. (7)

Similarly, we have determined the range of validity of the
EPS approximation for particles with irregular shapes. For a
nonspherical particle radial standard deviation ∆ from its best
fitting ellipsoid and radius-angular correlation angle Γ, the va-
lidity condition of the EPS approximation is given by

βr ≡ 2
√

2/π(n0 − 1)
√

Γ∆/λ < 1. (8)

We note from (7) and (8) that two effects contribute to the
validity and accuracy of the EPS approximation for inhomoge-
neous and nonspherical particles: 1) the magnitude of the pertur-
bation in the shape or the inhomogeneity of the particle, repre-
sented by ∆ and δn (n0 − 1) respectively; and 2), the geometri-
cal scale of the surface or internal features, denoted by Γ and Lc .
The fact that β is proportional to Γ and Lc indicates that when
inhomogeneity or surface irregularity occurs on length scales
that are small compared to the incident wavelength, they have
less impact on the validity of the EPS approximation. In other
words, particles with smaller-scale perturbations in their shapes
or internal inhomogeneities have similar TSCS spectra as their
equiphase-sphere counterparts. This effect can be observed from
Figs. 3 and 4, where we compare the TSCS spectra calculated by
the EPS approximation with accurate FDTD benchmark data for
a variety of nonspherical and inhomogeneous particles. These
examples also demonstrate that the EPS approximation (3)–(5)
are capable of modeling the TSCS spectra for a wide range
of nonspherical and inhomogeneous particles when the validity
conditions given by (3) and (4) are satisfied. Furthermore, the
mathematical simplicity of these reduced-order expressions also
makes them especially appealing for being applied in inverse-
scattering problems [21].

IV. SENSITIVITY OF BACKSCATTERING SIGNATURES TO

NANOARCHITECTURE OF SCATTERING STRUCTURES

Our analysis and numerical examples, shown in Section III,
indicates that the TSCS spectra of nonspherical and inhomoge-
neous dielectric particles are not sensitive to shape and texture
perturbations at length scales much smaller than the wavelength.
An important question then arises for researchers investigat-
ing optical tissue diagnostic techniques: are there any light-
scattering parameters that provide sufficient sensitivity to detect
nanometer-scale cellular changes? This question is of partic-
ular interest, since recent clinical evidence has indicated that
light scattering signals are extremely sensitive to minute differ-
ences in tissue and cellular structures [1]. As we will discuss,
contrary to the TSCS, light-scattering signals in the backward
direction contain signatures that are sensitive to such nanoscale
perturbations.

Fig. 3. Demonstration of the accuracy of EPS approximation applied to non-
spherical particles. TSCS spectra calculated by EPS approximation are com-
pared to FDTD benchmark data. The incident light propagates in the ẑ di-
rection. (a)–(c) Demonstration that when βr < 1, the EPS approximation can
give reasonable accuracy for calculating the TSCS spectra. (d) When βr > 1,
the validity of the EPS approximation is not guaranteed. (a) ∆ = 0.3 µm,
Γ = 50◦, β̄r = 0.45, (b) ∆ = 0.7 µm, Γ = 10◦, β̄r = 0.48, (c) ∆ = 0.6 µm,
Γ = 20◦, β̄r = 0.57, (d) ∆ = 0.8 µm, Γ = 70◦, β̄r = 1.5.

Here, we demonstrate the sensitivity of backscattering sig-
natures to nanoscale parameters using the FDTD method. Prior
to this investigation, we developed and validated a simple yet
effective modification to significantly improve the accuracy
of the FDTD near-to-far field (NTFF) transformation for cal-
culating the backscattering of strongly forward-scattering ob-
jects [25]. We use the modified FDTD-NTFF approach to cal-
culate the spectral and angular distribution of backscattered
light from inhomogeneous dielectric particles with identical
sizes and volume-averaged refractive indices, and compare the
calculated scattering patterns with their homogeneous coun-
terpart. This comparison is illustrated in the middle panels of
Fig. 5, where we plot the scattering intensity distribution as
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Fig. 4. TSCS spectra calculated using rigorous FDTD numerical modeling
and EPS analyses for inhomogeneous particles. The Spatial distribution of the
particle refractive index in the x̂ − ẑ cross sectional cut is displayed in the left
panel. (a)–(c) Demonstration that when βn < 1, the EPS approximation can give
reasonable accuracy for calculating the TSCS spectra. (d) When βn > 1, the
validity of the EPS approximation is not guaranteed. (a) δn = 0.2, Lc = 50 nm,
β̄n = 0.36, (b) δn = 0.16, Lc = 200 nm, β̄n = 0.57, (c) δn = 0.16, Lc =
600 nm, β̄n = 0.98, (d) δn = 0.32, Lc = 1000 nm, β̄n = 2.5.

functions of wavelength and scattering angle (centered at the
backscattering direction). Distinct scattering features are evident
in the scattering fingerprints from the two inhomogeneous par-
ticles, although their inhomogeneities have characteristic sizes
much smaller than the illumination wavelength (Lc = 50 and
100 nm, respectively, while λ̄ = 750 nm). These numerical re-
sults strongly support the hypothesis that there exit signatures
in backscattered light that are sensitive enough to detect alter-
ations in nanoscale architectures. Importantly, this sensitivity is
not limited by the diffraction limit. Potentially, backscattering
signatures can serve as biomarkers to detect and characterize
slight alterations in tissue structure. For comparison, we also
plot the scattering intensity distribution in the forward direc-
tion. Here, no distinct scattering features are observed among
the different scatterers. The similarity in the forward scattering
pattern is not surprising. For these strongly forward-scattering

Fig. 5. Demonstration of the sensitivity of backscattering signatures to nanoar-
chitecture of scattering structures. The particle geometries are shown in the
left panel. FDTD-calculated backscattering intensity distribution over wave-
length and scattering angle are displayed in the middle panel. The forward
scattering signatures are displayed in the right panel. All three particles have
n0 = 1.1 and r0 = 2 µm. (a) Homogeneous particle. (b) Inhomogeneous par-
ticle with Lc = 50 nm}, δn (n0 − 1) = 0.02. (c) Inhomogeneous particle with
Lc = 100 nm δn (n0 − 1) = 0.02.

particles, the forward and small angle scattering is the major
contribution to the TSCS spectra, which are not sensitive to
small scale structures, as shown in Section III.

V. QUANTITATIVE ANALYSIS OF DEPOLARIZATION OF LIGHT

BACKSCATTERING BY INHOMOGENEOUS PARTICLES

In addition to spectral and angular properties, the polariza-
tion properties of light backscattered by biological tissue can
also be used as diagnostically valuable markers. Recently, we
have investigated the depolarization effect of dielectric particles
having complex internal structures by examining the distribution
of optical paths and the associated phase changes of light rays
propagating in the particle [26]. Our theoretical analyses and
numerical experiments demonstrate that the backscattered lin-
ear depolarization ratio is directly associated with the statistical
parameters of the particle’s internal geometry. Specifically, for
an inhomogeneous particle having an internal refractive index
distribution with standard deviation σn = δn (n0 − 1) and cor-
relation length Lc , the linear depolarization in the backscattered
light δλ ≡ I⊥/I‖ is given by

δλ ≈ C (2π/λ2)(LC σn )2 (9)

where C is a constant independent of the distribution of the
internal refractive index.

Fig. 6 shows three representative results of our numerical ex-
periments where backscattered intensities in both polarizations
(I‖ and I⊥) are calculated for inhomogeneous particles. Ignoring
the oscillatory structures due to resonances in the backscattered
spectra, it is clear that the overall level of I⊥, and therefore the
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Fig. 6. Demonstration that the overall intensity of cross-polarized backscat-
tering light increases as Lc σn becomes greater. Here, copolarized and cross-
polarized backscattering light intensity calculated by FDTD method for in-
homogeneous dielectric spheres with n0 = 1.1, r0 = 2 µm, and a variety of
Lc and σn . (a) Lc = 0.05 µm, σn = 0.02; (b) Lc = 0.4 µm, σn = 0.016;
(c) Lc = 1.2 µm, σn = 0.035.

linear depolarization ratio δλ , increases as the product of Lc and
σn becomes larger.

The dependence of δλ on the geometric characteristics of
the particle’s internal refractive-index distribution is most ev-
ident in Fig. 7, where we summarize our numerical experi-
ments conducted on 20 inhomogeneous dielectric spheres with
Lc ranging from 0.05 µm to 1.2 µm and σn ranging from
0.005 to 0.036. Here, we graph δλ averaged over the 500–
1000 nm incident wavelength range against the geometric pa-
rameter β̄ ≡ C(2π/λ̄2)(LC σn )2 in a log-log plot to cover a
wide range for both parameters. The constant C is chosen em-
pirically as C = 12 to give the best linearity. The 20 data points
are plotted with symbols representing different Lc and grayscale
levels corresponding to different σn for each particle geometry.
We also cross reference three data points with their correspond-
ing backscattered spectra shown in Figs. 6(a)–(c). The relation-
ship given in (9) is plotted in dashed line to compare against
the data points. The reasonable data fitting confirms the validity
of (9); i.e., that δλ is proportional to (LC σn )2/λ2 for the first
order of approximation.

VI. SUMMARY AND DISCUSSION

In this paper, we have reviewed recent progress in analytical
and numerical modeling of light scattering by particles hav-
ing complex shapes and internal structures. We have introduced
stochastic geometric descriptions, namely the Gaussian random
sphere (GRS) and the Gaussian random field (GRF) models, for
characterizing and synthesizing irregular shapes and internal
structures in a wide range of length scales which are character-

Fig. 7. Confirmation of the validity of (9); i.e., that δλ is approximately pro-
portional to (2π/λ)(LCσn )2. Here, averaged linear depolarization ratio are
calculated from FDTD simulations conducted on 20 inhomogeneous dielectric
spheres as a function of the geometrical parameter β ≡ C (2π/λ̄2)(LC σn )2

with Lc ranging from 0.05 to 1.2 µm, and σn ranging from 0.005 to 0.035.
In the calculation of β , we choose C = 12 and λ̄ = 750 nm. The grayscale
level of each data point represents the magnitude of σn with the brighter shades
corresponding to greater σns.

istic of cellular structures. Using these model geometries as test
beds, we have developed a reduced-order expression, the EPS
approximation, for calculating the TSCS spectra of complex
shapes. We have also developed a reduced-order expression to
quantitatively analyze the depolarization of light backscattering
by inhomogeneous particles. These analytical approximations
have simple mathematical forms, and thus can be use to address
the inverse problem to extract certain geometrical parameters of
the scatterers from measured scattering data.

The validity range of the EPS approximation indicates that
a variety of particles with subwavelength perturbations in their
shapes or internal inhomogeneities have TSCS spectra similar to
their equiphase-sphere counterparts. However, as demonstrated
by our FDTD numerical modeling, there exist scattering signa-
tures in backscattered light that are sensitive to nanometer-scale
features embedded within micron-scale particles. These results
substantiate previous experimental observations that backscat-
tered light signals may be used to detect minute changes in
cellular structures occurring in the early stage of carcinogenesis.

The advances presented in this paper may provide an im-
proved science base for cellular-level biophotonics, and have
promised to accelerate the development of novel corresponding
clinical technologies by providing insights on the correlations of
the elastic light scattering properties of tissues with alterations
in their cellular composition and nanostructure.
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