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Analytical techniques for addressing forward and inverse
problems of light scattering by irregularly shaped particles
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Understanding light scattering by nonspherical particles is crucial in modeling the transport of light in realistic
structures such as biological tissues. We report the application of novel analytical approaches based on
modified Wentzel–Kramers–Brillouin and equiphase-sphere methods that facilitate accurate characterization
of light scattering by a wide range of irregularly shaped dielectric particles. We also demonstrate that these
approaches have the potential to address the inverse-scattering problem by means of a spectral analysis of
the total scattering cross section of arbitrarily shaped particles. © 2004 Optical Society of America
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Most natural particles have nonspherical geometries,
and therefore light scattering by irregularly shaped
particles is of significant research interest in a variety
of disciplines such as astronomy, meteorology, remote
sensing, and biomedicine. The development and
application of accurate, yet easy to use, inversion-
enabling approximations to model light scattering by
nonspherical particles is of critical importance. In
this Letter we focus our discussion on two such approxi-
mate methods, namely, a modif ied Wentzel–Kramers–
Brillouin (WKB) approximation1 and the recently
proposed equiphase sphere (EPS) approximation.2

The mathematical simplicity of these methods makes
them especially appealing for application to inverse-
scattering problems.

Our analysis is focused on the spectral properties
of total scattering cross section (TSCS), as the TSCS
spectrum is of particular importance in applications
such as spectroscopic tissue diagnosis.3 – 6 Previously,
the feasibility of applying the modified WKB approxi-
mation and the EPS approximation to calculate TSCS
spectra of inhomogeneous and spheroidal particles was
demonstrated.2,7 In this Letter we apply these two
methods to predict the orientation-dependent TSCS
spectra of particles of arbitrary irregular shapes. We
compare the validity and accuracy of these methods
and the rigorous numerical solutions to Maxwell’s
equations, using the f inite-difference time-domain8

(FDTD) method for a wide range of irregular particles
of sizes in the resonance range. We also demonstrate
the potential of using these methods to probe the sizes
and geometric characteristics of arbitrarily shaped
particles from their light-scattering properties.

In both the modif ied WKB and the EPS approxima-
tions the TSCS is given by the sum of two terms, sur-
face effect term ss

�s� and volume scattering term ss
�v�.

When the high-frequency ripple structure in the TSCS
spectrum is neglected (the ripple structure is typically
averaged out in realistic experimental measurements),
surface term ss

�s� can be approximated as7

ss
�s� � 2Sm�kd�2�22�3, (1)

where Sm is the maximum transverse cross section
area, d is the mean diameter, and k � 2p�l is the
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wave number. In the modif ied WKB approximation,
volume term ss

�v� is given by

ss
�v� � 2 Re

√√√ ZZ
S

�1 2 exp�ik�n 2 1�L�r���d2r

!!!
(2)

for a homogeneous particle. Here, S is the projection
area of the particle in the plane transverse to the in-
cident light, r is a vector in plane S, and L�r� is the
path length of the light ray traveling inside the particle
through position r. L�r� is equivalent to the longitu-
dinal extent of the particle corresponding to position r
if one neglects the refraction effect in determining the
direction of light propagation.

The EPS approximation simplif ies volume term
ss

�v� by using an explicit expression2:

ss
�v� � 2S�1 2 2n sin r�r 1 4n sin2�r�2��r2� , (3)

where r � kd�n 2 1� and d is equal to the diameter
of the equiphase sphere of the particle. Equation (3)
is similar to the approximation given by van de Hulst
for a homogeneous spherical particle with a low re-
fractive index and predicts an oscillatory interference
structure in the TSCS spectra with a frequency propor-
tional to the particle’s size. Previously, Chen et al.2

demonstrated that TSCSs of spheroids with certain
bounds on major-to-minor axis ratios can be approxi-
mated by those of their equiphase sphere counterparts
with diameters d equal to the spheroids’ longitudinal
extent. In this Letter we extend the concept of the
equiphase sphere to arbitrary particles by choosing
d as the longitudinal extent of an ellipsoid that opti-
mally f its the geometry of the particle [with minimum
root-mean-square (rms) error].

We use Gaussian random spheres as a test model
with which to evaluate the validity and accuracy of
both approximate methods. Following the formula-
tion given by Muinonen et al.,9 the shape of a Gaussian
sphere is determined by radial relative standard devia-
tion D and by radius-to-angular-distance correlation
angle g. As shown in Figs. 1(a)–1(c), a higher
value of D results in an increased magnitude of
deformation from spheres, whereas, as illustrated
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Fig. 1. Representative Gaussian sphere geometries.
(a)–(c) Gaussian spheres with increasing D (g is f ixed at
70±). (d)–(f ) Gaussian spheres with decreasing g (D is
fixed at 0.1).

in Figs. 1(d)–1(f ), reducing g leads to increased
high-degree terms of the surface perturbation and
thus results in increased numbers of valleys and hills
on the particle surface. Thus one can represent a
wide range of natural and artif icial shapes by varying
D and g in the Gaussian sphere model.

We used FDTD simulated data as benchmarks to
characterize accurately the light-scattering properties
of various Gaussian spheres. FDTD simulations were
conducted for Gaussian spheres with D ranging from
0.1 to 0.9 and g ranging from 10± to 90±. The par-
ticles were assigned a mean diameter of the order of
3.5 mm and a refractive index of 1.5. Following the
same procedure as described previously,3,10 we calcu-
lated the frequency-dependent TSCS from the FDTD
simulations.

Figure 2 compares TSCS spectra calculated by
FDTD simulation by a modified WKB method and
by the EPS approximation for four Gaussian spheres
with shapes that deviate progressively from that of
a sphere. In Figs. 2(a)–2(c) the EPS approximation
gives a slightly more accurate estimation of the TSCS
than does the modif ied WKB method. The improved
accuracy is due to the fact that the EPS approximation
implicitly takes into account the refraction effect
for shapes that deviate moderately from spheres or
ellipsoids. For the severely deformed particle shown
in Fig. 2(d) the oscillatory periodicity of the TSCS
spectrum obviously departs from its EPS counterpart.
However, the modified WKB approximation still gives
a fairly good estimation of the TSCS spectrum.

We used rms error to parameterize the accuracy
of the analytical approximations compared with the
accurate FDTD data. To investigate the inf luence of
particle irregularity on the approximation accuracy we
plotted the rms errors for both approximations as func-
tions of the particle’s shape parameters D [Fig. 3(a)]
and g [Fig. 3(b)]. As the particles deviate from
spherical shapes, the accuracies of both approxima-
tions degrade. However, it is evident from Fig. 3 that
both methods give TSCS spectra with rms errors of
,5% for a wide range of irregularly shaped particles.

Because of their accuracy demonstrated above, along
with their mathematical simplicity, these two approxi-
mate methods have great potential for being applied
in inverse-scattering problems for irregularly shaped
particles. For the range of shapes at which the EPS
approximation is valid, the diameter of the correspond-
ing equiphase sphere d (an estimation of the longitudi-
nal dimension of the particle) can be derived from the
oscillation period of the TSCS given by Eq. (3), and, by
further f itting the TSCS curve, one can readily find
total transverse area S.

We can note from Fig. 3 that the modif ied WKB ap-
proximation has a greater range of validity than the
EPS approximation. However, because this method
involves numerical integration the inversion procedure
is not so straightforward as that provided by the EPS
approximation. Here we propose a novel approach to
probing the size and shape of a particle from its TSCS
spectrum by using the modif ied WKB approximation,
as introduced in the following discussion.

For a homogeneous particle the modif ied WKB
approximation given by approximation (1) and Eq. (2)
can be written as

ss � 2Sm�kd�2�22�3 1 2S

2 2
ZZ

S
cos�k�n 2 1�L�r��d2r . (4)

Fig. 2. Comparison of TSCSs calculated from FDTD simu-
lations, the modified WKB approximation, and the EPS
approximation for Gaussian spheres with different shapes.
The particles are illuminated with vertically directed in-
cident light: (a) D � 0.1, g � 50±; (b) D � 0.1, g � 30±;
(c) D � 0.1, g � 20±; (d) D � 0.7, g � 70±.

Fig. 3. TSCS spectrum rms error of the modified WKB
approximation and the EPS approximation. FDTD simu-
lation results are used as the benchmark data. rms errors
(%) as functions of (a) g (D is fixed at 0.1) and (b) D (g is
fixed at 70±).
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Fig. 4. WKB-reconstructed area distribution of the longi-
tudinal extent, ai�Li�, for Gaussian spheres with various
values of radial relative standard deviations and correla-
tion angles: (a) D � 0.1, g � 25±; (b) D � 0.4, g � 70±;
(c) D � 0.2, g � 30±; (d) D � 0.7, g � 70±.

By dividing the possible range of longitudinal extent
L�r� into discrete values Li we can replace the in-
tegration over total transverse area S in Eq. (4) byP

i ai cos�k�n 2 1�Li�, where coefficient ai is the por-
tion of transverse area that corresponds to Li. Thus,
for a given wavelength lj , Eq. (4) can be rewritten as

ss�lj � �
X
i
2ai cos�2p�n 2 1�Li�lj �

1 2Sm�pd�22�3�lj �2�3 1 2S . (5)

If n is known, for a number of preselected values of
Li and wavelengths lj a set of linear equations can be
formed from Eq. (5) to solve area coeff icients ai and
total transverse area S simultaneously.

Because linear equation (5) constitutes an ill-posed
problem, one must employ additional a priori infor-
mation to obtain a stable solution. We added two
important constraints, i.e., a nonnegativity constraint
(ai $ 0, S . 0, Sm . 0, and d . 0) and an area-
consistency constraint (

P
i ai � S 6 d, where d is a

small value chosen empirically) to form a constrained
linear least-squares problem that can be solved with
an active-set method.10

Figure 4 plots the area distribution of longitudinal
extent reconstructed from TSCS spectra calculated by
FDTD simulations for four Gaussian spheres. For all
four cases the inversion results are consistent with
the true distribution calculated from the original ge-
ometry. From these graphs of area coeff icients, the
volume and the total transverse area of the particles
can easily be derived. Furthermore, the longitudinal-
extent distribution profiles are especially useful indica-
tors with which to infer the shape characteristics, such
as eccentricity and surface deformation, of particles.
For the inversion results presented in this Letter, d
was chosen to be S�20. We noted that the robustness
of this approach is not sensitive to the choice of d.

In summary, in this Letter we have introduced novel
analytical approaches, based on the modified WKB
approximation and the EPS approximation, to the
characterization of light scattering by a wide range of
irregularly shaped dielectric particles. The discus-
sion in this Letter was focused on light scattering by
isolated, nonabsorbing single particles of arbitrary
shape and orientation. Improved knowledge of the
optical scattering properties of such particles forms
the foundation for understanding of light scattering
by ensembles of random particles. In turn, this
facilitates general advances in the optics of random
media, including remote sensing, light propagation
in the atmosphere, random-media lasing, and optical
tissue diagnosis.
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