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We report the development and validation of the equiphase-sphere(EPS) approximation for calculating the
total-scattering cross-section(TSCS) spectra of inhomogeneous microparticles having complex interior struc-
tures. We show that this closed-form, analytical approximation can accurately model the TSCS of randomly
inhomogeneous spherical particles having internal refractive index variations with geometrical scales spanning
from nanometers(i.e., subwavelength) to microns(i.e., suprawavelength). Moreover, we derive an easy-to-use
criterion for the range of validity of the EPS approximation in modeling TSCS of inhomogeneous particles.
The work discussed in this paper may positively impact tissue optical imaging and diagnostic applications.
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I. INTRODUCTION

Examples of inhomogeneous particles range from mineral
particles and atmospheric aerosols to cell nuclei in biological
tissue. Characterizing the light-scattering properties of these
particles is important for a variety of applications in atmo-
spheric science, oceanography, astronomy, and biomedical
optics [1].

Analytical methods capable of accurately modeling light
scattering by inhomogeneous particles have been developed
for only a small set of particle geometries, such as the con-
centrically stratified sphere[2] and sphere with spherical in-
clusions[3]. However, naturally occurring particles usually
have much more complex shapes and internal structures. For
such particles, approximation methods are desirable for pro-
viding practical solutions to light-scattering problems. How-
ever, despite significant interest in the development of ap-
proximation methods for characterizing the light-scattering
properties of inhomogeneous and nonspherical particles, sat-
isfactory results have not been achieved. The complexity of
this problem is illustrated by a quote from Bohren in his
chapter on light scattering in Ref.[26], “This search re-
sembles that for the Holy Grail—and has been as fruitless.”

Recently, we have investigated the light-scattering prop-
erties of inhomogeneous spherical particles having an inter-
nal refractive indexn, assigned as an uncorrelated random
variable to uniformly sized cubic subvolumes within each
particle [4]. Numerical experiments using high-resolution
finite-difference-time-domain(FDTD) computational elec-
trodynamics models[5] and supporting analyses demon-
strated that the spectral dependence of the total-scattering
cross section(TSCS) of such a particle can closely resemble
that of its homogeneous, volume-averaged counterpart if the
size of each cubic subvolume inhomogeneity within the
original particle is sufficiently small relative to the optical
wavelength.

In this paper, we advance beyond the simple uncorrelated
particle inhomogeneity considered in[4], and report a
closed-form analytical approximation that provides accurate
TSCS spectra characterization despite the internal complex-
ity of the particle. Specifically, the particles considered here
are spheres that have internal distributions of a refractive
index synthesized using the isotropic Gaussian random field
(GRF) model. GRF models have been used previously to
characterize the morphology of randomly inhomogeneous
materials and characterizing complex microstructures[6], ac-
counting for many features observed in naturally occurring
random media. For such an assignment of a refractive index,
we demonstrate that the equiphase-sphere(EPS) approxima-
tion introduced in Refs.[7–9] provides an accurate closed-
form calculation of the TSCS spectra of highly inhomoge-
neous particles having GRF refractive index variations with
geometrical scales spanning nanometers to microns. More-
over, using the Wentzel-Kramers-Brillouin(WKB) tech-
nique, we derive the validity range of the EPS approximation
as a function of the statistical parameters of the interior re-
fractive index distribution. In all cases reported in this paper,
validation studies are conducted using high-resolution FDTD
simulations that model particles having a wide range of stan-
dard deviations and correlation lengths for the internal
refractive-index distribution.

II. REVIEW OF THE EPS APPROXIMATION FOR LIGHT
SCATTERING BY MICROPARTICLES

We recently introduced the EPS approximation for calcu-
lating the TSCS spectra of nonspherical particles with sizes
in the resonance range[7–9]. Using a simple expression, this
method explicitly links the size and shape parameters of non-
spherical particles to the oscillation feature in their TSCS
spectra.
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In the EPS approximation, the wavelength-dependent
TSCS spectrum of a particle is given by the sum of the
“edge-effect” term ss

ssdsld and the, “volume-diffraction-
effect” termss

sndsld [7]

sssld = ss
ssdsld + ss

sndsld. s1d

Here, when the high frequency ripples resulting from inter-
ference of the surface waves is neglected,ss

ssdsld can be
approximated as[7,10]

ss
ssdsld < 2Sf2ps3V/4pd1/3/lg−2/3, s2d

whereS is the particle’s maximum cross-section area trans-
verse to the direction of the incident light, andV is the vol-
ume of the particle.

For a particle with 2pdsn−1d /l@1 andsn−1d,1, where
d is the mean diameter andn is the refractive index, the
volume termss

sndsld can be approximated using the WKB
technique[11]

ss
sndsld = 2 ReSE E

S

h1 − expfijsr 8dgjd2r 8D , s3d

wherer 8 is a position vector in the plane orthogonal to the
direction of propagation of the incident wave andjsr 8d is the
phase shift of a light ray crossing planeSat positionr 8. jsr 8d
is expressed as

jsr 8d = s2p/ldE
Lsr8d

fnslsr 8dd − 1gdl, s4d

whereLsr 8d is the path of the light ray crossingr 8. For a
homogeneous spherical particle with refractive indexn0,

L = df1 − sin2 gsr 8d/n0
2g1/2, s5d

where g is the angle between the incident-ray propagation
direction and the radial vector pointing from the center of the
particle. After performing the integration in Eq.(3), ss

sndsld
for a homogeneous spherical particle is given by

ss
sndsld = 2Sf1 − 2n0 sinr/r + 4n0 sin2sr/2d/r2g, s6d

where r=2pdsn0−1d /l is the maximum phase shift pro-
duced by the homogeneous sphere.

We note Eq.(6) becomes equivalent to the van de Hulst
approximation[12]

sssld = 2Sf1 − 2 sinr/r + 4 sin2sr/2d/r2g s7d

for spheres with low refractive indexes. The most distinctive
feature that can be observed from both Eqs.(6) and(7) is the
“interference structure”[13], which refers to slow oscilla-
tions of TSCS as a function of wavelength with the fre-
quency of these oscillations proportional to the diameter of
the particle. With sufficiently larger, the higher order term
sin2sr /2d /r2 can be neglected; thus the diameter of the par-
ticle can be easily derived from the oscillation frequency by
d=l1l2/ sl2−l1d / sn0−1d, wherel1 andl2 are wavelengths
corresponding to two adjacent maxima or minima in the
TSCS spectrum. In addition, by including a surface term[Eq.
(2)] and implicitly incorporating the refraction effect on the

direction of the light-ray propagation[Eq. (5)], the formulas
given by Eqs.(1), (2), and(6) provide improved accuracy for
calculating the TSCS spectra, particularly for particles with
higher refractive indices.

Motivated by the questions whether the interference struc-
tures are preserved for nonspherical particles, and how their
TSCS spectra are associated with the particle size and shape
characteristics, we previously introduced the concept of the
“equiphase sphere”[7]. Most recently, we proposed to use
the equiphase-sphere(EPS) approximation[Eqs.(1), (2), and
(6)] to calculate the TSCS spectra of a variety of nonspheri-
cal particles[8,9], where r is replaced by the equivalent
maximum phase shift calculated according to the particle’s
geometrical characteristics.

III. APPLICATION OF EPS THEORY TO THE
INHOMOGENEOUS SPHERES: RANGE OF VALIDITY

In this section we focus our discussion on applying the
EPS approximation to spherical particles with inhomoge-
neous interior refractive index. Here,r of Eq. (6) is simply
replaced by the maximum phase shift produced by the ho-
mogeneous counterpart of the particle withn0 equal to the
volume-averaged refractive index of the inhomogeneous par-
ticle. Upon this substitution, Eq.(6) predicts that the oscilla-
tion features in the TSCS spectrum of an inhomogeneous
particle follow that of its homogeneous counterpart with a
volume-averaged refractive index.

In order to apply the EPS method in practice, it is impor-
tant to determine the validity conditions of this approxima-
tion. We now investigate how the internal refractive-index
distribution affects the validity and accuracy of the EPS ap-
proximation applied to inhomogeneous particles. The deriva-
tion of an analytical validity condition for Eq.(3) is summa-
rized below.

The validity analysis of the EPS approximation is based
on the WKB technique[Eq. (3)] from which Eq.(6) is de-
rived. For an inhomogeneous spherical particle, the relative
phase shiftjsr 8d can be expressed asjsr 8d=j0sr 8d+djsr 8d.
Here,j0sr 8d=2psn0−1dLsr 8d /l is the phase shift of a light
ray propagating through the homogeneous counterpart of the
particle. The termdjsr 8d accounts for the phase-shift differ-
ence due to refractive-index inhomogeneity. If

djsr 8d , p/2, s8d

the exponent in Eq.(3) can be expanded to perform the in-
tegration analytically. This yields

ss
snd < sn0

snd + dssnd, s9d

where sn0

sndsld=2Sf1−2n0 sinr /r+4n0 sin2sr /2d /r2g is the
scattering produced by the equiphase-sphere counterpart of
the particle, anddssnd is the error term produced by
refractive-index inhomogeneity. The EPS approximation is
valid provided thatdssnd!sEPS

snd .
We point out that the expansion in Eq.(9) depends on

condition (8). Thus, we shall examine the inequality(8) in
detail. The phase shift errordjsr 8d due to inhomogeneity is
given by
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djsr 8d =E
Lsr d

2p

l
dnsr 8,lddl, s10d

wherednsr 8 , ld denotes the refractive-index fluctuation from
its volume average at positionsr 8 , ld. If the spatial distribu-
tion of the refractive index has a correlation lengthLc, then
Eq. (10) can be approximated by the sumdjsr 8d
<s2p /ldoi=1

N dniLc. Furthermore, ifnsr d is a stochastic func-
tion with a probability density function characterized by a
standard deviationsn, djsr 8d can be approximated as

djsr 8d < 2pLc
ÎNsn/l ø 2pÎLcdsn/l. s11d

Therefore, the inequality(5) is replaced by

b ; 4ÎLcdsn/l , 1. s12d

Note that the parameterb quantifies the most probable maxi-
mum phase shift errordjsr 8d in an inhomogeneous particle
with a stochastic distribution of its refractive index. Ifb
!1, this phase error is negligible, and therefore EPS ap-
proximation gives accurate estimate of the TSCS spectrum of
the inhomogeneous particle. On the other hand, whenb!1,
the expansion(9) may not be performed. In this case, EPS
approximation may give erroneous results. We also note that
b is proportional to the square root ofLc. This indicates that
refractive index fluctuations within larger geometrical scales

have more significant impact on the accuracy of the EPS
approximation.

IV. GAUSSIAN RANDOM FIELD MODEL
FOR INHOMOGENEOUS REFRACTIVE

INDEX DISTRIBUTION

In order to investigate light scattering by particles with a
wide variety of shapes and interior structures, statistical ap-
proaches are very useful for modeling the particle geometry
[14]. In particular, the Gaussian random sphere has been suc-
cessfully used as a geometric model to study light scattering
by irregularly shaped nonspherical particles[15]. In this sec-
tion, we describe how to use the Gaussian random field
(GRF) model to synthesize the stochastic distribution of the
refractive index within inhomogeneous particles.

Three-dimensional(3D) GRFs are analogs of one-
dimensional stochastic processes having a Gaussian prob-
ability density function. Here, we consider the refractive in-
dex nsr d as a function of spatial locationr =sx,y,zd. Each
value of nsr d is a Gaussian random variable with meann0

=knsr dl and standard deviationsn=Îkfnsr d−n0g2l. For a
GRF model with unit standard deviation, the two-point cor-
relation functionCnsrd is defined as

FIG. 1. (Color) Examples of
inhomogeneous spherical particles
having GRF refractive-index dis-
tributions with fixed n0=1.5 and
Lc=400 nm, but increasing stan-
dard deviations:(a) sn=0.05, (b)
sn=0.098,(c) sn=0.163.
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Cnsrd = kfns0d − n0gfnsrd − n0gl, s13d

wherer = ur u. In this paper, we use the Gaussian function as
the correlation model

Cnsrd = e−r2/sLc/2d2, s14d

whereLc is the characteristic correlation length representing
the length scale over which the correlation drops to a negli-
gible level. For such a choice of correlation function, the
statistics of the spatial distribution ofnsr d is uniquely deter-
mined by the parameterLc. If Lc→`, we haveCnsrd;1 and
the resulting spatial distribution is homogeneous. LowerLc
corresponds to refractive-index fluctuations in smaller geo-
metric scales.

Various methods can be used to generate realizations of
the GRF model. In this paper, we have adopted the turning-
band method[16], where the 3D realizations of the GRF
model are generated by summing independent realizations of
one-dimensional random functions with directional vectors
uniformly distributed over the unit sphere. Using this
method, we create geometrical models of spherical particles
with the refractive index having GRF distributions.

Figures 1(a)–1(c) graph shows sample inhomogeneous
spherical particles with fixedn0=1.5 and correlation length
Lc=400 nm, but increasing standard deviations ranging from
sn=0.05 [Fig. 1(a)] to sn=0.163[Fig. 1(c)]. In each figure,
the particle refractive-index distribution is depicted in the 3D
view of a surface plot(left panel), a cross-sectional cut in the
x̂-ẑ plane (middle panel), and a cross-sectional cut in the
ŷ-ẑ plane(right panel). Each colormap of the particle interior
illustrates the spatial distribution of the particles’ refractive
indices. The corresponding scale of the variation is illus-
trated using the colorbars displayed on the right in each fig-
ure. We note that the exact geometry of the refractive-index
spatial distribution is unique for each case since the stochas-
tic method is used in randomly generating these geometries.
However, since the three particles all have the same correla-
tion lengthLc=400 nm, their spatial refractive-index distri-
butions have fluctuations on the same geometrical scale. It is
also evident that the standard deviationsn determines the
magnitude of the refractive-index fluctuation. For example,
for the particle shown in Fig. 1(c), the standard deviation
sn=0.163 results in refractive-index fluctuations raging ap-
proximately from 1.0 to 2.0.

Figure 2 shows sample inhomogeneous spherical particles
with fixed n0=1.5 and sn<0.1 but Lc increasing from
100 nm [Fig. 2(a)] to 1.2mm [Fig. 2(c)]. These examples
demonstrate the capability of the GRF model to mimic
refractive-index fluctuations occurring over a wide range of

FIG. 2. (Color) Examples of
inhomogeneous spherical particles
having fixedn0=1.5 andsn<0.1
but with increasing correlation
lengths. (a) Lc=100 nm, (b) Lc

=600 nm,(c) Lc=1.2 mm.
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geometrical scales appropriate for simulation of natural
particles.

V. NUMERICAL VALIDATION OF THE EPS
APPROXIMATION AND ITS EXPECTED RANGE

OF VALIDITY

We now describe our validation of the EPS approximation
discussed in Secs. II and III. To this end, we have conducted
a series of numerical experiments that compared TSCS spec-
tra calculated using the EPS approximation with numerical
FDTD benchmark data for a wide variety of inhomogeneous
spherical particles such as shown in Figs. 1 and 2. This com-
parison permits us to validate the EPS approximation and to
explore the correlation between the approximation accuracy
and the geometric characteristics of the refractive-index dis-
tribution.

The FDTD method has been shown to be a robust means
to numerically solve the Maxwell’s equations in studies of
light scattering problems[17]. We used a staircasing scheme
with 25-nm resolution to sample the refractive-index spatial
variations of interest. Following the same procedures as de-

scribed in our previous work[9], we calculated TSCS spectra
of (n0=1.5, d=4 mm) spherical particles ranging from
slightly inhomogeneouss1.45ønø1.55d to highly inhomo-
geneouss1.0ønø2.0d. The numerical experiments include
a wid range of geometrical scales of interior refractive-index
fluctuations withLc ranging from 50 nm to 1.2mm.

Figure 3 shows four representative results of our numeri-
cal experiments. In each example, the spatial distribution of
the particle refractive index in one cross-sectional cut is dis-
played on the left, and the TSCS spectra calculated with
FDTD and the EPS approximation are graphed on the right.
We note that although these inhomogeneous particles have a
variety of values ofsn and Lc, the validity conditionb
;4ÎLcdsn/l,1 is satisfied for all four cases. Indeed, the
TSCS spectra calculated by the EPS approximation very well
matched the benchmark data provided by FDTD for all four
cases.

As Lc or sn of the interior refractive-index distribution
become greater, the accuracy of the EPS approximation is
expected to decline. This effect is illustrated in Fig. 4. For
these four particles with increasingb, the EPS-calculated
TSCS spectra progressively deviate from the FDTD data. In

FIG. 3. (Color) Comparison of TSCS spectra
calculated using rigorous FDTD numerical mod-
eling and EPS analyses. The spatial distribution
of the particle refractive index in thex̂-ẑ cross-
sectional cut is displayed in the left panel.(a)
sn=0.1, Lc=50 nm, b=0.36. (b) sn=0.08, Lc

=100 nm, b=0.40. (c) sn=0.05, Lc=1 mm, b
=0.78. (d) sn=0.08,Lc=600 nm,b=0.97. Good
agreement is observed between the EPS-
calculated TSCS spectra and the FDTD bench-
marks sinceb,1.
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an extreme case shown in Fig. 4(d), where both the magni-
tude and geometrical scale of the refractive-index inhomoge-
neity are large(1.0ønø2.0, Lc=1.0 mm, andb=2.6), the
oscillatory period of the TSCS spectrum calculated by the
EPS approximation completely departs from the FDTD
benchmark data.

We summarize our numerical experiments with a para-
metric study to demonstrate the impact of the statistical pa-

rameters of refractive-index distribution(characterized by
theb factor) on the validity and accuracy of the EPS method.
We used two complimentary parameters, the rms errorR and
the correlation coefficientrc to quantify the accuracy of the
approximate EPS-calculated TSCS spectra with respect to
the exact FDTD benchmark data. The rms error measures the
overall estimation accuracy, while the correlation coefficient,
which is defined as

rc ;
ŠftscsFDTDslid − ktscsFDTDsldlgftscsEPSslid − ktscsEPSsldlg‹

sftscsFDTDsldgsftscsEPSsldg
, s15d

measures the capability of the EPS approximation to repli-
cate the oscillation characteristics of the TSCS spectrum.

Figure 5 plots the rms errorR and the correlation coeffi-
cient rc as functions ofb for 26 inhomogeneous spheres

covering a wide variety of refractive index distributions(Lc
ranging from 50 nm to 1.2mm andsn ranging from 0.02 to
0.163). In order to better illustrate the connection between
the quality of the EPS approximation and the accuracy mea-

FIG. 4. (Color) Comparison of TSCS spectra
calculated using FDTD modeling and the EPS
approximation for particles with largesn or Lc.
(a) sn=0.08,Lc=1.0 mm, b=1.29. (b) sn=0.13,
Lc=800 nm,b=1.90. (c) sn=0.15, Lc=1.0 mm,
b=2.32.(d) sn=0.16,Lc=1.0 mm, b=2.61. Asb
increases well above 1, the EPS calculated TSCS
spectra progressively deviate from the FDTD
benchmarks.
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sures, we cross-reference eight data points in Figs. 5(a) and
5(b) with their corresponding particle geometries and TSCS
spectra shown in Fig. 3 and Fig. 4.

We observe from Fig. 5 that when criterion(9) is satisfied
sb,1d, the EPS approximation is sufficiently accurate, i.e.,
rcù0.9 andR,5%. It is also evident from Fig. 5(a) that
whenb.1, the accuracy of the EPS approximation degrades
rapidly asb increases. This further demonstrates the impor-
tance of theb parameter in determining the validity of the
EPS approximation.

VI. SUMMARY AND DISCUSSION

We have presented the development and validation of the
equiphase-sphere(EPS) approximation for the total-
scattering cross-section(TSCS) spectra of inhomogeneous
spherical particles having complex interior structures. We
have shown that the closed-form, analytical approximation

can accurately model the TSCS of randomly inhomogeneous
spherical particles having internal refractive index variations
with geometrical scales spanning from nanometers(i.e., sub-
wavelength) to microns(i.e., suprawavelength). An easy-to-
use criterion for the range of approximation validity has been
provided to guide the practical application of this method.

Although not limited to a single category of applications,
the work discussed here may positively impact tissue optical
imaging and diagnostic applications. It is recognized that the
analysis of spectral, angular, and other characteristics of light
scattered from living tissue can provide valuable diagnostic
information [18–25]. Due to the complexity in the microar-
chitecture of biological tissue, the understanding of light
scattering by particles with complex shapes and interior
structure is of great importance for the future refinement of
the current optical techniques. Importantly, the development
of methods such as the EPS approximation to analyze tissue
light scattering will enable gathering new accurate informa-
tion about tissue organization and its alteration in disease. In
turn, these insights can be further used for disease diagnosis

FIG. 5. (Color) Accuracy measures of the
EPS approximation of the TSCS spectrum as
functions of the validity-condition parameterb
for 26 cases of inhomogeneous spheres covering
50 nm,Lc,1.2 mm and 0.02,sn,0.163. In
all cases, FDTD simulation results are used as the
benchmark data.(a) rms error(%) vs b. (b) Cor-
relation coefficient vsb. When b,1, the rms
error is less than 5% and the correlation coeffi-
cient is greater than 0.9.
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as well as the biological understanding of tissue pathophysi-
ology. In our future work, we shall focus on developing ef-
fective techniques for analyzing the angular-dependent and
backward scattering properties of biologically relevant
particles.
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