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Abstract
With an increasing number of scientific applications manipulating
enormous amounts of data, effective high-level data management
has become an important requirement. Currently, data mining, as
one stage in the sequence of stages during a scientific simulation
cycle, is performed off-line for most applications, which involves
a huge amount of data movement, I/O cost and initialization over-
head. Therefore, the techniques to embed data mining within an on-
line framework that consumes the data while the data are being pro-
duced can reduce the computational complexity and costs. In this
paper, we present an on-line model of embedding data mining algo-
rithms within the scientific simulation framework, where such algo-
rithms are executed within the simulation cycle until the simulation
satisfies certain application-dependent stopping criterion. The po-
tential benefits of our on-line model are evaluated by applying the
model to a parallel cosmological simulation.

1 Introduction.
Many large-scale scientific applications are data-intensive,
processing large data sets ranging in size from megabytes
to terabytes, such as applications in cosmology, astrophysics
and hydrodynamics. Scientific simulations involve lengthy
computation and produce enormous amounts of data. Figure
1 shows a typical scientific simulation cycle [3]. The cy-
cle starts with domain decomposition, followed by the sim-
ulation stage. Then, various tools and algorithms are used
during the data analysis and visualization stages. Finally,
based on the results from these two stages, parameter ad-
justment for the next simulation cycle is performed. Out-
put from one stage is used as the input for the next stage.
Since the simulation produces an enormous amount of data,
data management has become so overwhelming that scien-
tists have to spend much time managing the data by using
inefficient methods or by developing special-purpose solu-
tions that may not work or scale with slight changes in the
application or system configuration. Therefore, the design
and development of scalable techniques, software and tools
that address these problems becomes very important.
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Figure 1: A typical simulation cycle consists of several ap-
plications in which the data generated from one application
is processed by another application. The white circles repre-
sent applications and the black circles connected in different
structures represent the applications’ output.

Data mining is becoming recognized as a promising data
analysis method for scientific simulations. Data mining, also
referred to as knowledge discovery, is a process of extracting
implicit, previously unknown and potentially useful informa-
tion from large data sets. It is commonly used in scientific
computation, financial analysis, information retrieval, deci-
sion making, and World Wide Web, to name a few. Data
mining techniques can be roughly categorized into classifi-
cation, clustering, association rules, sequence mining, and
similarity search.

However, existing data mining techniques have not con-
sidered the challenges posed by large-scale scientific simu-
lations in terms of performance, scalability or ease of use.
For example, classification, clustering or feature extraction
is performed off-line and some parameters for subsequent
computation are adjusted manually, which results in a major
bottleneck. Storing the original simulation data is costly both
in time and in media. Storing or retrieving the derived data
for mining processes can easily overwhelm the mining pro-
cess itself. Furthermore, the fact that data storage systems is
often located remotely from the machines that run the mining
applications makes the I/O cost even higher. Figure 2 illus-
trates an example of data flow for a cosmology simulation.
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Figure 2: An example of data flow for cosmology simulation.
Data analysis and visualization are performed off-line by
domain scientists.

In this example, the cosmology simulation itself is the data
producer, which dumps large amounts of data into disk files
periodically at every checkpoint. Data analysis, as one of the
data consumers, uses the data dumped from the simulation as
input to perform certain data mining applications, then send
the mining results back to the data producer, i.e. the simula-
tion. However, such data analysis is performed off-line, and
involves the complexity of data management, data storage
and data movement.

Therefore, the concept of an on-line processing frame-
work to automatically connect the data producer and data
consumer becomes very desirable. An on-line model can
reduce data movement, I/O access cost and computational
complexity. Such a model can also automatically adjust the
parameters for the subsequent simulation cycle. This way,
the domain scientists would be relieved from the burden of
manually executing the data analysis applications within the
simulation cycle.

In this paper, we present an on-line processing model to
perform data mining automatically within the simulation cy-
cle until the simulation satisfies certain user-provided stop-
ping criterion as defined by the domain scientists, e.g. total
number of data dumps or converging number of clusters of
stars or galaxies. Our model involves periodically check-
ing specific parameters in the data evolution, collecting the
data required by the ensuing data mining algorithm, invok-
ing the data mining procedure and sending mining results to
the subsequent processing stage. The potential benefits of
this on-line model are evaluated by incorporating a cluster-
ing algorithm into a parallel cosmological application called
ENZO. Our experiments demonstrate that the costs for I/O
access and initialization overheads are significantly reduced
by up to 57% on the IBM SP2 with the on-line model.

The remainder of this paper is organized as follows.
Section 2 describes our on-line processing model. Section 3
discusses the cosmological simulation cycle and presents our
experimental results. In Section 4, we discuss the difficulties
in our study and future work items. We conclude the paper
in Section 5.

2 On-line Data Mining.
Based on the large-scale simulation data flow in Figure 2, we
propose an on-line data mining framework that embeds the
data mining applications within the simulation cycle.

Since the characteristics of each simulation varies, there
are two strategies to perform data mining applications on the
output data from the simulation stage: one is to execute the
data mining applications when the data is just beginning to
be produced, that is, to perform incremental or evolving data
mining techniques on the dynamic data; the other option is
to wait until all the data is available in the memory. Each of
these strategies has advantages and disadvantages. For the
first strategy, the data processing is pipelined, thus saving
memory and I/O cost and reducing overall execution time.
However, the mining quality would be poor when the data
evolves considerably over time. In addition, there are no
well-established data mining techniques on incremental or
evolving data at the present time. For the second strategy,
data mining applications cannot start until all the data are
available in the memory, which might result in out-of-
memory problems when the data size is large. The choice
between the strategies depends on the user or the particular
application. In either case, the data mining application can
be plugged into the simulation cycle with no extra I/O cost.

Figure 3 illustrates the flow of our on-line processing
model, with the major steps itemized as below.

Step 1. Typically, a scientific simulation evolves through
many cycles until the pre-defined stopping criterion is satis-
fied. During each cycle, data are periodically dumped from
the simulation stage and fed into the data mining applications
to discover the knowledge hidden in the data, and determine
the parameters of the next step of the evolution. Whenever
data are dumped, a runtime library is invoked to extract the
data required by the specific data mining algorithm in use,
such as 3-dimension coordinates, particle masses and other
user input parameters, as well as filtering non-required data.

Step 2. Performing the data mining applications within
the simulation cycle avoid any I/O cost, data movement
or initialization overhead associated with off-line methods.
In addition, while many data mining algorithms have been
implemented in parallel, some scientific simulations are
not designed for parallel processing. If the data mining
application is implemented in parallel, in order to achieve
high performance, a runtime library is invoked to distribute
the data across multiple processors and start the parallel
computation.
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Figure 3: On-line processing model for data mining in scientific simulations. The data mining applications are plugged into
the simulation cycle and will send mining results to the subsequent stage.

Step 3. The data mining algorithm is executed to
discover important knowledge from the data sets. The
mining results are important to scientists since these results
present a global view of the current state of the simulation.
It helps the scientists understand the underlying scientific
phenomena. With our on-line processing model, scientists
can obtain mining results automatically and immediately
during the simulation cycle, thus avoiding the cumbersome
work performed by a separate set of tools in the off-line
model. In addition, the mining outcome (which is sent to
the next stage) may contribute significantly to help steer
subsequent simulation cycles.

Based on the afore-mentioned steps, our proposed
model is designed to be portable and easy to use. It adds
no complexity to the simulation cycle, and it hides all the
detailed data access processes that are not of primary impor-
tance to the end user.

3 Evaluation of the On-Line Processing Model.
To evaluate the significance of our on-line processing model,
we use ENZO, a real production cosmology simulation de-
veloped at NCSA [2], along with the HOP clustering algo-
rithm proposed in [4]. Designed to show the evolution of the
galaxy formation, periodic data dumps are performed during
ENZO evolutions. The dumped data are input into subse-
quent data mining processes, where patterns such as clusters
of stars could be discovered. In the current implementation
of ENZO, such clustering application is performed off-line.
We discuss these major components of our evaluation and

present our experimental results as follows.

3.1 ENZO Cosmology Simulation. ENZO is a three-
dimensional parallel application that simulates the formation
of a cluster of galaxies consisting of gas and stars [9]. The
simulation starts near the beginning of the universe, a few
hundred million years after the big bang, when the galaxy
is in a relative uniform radiation distribution, and contin-
ues till the present day, when it is in a highly irregular star
particle distribution. ENZO is used to test theories of how
galaxy and clusters of galaxies form by comparing the re-
sults with what is really observed in the sky today [5], where
simulation results from ENZO compared favorably with high
precision against established astrophysical models [2]. One
core technique of ENZO is to use Adaptive Mesh Refinement
(AMR) to partition recursively the problem domain into sub-
domains. That is, a single grid covers the entire computa-
tional volume; and in regions that require higher resolution,
a finer subgrid is added. If a region requires yet a higher
resolution, an even finer subgrid is added [8]. This process
repeats recursively with each adaptation, resulting in a tree
of grids as shown in Figure 4. Check-pointing is performed
periodically to save current results into files, which enables
the application to be resumed. In the process of galaxy evo-
lution, the grids are refined dynamically and, therefore, may
result in a hierarchy with a different number of levels and
new structure. Each grid contains particle coordinates in
three dimensions, particle masses, gradient fields, baryon
fields, etc. A grid can only be owned by one processor,
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Figure 4: Spatial relationship of the grid data generated by
a cosmological simulation using the AMR method. Two
hierarchical trees depict the data set relationship at two time
stamps, respectively.

but one processor can own multiple grids. During check-
pointing, each grid in a processor is dumped to a separate file
[6]. Subsequent data mining applications are performed on
the simulation output. Both the galaxy simulation output and
the data mining results are processed by a visualization appli-
cation to render images of galaxies and clusters of galaxies.
By visually examining the rendered images, astrophysicists
can digest the discovered knowledge hidden in the data, ad-
just the simulation parameters, and then proceed to the next
simulation cycle. As shown in Figure 1, the simulation cycle
continues until its stopping criterion is satisfied.

3.2 HOP Clustering Algorithm. Clustering, an impor-
tant data mining technique, groups a set of data based on the
conceptual clustering principles: maximizing the intra-class
similarity and minimizing the inter-class similarity. Cluster-
ing algorithms are widely used in many fields to group data
with similar attributes or to describe various dense regions in
the output of a simulation, such as cosmology, astrophysics
and geology.

HOP [4], proposed for cosmological simulations, is a
density-based clustering algorithm. The density of a particle
is estimated by its Ndens nearest neighbors, where Ndens
is a user-provided parameter. Having assigned to every
particle an estimate of its local density, HOP associates each
particle with the densest neighbor of its Nhop nearest particle
neighbors, where Nhop is also a user-provided parameter. All
particles that associate to the same densest particle constitute
a single cluster. The input data for HOP are 3D coordinates,
particle masses and several user specified parameters. A
portable and scalable parallel HOP algorithm [7] has been

implemented which distributes the data across processors
evenly, and accesses remote data through communication.
This algorithm is applicable to many fields, where large data
sets are to be processed with similar clustering or neighbor-
finding procedure. Therefore, we use this parallel HOP
algorithm as the data mining application in our evaluation.
HOP has been designed to perform clustering after all the
data are dumped.

The output data of ENZO is grid, while the data struc-
ture in the clustering algorithm, i.e. HOP, is KD tree [1].
KD tree is a balanced tree that partitions the spatial domain
recursively along the longest axis into sub-domains. Each
sub-domain contains approximately the same number of par-
ticles. The root node represents the entire simulation domain
that covers all the particles, and each tree node represents
a sub-domain of its parent node. Only the leaf nodes con-
tain the particle data. One key property of a KD tree is that
particles spatially closed are located in the same bucket or
sibling buckets of the same tree branch. In order to embed
HOP clustering within the simulation cycle, we have two op-
tions: one is to convert the data structure from grid to KD tree
before HOP clustering begins; the other is to perform HOP
clustering algorithm using grid structure.

3.3 Experiments and Results. The potential benefits of
our on-line processing model are evaluated by running
ENZO on the 375MHz Power3 IBM SP2 at the San Diego
Supercomputing Center. In our experiments, we used two
sets of simulation data from ENZO: data set 1 contains
61,440 particles the attributes of which consist of three-
dimensional Euclid coordinates and particle mass, and data
set 2 contains 491,520 particles specified by the same at-
tributes. We varied the number of processors from 1 to 16 to
study the scalability of our on-line model. We experimented
with both options as discussed in Section 3.2, and observed
that the overall performance of the simulation with embed-
ded HOP using grids is worse than that with embedded HOP
using KD trees, when the number of grids increases dramat-
ically (as the universe evolves). The grids’ unbalanced na-
ture resulted in a huge amount of unnecessary neighborhood
searching. Therefore, we decided to proceed with our per-
formance evaluation by running HOP using KD tree. The
measurement metrics we used are as follows:

Total time: For ENZO with plug-in HOP, it is the
running time from the beginning of the simulation to the end,
including computation time, I/O time for 8 data dumps, and
the time for 8 plug-in HOP clustering runs. For ENZO with
off-line HOP, it is the same as the above except to replace the
8 plug-in HOP runs with 8 off-line HOP runs for each data
dump.

Total I/O time: For ENZO with plug-in HOP, it is the
I/O cost for 8 data dumps. For ENZO with off-line HOP, it
is the sum of the I/O cost for 8 data dumps plus the I/O cost
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Figure 5: Total execution time on IBM SP2. Running ENZO with plug-in HOP is faster than running ENZO with the
off-line HOP.
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Figure 6: I/O time as a fraction of the total execution time on IBM SP2.
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 Figure 7: Total I/O time on IBM SP2. Our on-line processing model significantly reduced the I/O cost and initialization
overhead.

and initialization overhead for 8 off-line HOP runs.
Figure 5 presents the measured total execution times of

ENZO with plug-in HOP versus ENZO with off-line HOP
for the two data sets on multiple processors. When the
number of processors is larger than 1, the I/O operation is
performed in parallel. For both data set 1 and data set 2, we
observed that the total execution time with plug-in HOP is
smaller. Since the I/O cost in ENZO simulation represents
less than 5% of the total execution time, as shown in Figure
6, the benefit on total time presented in Figure 5 is not
very evident. However, for applications that are more data-
intensive, the impact of such I/O cost reduction is expected
to be much more significant. The benefit on data set 1 is
more significant than data set 2 as we observed. That is, in
the case of a smaller data set, the observed I/O time takes a
larger fraction in the total execution time than the case of a
larger data set, due to a higher fraction of processing time
attributed to computation in the larger data set.

Since one of the main purposes of our on-line model is
to reduce I/O cost and initialization overhead associated with
the off-line approach, we measured the I/O time of both ap-
proaches. Figure 7 shows that the I/O cost is reduced by the
on-line model for both data sets on 1 to 16 processors. Figure
8 presents the percentage reduction in I/O time provided by
our on-line model on multiple processors, where we also ob-
served that the performance is scalable. Figure 8 shows that
in the case of the larger data set, the I/O time reduction is up
to 57% of the total I/O cost incurred by ENZO with off-line
HOP when running on 8 processors. For the smaller data set,
the file open/close overheads happens more frequently when
compared to the larger data set, which results in a lower per-
centage of reduction than that of the large data set. From
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Figure 6, we see that the total I/O cost with respect to the
total execution time is reduced by 1% to 2% in data set 1 and
1.5% to 3% in data set 2 when using our on-line (plug-in)
HOP design.

Figure 9 illustrates the number of clusters identified
by HOP during ENZO evolution. As the simulation time
elapses, the number of clusters converges to a fixed number.
That is, at the beginning of the universe, the entire galaxy is
very uniformly distributed and sparse. The galaxy then con-
tinues further to become more and more irregular, generating
more and more clusters/dense regions, until the end when it
reaches a relatively steady state. If we consider converging to
a fixed number of clusters to be the stopping criterion for the
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Figure 9: Number of clusters during evolution. It converges
at the end of the simulation.

simulation cycles, then the simulation can be automatically
stopped at certain point in time. In this way, scientists would
be relieved from the burden of manually executing the HOP
process to determine when the simulation will be finished.

4 Prospect and Future Work.
Since each scientific simulation is designed specifically to
solve a particular problem, there are no universal data struc-
tures for all the simulations. For example, cosmological sim-
ulation uses dynamic grid, gene expression data analysis uses
matrix, etc. On the other hand, the data structures in the ex-
isting data mining algorithms may not be compatible with the
data structures used in the simulation. To solve this problem,
we proposed two strategies: one is to convert the output of
the simulation to the data structure that conforms to the input
of the data mining application; the other is to implement the
data mining algorithms using the data structure of the output
of the simulation. Each strategy has advantages and disad-
vantages. For the first strategy, while it is relatively easy to
convert the data structure, it would take so much memory to
keep a duplicate copy of data at runtime that it may run out
of memory or seriously affect the performance. In addition,
the data mining algorithm cannot start until the conversion
is done. For the second strategy, it involves more work to
implement the existing data mining algorithms using a spe-
cific data structure. Essentially, the choice between the two
strategies would be application specific. The challenge is to
determine which strategy is more effective at run time. Cur-
rently, we compare the performance results manually.

In our example, the output data of the cosmological
simulation is grid, while the data structure used in the
clustering algorithm, HOP, is KD tree. To embed HOP
clustering within the simulation cycle, we experimented with
two methods: one is to convert grid to KD tree before

HOP clustering begins; the other one is to perform HOP
clustering algorithm using grid structure. We found that
the performance of the simulation with embedded HOP
using grid deteriorates when the number of grids increases
dramatically. As discussed before, the grids’ unbalanced
nature results in a huge amount of unnecessary neighborhood
searching.

For future work, we plan to explore the methods that can
automatically determine which strategy is more effective at
run time. In that case, no manual work would be needed
within the entire simulation cycle, eliminating the need for
scientists to supervise the simulation cycles. We also would
like to investigate additional applications that are more data-
intensive, as such applications are expected to benefit further
from our on-line processing model.

5 Conclusions.
We proposed an on-line data mining model to automatically
connect data producer and data consumer in the scientific
simulation cycle. In our model, run-time libraries extract
useful data for data mining applications, and then distribute
data across multiple processors if necessary, and send mining
results to the subsequent stage in the simulation cycle. Using
our model, I/O cost and initialization overhead are reduced
by connecting data producer and data consumer. In addition,
the simulation can automatically repeat for a number of
cycles until the pre-defined stopping criterion is satisfied.

We evaluated our on-line processing model by embed-
ding HOP clustering algorithm within a cosmological simu-
lation, ENZO. Two data sets were examined, both of which
exhibited reduction in the execution time when scaled from
1 to 16 processors, achieving a 57% I/O time reduction with
8 processors. In addition, our experiments indicated that the
number of clusters identified by HOP algorithm converges at
some point of time during the simulation.

Although we applied HOP clustering to a cosmological
simulation, the model for connecting data producer and data
consumer in the scientific simulation cycle is applicable
to most large-scale scientific simulations that involve data
mining applications. Execution time can be reduced by
avoiding data movement, data storage, and initialization
overhead. For applications that are more data-intensive, the
impact of I/O reduction provided by our on-line model is
expected to be more significant. Scientists can benefit from
the ease of use, portability and scalability provided by the
on-line model.
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